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ABSTRACT

We examine the effectiveness of risk-based portfolio construction
methods, specifically Equal Risk Contribution (ERC) and Inverse
Volatility (IVP), using the same data set and performance
measures as in DeMiguel, Garlappi, and Uppal’s study from 2009
on the mean-variance model and its extensions. We create
portfolios and evaluate their out-of-sample performance against
the Equal Weighted (EW) strategy in terms of Sharpe Ratio,
Certainty Equivalent, and turnover. Findings suggest that while
ERC and IVP do not consistently outperform the EW strategy,
they demonstrate significant potential, often matching or
surpassing EW’s performance.

This thesis is a part of the MSc programme at BI Norwegian Business
School. The school takes no responsibility for the methods used, results found,

or conclusions drawn.
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1 Introduction and motivation

Investment management and portfolio construction have been areas of intense

interest and research for many decades, with one of the seminal works in the

field being Modern Portfolio Theory, introduced by Harry Markowitz in the

1950s (Markowitz, 1952). Markowitz’s work marked a significant turning point

in the area, as it introduced the concept of mean-variance optimization as a

framework for portfolio construction and asset allocation. Investors and port-

folio managers have widely adopted this approach, as it provides a systematic

method for balancing portfolio risk and returns.

However, the mean-variance approach has weaknesses, and one of the main

criticisms is that portfolio optimization is highly sensitive to estimation er-

rors. This was first pointed out by Michaud (1989), who noted that even small

errors in the estimation of expected returns and covariance matrices could have

a significant impact on the optimization results. This sensitivity to estimation

errors has led many researchers to question the mean-variance approach’s va-

lidity and seek alternative methods for portfolio construction that are less

sensitive to estimation errors.

In response to this challenge, DeMiguel, Garlappi, and Uppal (2009) (DGU)

conducted a study on the topic ”Optimal versus Naive Diversification,” where

they explored various methods for reducing estimation errors in portfolio opti-

mization. The authors conducted a comprehensive analysis of several portfolio

construction methods, including the Equal Weighted (EW) portfolio strategy

and the mean-variance approach. They concluded that more work must be put

into estimating moments to obtain reliable and accurate results. This study

provides valuable insights into the challenges and limitations of the mean-

variance approach to portfolio optimization.

1



Building upon the work of DGU, our thesis aims to expand the examination of

portfolio construction methods. While their study highlights the importance of

careful moment estimation, other approaches to portfolio construction focus

on managing risk. Instead of looking at ways to reduce estimation error,

we propose portfolios that do not need as much estimation and thus partly

eliminate the problem.

Specifically, we aim to examine the effectiveness of the risk-based portfolio

construction techniques Equal Risk Contribution (ERC) (Risk Parity) and

Inverse Volatility (IVP), as discussed by Maillard et al. (2010), Lee (2011),

Clarke et al. (2013), and Roncalli (2016). To do this, we evaluate the portfolios’

out-of-sample performance to that of the EW. In addition, we point to possible

explanations for this performance.

To ensure an unbiased comparison of the effectiveness of our two proposed

portfolio strategies, we have used the same data as DGU and recreated some

of their portfolios with success. The data we have used are listed in Table 2

and further explained in Appendix A; the portfolios we created are listed in

Table 1 and explained in Section 4. We evaluate the performance using the

same three measures as DGU: the Sharpe ratio, Certainty Equivalent return,

and turnover.

Our main finding is that IVP and ERC do not consistently beat the EW

strategy in terms of Sharpe Ratio, Certainty Equivalent, or turnover. However,

they still show considerable promise. Their performance either matches or

significantly exceeds the EW strategy.

We believe the portfolios could have performed even better if the datasets

analyzed were single stocks rather than portfolios of assets. We reason that

value-weighted portfolios of assets are already diversified and have less idiosyn-

cratic risk, which affects the relative performances in two ways. Firstly, the

IVP and ERC could have limited some of this inherent risk in any asset by

2



construction. Secondly, the EW makes fewer errors in allocation and suffers

less from risk concentration when investing equally in broad indices.

Risk-based portfolios disregard returns in their optimization but still perform

well. We point to three overarching reasons: (1) The relatively good perfor-

mance of risk-based models can be the poor performance of mean-variance

strategies because of estimation errors. (2) Risk-based portfolios reward and

overweight assets with low risk and may thus include assets that empirically

have been shown to provide a higher return than the risk would suggest due

to what some researchers coin the ”low-risk anomaly.” (3) Risk-based port-

folios are inherently constrained to be long-only and invest in all investible

assets. Even if constraints limit the investible universe and thus possible re-

ward, empirical evidence shows that constrained portfolios often perform well

because they avoid extreme positive and negative weights. They effectively

use ”shrinkage” on the parameter estimations, leading to less estimation error.

The rest of our thesis is organized as follows: Section 2 reviews the literature

on quantitative portfolio theory, specifically emphasizing DGU’s paper and

risk parity portfolios. We use existing theory and literature to explain an

investor’s portfolio choice and the expected performance in section 3. We

devoted an entire section to explaining our portfolios’ mathematical build-up

and relationships in Section 4. Section 5 presents the methodology used to

find, evaluate, and stress test the out-of-sample performances. We present the

data used and some specific characteristics of the data that can help explain

portfolio performance in Section 6. Section 7 analyzes our results, and section

8 is left for concluding remarks.
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2 Literature Review

Our research draws inspiration from the study ”Optimal versus Naive Diversifi-

cation: How Inefficient Is the 1/N portfolio strategy?” by DeMiguel, Garlappi,

and Uppal (2009) (DGU). DGU studied various methods for minimizing esti-

mation errors in portfolio optimization. This in-depth analysis of several port-

folio creation methods, such as the Equal Weighted (EW) portfolio strategy

and mean-variance approach, concluded that achieving reliable results requires

more refined moment estimation. DGU’s evaluation spanned seven datasets,

including sector and Fama-French factor portfolios, finding that no model con-

sistently outperformed the EW strategy in terms of Sharpe Ratio, Certainty

Equivalent, or turnover.

As a reaction, some researchers sought to either validate or contradict the

superiority of the EW portfolio. Others investigated its impressive performance

and extended the concept of diversification to portfolio construction methods

beyond mean-variance. This section will summarize some of the main findings

of these articles, starting with the direct extensions and comments on the

article by DGU and continuing with other portfolio construction methods,

mainly about risk parity. This summary will be the basis for expanding the

original paper with additional ways to construct portfolios.

One point of critique against DGU’s study is that they only used historical data

to estimate expected returns and standard deviations, while other methods of

forecasting or incorporating additional available information on stock returns

could be employed. Allen et al. (2019) argue that with some forecasting ability,

mean-variance optimized portfolios could outperform the EW strategy in out-

of-sample tests, which they demonstrate through simulations and empirical

analysis. Their key difference from DGU is that they use forward-looking

estimates as input variables rather than relying strictly on historical data.
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Furthermore, the portfolio performances can vary depending on the dataset

used (Anderson et al., 2012), and the diversification benefits of the Equal

Weight portfolio can be limited when the available assets are concentrated in

a few separate markets or industries (Lee, 2011).

Another criticism of the DGU paper is that the constant 120-month rolling

windows used are too short, and their way of estimating returns and covari-

ances leads to more estimation errors than necessary Kritzman et al. (2010).

To address this, the authors propose using more robust parameter estimation

methods using naive but plausible estimates of expected returns, volatilities,

and correlations. They provide empirical evidence that the optimization ap-

proach outperforms the EW portfolio.

Kirby and Ostdiek (2012) argue that the mean-variance approach outperforms

the EW portfolio, but excessive turnover caused by estimation errors erodes

this advantage. To overcome this, they propose volatility and reward-to-risk

timing to deliver portfolios with lower turnover.

Although the findings of DGU suggest that the EW strategy may have some

merit, other portfolio construction strategies have been proposed which may be

more effective in certain circumstances. Following the era when the industry

aimed to correct the shortcomings of mean-variance optimization, practition-

ers pivoted towards alternative portfolio construction techniques that did not

rely on estimating expected returns. One such method was risk budgeting.

Although the idea of asset risk contribution has existed for quite some time

Litterman (1997), the strategy didn’t take center stage in portfolio choice until

many years later. We will focus more on a particular case of Risk Budgeting

called Risk Parity.

The term ’Risk Parity’ was coined by Edward Qian, a fund manager at

PanAgora Asset Management Qian (2005). An early example is the All

Weather fund portfolio developed by Bridgewater, designed to create a

5



portfolio that was robust against various macroeconomic conditions. The

strategy aimed to equalize assets that would thrive under different inflation

and GDP conditions.

Later versions of risk parity shifted focus from resilience against macroeco-

nomic conditions to emphasizing the total risk contribution of each compo-

nent. This approach gained popularity after Maillard et al. (2010) published

an article exploring the properties of the risk parity portfolio. Asness et al.

(2012) compared the risk parity, ”60-40”, and market portfolios and concluded

that risk parity portfolios outperform the market across countries and asset

classes.

Some limitations of the papers mentioned on Risk Parity are that they either

use limited datasets or do not thoroughly analyze other models to compare

their relative performance. We can contribute to the ongoing discussion on

constructing the best portfolio by expanding on an already thorough analysis

of the mean-variance strategy. We plan to introduce risk-based approaches

to the same data set and evaluate their performance using identical metrics.

This integration will allow for a more comprehensive comparison and present

an opportunity to observe the behavior and effectiveness of these strategies

under similar conditions. Our contribution could provide valuable insights

and further the ”optimal portfolio” conversation.

6



3 Theory

In this section, we break down the theory of portfolio optimization and the

specific traits among the portfolios we cover in our thesis. The purpose is to

explain portfolio performance and see how specifications can alter the results.

3.1 Portfolio construction theory

3.1.1 Choice of model and input parameters

Portfolio construction involves strategically selecting and weighing assets to

meet a particular investment objective. All methods require an investor to

make assumptions about future market behavior. The selection of an appro-

priate strategy largely hinges on the information available - or our confidence

in that information.

Hallerbach (2013) captures this in his Portfolio Decision Pyramid (Figure 1),

which lays out an investor’s strategy choice based on the extent of their knowl-

edge. An equal-weight strategy would be suitable if the investor knows nothing.

An inverse volatility portfolio could be considered if they know the standard

deviations of returns. A minimum variance or risk parity strategy that depends

on the variance-covariance matrix may be optimal if correlations are known.

Finally, if an investor has insight into expected returns, standard deviations,

and correlations, a mean-variance approach would be the best fit.

However, an important caveat is the trade-off between the number of input

parameters a model needs and the potential for estimation error. The more

inputs a model requires, the higher the potential for inaccuracies. This notion

is reinforced by Kan and Zhou (2007), who examined the performance of the

mean-variance tangency portfolio. They report the loss in performance be-

cause of estimation error when either the mean, variance-covariance matrix, or

both are unknown. Estimation errors in expected returns could significantly

7



Figure 1: Portfolio Decision Pyramid

This figure shows Hallerbach’s (2013) Portfolio Decision Pyramid. It lays out the

portfolio decision options an investor has based on the information available and the

confidence the investor has in this information, moving from no information at the

bottom of the inverse pyramid to all available information at the top.

degrade performance. Similarly, errors in the covariance matrix could also

have a negative impact, albeit to a lesser extent. Most important, they found

that the interaction term of estimation error - when both mean and covariance

are unknown - is significantly detrimental to portfolio performance.

The potential for error in estimating mean returns is typically greater than in

estimating the covariance matrix due to the inherent nature of these calcula-

tions. The mean return is a single number, while the covariance matrix is a

collection of numbers representing the relationships between all possible pairs

of assets in a portfolio. As a result, the covariance matrix estimation benefits

from a larger sample size, which can reduce estimation error. Moreover, as the

covariance matrix represents relationships between all asset pairs in a portfolio,

it can provide valuable information about risk reduction from diversification.

Conversely, mean returns do not offer this diversification effect and thus won’t

add any additional benefit to the model. As Jagannathan and Ma (2003) put

it: ”. . . the estimation error in the sample mean is so large that nothing much

is lost in ignoring the mean altogether.”

8



3.1.2 Mean-Variance Optimal Portfolio

The mean-variance optimal portfolio is a well-known construction method de-

veloped by Markowitz (1952). Given a set of assets, one can construct the most

efficient portfolio with the lowest variance for a given expected return. The

most optimal portfolio among these is the tangency portfolio. This portfolio

maximizes the Sharpe Ratio (SR), giving the maximal excess return per unit

of standard deviation.

Despite being groundbreaking during its inception, the strategy’s sensitivity

to input errors can result in volatile, inconsistent weightings1. Referring to

Figure 1, the mean-variance strategy requires information about both the mean

returns and the variance-covariance matrix to be effective.

3.1.3 Minimum Variance Portfolio

The minimum variance portfolio (MINV) is among the portfolios constructed

by mean-variance optimization. The constraint on target return is removed,

and the optimization problem instead finds the minimum achievable total risk.

By construction, this portfolio has a lower expected return than the tangency

portfolio.

By the two-fund theorem (Tobin, 1958), a combination of the risk-free asset

and the tangency portfolio can achieve any risk level while still achieving the

maximal SR. The question is why an investor would choose the minimum

variance portfolio when the same risk can be achieved with a higher return.

Surprisingly, the performance ex-post is often better than for other mean-

variance approaches. As noted in section 3.1.1, estimation error in the expected

1As exemplified in DeMiguel et al. (2009): ”Consider the following extreme two-asset
example. Suppose that the true per annum mean and volatility of returns for both assets are
the same, 8 % and 20 %, respectively, and that the correlation is 0.99. In this case, because
the two assets are identical, the optimal mean-variance weights for the two assets would be
50 %. If, on the other hand, the mean return on the first asset is not known and is estimated
to be 9 % instead of 8 %, then the mean-variance model would recommend a weight of 635
% in the first asset and -535% in the second.”
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mean of returns can contribute to this. Another explanation could be the

cross-sectional equity risk anomaly documented by Ang et al. (2006), where

high-risk assets gave low returns, implying that a portfolio based on minimizing

risk could achieve higher returns.

3.1.4 Equal Weight Portfolio

The Equal Weight (EW) portfolio (”naive diversification”) distributes invest-

ments equally across all investible assets. Despite its apparent simplicity, the

method has several benefits. Notably, it is straightforward to implement, re-

quiring neither an intricate understanding of finance nor significant effort.

Further, according to DeMiguel et al. (2009), this strategy often performs bet-

ter than more sophisticated portfolio-building methods out-of-sample. They

attribute part of the extraordinary performance to the fact that the ”allocation

mistakes” in EW are smaller than those made using input parameters with es-

timation errors. They suggest that roughly 3000 observations for 25 assets are

required to construct mean-variance portfolios that, on average, outperform

the EW approach.

One key aspect of this strategy is its tendency to promote diversification,

reducing idiosyncratic risks by avoiding overemphasizing single markets. It in-

vests more in small-cap stocks than the traditional market portfolio, leveraging

the small-cap anomaly or ”size” factor. In addition, EW requires periodic re-

balancing to uphold its distribution, effectively implementing a ”buy low, sell

high” tactic known as a ”volatility pumping strategy.” Nevertheless, the se-

lection of assets largely dictates the portfolio’s performance, and more volatile

assets increase the portfolio’s overall risk.

10



3.1.5 Portfolios with short-sale constraints

By introducing constraints to the mean-variance model, we can avoid extreme

weight distributions and thus enhance the model’s performance. Moreover, not

all investors can or desire to engage in short selling as part of their strategies,

nor are all assets readily available for short selling.

Introducing a positive weight constraint can mathematically reduce estimation

error because of a shrinkage effect. The Lagrangian for the unconstrained

mean-variance model is2:

L = x⊤µ− γ

2
x⊤Σx,

where x refers to the vector of asset weights, µ the vector of expected returns, γ

the coefficient of risk aversion, and Σ the variance-covariance matrix. Adding

the positive weight constraint changes this to:

L = x⊤µ− γ

2
x⊤Σx+ x⊤λ

where λ is the Lagrange multiplier. The notable difference between the con-

strained and unconstrained portfolio weights lies in the adjustment of the mean

vector with the Lagrange multiplier for the constraint, represented as µ̃ = µ+λ.

The constraint becomes binding when an asset’s expected return is low, im-

plying that λ > 0 and that the expected returns of the constrained model

exceed those of the unconstrained model. Therefore, adding the constraint is

equivalent to ”shrinking” the expected return toward the average (DeMiguel

et al., 2009, p.1925). Applying a no-short-sale constraint on the minimum vari-

ance portfolio similarly shrinks the elements of the variance-covariance matrix

(Jagannathan and Ma, 2003).

2See explanation in Section 4 and Appendix B.1
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3.1.6 Risk budgeting

When considering portfolio risk, we typically consider a singular aspect of the

entire portfolio, such as portfolio standard deviation. However, we can also

look at portfolio risk as the sum of risk contributions from the assets that

constitute the portfolio.

The risk budgeting portfolio allocates weights to assets so that they contribute

the budgeted amount of total risk to the portfolio. Like with the minimum-

variance and equal weight strategies, there is no apparent reason for the risk

budgeting approach to perform well in terms of returns, as ”returns” never

enter the optimization problem. The portfolio is less prone to return loss from

estimation error because it does not consider expected means.

Unlike the minimum-variance portfolio, which often results in asset concentra-

tion, the risk budgeting approach ensures investment in all investible assets

and strictly maintains long positions, as emphasized by Clarke et al. (2013).

One notable variant of risk budgeting is when the risk contribution of each

asset in the portfolio is equalized. This specific approach to risk budgeting is

often referred to as risk parity.

3.1.7 Risk Parity

A portfolio achieves risk parity when each asset contributes an equal percentage

of risk across all assets (Lee, 2011). One way of achieving this is multiplying

the weight of an asset, wi, by its volatility, σi, and equalizing over all assets:

wiσi = wjσj, ∀ i, j. This is called the inverse volatility portfolio (IVP) because

the weight of any asset is proportional to the inverse of its volatility. This

portfolio will include more of assets with low volatility and less of assets with

high volatility.
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The IVP does, however, not account for the possible correlation of returns

among assets and may thus lead to an asset contributing considerably more

or less risk than other assets. It may also lead to a high concentration of

portfolio weights in highly correlated markets. The equal risk contribution

portfolio (ERC) alleviates this problem by considering correlation.

It can be shown that the weights in an ERC portfolio are proportional to the

inverse of their beta (βi) to the portfolio3, wi ∝ 1/βip. The beta indicates the

asset’s sensitivity to the systematic risk of its portfolio. Consequently, assets

with a higher beta are assigned less weight; conversely, assets with a lower beta

are given more weight in the ERC. As a result, assets with high volatility or

significant correlation with other assets will be penalized.

3.2 Further discussion of risk budgeting

The existence of risk budgeting portfolios

The optimal risk budgeting portfolio has a unique solution, thanks to its con-

vex nature (Maillard et al., 2010). As highlighted earlier, the risk budgeting

portfolio is constructed to include all investible assets in the model. If an

asset is assigned a 0 budget, it can lead to multiple ”optimal” solutions (Ron-

calli, 2016, p. 110). It is, therefore, more beneficial to remove the asset from

the model altogether. By eliminating assets one does not intend to include,

the number of parameters to compute is reduced, thus further mitigating es-

timation errors. The same applies to assets allocated with a negative risk

contribution.

If an asset has a negative budget, the model indicates a greater concentration

of risk in the portfolio’s other assets. By assigning negative risk budgets,

the portfolio could either have multiple solutions or potentially no solutions

(Roncalli, 2016, p. 113).

3see Maillard et al. (2010) and section 4.6

13



Limitations of risk budgeting portfolios

The construction of risk parity does not consider the structure of the investible

universe, particularly when several asset classes are involved. To illustrate,

consider a portfolio consisting of five equity and five bond indices; the port-

folio would balance equity and bond risk. However, with seven equity indices

and three bond indices, despite equalized risk contribution across each index,

we would have an imbalance between equity and bond risk. To rectify this

issue, one could employ a risk budgeting method and manually adjust the risk

budgets or use risk parity based on risk factors Roncalli (2016).

While proponents of risk parity claim its strength lies in not requiring the

consideration of expected returns of assets, the choice of assets is still biased

on assets’ previous returns. The investible universe usually consists of assets

that have performed well recently. Despite their historical significance, choices

like including cryptocurrencies or excluding commodities ultimately fall to the

investor. Thus, while risk parity provides a reliable asset allocation method,

it cannot eliminate the need for decision-making.

The computational load is heavy when we include many assets because we

must employ an optimization algorithm to find the unique solution. One way

to manage this issue would be to group assets with similar risk characteristics

or factors. However, this introduces selection bias.

3.3 Performance of risk-based portfolios

An important question when constructing a portfolio that does not consider

asset returns is; how can we expect good performance in risk-adjusted returns?

Some researchers point to the ”low-risk anomaly” (Scherer, 2011) or ”cross-

sectional equity risk anomaly” (Ang et al., 2006) as a contributing factor.

The low-risk anomaly refers to the empirical observation that lower-risk stocks

have historically provided higher risk-adjusted returns than higher-risk stocks.
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Lochstoer and Muir (2022) found volatility to have a weak or negative risk

premium. This observation contradicts common understanding that increased

risk should lead to increased return. The IVP and ERC invest more in stocks

with relatively lower risk and may thus exploit this phenomenon.

Scherer (2011) looked at the performance of the minimum-variance portfolio

and found that 83% of the variation could be attributed to Fama-French fac-

tors. This means that its superior performance is not directly a function of

lower risk but rather a side effect of selecting stocks that exploit these factor

anomalies.

Asness et al. (2012) suggest that the low-risk anomaly stems from two effects:

Leverage aversion and lottery-type stocks. Leverage aversion refers to the

hesitation or unwillingness of investors or fund managers to use leverage in

their portfolios. An investor can lever up a low-risk stock with low expected

returns to achieve higher total returns. However, leverage aversion leads them

to choose an unlevered high-risk asset with a high expected return instead.

This could cause high-risk stocks to become overpriced and low-risk stocks to

become underpriced, leading to higher risk-adjusted returns for low-risk stocks.

The ”lottery ticket effect” is a term often used to describe the behavior of

investors drawn to low-priced, high-risk stocks in the hopes of achieving out-

sized gains, much like buying a lottery ticket. This behavior can cause these

high-risk stocks to be overpriced if many investors are ”buying lottery tickets.”

Another reason we pointed to earlier is that a portfolio based solely on the

variance-covariance matrix as input is less prone to estimation error. The

performance may, therefore, not point to something extraordinary with these

models but rather a fault in the models that require more parameter inputs.
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4 Portfolio Construction

Building upon the foundational theories of portfolio construction discussed

in Section 3, this section delves into the mathematical representation of the

portfolios we deploy and outlines their implementation process. The portfolios

are listed in Table 1. We conclude this section by drawing connections in the

construction methodology of these portfolios, highlighting their similarities.

Table 1: Asset-Allocation Models

# Model Abbreviation

0 Equal Weight with rebalancing (benchmark strategy) EW or 1/N
1 Value-weighted market portfolio VW
Classical mean-variance
2 Mean-Variance based on sample moments MV
Risk-Based Portfolios
3 Minimum-variance MINV
4 Inverse volatility portfolio IVP
5 Equal risk contribution ERC
Constrained Portfolios
6 Mean-variance with short-sale constraints MVC
7 Minimum-variance with short-sale constraints MINVC
8 Minimum-variance with generalized constraints G-MINVC

This table presents an overview of the portfolio construction models we have ana-
lyzed in our thesis. The last column gives the abbreviation we have used to refer to
the strategies in the text and the result tables.

Following DeMiguel, Garlappi, and Uppal’s (DGU) notation, Rt represents the

N -vector of excess returns over the risk-free asset for the N risky investment

options available at time t. The expected returns on these risky assets be-

yond the risk-free rate are symbolized as an N -dimensional vector, µt, while

Σt stands for the related N × N variance-covariance matrix. Their sample

equivalents are denoted as µ̂t and Σ̂t, respectively. The term M signifies the

span over which these moments are computed, and T designates the entire

data series length. The N -dimensional vector of ones is defined as 1N . Lastly,

xt refers to the vector of portfolio weights allotted to the N risky assets, with

the remainder, 1− 1⊤
Nxt, invested in the risk-free asset.
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To calculate optimal4 weights, we assume a universe with a risk-free asset

when first constructing portfolios. This will affect the efficient frontier of risky

assets, ensure a tangency portfolio for the mean-variance strategy, and allow

for leverage in the trading strategies where this is relevant. As the benchmark

case in DGU’s study contains portfolios of only risky assets, we find the relative

weights invested in risky assets as:

wt =
xt

|1⊤
Nxt|

(1)

We normalize by the absolute value of the sum of weights, |1⊤
Nxt| to ensure

that the relative sign of asset position is correct in the instances where the

sum of weights in risky assets is negative.

4.1 Mean-Variance

For comparability of results, we consider an investor whose utility is fully de-

scribed by the mean and variance of a chosen portfolio. The certainty equiva-

lent (CEQ) of a risky choice is the risk-free rate that an investor is willing to

accept rather than investing in a risky portfolio strategy. It can be shown by

a Taylor Expansion5 that the CEQ is approximated as:

CEQ ≈ W
[
R̄− γ

2
σ2
R

]
,

where W represents initial wealth, R̄ is the expected return, γ is the investor’s

risk aversion, and σ2
R is the variance of the return. As utility is an increasing

function for a risk-averse investor, maximizing utility is equivalent to max-

imizing the CEQ. For each period t, the investor seeks to maximize utility

by

max
xt

x⊤
t µ̂t −

γ

2
x⊤
t Σ̂tx (2)

4By ”optimal,” we mean the mathematical solution to portfolio problems and not the
weights of the mean-variance optimal portfolio

5see Appendix B.1
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The solution to the above problem is xt = (1/γ)Σ−1
t µt, and the relative weights

invested in risky assets is the tangent portfolio:

wt =
Σ̂

−1

t µ̂t

1⊤
NΣ̂

−1

t µ̂t

(3)

We have assumed, like DGU, that the mean and variance fully describe the

investor’s preferences. If the returns were normally distributed, the mean and

variance would capture all necessary information about the return distribution,

and the approach would be most effective. However, returns often exhibit

skewness and kurtosis. In section 6, we test for normality.

4.2 Minimum Variance

The minimum-variance portfolio (MINV) aims to minimize the variance of

returns. This is mathematically represented by the optimization problem:

min
xt

x′
tΣ̂txt u.c. 1′

Nxt = 1 (4)

with solution

wt =
Σ̂t1N

1⊤
NΣ̂t1N

(5)

To implement this approach, we rely solely on the sample covariance matrix

and disregard the estimates of expected returns. Though this strategy does not

conform to the standard structure of mean-variance expected utility, its weight

allocations can be considered an extreme case of mean-variance, Equation (3).

This could be the case if a mean-variance investor either disregards expected

returns or, equivalently, imposes restrictions such that expected returns are

identical across all assets, i.e., µt ∝ 1N .
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4.3 Equal Weight

The equal weight (EW) or ”naive diversification” strategy involves allocating

an equal portfolio weight of 1/N to each of the N risky assets. This strategy

sidesteps any optimization or estimation process and entirely disregards the

data. Mathematically:

wt =
1N

N
(6)

When all assets have the same correlation coefficient, identical means, and

variances, the EW portfolio is the unique portfolio on the efficient frontier

(Maillard et al., 2010). In comparison with the weights outlined in Equation

(3) on mean-variance, the EW portfolio can also be interpreted as a strategy

that does estimate the moments µt and Σt but enforces the condition that

µt ∝ Σt1N for all time periods t (DeMiguel et al., 2009). This implies that

expected returns are associated with total risk instead of just systematic risk.

4.4 Value-weighted market portfolio

In a CAPM world, the market portfolio is the optimal investment strategy.

This is a value-weighted portfolio of all available assets in the universe and is

thus as good as impossible to invest in. Broad market indices can be used as

market portfolio proxies, and in each dataset, there is an index that represents

the appropriate ”market portfolio.” The value-weighted strategy involves hold-

ing this asset for the entire investment period. The turnover of such a strategy

is 0.

4.5 Introducing Constraints

By introducing constraints on portfolios, we limit investment opportunities.

Intuitively, this should also limit the potential for extraordinary performance.

However, for strategies like the mean-variance, where we often see extreme
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weights in both short- and long directions, a weight constraint will limit these

unnecessary risky positions and lead to more stable returns. Constraining the

weights will also limit the turnover in these strategies considerably. We im-

pose a ”no short-sale” constraint on the mean-variance and minimum-variance

strategies. We also limit the maximum leverage in any asset to 1 and the sum

of invested wealth to 1, meaning we can’t borrow to increase our leverage. The

added constraints to the mean-variance and minimum-variance strategies are6:

xt ≥ 0

1⊤
Nxt ≤ 1

In addition, inspired by DGU, we created a portfolio with a set lower bound

on weights in each asset to ensure diversification, which they call Generalized

Minimum Variance Constrained (G-MINVC). The portfolio can be seen as

an expansion on the minimum-variance strategy with the added constraint:

wi ≥ a1N ,with a ∈ [0, 1/N ]. By instituting a minimum weight allowance for

each asset, it addresses the concentration issue often found in the minimum

variance portfolio.

In the boundary case a = 0, the portfolio is the MINV, whereas in the other

extreme, a = 1/N , we get the EW portfolio. The equal risk contribution

portfolio (ERC) weights are also in this narrow interval (Maillard et al., 2010).

Therefore, constructing the G-MINVC is an interesting test to see whether

some form of optimization (ERC) can beat a heuristic allocation scheme (G-

MINVC). We set a at the midpoint of the boundaries, a = 1
2
· 1
N
.

To implement these non-linear optimization problems, we use MatLab’s opti-

mization software and function ”quadprog.”

6In the investment case of risky assets only, the second constraint becomes the binding
constraint 1⊤

Nxt = 1
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4.6 Risk Parity

To explain how to find the risk parity portfolios, we first present some measures

and definitions based on Roncalli (2016) and Maillard et al. (2010). We use

the stock return volatility as the risk measure for evaluating the risk parity

portfolio for three reasons.

First, we don’t want to assume an investor’s preference toward Value at Risk,

Expected Shortfall, or Maximum Drawdown. Second, we measure portfolio

performances using the Sharpe Ratio and CEQ. These measures directly in-

corporate return volatility, easing the calculations for the risk parity portfolios.

Third, as emphasized by Artzner et al. (1999), return volatility has desirable

properties for risk measures, such as convexity.

We consider a portfolio x = [x1, x2, ..., xN ]
⊤ of N risky assets. The return of

asset i is ri, the variance of asset i is denoted σ2
i , and the covariance between

asset i and asset j is σij. The variance, σ2
p, of portfolio x is:

σ2
p =

N∑
i=1

N∑
j=1

xixjσij = x⊤Σx (7)

The marginal risk contribution of asset i is defined as the impact on portfolio

risk caused by a marginal change in the weight of asset i:

MRCi =
∂σ2

p

∂xi

=
N∑
j=1

xjσij = (Σx)i, (8)

where Σx is the vector of covariances of each asset i with the portfolio x, and

(Σx)i refers to the i-th element of this vector. The total risk contribution of an

asset i is found by multiplying its marginal contribution with the asset weight:

TRCi = xi

∂σ2
p

∂xi

= xi

N∑
j=1

xjσij = xi(Σx)i (9)
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By definition, the sum of all assets’ total risk contribution should amount to

the portfolio risk:
N∑
i=1

TRCi =
N∑
i=1

xi(Σx)i = x⊤Σx (10)

As a side note, the minimum variance portfolio is the portfolio where the

marginal risk contributions are equalized across assets. This makes intuitive

sense; if an asset had less marginal risk contribution than all other assets, it

would benefit the total portfolio risk to invest more in this asset and less in all

others.

Equal Risk Contribution Portfolio

The idea of the ERC portfolio is that each asset in the portfolio contributes

the same amount of risk, or:

TRCi = xi

∂σ2
p

∂xi

= xj

∂σ2
p

∂xj

= TRCj ∀i, j (11)

TRCi = λ

From Equations (9) and (11), we can deduce that ERC fulfills:

Σx = λ
1

x
, (12)

where 1
x
denotes the vector [ 1

x1
, 1
x2
, ... 1

xN
]⊤.

The beta, βi, of asset i with respect to portfolio x indicates the asset’s sensi-

tivity to the portfolio’s systematic risk. It can be expressed as

βi =
cov(ri, rp)

var(rp)
=

(Σx)i
x⊤Σx

(13)

By dividing Equation (12) by the portfolio variance, x⊤Σx, and rearranging

the expression, we get for each asset i:

xi =
λ∗

βi

,
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where λ∗ = λ · 1/x⊤Σx, a scaled measure of risk contribution. Using the fact

that
∑N

i=1 xi = 1 we can see that the weight in asset i is

xi =
β−1
i∑N

j=1 β
−1
j

(14)

This gives a financial interpretation of the asset weights: The weight attributed

to asset i is inversely proportional to its beta. A higher volatility or correlation

with other assets will lead to less weight.

The expression in Equation (14) does not have a closed-form solution. It is

endogenous because the βi on the right-hand side is the asset’s beta with the

ERC portfolio, which will change with the calculated weights on the left-hand

side. We could solve this set of non-linear equations by a recursive process

with a defined stopping criterion (Chaves et al., 2012): Find the betas from

an initial guess of asset weights; calculate new asset weights from these betas;

restart the process with new asset weights as input; continue the process until

weights are within a set tolerance. This method works well when the asset

universe is small, but there is no guarantee that it will converge to a unique

solution (Roncalli, 2016, p. 308).

A better way to find the ERC portfolio is to define a convex optimization

problem. One example of an optimization problem was proposed by Maillard

et al. (2010):

x∗ = argminf(x)

u.c.


1⊤x = 1

0 ≤ x ≤ 1

(15)

with

f(x) =
N∑
i=1

N∑
j=1

(xi(Σx)i − xj(Σx)j)
2 (16)
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This problem can be solved as a Sequential Quadratic Program (SQP) with op-

timization software (Roncalli, 2016, p.102). However, optimization programs

can be slow when the number of assets is large, so we use an algorithm that

calculates analytical constituents to increase computational time. This algo-

rithm was also introduced by Chaves et al. (2012). Unlike the iterative process

with Equation (14), this method has a mathematical proof and more often

converges. See Appendix B.2 for further details.

Maillard et al. (2010) established that the ERC portfolio is the tangency port-

folio when assets have constant correlations and the same Sharpe ratio. They

also show that the ERC can be viewed as a middle ground between EW and

MINV, incorporating characteristics from both. One way of expressing the

optimal weights from the ERC portfolio problem is:

x(c) = arg min
√
x⊤Σx

u.c.



∑N
i=1 ln(xi) ≥ c

1⊤x = 1

x ≥ 0

(17)

The constant c can be considered the minimum level of diversification among

assets required to achieve the ERC portfolio. We will get different portfolios

if we set c to any other value. One extreme value of c is −∞. The remaining

problem results in the minimum variance portfolio. The maximum value c can

take is−n ln n because
∑N

i=1 ln(xi) subject to
∑N

i=1 is maximized for xi = 1/N .

If xi = 1/N , we arrive at the equal weight portfolio.

Not only do weights for the ERC lie between EW and MINV, but the authors

also show that the volatilities are ordered the same way: σminv ≤ σerc ≤ σew.

Inverse Volatility Portfolio

The inverse volatility portfolio could be seen as a special case of the ERC when
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correlations among assets are equal. We can also see it as the ERC portfolio,

assuming all asset correlations equal 0. This will make all weights proportional

to their inverse volatility, xi ∝ 1
σi
. The weight proportions are found by

xt = (diag(Σ̂t))
−11N (18)

where diag(Σ) is a matrix with only the diagonal elements of the sample

variance-covariance matrix, and its inverse is the diagonal matrix where all

elements are the reciprocals of the corresponding elements in diag(Σ). These

weight proportions are normalized to 1 by Equation (1).
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5 Methodology

To ensure the comparability of results, we apply methods that closely align

with those used by DeMiguel, Garlappi, and Uppal (DGU). This section will

first go through our general method for assessing the performance of portfolios

before moving on to the robustness tests we implement. For programming

purposes and to address numerical problems, we use MatLab. We evaluate the

performance of the k portfolios described in Section 4 on each of the datasets

mentioned in Table 2 and described in Appendix A.

In brief, we employ a rolling window approach with 120-month estimation

windows and monthly rebalancing. Specifically, for each dataset of length T

months, we choose an estimation window of length M = 120 months. For the

beginning of each month t, starting from t = M +1, we use the excess returns

from the previous M periods to estimate the parameters needed to implement

a particular strategy. These parameters are used to determine the relative

weight of each asset in every portfolio. The weights are used to compute the

return in month t+1. We then roll the estimation window forward one month

by dropping the earliest return and adding the return for the next period in

the dataset. This process is repeated until the end of the dataset is reached

and will result in a vector of T −M out-of-sample returns for the k portfolios.

From the vector of out-of-sample returns and matrix of portfolio weights, we

calculate the performance metrics outlined in Subsection 5.1 and the robust-

ness tests we describe in 5.2. For data management, we store the results from

each dataset in mat-files which later are loaded in a separate MatLab program

to make LaTeX tables.
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5.1 Performance Metrics

We use the same performance metrics as DGU for a more thorough comparison.

This means comparing out-of-sample Sharpe Ratio (SR), Certainty Equivalent

(CEQ), and turnover.

5.1.1 Sharpe Ratio

The SR is a widely accepted performance measure. One basic assumption in

financial theory is that rational investors prefer returns and are averse to risk.

Hence, the objective is to maximize the expected return for a given level of

risk. The SR allows us to evaluate how well a portfolio achieves this balance.

SR =
µ

σ
, (19)

where µ is the excess return and σ is the volatility of returns.

To ensure the SRs of the strategies are statistically different, we compute the p-

value of the difference from the equal weight (EW) strategy using the approach

suggested by Jobson and Korkie (1981)7, like DGU.

5.1.2 Certainty Equivalent

The CEQ of a risky choice is the risk-free rate an investor is willing to accept

rather than investing in a risky portfolio strategy. The CEQ for strategy k can

be defined as follows:

ĈEQk = µ̂k −
γ

2
σ̂2
k (20)

where µ̂ is the expected return from strategy k, σ̂2 is the variance of strategy

k, and γ is the risk aversion coefficient of the investor. Both SR and CEQ

use returns and risk to measure performance. The difference is that SR uses

7See Appendix B.3
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the volatility of returns as the risk measure, while CEQ uses the variance.

To ascertain whether the CEQs significantly differ across the strategies, we

calculate the p-value of the difference8 from the CEQ of EW.

5.1.3 Turnover and Return-loss

Turnover can indicate the frequency of transactions and potentially associated

transaction costs. It is defined as:

Turnover =
1

T −M

T−M∑
t=1

N∑
j=1

(|ŵk,j,t+1 − ŵk,j,t+|), (21)

where ŵk,j,t+1 represents the optimal weights in period t + 1 for strategy k

and asset j, and ŵk,j,t+ are the optimal weights in period t multiplied with the

cumulative asset returns from t to t+1 making them the weights before rebal-

ancing. By dividing by the number of subsamples T −M , we get the average

sum of all the absolute deviations in weights over the time period. Under-

standing the turnover of the strategies is of great importance, as transaction

costs can significantly erode the profits from an investment strategy.

We report the absolute turnover for the EW portfolio, our benchmark port-

folio. We report turnover relative to that of the EW for the other strategies.

Furthermore, we consider how turnover affects the performance of the strate-

gies by calculating the return loss with respect to the EW strategy by the same

methodology as DGU.

By DGU’s assumptions, we set the proportional transactional cost, c, to 50

basis points. The return net of transaction costs can be calculated as follows:

Net return = (1 +Rk,p)(1− c ·
N∑
j=1

|ŵk,j,t+1 − ŵk,j,t+ |), (22)

8See Appendix B.4
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where Rk,p is the return before rebalancing:

Rk,p =
N∑
j=1

Rj,t+1ŵk,j,t (23)

The return loss for strategy k compared to the EW is then calculated as:

return-lossk =
µew

σew

· σk − µk, (24)

where µew and σew are the monthly out-of-sample mean and volatility of the net

returns from EW, and µk and σk are the corresponding quantities for strategy

k. The return-loss can be interpreted as the additional return needed for a

strategy k to perform as well as the EW in terms of SR.

It is important to note that we only report turnover to indicate what it would

cost to implement a particular strategy. In the presence of actual transaction

costs, the optimization problems would be altered.

5.2 Robustness tests

Like DGU, our benchmark case uses a 120-month estimation window, invests

in risky assets only, rebalances every month, and compares turnover to the

EW portfolio. We relax these assumptions one by one to see how it affects the

performance of the portfolios. The rest of this section will explain what we

expect from these robustness tests and how we implement them. The complete

overview of the results is in Appendix C.

5.2.1 Different length of estimation window

In addition to 120-month rolling estimation windows, we test 60-month rolling

estimation windows and increasing estimation windows. DGU finds that longer

estimation windows are necessary for the mean-variance strategy to perform

well. This makes sense; assuming there is a true mean, variance, and covariance
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for assets, the more data you have on returns, the closer you are to these ”true”

parameters. As mentioned in Section 3, Kan and Zhou (2007) finds that shorter

estimation windows and more assets lead to more considerable losses because

of estimation errors for the mean-variance strategy. They attribute losses to

estimation errors in the mean and the variance-covariance matrix and find that

the error in means contributes considerably more. The interaction term from

when both mean and variance are unknown is even more significant.

Based on their findings, we suspect a shorter estimation window considerably

affects the mean-variance strategies’ performance. In contrast, the strategies

that rely on no information (EW) or solely the variance-covariance matrix

will be less affected because we make fewer errors in estimating the variance-

covariance matrix. To supplement this robustness test, we look at the variation

in sample means and the sample volatilities over time in Section 6. If the vari-

ation in sample means is greater, it suggests that portfolio strategies sensitive

to the mean are more susceptible to changes in composition and overall errors.

If a shorter estimation window does not affect performance in portfolios that

rely on the estimation of the variance-covariance matrix, it could give some

pointers on investing if we have assets with a short history.

60-month rolling estimation windows

To incorporate 60-month rolling estimation windows, we conduct all analyses

using the same methodology as the 120-month rolling window approach. To

ensure investment horizons for both approaches are equally long, we adjust the

starting point for investing by shifting it forward by 60 months. As M = 60,

the number of subsamples is now T − (M + 60).

Increasing windows instead of rolling windows

The difference from the 120-month rolling estimation windows is that we do

not drop the earliest return when rolling the window forward. The estimation
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window increases with one month for each period. Even though a longer

estimation window should affect the strategies positively, we expect this effect

to be minimal, as the results from Kan and Zhou (2007) show only a slight

decrease in loss to estimation error for large increases in estimation windows.

5.2.2 Different holding period

We test a holding period of 12 months to exploit possible short-term trending

patterns in returns. Moment estimation is based on ten years of monthly

return data. When we roll forward one month, we drop the earliest return and

introduce one new return. It’s unlikely that this new return will significantly

affect the sample mean and variance-covariance matrix. However, we must

remember that even minor adjustments in expected returns can drastically

impact the optimal weights in the unconstrained mean-variance approach. The

optimal weights based on sample moments will not change significantly for

most other strategies.

After a period of negative (positive) return for an asset, the relative weight

of this asset compared to the other assets in the portfolio will have decreased

(increased). Because optimal portfolio weights do not change as much, we will

buy more of the assets with negative returns and sell the assets with positive

returns to get back to the optimal weights. We effectively buy ”losing” assets

and sell ”winning” assets in terms of return. Rebalancing is a good strategy if

the returns show mean-reverting properties, that a positive (negative) return is

followed by a subsequent negative (positive) return. If, however, returns have

trending properties - a positive (negative) return is followed by a subsequent

positive (negative) return - we should hold the assets.

The optimal frequency of rebalancing is thus dependent on whether returns

show trending or mean-reverting patterns. Ilmanen and Maloney (2015) find

that a holding period of 12 months or 24 months seems to get the ”best of
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both worlds.” In their data, returns show a trending pattern over 3-12 months

and a mean-reverting pattern over 3-5 years. We, therefore, test a strategy

where we rebalance every 12 months rather than every month.

The one-lag auto-correlation of returns may indicate what we can expect from

a differing holding period. In Section 6, we calculate the auto-correlation

coefficients for 1-month and compounded 12-month returns and report their

mean, max, and min values for each dataset. Positive auto-correlation im-

plies trending properties and that holding is more beneficial, whereas negative

auto-correlation implies mean-reversion and that we should rebalance. One

limitation of this approach is that the optimal weights may change more over

a year than one month, and thus we may not ”rebalance” as much as we

optimally could for all strategies.

To incorporate a 12-month holding period, we create a matrix of optimal

weights where each entry corresponds to every twelfth entry in the matrix

of optimal weights in the benchmark case. We also compound returns to have

a series of annual returns. The SR for this robustness test is annual. To

compare with the benchmark case, we must annualize the monthly SRs.

5.2.3 Including risk-free asset

Market timing becomes an aspect when we include a risk-free asset in the

investible universe. In periods of high volatility, a mean-variance strategy may

exit the market and place more wealth in the risk-free alternative because of

risk aversion. The benchmark case evaluates risky assets only to focus on the

asset allocation properties of each portfolio.

The minimum variance portfolios are all portfolios on efficient frontiers of

risky assets. Unlike trading strategies, they will consist of only risky assets by

construction. We have normalized the weights of the IVP and ERC to add

up to 1, so to add the risk-free asset in these portfolios, we have to lever the
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weights. For comparability, we decided to lever the volatility of the portfolios

to that of the equal weight strategy. A favorable consequence is that a higher

SR for the ERC and IVP portfolios also means higher total returns because

the denominators of the SRs are equal.

As we originally calculated the weights of the mean-variance strategy with a

risk-free asset, we use these weights for this test. For the equal weight strategy,

we add a risk-free asset, and the actual weights in risky assets will instead be:

wt =
1

N + 1
1N

5.2.4 Benchmark is buy-and-hold equal weight

A reason for an investor to implement the EW strategy is its simplicity. How-

ever, this strategy forces the investor to rebalance the portfolio regularly. Thus

an even more enticing strategy would be to invest in the EW and never rebal-

ance, a so-called buy-and-hold strategy.

This strategy has more risk than a rebalancing strategy, as assets that perform

well over extended periods will constitute a higher fraction of the portfolio,

and the eventual diversification benefits received from distributing wealth over

many assets diminish9.

To find the buy-and-hold returns, we first find the evolution of wealth (W ) by

making a matrix of cumulative returns (CR) for all assets and multiplying it

by the vector of base weights:

W = (CR) x1 (25)

The portfolio return in each period is then found by dividing wealth by its

lagged self:

Rt+1 =
Wt+1

Wt

− 1 (26)

9See examples in Ilmanen and Maloney (2015)
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6 Data Characteristics

The data we use in our analysis are presented in Table 2 and more thor-

oughly explained in Appendix A. We got the data from the webpage of Victor

de Miguel, one of the authors of DeMiguel et al. (2009). We have never-

theless listed the sources for completeness. In this section, we present a few

characteristics of the monthly return data that may help explain some of the

performance for portfolio strategies.

Table 2: Data Overview

# Dataset and Source N Time period Abbreviation

1 Ten sector portfolios of the S&P
500 and the US equity market
portfolio
Source: Roberto Wessels

10 + 1 01/1981-
12/2002

S&P Sectors

2 Ten industry portfolios and the
US equity market portfolio
Source: Ken French

10 + 1 07/1963-
11/2004

Industry

3 Eight country indexes and the
World Index
Source: MSCI

8 + 1 01/1970-
07/2001

International

4 SMB and HML portfolios and
the US equity market portfolio
Source: Ken French

2 + 1 07/1963-
11/2004

MKT/
SMB/HML

5 Twenty size- and
book-to-market portfolios and
the US equity MKT
Source: Ken French

20 + 1 07/1963-
11/2004

FF 1-factor

6 Twenty size- and
book-to-market portfolios
Source: Ken French

20 + 4 07/1963-
11/2004

FF 4-factor

This table presents an overview of the different datasets used in our analysis, in-
cluding their original sources. Each dataset contains monthly excess returns over
the 90-day nominal US T-bill, sourced from Ken French’s website. N denotes the
number of risky assets, where the number after the ”+” indicates the number of
factor portfolios included. For datasets 1-4, the factor portfolio is specified in the
table; for dataset 5, the factor portfolio is the US equity market portfolio (MKT);
and for dataset 6, the factor portfolios are MKT, SMB, HML, and UMD. The final
column shows abbreviated references for the datasets, which are used in the perfor-
mance evaluation tables. Following the approach of DeMiguel et al. (2009), we have
excluded five portfolios containing the largest firms from the 25 size- and book-to-
market-sorted portfolios. This is due to the market, SMB, and HML factors nearly
forming a linear combination of the 25 Fama-French portfolios.
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To understand the characteristics of our data, we performed three tests. First,

we examined the one-period autocorrelation of monthly and annual returns

to identify any trending or mean-reverting properties. Second, we performed

normality tests to emphasize that returns typically do not follow a normal

distribution. Lastly, we analyzed the variation in sample means and volatilities

to show how portfolio weights based on volatilities would be more stable.

The autocorrelation coefficients are outlined in Table 3. We can not draw

definitive conclusions for most datasets. However, for the industries, FF1, and

FF4 datasets, the results align with expectations: we observe positive monthly

autocorrelation and negative annual autocorrelation. This suggests a trend-like

pattern in monthly returns and mean-reverting properties for annual returns.

Table 3: Return Auto-correlation

S&P Industry Inter’l Mkt/ FF FF

Sectors Portf. Portf. SMB/HML 1-factor 4-factor

1-month mean -0.0368 0.0430 0.0183 0.1056 0.1142 0.1107

1-month max 0.1214 0.1217 0.0610 0.1571 0.2180 0.2180

1-month min -0.1336 -0.0270 -0.0794 0.0396 0.0220 -0.0189

12-month mean 0.0225 -0.1197 0.0307 0.0578 -0.3576 -0.3065

12-month max 0.4301 0.2471 0.3031 0.3516 -0.1573 0.3516

12-month min -0.5294 -0.3408 -0.3170 -0.1573 -0.4954 -0.4954

This table shows auto-correlation statistics for each dataset used in our study.
The ”mean” auto-correlation is an arithmetic average of all asset returns’ auto-
correlations in the dataset. Max shows the highest calculated auto-correlation, while
min shows the lowest. ”1-month” results are 1-lag auto-correlations on monthly re-
turns, whereas ”12-month” are for annual returns.

To test for normality, we employed the Jarque-Bera test and the Kolmogorov-

Smirnov test adjusted by Lilliefors10. Results are reported in Table 4. Both

tests show a clear pattern that returns in our datasets do not follow normal dis-

tributions. The Jarque-Bera test offers the most evident results, implying that

returns express skewness and excess kurtosis. These results have implications

for the effectiveness of the mean-variance strategy.

10See appendices B.5 and B.6
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Table 4: Tests of normality

S&P Industry Inter’l Mkt/ FF FF

Sectors Portf. Portf. SMB/HML 1-factor 4-factor

Kolmogorov-Smirnov (Lilliefors) test

Assets reject 4 7 3 3 20 23

Total assets 11 11 9 3 21 24

Jarque-Bera test

Assets reject 10 11 9 3 21 24

Total assets 11 11 9 3 21 24

This table shows the results from the Kolmogorov-Smirnov and Jarque-Bera tests on
normality for a 5 % significance level. The first row of each test list how many assets
reject the null hypothesis that returns come from a family of normal distributions.
The second rows list the total number of assets in the dataset.

We estimate a sample mean and variance-covariance matrix for each time t

in our rolling window approach. For each asset, we end up with T − M

sample means, mt, and volatilities st per asset. Suppose expected returns and

volatilities were constant, then mt = m̄ and st = s̄ for all t. However, this is

not the case. Based on Kan and Zhou (2007), we hypothesized that the sample

means would show a more significant variation than the sample volatilities. To

compare the variation, we express the standard deviation, σl l ∈ (m, s), as a

fraction of its average observation:

variationm =
σm

m

variations =
σs

s

Results are reported in Table 5. The variation in sample means is greater than

the variation in volatility for all datasets. Even the asset with the smallest

variability in its sample mean exhibits a variation that is approximately equal

to the highest volatility variation found in any other asset. These results

imply that portfolios that forego the mean return as parameter input suffer

less from variation in optimal portfolio allocation and will have less turnover.
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Table 5: Variation in mean and volatility of returns

S&P Industry Inter’l Mkt/ FF FF

Sectors Portf. Portf. SMB/HML 1-factor 4-factor

Avg mean
variation

25.66 % 71.05 % 68.73 % 124.92 % 72.18 % 80.40 %

Max mean
variation

66.88 % 107.89 % 135.10 % 364.46 % 521.94 % 521.94 %

Min mean
variation

14.17 % 24.55 % 22.10 % 24.55 % 24.55 % 18.84 %

Avg vol
variation

10.27 % 13.91 % 13.36 % 20.59 % 14.48 % 15.14 %

Max vol
variation

24.25 % 33.90 % 30.10 % 33.90 % 33.90 % 33.90 %

Min vol
variation

3.39 % 7.03 % 5.27 % 9.24 % 8.75 % 8.75 %

This table shows the coefficient of variation for the mean and volatility of asset
returns in the datasets we analyzed. The measures are the standard deviation in
percentage of their average observation. The ”Avg” rows refer to the average vari-
ation of all assets, max to the maximum variation of an asset in the dataset, and
min to the minimum variation.

Less variation in volatility also implies that estimation error is smaller for the

variance-covariance matrix
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7 Results and analysis

This section reviews the out-of-sample performance of the portfolios listed in

Table 1. First, we report performance metrics results and point to possible

explanations for the comparative performance among portfolios. Second, we do

a more theoretical analysis of specific portfolio performance before discussing

the results from robustness tests.

We find similar out-of-sample performance to DeMiguel, Garlappi, and Uppal

(DGU) for the corresponding portfolio strategies, confirming the reliability

of our results for the Equal Risk Contribution (ERC) and Inverse Volatility

Portfolios (IVP).

7.1 Sharpe Ratio

Table 6 displays the Sharpe Ratios (SR). The results for the strategies tested

by DGU align with their findings.

The IVP outperforms the Equal Weight portfolio (EW) in five out of six

datasets. However, of these, only three SRs significantly differ from EW.

The three remaining SRs are insignificantly different, implying the same per-

formance. The ERC has a significantly higher SR than EW in four out of six

datasets at a 10 % level. The difference in SR is insignificant for the other

two datasets. DGU concluded that no strategy consistently surpasses EW in

terms of SR. We can expand on their conclusion by saying that neither the

IVP nor ERC can consistently outperform EW. However, they are promising

alternatives to portfolio optimization as their performance is equally good or

better than that of EW.

The similar performance may come from structural similarities of the port-

folios. The datasets employed contain portfolios of assets rather than single

assets. This means that investible assets are already diversified and have little

38



Table 6: Sharpe Ratios

S&P Industry Inter’l Mkt/ FF FF

Sectors Portf. Portf. SMB/HML 1-factor 4-factor

N = 11 N = 11 N = 9 N = 3 N = 21 N = 24

Strategy

1/N 0.1876 0.1353 0.1277 0.2240 0.1623 0.1753

MV 0.0794 0.0679 -0.0332 0.2186 0.0128 0.1841

(0.12) (0.17) (0.03) (0.46) (0.02) (0.45)

MINV 0.0820 0.1554 0.1490 0.2493 0.2778 -0.0183

(0.05) (0.30) (0.21) (0.23) (0.01) (0.01)

IVP 0.1877 0.1398 0.1323 0.2227 0.1690 0.1895

(0.50) (0.04) (0.16) (0.46) (0.00) (0.00)

ERC 0.1804 0.1414 0.1319 0.2545 0.1689 0.3055

(0.15) (0.07) (0.14) (0.09) (0.00) (0.00)

VW 0.1444 0.1138 0.1239 0.1138 0.1138 0.1138

(0.09) (0.01) (0.43) (0.00) (0.01) (0.00)

MVC 0.0892 0.0678 0.0848 0.1084 0.1977 0.2024

(0.09) (0.03) (0.17) (0.02) (0.02) (0.27)

MINVC 0.0835 0.1425 0.1501 0.2493 0.1546 0.3581

(0.01) (0.41) (0.16) (0.23) (0.35) (0.00)

G-MINVC 0.1371 0.1451 0.1429 0.2468 0.1615 0.3028

(0.08) (0.31) (0.19) (0.25) (0.47) (0.00)

For each strategy, we display the monthly out-of-sample Sharpe ratio across our
datasets. In the brackets, we have displayed the p-value, which shows the statistical
difference between the Sharpe ratio of the strategy and that of the 1/N strategy.

idiosyncratic risk. An optimal IVP or ERC portfolio would, thus, invest about

equally in each asset to ensure the risk contributions were equalized. With

individual assets, there will be varying amounts of idiosyncratic risk for each

asset. This could lead to IVP underweighting stocks with higher volatility. For

EW, however, the weight will remain constant, while the ERC will fall between

the two. Although ERC underweights riskier portfolios, it incorporates more

than IVP as it also considers the correlation among the assets.

One interesting result that we would like to discuss is the performance of the

ERC strategy. Its SR in the FF-4 dataset is 0.3055, almost double the SR

in FF-1. The difference between FF-4 and FF-1 is the addition of the zero-
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investment portfolios SMB, HML, and UMD11. Intuitively, these portfolios

should not be highly correlated with the market12. Low correlation, and es-

pecially negative correlation, offers great diversification opportunities for the

ERC. This may make the weight distributions considerably different from IVP

and EW as opposed to the case where all correlations are positive and similar.

As discussed in section 4, the weight distributions of ERC will be somewhere

between the distributions of EW and the constrained minimum variance port-

folio (MINVC). The similar performance of ERC and MINVC in FF-4 suggests

a similar asset allocation.

7.2 CEQ

The results from our calculations of the Certainty Equivalent (CEQ) confirm

much of what we see for the SR in section 7.1. We see from Table 7 that IVP

and ERC perform similarly to EW and, on average, perform better than the

other portfolios except on a few occasions. The Mean-Variance (MV) strategy

performs exceptionally poorly, with often negative CEQ.

7.3 Turnover

From Table 8, we see that turnover for IVP and ERC fluctuates around 1,

meaning that the turnover is about as small as for EW. This implies that

the optimal weights for the portfolios are stable over time. This is expected

from our analysis of the variation in expected means and expected volatilities

variation in Section 6. Our analysis is further supported by the observation

11These acronyms refer to the Fama-French long-short portfolios Small-Minus-Big (SMB),
High-Minus-Low (HML), and Up-Minus-Down (UMD) or momentum

12As a control, we calculated the unconditional variance-covariance matrix of returns for
the FF-4 dataset and found: (1) the correlations between SMB and assets in a range of
1/2 and 1/10 of the correlation among regular assets; (2) the correlation between the factors
HML and UMD, and assets to be negative and of absolute size 1/5 to 1/10 of the correlations
among other assets. In the interest of space, we do not report the variance-covariance matrix
as this seems like an isolated event.
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Table 7: Certainty Equivalent

S&P Industry Inter’l Mkt/ FF FF

Sectors Portf. Portf. SMB/HML 1-factor 4-factor

N = 11 N = 11 N = 9 N = 3 N = 21 N = 24

Strategy

1/N 0.0069 0.0050 0.0046 0.0039 0.0073 0.0072

MV 0.0031 -0.7816 -0.1365 0.0045 -2.7142 -0.0829

(0.28) (0.00) (0.00) (0.31) (0.00) (0.01)

MINV 0.0024 0.0052 0.0054 0.0039 0.0100 -0.0002

(0.03) (0.45) (0.23) (0.45) (0.12) (0.00)

IVP 0.0066 0.0051 0.0047 0.0036 0.0075 0.0071

(0.18) (0.23) (0.28) (0.08) (0.08) (0.42)

ERC 0.0064 0.0051 0.0047 0.0039 0.0075 0.0067

(0.04) (0.33) (0.23) (0.47) (0.09) (0.38)

VW 0.0053 0.0042 0.0044 0.0042 0.0042 0.0042

(0.05) (0.00) (0.43) (0.00) (0.46) (0.01)

MVC 0.0040 0.0023 0.0032 0.0030 0.0090 0.0075

(0.29) (0.10) (0.29) (0.28) (0.03) (0.42)

MINVC 0.0024 0.0047 0.0054 0.0039 0.0060 0.0051

(0.01) (0.40) (0.21) (0.45) (0.12) (0.17)

G-MINVC 0.0044 0.0048 0.0051 0.0038 0.0067 0.0070

(0.04) (0.42) (0.28) (0.40) (0.17) (0.45)

We display the monthly Certainty equivalent return for each strategy across our
dataset. In the brackets, we have displayed the p-value, which shows the statistical
difference between the certainty equal return of the strategy and that of the 1/N
strategy.

that the mean-variance portfolios exhibit significantly higher turnover rates

due to their sensitivity to changes in expected mean.

Again, ERC stands out in dataset FF-4. The turnover is comparable to that

of the MINVC, further indicating that the weight distribution is dissimilar to

EW and IVP and closer to MINVC and G-MINVC.

A consistent theme across all results is that unconstrained portfolios - those

permitting short sales - have considerably higher turnover. This outcome,

naturally, aligns with the inherent dynamics of such portfolios.

Panel B further expresses the inadequacy of MV as it shows a considerably

higher return-loss than other portfolios. The IVP and ERC exhibit mostly
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Table 8: Turnover

S&P Industry Inter’l Mkt/ FF FF

Sectors Portf. Portf. SMB/HML 1-factor 4-factor

Strategy N = 11 N = 11 N = 9 N = 3 N = 21 N = 24

1/N 0.0305 0.0216 0.0293 0.0237 0.0162 0.0198

Panel A: Relative turnover of each strategy

MV 38.99 604206.31 3030.79 2.83 6304.93 2114.12

MINV 6.54 21.65 7.30 1.11 45.47 6.83

IVP 0.98 1.01 0.97 1.00 0.99 1.12

ERC 1.04 1.08 1.03 1.03 0.99 1.64

VW 0.00 0.00 0.00 0.00 0.00 0.00

MVC 4.53 7.17 7.23 4.12 17.53 13.81

MINVC 2.46 2.57 2.27 1.11 3.94 1.81

G-MINVC 1.30 1.52 1.47 1.09 1.77 1.70

Panel B: Return loss relative to 1/N (per month)

MV 0.0145 231.8909 0.8140 0.0003 6.2283 0.9030

MINV 0.0048 0.0015 0.0000 -0.0004 -0.0008 0.0024

IVP 0.0000 -0.0002 -0.0002 0.0000 -0.0004 -0.0006

ERC 0.0003 -0.0002 -0.0002 -0.0005 -0.0003 -0.0028

VW 0.0017 0.0009 0.0000 0.0048 0.0022 0.0028

MVC 0.0085 0.0048 0.0034 0.0041 -0.0005 0.0002

MINVC 0.0042 -0.0001 -0.0007 -0.0004 0.0006 -0.0025

G-MINVC 0.0019 -0.0003 -0.0006 -0.0003 0.0001 -0.0029

We display the monthly turnover for the 1/N strategy for each strategy across our
datasets. In panel A, we show the turnover for each strategy relative to the turnover
of equal weight (1/N) in decimals. Panel B reports the return-loss for each strat-
egy. A negative return-loss indicates a higher Sharpe Ratio when incorporating
transaction costs.

negative return-loss. This indicates that even when considering transaction

costs, the portfolios perform well.

One notable outlier for all performance metrics, and turnover specifically, is

the MKT/SMB/HML dataset. With fewer assets, there is naturally less rebal-

ancing and a smaller room for estimation error and, therefore, better relative

performance among portfolios and less return-loss for all portfolios. This is

especially clear with the mean-variance portfolio.
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7.4 Portfolio performance ranking

In Table 9, we summarize the performance results for all portfolios and give

them a rank based on how they compare.

IVP and ERC rank consistently among the best portfolios. As turnover is very

similar to that of EW, and the CEQ13 is not statistically different, we deem

the results very promising for IVP and ERC as investment strategies. The

IVP is even an easy strategy to implement, which could be an argument for

its place as a future benchmark for portfolio construction.

As discussed in Section 4, the G-MINVC and ERC are in the same relative

space of weight distributions between EW and MINVC. The turnover ranking

reflects this: ERC and G-MINVC rank fourth and fifth, respectively, while

EW and MINVC rank third and sixth.

7.5 Performance analysis

So far, we have pointed out structural differences among portfolios that may

explain the differences in performance. This subsection will offer possible the-

oretical explanations for the specific portfolios’ performance.

For all performance metrics, the MV ranks last. This illustrates that optimal

risk ex-ante does not mean optimal risk ex-post and that estimation errors are

too substantial for the model to be effective. A second reason for the poor

performance is the model’s sensitivity to input parameters and the excessive

variation in these estimated parameters, as depicted in Section 6. This also

leads to excessive turnover, as the optimal weights differ much from period to

period. A third reason is that the mean and the variance do not capture all

information about returns, as illustrated by the tests on normality in Section

6.

13The CEQ would also be different had we chosen a higher risk aversion coefficient than
1

43



Table 9: Portfolio performance ranking

S&P Industry Inter’l Mkt/ FF FF Total Final

Sectors Portf. Portf. SMB/HML 1-factor 4-factor of Ranks Rank

N = 11 N = 11 N = 9 N = 3 N = 21 N = 24

Strategy

Panel A: Rank based on Sharpe ratio

1/N 2 6 6 5 5 7 31 6

MV 9 8 9 7 9 6 48 9

MINV 8 1 2 3 1 9 24 5

IVP 1 5 4 6 3 5 24 4

ERC 3 4 5 1 4 2 19 1

VW 4 7 7 8 8 8 42 8

MVC 6 9 8 9 2 4 38 7

MINVC 7 3 1 2 7 1 21 2

G-MINVC 5 2 3 4 6 3 23 3

Panel B: Rank based on Certainty Equivalent

1/N 1 4 6 3 5 2 21 1

MV 7 9 9 1 9 9 44 9

MINV 9 1 1 6 1 8 26 4

IVP 2 2 5 8 3 3 23 3

ERC 3 3 4 4 4 5 23 2

VW 4 7 7 2 8 7 35 8

MVC 6 8 8 9 2 1 34 6

MINVC 8 6 2 5 7 6 34 7

G-MINVC 5 5 3 7 6 4 30 5

Panel C: Rank based on Turnover

1/N 3 2 3 3 4 2 17 3

MV 9 9 9 8 9 9 53 9

MINV 8 8 8 7 8 7 46 8

IVP 2 3 2 2 2 3 14 2

ERC 4 4 4 4 3 4 23 4

VW 1 1 1 1 1 1 6 1

MVC 7 7 7 9 7 8 45 7

MINVC 6 6 6 6 6 6 36 6

G-MINVC 5 5 5 5 5 5 30 5

This table displays each strategy’s ranking in terms of Sharpe Ratio, Certainty
Equivalent, and turnover. 1 refers to the best rank, while 9 is the worst. We
compute a final rank by summing the rank across datasets per strategy.
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The risk parity portfolios IVP and ERC perform as well as or better than

EW. They perform considerably better than MV, like the other three risk-

based portfolios, MINV, MINVC, and G-MINVC. The common feature among

these portfolios is that they disregard the expected mean when finding optimal

weights and thus are subject to less estimation error, as we describe in Section

3. For the constrained versions, specifically, the low turnover points to more

stable weights. This can be attributed to a more constant estimation of risk

and the mathematics behind their construction. By constraining the interval of

possible asset weights, we effectively use shrinkage on the estimated parameters

and move them closer to an ”average,” as we show in Section 3.1.5.

Interestingly, portfolios that do not prioritize return optimization demonstrate

reasonably strong performance in terms of returns. In addition to reduced

estimation errors, we see two main explanations for this. First, risk-based

portfolios invest more in assets with lower volatility. A reason for the outper-

formance may thus be the empirical finding that volatility has a weak or even

negative risk premium and that assets with low volatilities, therefore, are re-

warded with higher returns (Lochstoer and Muir, 2022). Scherer (2011) points

out that this ”anomaly” might come from exposure to other risk factors not

captured by the market.

A second reason for the perceived positive performance is that we compare

it to underperforming strategies, such as the MV. Thus, what may appear

as a beneficial attribute of one portfolio could merely be highlighting the un-

desirable characteristics of its counterpart. However, the performance is still

commendable when comparing the performance to the ”theoretically optimal”

market portfolio VW.

The IVP, surprisingly, often outperforms the ERC. It seems counter-intuitive

that the potential diversification benefits of considering correlation are not

reflected in superior returns for the investor. However, we only get diversifi-
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cation benefits from correlations if they are constant and predictable, a pre-

sumption that empirical evidence contradicts. Chua et al. (2009) demonstrate

that correlations among assets are elevated during periods of a market down-

turn. While they were not pioneers in identifying correlation asymmetry, their

work extended this finding across a broader range of assets. As a result, this

asymmetry in correlation may lead to inaccurate risk contribution. It could

result in ex-ante over-weighting of assets with low portfolio correlation, which

may ex-post become high risk concentrations.

Despite the common intuition underlying IVP and ERC, they have distinct

differences. Across most datasets, IVP’s performance aligns closer with EW

than ERC does. Given that IVP is the EW portfolio when all assets have the

same volatility, the similarities in performance suggest that the volatilities of

different assets in the datasets are relatively similar. In contrast, ERC takes

pairwise correlation into account, offering a considerable improvement over

EW in two of the datasets and a slight outperformance for all but one of the

others.

Another interesting observation is the effect datasets have on the performance

of portfolios. This is especially apparent with the S&P sectors dataset, where

EW has a comparatively greater overperformance than in other datasets. A

reason could be that each sector captures specific industry risk factors. An

equal weight for each already diversified asset could thus evenly distribute the

systematic risk. This notion is further supported by the similar SR of ERC

and IVP, suggesting that EW benefits from the strengths of the risk-based

portfolio for this dataset.

In concluding this analysis, we turn our attention to the performance of the

value-weighted portfolio (VW). It is a standard recommendation for retail

investors to allocate their funds across broad index funds. The VW in our

analysis is a proxy for a value-weighted market portfolio akin to an index
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fund. Its performance, however, falls short; even when considering transaction

costs, its SR fails to outpace that of the EW. Interestingly for this specific

case, the EW portfolio could be interpreted as an investment in multiple index

funds, suggesting that retail investors might reap benefits from diversifying

across various index funds and rebalancing them regularly.

7.6 Robustness tests

For a thorough comparison, we have reported all the same performance met-

rics for each robustness test as we did for the benchmark case. We put all

tables in Appendix C to conserve space. DGU did the same robustness tests

and reported their findings in a separate appendix. Our results closely align

with DGU’s, with minor differences in relative turnover. The difference does

not significantly impact our discussion, as the relative ranking and turnover

magnitude are the same.

First, we changed the estimation window from 120 months to 60. This caused

the SR for the mean-variance optimized portfolio to fall in all but one dataset.

This poorer performance supports the idea that estimation error increases

with smaller sample sizes. In contrast, the risk-based portfolios that use the

estimated covariance exhibit similar performance to the benchmark scenario,

suggesting that loss from estimation errors in returns exceed those in the covari-

ance matrix. As expected, portfolios such as EW and VW remain unchanged,

as their construction does not depend on estimation.

Since the CEQ is based on the sample mean and variances when comparing the

same risk aversion coefficient, the observable changes in the CEQ are similar

to that of the SR. As hypothesized in section 5.2, turnover for the risk-based

portfolios, including IVP and ERC, is relatively lower than other portfolios.

We attribute this to more stable weights for portfolios based on volatility, as

the variation in expected volatility is smaller. It can also be attributed to the
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characteristic feature of risk-based portfolios that invest in all assets within

the investible universe.

Second, we employed an increasing window estimation instead of a rolling

window approach. This implementation did not enhance the performance of

the mean-variance optimized portfolio noticeably, as expected. The results

from Kan and Zhou (2007) show a slight decrease in loss to estimation error

for large increases in estimation windows. The risk-based portfolios exhibited

similar SR, further strengthening the idea that the covariance matrix is more

resilient to estimation error due to a lack of data.

Third, we changed the holding period to 12 months from monthly rebalancing.

Asset weights deviate more from the optimal allocation over longer holding

periods, causing more unpredictable results. We tested monthly and annual

returns for auto-correlation in Section 6. From these results, we could not say

how we expected returns to be affected by a longer holding period except for in

a few datasets. However, there are no apparent differences when we compare

SR from the two cases. For instance, the annual Sharpe Ratio of EW in FF-4

for monthly rebalancing is 0.607314, which is marginally better than for the

annual rebalancing strategy; opposite to what we expected.

From Table 20, we observe that turnover for the EW portfolio decreases, and

relative turnover for most strategies remains stable, implying a lower turnover

for them. A notable exception is the MV portfolio, which experiences consider-

ably less turnover than the benchmark case, suggesting a substantial reduction

in absolute turnover from the benchmark case. One possible explanation could

be the influence of data seasonality on optimal weight. Any seasonal explana-

tion for higher expected returns for an asset will influence the mean-variance

optimal weights when rebalancing at the same period each year.

14We find the annual Sharpe Ratio by multiplying the monthly Sharpe Ratio by a factor
of

√
12. This is based on the assumption that annual returns and variance of returns are

annualized by multiplying by 12. SRann = µm · 12/
√

σ2
m · 12 = SRm ·

√
12.
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There is as good as no change in ranking between the two cases. This strength-

ens the conclusions we make in the benchmark case.

Fourth, we include a risk-free asset in the investible universe. The performance

of minimum variance portfolios is unchanged, as the portfolios do not include

the risk-free asset. The performance of the EW portfolio also remains un-

changed. The reason is that the relative wealth invested in risky assets stays

constant. This effectively multiplies the mean return and standard deviation

with the same scalar, keeping the SR constant.

We applied leverage to the ERC and IVP to scale up the volatility to match

that of EW. As the weight allocation in these three strategies is similar, the

leverage will fluctuate around 1, leading to only a marginal change in SR. For

the MV portfolio, the performance improves for all but one dataset, suggesting

that mean-variance optimization that allows for leverage can time the market.

Yet, this improvement is insufficient to surpass the performance of the risk-

based portfolios or EW.

We switched the benchmark portfolio to a buy-and-hold EW strategy for our

final robustness test. Here, the SR falls for the diversified equity portfolios

while it rises for the factor portfolios. The concentration of assets, and thus

risk, will increase over time. There is no apparent reason for the return to be

greater; therefore, a smaller Sharpe Ratio is expected. For the factor portfolios,

the relative outperformance may be due to some factors that provide higher

risk-adjusted returns than others. As such, not rebalancing will lead to more

weight allocation in the higher return factors.

Overall, out-of-sample performance and ranking change little when we adjust

the assumptions for our investment strategy. This strengthens the explanations

and conclusions we draw for the benchmark case.
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8 Conclusion

Our thesis aims to assess the effectiveness of the risk parity portfolios Equal

Risk Contribution (ERC) and Inverse Volatility Portfolio (IVP). Compared to

several other portfolio construction methods over six datasets, the performance

in terms of Sharpe Ratio (SR), Certainty Equivalent (CEQ), and turnover has

yielded promising results.

Although we have to reach the same conclusion as DeMiguel, Garlappi, and Up-

pal (2009) (DGU), that no model consistently outperforms the Equal Weight

strategy (EW), the potential of ERC and IVP as robust investment options

should not be underestimated. After all, the ERC and IVP either outperformed

or performed similarly to EW across all datasets. Even when we ease the base

study’s assumptions through robustness tests, the results do not change con-

siderably. Our findings indicate that risk-based portfolios could serve as viable

elements of an investment strategy for institutional investors.

We see three possible explanations for the effectiveness of IVP and ERC.

Firstly, IVP and ERC only require the estimation of asset volatilities and the

covariance matrix, respectively. By construction, they are long-only portfolios

and apply, in effect, shrinkage on the estimated parameters. This makes them

less susceptible to estimation errors. Instead of handling estimation error by

imposing constraints on the mean-variance efficient portfolio, as DGU, the risk

parity portfolios aim to minimize the estimation burden entirely.

Secondly, existing literature suggests that risk-based portfolios benefit from the

low-risk anomaly, leading to higher returns that market risk can not explain.

Thirdly, the relative out-performance may not be due to return-driven features

in risk-based portfolios but rather undesirable features in other portfolios.

It is important to note that there are limitations in our research. Our datasets

comprise exclusively value-weighted indices as investible assets. This some-
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what limits the advantages of portfolios constructed to diversify risk, as asset

portfolios are already diversified. The portfolios could have performed even

better than EW in a single-asset setting. A more thorough analysis of risk

parity portfolios could also employ other risk measures and dynamic asset

allocation with forecasting parameters.
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A Appendix: Data

This appendix further explains the data we have used in our research. The

authors DeMiguel, Garlappi, and Uppal (2009) have made their data publicly

available through their personal websites for replication purposes.

A.1 Sector portfolios

The ”S&P Sectors” dataset contains the monthly excess returns on ten value-

weighted industry portfolios using the Global Industry Classification Stan-

dard (GICS) developed by Standard & Poor’s (S&P) and Morgan Stanley

Capital International (MSCI). It covers the industries of Energy, Material,

Industrials, Consumer-Discretionary, Consumer-Staples, Healthcare, Finan-

cials, Information-Technology, Telecommunications, and Utilities, spanning

from January 1981 to December 2002. The original authors have expanded

on this dataset by introducing the excess return on the US equity market

portfolio (MKT) as a factor.

A.2 Industry portfolios

The ”Industry” dataset records the monthly excess returns on ten industry

portfolios in the United States. It includes Consumer-Discretionary, Consumer

Staples, Manufacturing, Energy, High-Tech, Telecommunication, Wholesale

and Retail, Health, Utilities, and Others. This dataset ranges from July 1963

to November 2004 and is retrieved from Kenneth French’s website. Similarly

to the Sectors portfolios dataset, the authors included the excess return on the

US equity market portfolio (MKT) for this dataset.

53



A.3 International equity indexes

The ”International” dataset incorporates eight international equity indices:

Canada, France, Germany, Italy, Japan, Switzerland, the UK, and the US, as

well as the World Index. Returns are calculated from the month-end US-dollar

value of the country equity index from January 1970 to July 2001, sourced from

MSCI.

A.4 MKT, SMB, and HML portfolios

The ”MKT/SMB/HML” dataset is a revised version of the one employed by

L’uboš Pástor for evaluating the Bayesian ”Data-and-Model” approach to asset

allocation. The assets encompass three broad portfolios: MKT, HML, and

SMB, with monthly returns from July 1963 to November 2004 obtained from

Kenneth French’s website.

A.5 Size- and book-to-market-sorted portfolios

This dataset encompasses monthly returns on the 20 portfolios sorted by size

and book-to-market, dating from July 1963 to December 2004, and is sourced

from Kenneth French’s website. We employ this dataset for two distinct exper-

iments denoted as ”FF-1-factor” and ”FF-4-factor”. The first dataset has the

market portfolio (MKT) from dataset A.1 included, while the second also in-

cludes the SMB, HML, and UMD factors. These are Fama-French risk factors

that try to capture risk premia on businesses with small market capitalization

(SMB or ”small minus big”), high book-to-market value (HML or ”high minus

low”), and momentum (UMD or ”up minus down”).
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B Appendix: Some implementation details

B.1 Approximation of Certainty Equivalent

The mathematical proof for our approximation of the Certainty Equivalent for

a power utility investor follows. We use this to find the mean-variance optimal

portfolios. For this section, R denotes the uncertain return, R̄ is the expected

return, W refers to wealth, CEQ the certainty equivalent, σ is volatility and

RRA (or γ) is the ”relative risk aversion”.

The certainty equivalent of a risky choice is the certain wealth that gives the

same utility as the expected utility of the risky choice:

u(CE) = E[u(W ·R)] (B.1)

We do a Taylor expansion around the expected return R̄ on the right-hand

side:

U(W ·R) ≈ U(W ·R̄)+U ′(W ·R̄)W (R−R̄)+
1

2
U ′′(W ·R̄)W 2(R−R̄)2+. . . (B.2)

We take the expectation on both sides:

E[U(W ·R)] ≈ E[U(W ·R̄)+U ′(W ·R̄)W (R−R̄)+
1

2
U ′′(W ·R̄)W 2(R−R̄)2+. . .]

(B.3)

We switch out the left-hand side by the relation in (B.1) and number the

equation and take out all constants from the expected value:

U(CE) ≈ U(W · R̄)+U ′(W · R̄)W ·E[R− R̄]+
1

2
U ′′(W · R̄)W 2 ·E[R− R̄]2+ . . .

(B.4)

Acknowledge that E[R − R̄] = 0 and that E[R − R̄]2 = σ2. Next, we do a

Taylor expansion on the left-hand side of (B.1):

U(CE) ≈ U(E[W ·R]) + U ′(E[W ·R])(CE − E(W ·R)) (B.5)
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Equalizing (B.5) and (B.1), we get:

U(E[W ·R]) + U ′(E[W ·R])(CE − E(W ·R)) ≈ U(W · R̄) +
1

2
U ′′(W · R̄)W 2σ2

CE ≈ W · R̄ +
1

2

U ′′(W · R̄)

U ′((W · R̄)
W 2σ2

CE ≈ W [R̄ +
1

2

U ′′(W · R̄)

U ′((W · R̄)
W · σ2]

CE ≈ W [R̄ +
1

2
(−RRA)σ2]

The changes in the last line come from the fact that

RRA = −W · U ′′(W )

U ′(W )

B.2 Efficient algorithm for the Equal Risk Contribution

Portfolio

Chaves et al. (2012)’s first algorithm is based on the Newton method, which

is an iterative numerical method used to find the roots of a real-valued func-

tion. In our case, we find the roots of the system of nonlinear equations that

constitutes the ERC problem:

F (y) = F (x, λ) =

Σ · x− λ · 1
x∑N

i=1 xi − 1

 = 0, (B.6)

where the first line corresponds to the N equations in the representation of the

ERC portfolio in (12) and the second line is the added constraint that weights

sum to 1. This results in an (N + 1) vector.

We write a linear approximation of the system around point c by Taylor ex-

pansion:

F (y) ≈ F (c) + J(c) · (y − c), (B.7)
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where J(c) is the Jacobian matrix of F (y) evaluated at point c. We get an

approximation of y by setting F (y) = 0 and solving for y:

y = c− [J(c)]−1 · F (y(n))

The process is repeated, but this time with c = y(n):

y(n+1) = y(n) − [J(c)]−1 · F (y(n))

The idea is that the solution converges to y∗ through repeated iterations. The

Jacobian in (B.7) is a (N + 1)× (N + 1) matrix:

J(y) = J(x, λ) =

Σ + λ · diag
(

1
x2

)
− 1

x

1 0

 ,

where diag
(

1
x2

)
is a diagonal matrix with elements equal to 1/x2

i . To implement

the algorithm explained above, we

1. Assume initial weights x0, a λ0 between zero and one, and a stopping

criterion ε

2. Calculate F (y) and J(y) as shown above

3. If |y(n+1) − y(n)| < ε, y∗ = y(n+1) and you stop the process. Otherwise,

go back to step 2.

Weights for the ERC portfolio are the N first elements of the y∗ vector:

wt =

1N

0

 · y∗ (B.8)

B.3 Jobson Korkie z-statistic

The Jobson & Korkie z-statistic is asymptotically distributed as N(0, 1). For

two portfolios i and n, with estimated means, variances, and covariances µ̂i,
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µ̂n, σ̂i, σ̂n, σ̂in over a sample size T −M , we test H0 : µ̂i/σ̂i − µ̂n/σ̂n = 0. The

statistic is:

ẑJK =
σ̂nµ̂i − σ̂iµ̂n√

ϑ̂
(B.9)

with

ϑ̂ =
1

T −M

(
2σ̂i

2σ̂n
2 − 2σ̂iσ̂nσ̂in +

1

2
µ̂i

2σ̂n
2 +

1

2
µ̂n

2σ̂i
2 − µ̂iµ̂n

σ̂iσ̂n

σ̂2
in

)

B.4 CEQ z-statistic

v denotes the vector of moments v = (µi, µn, σ
2
i , σ

2
n), v̂ its empirical counter-

part obtained from a sample of size T−M , and f(v) = (µi−γ2σ2
i )−(µn−γ2σ2

n)

is the difference in the certainty equivalent of two strategies i and n. The

asymptotic distribution of f(v) is:

√
T (f(v̂)− f(v)) ∼ N

(
0,

∂f

∂v
Θ
∂f

∂v

)
, (B.10)

in which

Θ =



σ2
i σi,n 0 0

σi,n σ2
n 0 0

0 0 2σ4
i 2σ2

i,n

0 0 2σ2
i,n 2σ4

n


. (B.11)

We find the z statistic, which is distributed as N(0, 1), by dividing by the

square root of variance:

z =

√
T (f(v̂)− f(v))√

∂f
∂v
Θ∂f

∂v

∼ N (0, 1)

B.5 Kolmogorov-Smirnov (Lilliefors) test

The Kolmogorov-Smirnov test compares two cumulative distribution functions

(CDF). It quantifies this comparison by calculating the maximum absolute
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difference between the two CDFs across all points in the series of observations.

For an empirical CDF GT (x) and a theoretical normal distribution F ∗(x), the

KS-statistic is defined as:

KS = max
t=1,...,T

|GT (x)− F ∗(x)|

As we do not know the true mean and variance, we must employ the

Kolmogorov-Smirnov test adjusted by Lilliefors (1967). The steps to

performing the Lilliefors test is

1. Estimate the mean µ̂ and the variance σ̂2 of the data.

2. Sort the sample data by increasing order and denote the new sample

{r̃t}nt=1, with r̃1 ≤ · · · ≤ r̃n. Then, by construction, we have GT (r̃i) =
t
T
.

3. Evaluate the assumed theoretical cdf F ∗(r̃i) for all values {r̃i}Tt=1. In the

case where the assumed distribution is normal, it is defined as N(µ̂, σ̂2).

4. Compute the KSL test statistic: KSL = max
t=1,...,T

∣∣F ∗(r̃t)− t
T

∣∣.
The null hypothesis is that the observations come from a family of normal

distributions. The critical value for a 5 % significance level is 0.886/
√
T . We

reject the null hypothesis if the test statistic is greater than the critical value.

B.6 Jarque-Bera test

The Jarque-Bera test is based on the fact that skewness (S) and kurtosis (K)

are jointly zero under normality. The null hypothesis is that S = 0 and K = 3.

Under normality, the sample skewness and kurtosis are mutually independent.

The Jarque-Bera test statistic is defined as:

JB = T

[
Ŝ2

6
+

(K̂ − 3)2

24

]
,
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6 and 24 come from the asymptotic variances of skewness and kurtosis, respec-

tively. Under the null hypothesis, the statistic is distributed as a χ2 with 2

degrees of freedom. If JB ≥ χ2
1−α(2), we reject the null hypothesis at level α.
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C Appendix: Tables for robustness checks

C.1 Table explanations

In this section we report the results from our robustness tests. As a reminder,

we performed the following tests:

1. Changing the estimation period to 60 months instead of 120 months.

2. Changing to increasing estimation window instead of a rolling estimation

window.

3. Changed to holding period to 12 month rather than 1 month.

4. Included a risk free asset in the investment universe instead of only having

only risky assets.

5. Changed the benchmark to EW-Buy-and-Hold instead of EW with an-

nual rebalancing.

In our report, we present tables featuring the Sharpe ratio, CEQ, turnover,

Return Loss, and rankings across five distinct evaluations. The specific exper-

iment under consideration can be discerned from the section header and the

identifier listed beneath each table’s title. Each identifier consists of various

keys, with each key representing a specific choice associated with that partic-

ular experiment. The choices and their corresponding keys are as follows:

Choice Original Key Experiment Key

Estimation window length 120 months M120 60 months M60

Estimation window type Rolling Rolling Increasing Increasing

Holding period 1 month hp1 12 months hp12

Investable assets Risky-only assets RO1 Riskfree and risky assets RO0

Benchmark strategy EW with rebalancing ewRebal EW-Buy-and-Hold ewBuyHold

Risk aversion γ = 1 gamma1 Different γ N/A

The following will be the tables for the robustness test we performed.
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C.2 Tables for different estimation window length

(M=60)

Table 10: Robustness: Sharpe Ratio, M=60

RO1 M60 gamma1 hp1 Rolling ewRebal.tex

S&P Industry Inter’l Mkt/ FF FF

Sectors Portf. Portf. SMB/HML 1-factor 4-factor

N = 11 N = 11 N = 9 N = 3 N = 21 N = 24

Strategy

1/N 0.1876 0.1353 0.1277 0.2240 0.1623 0.1753

MV 0.0070 0.0564 -0.1013 -0.0186 -0.0537 0.0701

(0.04) (0.13) (0.00) (0.00) (0.00) (0.08)

MINV 0.1267 0.1402 0.1316 0.2376 0.2326 -0.0261

(0.18) (0.46) (0.45) (0.34) (0.09) (0.00)

IVP 0.1890 0.1409 0.1317 0.2221 0.1710 0.1917

(0.43) (0.03) (0.23) (0.45) (0.00) (0.00)

ERC 0.1814 0.1426 0.1324 0.2525 0.1710 0.3073

(0.20) (0.06) (0.15) (0.11) (0.00) (0.00)

VW 0.1444 0.1138 0.1239 0.1138 0.1138 0.1138

(0.09) (0.01) (0.43) (0.00) (0.01) (0.00)

MVC 0.0899 0.1016 0.0719 0.1733 0.1896 0.1443

(0.10) (0.17) (0.10) (0.17) (0.09) (0.27)

MINVC 0.1005 0.1441 0.1306 0.2376 0.1541 0.3470

(0.02) (0.38) (0.45) (0.34) (0.34) (0.00)

G-MINVC 0.1447 0.1400 0.1304 0.2422 0.1585 0.3007

(0.08) (0.40) (0.44) (0.29) (0.38) (0.00)

This table shows the Sharpe Ratios for the case where the estimation window is 60
months instead of 120 months.
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Table 11: Robustness: Certainty Equivalent, M=60

RO1 M60 gamma1 hp1 Rolling ewRebal.tex

S&P Industry Inter’l Mkt/ FF FF

Sectors Portf. Portf. SMB/HML 1-factor 4-factor

N = 11 N = 11 N = 9 N = 3 N = 21 N = 24

Strategy

1/N 0.0069 0.0050 0.0046 0.0039 0.0073 0.0072

MV -0.0101 -1.2805 -0.3236 -0.0171 -0.9358 -0.0440

(0.08) (0.00) (0.00) (0.01) (0.00) (0.01)

MINV 0.0040 0.0048 0.0047 0.0038 0.0089 -0.0003

(0.14) (0.46) (0.47) (0.37) (0.26) (0.00)

IVP 0.0067 0.0051 0.0047 0.0036 0.0076 0.0072

(0.25) (0.18) (0.37) (0.09) (0.04) (0.45)

ERC 0.0064 0.0051 0.0047 0.0039 0.0076 0.0067

(0.06) (0.29) (0.26) (0.48) (0.05) (0.38)

VW 0.0053 0.0042 0.0044 0.0042 0.0042 0.0042

(0.05) (0.00) (0.43) (0.00) (0.46) (0.01)

MVC 0.0038 0.0043 0.0025 0.0054 0.0088 0.0058

(0.26) (0.37) (0.19) (0.18) (0.08) (0.28)

MINVC 0.0031 0.0047 0.0046 0.0038 0.0061 0.0049

(0.01) (0.40) (0.48) (0.37) (0.14) (0.15)

G-MINVC 0.0047 0.0046 0.0045 0.0038 0.0066 0.0068

(0.04) (0.33) (0.44) (0.38) (0.16) (0.41)

This table shows the Certainty Equivalent for the case where the estimation window
is 60 months instead of 120 months.
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Table 12: Robustness: Turnover and return-loss, M=60

RO1 TC50 M60 gamma1 hp1 Rolling ewRebal.tex

S&P Industry Inter’l Mkt/ FF FF

Sectors Portf. Portf. SMB/HML 1-factor 4-factor

N = 11 N = 11 N = 9 N = 3 N = 21 N = 24

Strategy

1/N 0.0305 0.0216 0.0293 0.0237 0.0162 0.0198

Panel A: Relative turnover of each strategy

MV 181.72 54545.11 9428.42 60.20 4036.97 2348.44

MINV 11.41 50.74 17.14 1.46 99.80 11.02

IVP 1.03 1.07 1.04 1.07 1.05 1.20

ERC 1.15 1.21 1.14 1.13 1.06 1.95

VW 0.00 0.00 0.00 0.00 0.00 0.00

MVC 5.13 15.52 9.96 2.96 16.81 14.37

MINVC 3.82 4.27 3.91 1.46 8.04 2.49

G-MINVC 2.11 2.22 2.25 1.30 3.65 1.98

Panel B: Return loss relative to 1/N (per month)

MV 0.0513 21.4113 3.2128 0.0213 2.7206 0.5503

MINV 0.0039 0.0053 0.0022 -0.0002 0.0052 0.0031

IVP -0.0000 -0.0002 -0.0002 0.0001 -0.0005 -0.0007

ERC 0.0003 -0.0003 -0.0002 -0.0004 -0.0005 -0.0028

VW 0.0017 0.0009 0.0000 0.0048 0.0022 0.0028

MVC 0.0073 0.0036 0.0045 0.0019 -0.0002 0.0028

MINVC 0.0037 0.0000 0.0003 -0.0002 0.0010 -0.0023

G-MINVC 0.0018 -0.0000 0.0001 -0.0002 0.0004 -0.0028

This table shows the turnover and return-loss for the case where the estimation
window is 60 months instead of 120 months.
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Table 13: Robustness: Ranking, M=60

RO1 M60 gamma1 hp1 Rolling ewRebal.tex

S&P Industry Inter’l Mkt/ FF FF Total Final

Sectors Portf. Portf. SMB/HML 1-factor 4-factor of Ranks Rank

N = 11 N = 11 N = 9 N = 3 N = 21 N = 24

Strategy

Panel A: Rank based on Sharpe ratio

1/N 2 6 6 5 5 5 29 6

MV 9 9 9 9 9 8 53 9

MINV 6 4 3 4 1 9 27 5

IVP 1 3 2 6 4 4 20 2

ERC 3 2 1 1 3 2 12 1

VW 5 7 7 8 8 7 42 8

MVC 8 8 8 7 2 6 39 7

MINVC 7 1 4 3 7 1 23 3

G-MINVC 4 5 5 2 6 3 25 4

Panel B: Rank based on Certainty Equivalent

1/N 1 3 4 3 5 2 18 3

MV 9 9 9 9 9 9 54 9

MINV 6 4 2 7 1 8 28 4

IVP 2 1 3 8 3 1 18 2

ERC 3 2 1 4 4 4 18 1

VW 4 8 7 2 8 7 36 7

MVC 7 7 8 1 2 5 30 5

MINVC 8 5 5 6 7 6 37 8

G-MINVC 5 6 6 5 6 3 31 6

Panel C: Rank based on Turnover

1/N 2 2 2 2 2 2 12 2

MV 9 9 9 9 9 9 54 9

MINV 8 8 8 7 8 7 46 8

IVP 3 3 3 3 3 3 18 3

ERC 4 4 4 4 4 4 24 4

VW 1 1 1 1 1 1 6 1

MVC 7 7 7 8 7 8 44 7

MINVC 6 6 6 6 6 6 36 6

G-MINVC 5 5 5 5 5 5 30 5

This table shows the ranking of portfolios for the case where the estimation window
is 60 months instead of 120 months.
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C.3 Tables for increasing estimation window length

Table 14: Robustness: Sharpe Ratio, Increasing Window

RO1 M120 gamma1 hp1 Increasing ewRebal.tex

S&P Industry Inter’l Mkt/ FF FF

Sectors Portf. Portf. SMB/HML 1-factor 4-factor

N = 11 N = 11 N = 9 N = 3 N = 21 N = 24

Strategy

1/N 0.1876 0.1353 0.1277 0.2240 0.1623 0.1753

MV 0.0451 -0.0308 -0.0970 0.2507 0.0892 0.0824

(0.07) (0.01) (0.00) (0.30) (0.15) (0.11)

MINV 0.0763 0.1538 0.1460 0.2669 0.2294 -0.0534

(0.05) (0.30) (0.21) (0.14) (0.08) (0.00)

IVP 0.1876 0.1382 0.1303 0.2404 0.1670 0.1909

(0.50) (0.04) (0.25) (0.16) (0.01) (0.00)

ERC 0.1827 0.1395 0.1301 0.2679 0.1666 0.3132

(0.25) (0.06) (0.22) (0.04) (0.01) (0.00)

VW 0.1444 0.1138 0.1239 0.1138 0.1138 0.1138

(0.09) (0.01) (0.43) (0.00) (0.01) (0.00)

MVC 0.2221 0.0831 0.0693 0.1820 0.2107 0.2364

(0.31) (0.06) (0.12) (0.25) (0.00) (0.07)

MINVC 0.1144 0.1488 0.1500 0.2669 0.1299 0.3602

(0.08) (0.30) (0.12) (0.14) (0.05) (0.00)

G-MINVC 0.1374 0.1466 0.1477 0.2649 0.1488 0.3120

(0.11) (0.26) (0.09) (0.15) (0.08) (0.00)

This table shows the Sharpe Ratios for the case where the estimation window is
increasing instead of rolling.
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Table 15: Robustness: Certainty Equivalent, Increasing Window

RO1 M120 gamma1 hp1 Increasing ewRebal.tex

S&P Industry Inter’l Mkt/ FF FF

Sectors Portf. Portf. SMB/HML 1-factor 4-factor

N = 11 N = 11 N = 9 N = 3 N = 21 N = 24

Strategy

1/N 0.0069 0.0050 0.0046 0.0039 0.0073 0.0072

MV 0.0009 -0.1654 -1.7130 0.0044 -0.0058 -0.7021

(0.12) (0.00) (0.00) (0.30) (0.14) (0.00)

MINV 0.0022 0.0052 0.0052 0.0042 0.0080 -0.0006

(0.04) (0.45) (0.27) (0.35) (0.38) (0.00)

IVP 0.0067 0.0050 0.0047 0.0038 0.0074 0.0071

(0.20) (0.27) (0.40) (0.31) (0.15) (0.40)

ERC 0.0065 0.0050 0.0047 0.0041 0.0074 0.0069

(0.08) (0.34) (0.34) (0.35) (0.20) (0.43)

VW 0.0053 0.0042 0.0044 0.0042 0.0042 0.0042

(0.05) (0.00) (0.43) (0.00) (0.46) (0.01)

MVC 0.0086 0.0030 0.0024 0.0039 0.0103 0.0086

(0.28) (0.12) (0.23) (0.48) (0.00) (0.22)

MINVC 0.0037 0.0050 0.0053 0.0042 0.0049 0.0053

(0.06) (0.49) (0.19) (0.35) (0.01) (0.20)

G-MINVC 0.0046 0.0050 0.0052 0.0041 0.0061 0.0071

(0.08) (0.49) (0.16) (0.38) (0.01) (0.48)

This table shows the Certainty Equivalent for the case where the estimation window
is increasing instead of rolling.
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Table 16: Robustness: Turnover and return-loss, Increasing Window

RO1 TC50 M120 gamma1 hp1 Increasing ewRebal.tex

S&P Industry Inter’l Mkt/ FF FF

Sectors Portf. Portf. SMB/HML 1-factor 4-factor

N = 11 N = 11 N = 9 N = 3 N = 21 N = 24

Strategy

1/N 0.0305 0.0216 0.0293 0.0237 0.0162 0.0198

Panel A: Relative turnover of each strategy

MV 17.82 2920.31 9882.42 1.24 1159.76 891.19

MINV 4.33 8.35 2.46 0.95 18.96 4.70

IVP 0.96 1.00 0.95 0.98 0.97 1.11

ERC 1.00 1.04 1.00 0.98 0.97 1.48

VW 0.00 0.00 0.00 0.00 0.00 0.00

MVC 0.27 5.37 1.06 2.69 6.19 4.82

MINVC 1.35 1.44 1.14 0.95 0.63 1.36

G-MINVC 0.98 1.29 1.02 0.93 0.89 1.51

Panel B: Return loss relative to 1/N (per month)

MV 0.0114 2.0272 6.7960 -0.0005 0.1088 1.8186

MINV 0.0049 0.0001 -0.0005 -0.0007 -0.0010 0.0028

IVP 0.0000 -0.0001 -0.0001 -0.0003 -0.0002 -0.0006

ERC 0.0002 -0.0002 -0.0001 -0.0007 -0.0002 -0.0030

VW 0.0017 0.0009 0.0000 0.0048 0.0022 0.0028

MVC -0.0016 0.0033 0.0038 0.0011 -0.0023 -0.0020

MINVC 0.0029 -0.0005 -0.0009 -0.0007 0.0015 -0.0027

G-MINVC 0.0020 -0.0004 -0.0008 -0.0007 0.0007 -0.0031

This table shows the turnover and return-loss for the case where the estimation
window is increasing instead of rolling.
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Table 17: Robustness: Ranking, Increasing Window

RO1 M120 gamma1 hp1 Increasing ewRebal.tex

S&P Industry Inter’l Mkt/ FF FF Total Final

Sectors Portf. Portf. SMB/HML 1-factor 4-factor of Ranks Rank

N = 11 N = 11 N = 9 N = 3 N = 21 N = 24

Strategy

Panel A: Rank based on Sharpe ratio

1/N 3 6 6 7 5 6 33 7

MV 9 9 9 5 9 8 49 9

MINV 8 1 3 3 1 9 25 5

IVP 2 5 4 6 3 5 25 4

ERC 4 4 5 1 4 2 20 1

VW 5 7 7 9 8 7 43 8

MVC 1 8 8 8 2 4 31 6

MINVC 7 2 1 2 7 1 20 2

G-MINVC 6 3 2 4 6 3 24 3

Panel B: Rank based on Certainty Equivalent

1/N 2 4 6 7 5 2 26 3

MV 9 9 9 1 9 9 46 9

MINV 8 1 3 4 2 8 26 2

IVP 3 3 5 9 3 4 27 5

ERC 4 2 4 6 4 5 25 1

VW 5 7 7 2 8 7 36 8

MVC 1 8 8 8 1 1 27 4

MINVC 7 6 1 3 7 6 30 7

G-MINVC 6 5 2 5 6 3 27 6

Panel C: Rank based on Turnover

1/N 6 3 4 7 6 2 28 5

MV 9 9 9 8 9 9 53 9

MINV 8 8 8 4 8 7 43 8

IVP 3 2 2 5 4 3 19 2

ERC 5 4 3 6 5 5 28 4

VW 1 1 1 1 1 1 6 1

MVC 2 7 6 9 7 8 39 7

MINVC 7 6 7 3 2 4 29 6

G-MINVC 4 5 5 2 3 6 25 3

This table shows the ranking of portfolios for the case where the estimation window
is increasing instead of rolling.
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C.4 Tables for different holding period (12 months)

Table 18: Robustness: Sharpe Ratio, 12M Holding Period

RO1 M120 gamma1 hp12 Rolling ewRebal.tex

S&P Industry Inter’l Mkt/ FF FF

Sectors Portf. Portf. SMB/HML 1-factor 4-factor

N = 11 N = 11 N = 9 N = 3 N = 21 N = 24

Strategy

1/N 0.7427 0.4522 0.3649 0.7742 0.5641 0.6067

MV 0.3527 -0.0546 -0.1980 0.8632 0.4212 0.6366

(0.09) (0.02) (0.05) (0.36) (0.28) (0.45)

MINV 0.2699 0.5059 0.4835 0.7205 0.7061 -0.0342

(0.01) (0.36) (0.02) (0.36) (0.24) (0.02)

IVP 0.7170 0.4643 0.3860 0.7124 0.5832 0.6566

(0.19) (0.14) (0.05) (0.19) (0.04) (0.00)

ERC 0.6864 0.4702 0.3833 0.7622 0.5829 0.9575

(0.04) (0.10) (0.02) (0.45) (0.04) (0.00)

VW 0.4423 0.3864 0.4117 0.3864 0.3864 0.3864

(0.02) (0.03) (0.30) (0.03) (0.05) (0.03)

MVC 0.2253 0.2218 0.2891 0.3666 0.6232 0.8983

(0.02) (0.06) (0.31) (0.07) (0.22) (0.04)

MINVC 0.3109 0.4582 0.4770 0.7205 0.5324 1.0842

(0.01) (0.48) (0.02) (0.36) (0.36) (0.03)

G-MINVC 0.4677 0.4692 0.4496 0.7156 0.5530 0.9582

(0.05) (0.39) (0.03) (0.35) (0.40) (0.01)

This table shows the Sharpe Ratios for the case where the holding period is 12
months instead of 1 month.
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Table 19: Robustness: Certainty Equivalent, 12M Holding Period

RO1 M120 gamma1 hp12 Rolling ewRebal.tex

S&P Industry Inter’l Mkt/ FF FF

Sectors Portf. Portf. SMB/HML 1-factor 4-factor

N = 11 N = 11 N = 9 N = 3 N = 21 N = 24

Strategy

1/N 0.0907 0.0618 0.0539 0.0503 0.0902 0.0889

MV 0.0483 -0.3712 -1.1184 0.0602 -1.7714 0.0803

(0.17) (0.00) (0.00) (0.25) (0.01) (0.49)

MINV 0.0259 0.0581 0.0738 0.0507 0.1242 -0.0017

(0.00) (0.43) (0.03) (0.48) (0.17) (0.00)

IVP 0.0872 0.0627 0.0565 0.0456 0.0926 0.0887

(0.13) (0.32) (0.20) (0.11) (0.11) (0.48)

ERC 0.0838 0.0629 0.0568 0.0507 0.0925 0.0854

(0.02) (0.33) (0.08) (0.47) (0.12) (0.42)

VW 0.0643 0.0497 0.0516 0.0497 0.0497 0.0497

(0.02) (0.31) (0.03) (0.01) (0.42) (0.20)

MVC 0.0249 0.0242 0.0416 0.0387 0.1153 0.1141

(0.11) (0.12) (0.37) (0.33) (0.05) (0.13)

MINVC 0.0356 0.0561 0.0713 0.0507 0.0753 0.0665

(0.01) (0.35) (0.04) (0.48) (0.15) (0.22)

G-MINVC 0.0595 0.0600 0.0652 0.0501 0.0824 0.0880

(0.06) (0.43) (0.12) (0.49) (0.16) (0.48)

This table shows the Certainty Equivalent for the case where the holding period is
12 months instead of 1 month.
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Table 20: Robustness: Turnover and return-loss, 12M Holding Period

RO1 TC50 M120 gamma1 hp12 Rolling ewRebal.tex

S&P Industry Inter’l Mkt/ FF FF

Sectors Portf. Portf. SMB/HML 1-factor 4-factor

N = 11 N = 11 N = 9 N = 3 N = 21 N = 24

Strategy

1/N 0.0091 0.0066 0.0080 0.0072 0.0053 0.0061

Panel A: Relative turnover of each strategy

MV 30.67 1692.32 1182.71 2.85 3292.65 1043.90

MINV 7.61 26.42 8.68 1.15 45.83 7.52

IVP 0.97 0.98 1.03 1.06 0.96 1.09

ERC 1.09 1.04 1.10 1.05 0.97 1.66

VW 0.00 0.00 0.00 0.00 0.00 0.00

MVC 4.76 8.02 7.40 4.32 12.06 8.82

MINVC 2.65 3.08 2.61 1.15 4.49 1.84

G-MINVC 1.41 2.01 1.69 1.11 2.15 1.77

Panel B: Return loss relative to 1/N (per month)

MV 0.0889 1.2293 1.7352 -0.0059 4.3653 6.2800

MINV 0.0627 0.0032 -0.0188 0.0039 -0.0147 0.0239

IVP 0.0034 -0.0020 -0.0041 0.0041 -0.0036 -0.0076

ERC 0.0077 -0.0029 -0.0036 0.0008 -0.0036 -0.0326

VW 0.0542 0.0104 -0.0075 0.0624 0.0287 0.0356

MVC 0.1334 0.0594 0.0231 0.0538 -0.0098 -0.0371

MINVC 0.0663 -0.0000 -0.0200 0.0039 0.0065 -0.0297

G-MINVC 0.0420 -0.0022 -0.0150 0.0042 0.0024 -0.0336

This table shows the turnover and return-loss for the case where the holding period
is 12 months instead of 1 month.
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Table 21: Robustness: Ranking, 12M Holding Period

RO1 M120 gamma1 hp12 Rolling ewRebal.tex

S&P Industry Inter’l Mkt/ FF FF Total Final

Sectors Portf. Portf. SMB/HML 1-factor 4-factor of Ranks Rank

N = 11 N = 11 N = 9 N = 3 N = 21 N = 24

Strategy

Panel A: Rank based on Sharpe ratio

1/N 1 6 7 2 5 7 28 6

MV 6 9 9 1 8 6 39 7

MINV 8 1 1 5 1 9 25 3

IVP 2 4 5 7 3 5 26 4

ERC 3 2 6 3 4 3 21 1

VW 5 7 4 8 9 8 41 9

MVC 9 8 8 9 2 4 40 8

MINVC 7 5 2 4 7 1 26 5

G-MINVC 4 3 3 6 6 2 24 2

Panel B: Rank based on Certainty Equivalent

1/N 1 3 6 5 5 2 22 2

MV 6 9 9 1 9 6 40 8

MINV 8 5 1 4 1 9 28 5

IVP 2 2 5 8 3 3 23 3

ERC 3 1 4 2 4 5 19 1

VW 4 7 7 7 8 8 41 9

MVC 9 8 8 9 2 1 37 7

MINVC 7 6 2 3 7 7 32 6

G-MINVC 5 4 3 6 6 4 28 4

Panel C: Rank based on Turnover

1/N 3 3 2 2 4 2 16 3

MV 9 9 9 8 9 9 53 9

MINV 8 8 8 7 8 7 46 8

IVP 2 2 3 4 2 3 16 2

ERC 4 4 4 3 3 4 22 4

VW 1 1 1 1 1 1 6 1

MVC 7 7 7 9 7 8 45 7

MINVC 6 6 6 6 6 6 36 6

G-MINVC 5 5 5 5 5 5 30 5

This table shows the ranking of portfolios for the case where the holding period is
12 months instead of 1 month.
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C.5 Tables for portfolios that include risk-free asset

Table 22: Robustness: Sharpe Ratio, Including Riskfree Asset

RO0 M120 gamma1 hp1 Rolling ewRebal.tex

S&P Industry Inter’l Mkt/ FF FF

Sectors Portf. Portf. SMB/HML 1-factor 4-factor

N = 11 N = 11 N = 9 N = 3 N = 21 N = 24

Strategy

1/N 0.1876 0.1353 0.1277 0.2240 0.1623 0.1753

MV 0.0979 0.0274 -0.0027 0.1966 0.3678 0.4058

(0.16) (0.04) (0.02) (0.30) (0.00) (0.00)

MINV 0.0820 0.1554 0.1490 0.2493 0.2778 -0.0183

(0.05) (0.30) (0.21) (0.23) (0.01) (0.01)

IVP 0.1877 0.1405 0.1328 0.2216 0.1680 0.1899

(0.50) (0.02) (0.15) (0.44) (0.01) (0.00)

ERC 0.1799 0.1420 0.1322 0.2527 0.1678 0.3011

(0.14) (0.06) (0.13) (0.10) (0.02) (0.00)

VW 0.1444 0.1138 0.1239 0.1138 0.1138 0.1138

(0.09) (0.01) (0.43) (0.00) (0.01) (0.00)

MVC 0.0892 0.0628 0.0760 0.1084 0.1976 0.2024

(0.09) (0.02) (0.13) (0.02) (0.02) (0.27)

MINVC 0.0835 0.1425 0.1501 0.2493 0.1546 0.3581

(0.01) (0.41) (0.16) (0.23) (0.35) (0.00)

G-MINVC 0.1371 0.1451 0.1429 0.2468 0.1615 0.3028

(0.08) (0.31) (0.19) (0.25) (0.47) (0.00)

This table shows the Sharpe Ratios for the case where we include a risk-free asset
as an investable asset.
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Table 23: Robustness: Certainty Equivalent, Including Riskfree Asset

RO0 M120 gamma1 hp1 Rolling ewRebal.tex

S&P Industry Inter’l Mkt/ FF FF

Sectors Portf. Portf. SMB/HML 1-factor 4-factor

N = 11 N = 11 N = 9 N = 3 N = 21 N = 24

Strategy

1/N 0.0064 0.0046 0.0042 0.0030 0.0070 0.0069

MV -0.0837 -0.0760 -0.0384 0.0134 -0.1026 -0.1133

(0.02) (0.00) (0.00) (0.25) (0.03) (0.03)

MINV 0.0024 0.0052 0.0054 0.0039 0.0100 -0.0002

(0.04) (0.36) (0.13) (0.04) (0.09) (0.00)

IVP 0.0064 0.0048 0.0045 0.0030 0.0073 0.0076

(0.40) (0.02) (0.09) (0.48) (0.01) (0.00)

ERC 0.0062 0.0049 0.0045 0.0035 0.0073 0.0138

(0.18) (0.05) (0.06) (0.06) (0.01) (0.00)

VW 0.0053 0.0042 0.0044 0.0042 0.0042 0.0042

(0.02) (0.00) (0.14) (0.00) (0.26) (0.00)

MVC 0.0040 0.0020 0.0027 0.0030 0.0089 0.0075

(0.33) (0.10) (0.27) (0.49) (0.02) (0.37)

MINVC 0.0024 0.0047 0.0054 0.0039 0.0060 0.0051

(0.01) (0.50) (0.11) (0.04) (0.16) (0.19)

G-MINVC 0.0044 0.0048 0.0051 0.0038 0.0067 0.0070

(0.06) (0.42) (0.13) (0.05) (0.28) (0.48)

This table shows the Certainty Equivalent for the case where we include a risk-free
asset as an investable asset.
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Table 24: Robustness: Turnover and return-loss, Including Riskfree Asset

RO0 TC50 M120 gamma1 hp1 Rolling ewRebal.tex

S&P Industry Inter’l Mkt/ FF FF

Sectors Portf. Portf. SMB/HML 1-factor 4-factor

N = 11 N = 11 N = 9 N = 3 N = 21 N = 24

Strategy

1/N 0.0305 0.0227 0.0295 0.0205 0.0173 0.0206

Panel A: Relative turnover of each strategy

MV 1472.97 8567.69 749.29 1031.01 24280.69 13769.81

MINV 6.54 20.59 7.26 1.28 42.71 6.57

IVP 0.99 1.01 0.99 1.16 0.98 1.29

ERC 1.07 1.08 1.05 1.29 0.99 6.55

VW 0.00 0.00 0.00 0.00 0.00 0.00

MVC 4.52 7.30 7.26 4.76 16.63 13.28

MINVC 2.46 2.45 2.26 1.28 3.70 1.74

G-MINVC 1.29 1.44 1.46 1.26 1.67 1.63

Panel B: Return loss relative to 1/N (per month)

MV 0.1390 0.4848 0.1056 0.0398 0.7659 0.9020

MINV 0.0048 0.0015 0.0000 -0.0004 -0.0008 0.0024

IVP -0.0000 -0.0002 -0.0002 0.0000 -0.0003 -0.0006

ERC 0.0003 -0.0003 -0.0002 -0.0004 -0.0003 -0.0057

VW 0.0017 0.0009 -0.0000 0.0048 0.0022 0.0028

MVC 0.0084 0.0051 0.0038 0.0041 -0.0005 0.0002

MINVC 0.0041 -0.0001 -0.0008 -0.0004 0.0006 -0.0025

G-MINVC 0.0019 -0.0003 -0.0006 -0.0004 0.0001 -0.0029

This table shows the turnover and return-loss for the case where we include a risk-
free asset as an investable asset.
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Table 25: Robustness: Ranking, Including Riskfree Asset

RO0 M120 gamma1 hp1 Rolling ewRebal.tex

S&P Industry Inter’l Mkt/ FF FF Total Final

Sectors Portf. Portf. SMB/HML 1-factor 4-factor of Ranks Rank

N = 11 N = 11 N = 9 N = 3 N = 21 N = 24

Strategy

Panel A: Rank based on Sharpe ratio

1/N 2 6 6 5 6 7 32 6

MV 6 9 9 7 1 1 33 7

MINV 9 1 2 3 2 9 26 5

IVP 1 5 4 6 4 6 26 4

ERC 3 4 5 1 5 4 22 1

VW 4 7 7 8 9 8 43 9

MVC 7 8 8 9 3 5 40 8

MINVC 8 3 1 2 8 2 24 3

G-MINVC 5 2 3 4 7 3 24 2

Panel B: Rank based on Certainty Equivalent

1/N 1 6 7 9 5 5 33 6

MV 9 9 9 1 9 9 46 9

MINV 8 1 1 4 1 8 23 3

IVP 2 3 4 8 3 2 22 2

ERC 3 2 5 6 4 1 21 1

VW 4 7 6 2 8 7 34 8

MVC 6 8 8 7 2 3 34 7

MINVC 7 5 2 3 7 6 30 5

G-MINVC 5 4 3 5 6 4 27 4

Panel C: Rank based on Turnover

1/N 3 2 3 2 4 2 16 3

MV 9 9 9 9 9 9 54 9

MINV 8 8 8 6 8 7 45 8

IVP 2 3 2 3 2 3 15 2

ERC 4 4 4 7 3 6 28 4

VW 1 1 1 1 1 1 6 1

MVC 7 7 7 8 7 8 44 7

MINVC 6 6 6 5 6 5 34 6

G-MINVC 5 5 5 4 5 4 28 5

This table shows the ranking of portfolios for the case where we include a risk-free
asset as an investable asset.
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C.6 Tables for portfolios where the benchmark is equal-

weight buy-and-hold

Table 26: Robustness: Sharpe Ratio, EW Buy-and-Hold

RO1 M120 gamma1 hp1 Rolling ewBuyHold.tex

S&P Industry Inter’l Mkt/ FF FF

Sectors Portf. Portf. SMB/HML 1-factor 4-factor

N = 11 N = 11 N = 9 N = 3 N = 21 N = 24

Strategy

1/N 0.1725 0.1289 0.1129 0.2271 0.1825 0.1934

MV 0.0794 0.0679 -0.0332 0.2186 0.0128 0.1841

(0.12) (0.17) (0.03) (0.46) (0.02) (0.45)

MINV 0.0820 0.1554 0.1490 0.2493 0.2778 -0.0183

(0.05) (0.30) (0.21) (0.23) (0.01) (0.01)

IVP 0.1877 0.1398 0.1323 0.2227 0.1690 0.1895

(0.50) (0.04) (0.16) (0.46) (0.00) (0.00)

ERC 0.1804 0.1414 0.1319 0.2545 0.1689 0.3055

(0.15) (0.07) (0.14) (0.09) (0.00) (0.00)

VW 0.1444 0.1138 0.1239 0.1138 0.1138 0.1138

(0.09) (0.01) (0.43) (0.00) (0.01) (0.00)

MVC 0.0892 0.0678 0.0848 0.1084 0.1977 0.2024

(0.09) (0.03) (0.17) (0.02) (0.02) (0.27)

MINVC 0.0835 0.1425 0.1501 0.2493 0.1546 0.3581

(0.01) (0.41) (0.16) (0.23) (0.35) (0.00)

G-MINVC 0.1371 0.1451 0.1429 0.2468 0.1615 0.3028

(0.08) (0.31) (0.19) (0.25) (0.47) (0.00)

This table shows the Sharpe Ratios for the case where we do not rebalance the EW
portfolio.
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Table 27: Robustness: Certainty Equivalent, EW Buy-and-Hold

RO1 M120 gamma1 hp1 Rolling ewBuyHold.tex

S&P Industry Inter’l Mkt/ FF FF

Sectors Portf. Portf. SMB/HML 1-factor 4-factor

N = 11 N = 11 N = 9 N = 3 N = 21 N = 24

Strategy

1/N 0.0068 0.0047 0.0040 0.0038 0.0082 0.0080

MV 0.0031 -0.7816 -0.1365 0.0045 -2.7142 -0.0829

(0.27) (0.00) (0.00) (0.21) (0.00) (0.01)

MINV 0.0024 0.0052 0.0054 0.0039 0.0100 -0.0002

(0.06) (0.37) (0.12) (0.46) (0.21) (0.00)

IVP 0.0066 0.0051 0.0047 0.0036 0.0075 0.0071

(0.45) (0.02) (0.07) (0.24) (0.00) (0.00)

ERC 0.0064 0.0051 0.0047 0.0039 0.0075 0.0067

(0.38) (0.06) (0.06) (0.41) (0.00) (0.19)

VW 0.0053 0.0042 0.0044 0.0042 0.0042 0.0042

(0.30) (0.00) (0.14) (0.00) (0.14) (0.00)

MVC 0.0040 0.0023 0.0032 0.0030 0.0090 0.0075

(0.26) (0.12) (0.37) (0.29) (0.16) (0.41)

MINVC 0.0024 0.0047 0.0054 0.0039 0.0060 0.0051

(0.04) (0.50) (0.11) (0.46) (0.01) (0.08)

G-MINVC 0.0044 0.0048 0.0051 0.0038 0.0067 0.0070

(0.14) (0.44) (0.13) (0.49) (0.00) (0.25)

This table shows the Certainty Equivalent for the case where we do not rebalance
the EW portfolio.
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Table 28: Robustness: Turnover and return-loss, EW Buy-and-Hold

RO1 TC50 M120 gamma1 hp1 Rolling ewBuyHold.tex

S&P Industry Inter’l Mkt/ FF FF

Sectors Portf. Portf. SMB/HML 1-factor 4-factor

N = 11 N = 11 N = 9 N = 3 N = 21 N = 24

Strategy

1/N 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Panel A: Relative turnover of each strategy

MV Inf Inf Inf Inf Inf Inf

MINV Inf Inf Inf Inf Inf Inf

IVP Inf Inf Inf Inf Inf Inf

ERC Inf Inf Inf Inf Inf Inf

VW NaN NaN NaN NaN NaN NaN

MVC Inf Inf Inf Inf Inf Inf

MINVC Inf Inf Inf Inf Inf Inf

G-MINVC Inf Inf Inf Inf Inf Inf

Panel B: Return loss relative to 1/N (per month)

MV 0.0136 227.1418 0.7747 0.0005 7.0585 0.9611

MINV 0.0043 0.0014 -0.0005 -0.0002 0.0001 0.0026

IVP -0.0005 -0.0004 -0.0007 0.0002 0.0008 0.0003

ERC -0.0002 -0.0004 -0.0007 -0.0003 0.0008 -0.0024

VW 0.0012 0.0007 -0.0005 0.0053 0.0032 0.0037

MVC 0.0075 0.0046 0.0027 0.0044 0.0006 0.0010

MINVC 0.0037 -0.0002 -0.0012 -0.0002 0.0016 -0.0022

G-MINVC 0.0015 -0.0005 -0.0010 -0.0002 0.0012 -0.0025

This table shows the turnover and return-loss for the case where we do not rebalance
the EW portfolio.
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Table 29: Robustness: Ranking, EW Buy-and-Hold

RO1 M120 gamma1 hp1 Rolling ewBuyHold.tex

S&P Industry Inter’l Mkt/ FF FF Total Final

Sectors Portf. Portf. SMB/HML 1-factor 4-factor of Ranks Rank

N = 11 N = 11 N = 9 N = 3 N = 21 N = 24

Strategy

Panel A: Rank based on Sharpe ratio

1/N 3 6 7 5 3 5 29 6

MV 9 8 9 7 9 7 49 9

MINV 8 1 2 3 1 9 24 4

IVP 1 5 4 6 4 6 26 5

ERC 2 4 5 1 5 2 19 1

VW 4 7 6 8 8 8 41 8

MVC 6 9 8 9 2 4 38 7

MINVC 7 3 1 2 7 1 21 2

G-MINVC 5 2 3 4 6 3 23 3

Panel B: Rank based on Certainty Equivalent

1/N 1 5 7 6 3 1 23 2

MV 7 9 9 1 9 9 44 9

MINV 9 1 1 5 1 8 25 4

IVP 2 2 5 8 4 3 24 3

ERC 3 3 4 3 5 5 23 1

VW 4 7 6 2 8 7 34 7

MVC 6 8 8 9 2 2 35 8

MINVC 8 6 2 4 7 6 33 6

G-MINVC 5 4 3 7 6 4 29 5

Panel C: Rank based on Turnover

1/N 1 1 1 1 1 1 6 1

MV 9 9 9 8 9 9 53 9

MINV 8 8 8 7 8 7 46 8

IVP 3 3 3 3 3 3 18 3

ERC 4 4 4 4 4 4 24 4

VW 2 2 2 2 2 2 12 2

MVC 7 7 7 9 7 8 45 7

MINVC 6 6 6 6 6 6 36 6

G-MINVC 5 5 5 5 5 5 30 5

This table shows the ranking of portfolios for the case where we do not rebalance
the EW portfolio.
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