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Mind the Gap! Stylized Dynamic Facts 
and Structural Models†

By Fabio Canova and Filippo Ferroni*

We study what happens to identified shocks and to dynamic responses 
when the data generating process features ​q​ disturbances but ​​q​1​​  <  q​ 
variables are used in an empirical model. Identified shocks are lin-
ear combinations of current and past values of all structural dis-
turbances and do not necessarily combine disturbances of the same 
type. Theory-based restrictions may be insufficient to obtain struc-
tural dynamics. We revisit the evidence regarding the transmission 
of house price and of uncertainty shocks. We provide suggestions on 
how to compare the dynamics of larger scale DSGEs models with 
smaller scale VARs. (JEL E12, E13, E23, E31, E43, R31)

It is common in macroeconomics to collect stylized facts about the dynamic trans-
mission of certain identified shocks using (small-scale) vector autoregressive 

(VAR) models and then build (larger scale) dynamic stochastic general equilibrium 
(DSGE) models to explain the patterns found (see, e.g., Galí 1999; Iacoviello 2005; 
Basu and Bundick 2017, among many others).

Several authors, including Ravenna (2007); Fernández-Villaverde et al. (2007); 
and Giacomini (2013) emphasized that such a matching exercise is imperfect as 
the linear solution of a DSGE model has a vector autoregressive-moving aver-
age (VARMA) format. To reduce the mismatch, the VAR should feature a large 
number of lags; but even a generous lag length may be insufficient in endemic 
cases. When long lags can not be used due to short data, the non-invertibility or 
non-fundamentalness problem is typically taken care by (i) simulating data from 
the linear decision rules of the same length as the actual data, (ii) running the same 
VAR on both actual and simulated data, and (iii) comparing the dynamics of the 
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endogenous variables in the two systems after shocks are conventionally identified 
(see Chari, Kehoe, and McGrattan 2005).

In recent years, the term non-invertibility has been employed generically, to cover 
misspecification problems preventing researchers from getting information about 
theoretical quantities using a VAR. Thus, the presence of anticipated disturbances 
(Leeper, Walker, and Yang 2013); news (Forni, Gambetti, and Sala 2018); news and 
noise (Blanchard, L’Huillier, and Lorenzoni 2013); omitted variables (Kilian and 
Lütkepohl 2017); and latent variables have been listed as causing non-invertibility.

This paper studies a related mismatch problem, which may also prevent research-
ers from getting information about the objects of interest from a VAR and could be 
important for deciding which theory is consistent with the data. We call it defor-
mation. It is an aggregation distortion and occurs when the data generating process 
(DGP) features ​q​ structural disturbances, but only ​​q​1​​  <  q​ variables enter in the 
empirical model. We investigate two questions. Given that not all structural distur-
bances can be obtained, will the innovations provide information about “classes” of 
disturbances? Will they give information about a particular disturbance? In general, 
the answer is negative.

Deformation makes identified shocks mongrels with little economic interpretation 
for two reasons. Identified shocks are unlikely to combine structural disturbances of 
the same type, making it difficult to relate, say, identified technology shocks with the 
total factor productivity (TFP) disturbances present in a model. Furthermore, when 
the empirical model is too small, shock identification requires much more stringent 
conditions than usual, which limit the type of disturbances one can analyze in prac-
tice. Perhaps more importantly, the shocks one can identify will be, in general, linear 
combinations of current and past structural disturbances. Thus, they will display 
stronger propagation than the corresponding disturbances in the DGP.

The first problem (named cross-sectional deformation) emerges when the DGP 
is such that several structural disturbances contemporaneously affect the vari-
ables entering the small-scale empirical model. The second problem (named time 
deformation) instead occurs whenever the small-scale empirical model is specified 
without paying sufficient attention to the theory used to explain the data and it is 
exacerbated when the empirical model does not respect the theoretical relationship 
between control and state variables or alters the law of motion of the state vari-
ables. Cross-sectional deformation makes robust theoretical restrictions insufficient 
to obtain the structural disturbances. Time deformation alters the information flow 
of the structural disturbances.

The Plan of the Paper.—After an illustrative example in Section I, to enhance the 
intuition and to differentiate deformation from standard non-invertibility problems, 
Section II derives the formal results, assuming a linear state space representation for 
the DGP. Our focus is on general equilibrium models, but deformation has identical 
implications in partial equilibrium settings, since the linear solution of such models 
also has a state space representation. We provide sufficient conditions for the iden-
tification of a “class” or a particular disturbance, highlight the distortions when the 
mismatch is due to the omission of control or state variables, and give conditions for 
VAR-DSGE comparison exercises to be valid.
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Section III provides a constructive approach to compare a larger scale DGP and 
a small-scale empirical model, when one has an idea of the process that may have 
generated the data. With a standard New Keynesian model as DGP, we show the 
problems occurring when the empirical model is too small; how time deformation 
can be reduced by more explicitly linking the empirical model to the theory; and 
which disturbances are more likely to be identified in different empirical systems.

Section IV reverts the viewpoint of Section III, starts from an arbitrarily small-
scale empirical model, and examines how the matching exercise is affected by dis-
turbances potentially omitted from the theory. We take the four-variable VAR used 
by Iacoviello (2005) as given and compare the dynamics induced by identified house 
price shocks and by preference disturbances in a model with either the original four 
disturbances or the original four plus a disturbance to the borrowing constraints of 
entrepreneurs, which is nowadays employed to explain the macrofinancial linkages 
present in the data, see, e.g., Lindé (2018). While the dynamics induced by identi-
fied house price shocks and preference disturbances are closely aligned in the base-
line scenario, this is not the case when the theory features five disturbances, because 
the responses to identified house price shocks also reflect the dynamics induced by 
monetary policy and the borrowing constraint disturbances.

Section V extends the analysis to DGPs displaying nonlinear terms, such as those 
generated by higher order perturbed solutions of equilibrium models, currently 
used to analyze risk or uncertainty disturbances. We demonstrate that the results of 
Section II hold unchanged, that deformation biases are likely to be more severe, and 
use Basu and Bundick’s (2017) model to show them.

Section VI concludes providing suggestions to users who want to avoid the defor-
mation trap in practice. Given that deformation may be pervasive, the practice of 
comparing small-scale VAR and larger scale DSGE responses should be consider-
ably refined. Showing that the pattern of responses to interesting impulses is similar 
is insufficient for a structural model to be considered successful. Carefully selected 
exercises, like those discussed in Sections III and IV, may provide information about 
the extent of deformation deficiencies and the quality of the DGSE-VAR match.

Apart from using small-scale VARs to validate the implication of a theory, it 
is popular to use them to cross off theories inconsistent with the data (see, e.g., 
Angeletos, Collard, and  Dellas 2020), or to estimate structural parameters via 
response matching (see, e.g., Christiano, Eichenbaum, and  Evans 2005). With 
deformation, the magnitude and persistence of the responses obtained from an iden-
tified VAR shock are generally unreliable. Thus, it is dangerous to exclude theories 
using, say, the magnitude of multipliers or the share of the variance explained, or to 
provide policy advice based on the structural estimates. For the exercises to be valid, 
one needs empirical facts that are insensitive to deformation.

Contribution to the Literature.—Our work is related to Canova and Hamidi 
Sahneh (2018), who analyze the effects of cross-sectional deformation on Granger 
causality tests, and to Miranda-Agrippino and Ricco (2019), who examine the con-
ditions for shock identification in SVAR-IV under partial identificability. Early 
work by Blanchard and Quah (1989); Hansen and Sargent (1991); Marcet (1991); 
Lütkepohl (1984); Braun and Mittnik (1993); and Faust and Leeper (1997) is also 
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relevant as it discusses similar issues but in different settings. Some of the results 
we present have similar flavor as Wolf (2020), but they are due to deformation rather 
than insufficient identification restrictions. Our analysis is also linked to the large 
literature investigating non-invertibility (recently studied in, e.g., Beaudry et  al. 
2019; Plagborg-Møller and Wolf forthcoming; Pagan and Robinson 2022; Chahrour 
and Jurado 2022). In particular, it is connected to Kilian and Lütkepohl (2017) and 
Forni, Gambetti, and Sala (2018), who have pointed out that rectangular systems, 
like those we analyze, always generate non-invertibility.

Our contribution is to formally derive the mapping between larger scale DGP and 
smaller scale empirical model when certain endogenous variables are absent from the 
empirical system; to bring to light cases where informational sufficiency conditions 
may fail; and to stress that deformation issues may arise even in ideal conditions when 
the DGP features no news or anticipated shocks, all theoretical quantities are observ-
ables, and the standard invertibility condition holds, but short samples or identification 
convenience make applied researchers work with small-scale empirical models.

Fernández-Villaverde, Rubio-Ramírez, and Sargent (2005), the working paper 
version of Fernández-Villaverde et  al. (2007), derives a general mapping between 
reduced-form innovations and structural disturbances which is valid for the cases we 
consider. Relative to that paper, we make specific assumptions about the set of observ-
able variables and this allows us to sharpen the general expressions they derive.

I.  Some Intuition

Consider a simple consumption-saving problem where there are disturbances to 
TFP ​​(​Z​t​​)​​, to the price of investment (​​V​t​​​), and to preferences (​​B​t​​​).1 The representa-
tive agent maximizes

	​​ max​ 
​C​t​​

​ ​​  ∑ 
t=1

​ 
∞

 ​​ ​β​​ t​U​(​C​t​​)​​

subject to the constraints

	​​ C​t​​/​B​t​​ + ​I​t​​  = ​ O​t​​  = ​ Z​t​​ ​K​ t−1​ 
α  ​​,

	​​ K​t​​  = ​ (1 − δ)​​K​t−1​​ + ​V​t​​ ​I​t​​​,

where ​​O​t​​​ is output, ​​C​t​​​ is consumption, ​​I​t​​​ investment and ​​K​t​​​ is the capital stock, 
while ​α​, ​β​ and ​δ​ are parameters. We assume that ​0  <  α  <  1, 0  <  β  <  1​ and that ​​

(​Z​t​​, ​V​t​​, ​B​t​​)​​ are i.i.d. with unitary means and standard deviation ​​σ​i​​, i  =  Z, V, B​. When  
​U​(​C​t​​)​  =  log​C​t​​​ and ​δ  =  1​, the solution is (see the Appendix)

(1)	​ log​O​t​​  =  αlog​K​t−1​​ + log ​Z​t​​​

(2)	​ log​C​t​​  =  log​(1 − αβ)​ + αlog​K​t−1​​ + log ​B​t​​ + log ​Z​t​​​

(3)	​ log​K​t​​  =  log​(αβ)​ + αlog​K​t−1​​ + log​V​t​​ + log ​Z​t​​​ .

1 We are grateful to Thomas Drechsel for suggesting a version of this example.
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The theory has three endogenous variables and three disturbances (two supply  
​​(​Z​t​​, ​V​t​​)​​ and one demand ​​B​t​​​). In a VAR with ​​o​t​​  =  log​O​t​​, ​c​t​​  =  log​C​t​​, ​k​t​​  =  log​K​t​​​, 
all structural disturbances are identifiable from the innovations using theory-based 
recursive restriction (​​z​t​​  =  log ​Z​t​​​ can be obtained from the innovations in ​​o​t​​​; given ​​z​t​​​, 
the other two innovations determine ​​v​t​​  =  log​V​t​​​ and ​​b​t​​  =  log​B​t​​​).

Deformation.—Suppose a researcher employs an empirical model with only two 
observable variables. Given that at most two disturbances can be obtained, would 
she be able to identify a “demand” and a “supply” disturbance? Would she be able 
to trace out the dynamics due to the preference disturbance? The answers depends 
on the variables used.

Suppose (​​k​t​​, ​c​t​​)​ are employed. Integrating out ​​o​t​​​ (a control) from the problem, the 
solution of the theory is

(4)	 ​​k​t​​  =  log​(αβ)​ + α ​k​t−1​​ + ​u​1t​​​

(5)	​​ c​t​​  =  log​(1 − αβ)​ + α ​k​t−1​​ + ​u​2t​​​

where ​​u​1t​​  = ​ v​t​​ + ​z​t​​​, ​​u​2t​​  = ​ b​t​​ + ​z​t​​​. Note that ​​u​2t​​​ mixes demand (​​b​t​​​) and supply 
(​​z​t​​​) disturbances and that recursivity is lost. Thus, a VAR featuring (​​k​t​​, ​c​t​​​) exhibits 
cross-sectional deformation, because three structural shocks are mapped into two 
innovations. Here, current and past values of the observables do not provide enough 
information to extract a supply or the preference disturbance because the theoretical 
restrictions, which are valid in the original three-variable system, fail.

Suppose instead (​​o​t​​, ​c​t​​)​ enters the empirical model. Integrating out ​​k​t​​​ (a state) 
from the problem, the solution of the theory is

(6)	​​ c​t​​  = ​ b​c​​ + α ​c​t−1​​ + ​u​1t​​​

(7)	​​ o​t​​  = ​ b​y​​ + α ​o​t−1​​ + ​u​2t​​​

where ​​u​1t​​  = ​ z​t​​ + ​b​t​​ − α ​b​t−1​​ + α ​v​t−1​​​, ​​u​2t​​  = ​ z​t​​ + α ​v​t−1​​​, and ​​b​c​​, ​b​y​​​ are constant. 
Omission of ​​k​t​​​ causes two new states ​​c​t−1​​, ​o​t−1​​​ to appear in the solution. In addition, 
recursivity is lost and ​​u​1t​​​ mixes demand and supply disturbances, but now with dif-
ferent timing. Thus, a VAR with ​(​c​t​​, ​o​t​​​) displays both cross-sectional and time defor-
mation. In such a system the (recursive) cross correlation between ​​u​jt​​​ and current 
and lagged values of any of the structural disturbances does not go to 1, even when 
the number of lags goes to infinity. Thus, it is impossible to recover the disturbances 
of interest using current and lagged values of ​​(​c​t​​, ​o​t​​)​​. Because adding future values 
does not help either, the recoverability condition of Chahrour and Jurado (2022) 
also fails. Note that, also in this case, theoretical motivated restrictions will not 
identify any structural disturbance.

Is there a two-variable system which allows the identification of a supply and 
a demand disturbance? If the two great ratios, (​​k​t​​ − ​o​t​​)​ and ​(​c​t​​ − ​o​t​​​) are used as 
observables, one can recover ​​v​t​​, ​b​t​​​ from the innovations. Thus, while individual vari-
ables may not allow the identification of classes or of particular disturbances, linear 
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combinations of observables of the original model might. This happens because 
each disturbance enters the decision rule of one linear combination only. Whether 
underidentification of ​​z​t​​​ causes an inferential problem depends on the interest of the 
researcher. If one simply wants to derive a demand and a supply shock, as we do 
here, no further issue arises.

The example also tells us that, if some of the structural disturbances are not of 
crucial interest, there may be a carefully selected set of variables which may allow 
the identification of the remaining disturbances in a small-scale empirical system. 
As seen later, a sufficient condition for this to happen is that the disturbances of 
interest enter the reduced system in a block diagonal format.

Relationship with Non-invertibility.—For the readers familiar with the “invertibil-
ity” language, one may note that the systems (4)–(5) and (6)–(7) are non-invertible 
in the observables, although for different reasons. Furthermore, non-invertibility 
is not driven by the properties of the structural disturbances (there is no news or 
anticipated disturbances) nor by the intrinsic dynamics of the original system 
(here ​α  <  1​), but by the scale of the empirical model. The system with great ratios 
is, instead, invertible because (the history of) each combination of variables carries 
unique information about one structural disturbance.

How different is deformation from traditional non-invertibility? We explicitly 
consider empirical systems featuring less observables than structural disturbances 
(“rectangular” systems), while the literature focuses on informational deficiencies 
present in systems with as many observable variables as structural disturbances 
(“square” systems). (1)–(3) could be one such square system; and it is easy to 
verify that with ​​k​t​​, ​c​t​​, ​o​t​​​ as observables, the “poor man invertibility” condition (see 
Fernández-Villaverde et al. 2007) is satisfied and, as mentioned, all disturbances can 
be obtained from the innovations of a VAR.

Deformation and Omitted Variables.—It is useful to stress that omitting variables 
present in the theory does not necessarily generate deformation problems. What is 
crucial is that the omission causes a mismatch between the number of VAR variables 
and the number of structural disturbances (assuming all are of interest). To illustrate, 
consider the original consumption-saving model, but now assume that the TFP dis-
turbance ​​Z​t​​​ is an AR(1) with persistence ​ρ​.2 The solution is

(8)	​ log​O​t​​  =  αlog​K​t−1​​ + ρlog ​Z​t−1​​ + log​e​ t​ 
z​​

(9)	​ log​C​t​​  =  log​(1 − αβ)​ + αlog​K​t−1​​ + log ​B​t​​ + ρlog ​Z​t−1​​ + log​e​​t​​  z​​​​

(10)	​ log ​K​t​​  =  log​(αβ)​ + αlog ​K​t−1​​ + ρlog ​Z​t−1​​ + log​V​t​​ + log​e​ t​ 
z​​

(11)	​ log ​Z​t​​  =  ρlog ​Z​t−1​​ + log​e​ t​ 
z​​.

2 We thank one of the referees for suggesting such an example.
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In this system there are three disturbances and four endogenous variables. Suppose 
that a researcher uses a VAR with ​​(​o​t​​, ​c​t​​, ​k​t​​)​​. It is easy to check that the “poor man 
invertibility” condition holds, despite the fact that the exogenous state ​​z​t​​​ is omitted. 
Moreover, when the VAR features sufficient lags, it is possible to recover the three 
structural disturbances using theoretically motivated recursive restrictions.

To restate the concept differently, deformation occurs when the empirical system 
is not large enough relative to the vector of structural disturbances. Omission of the-
ory relevant variables is neither a necessary nor a sufficient condition for deforma-
tion to emerge. Thus, as long as the system is square and the “poor man invertibility” 
condition holds, omission of state variables does not cause deformation problems.

Deformation and Measurement Errors.—Although in the theory all disturbances 
are structural, deformation would emerge unchanged if the theory, instead, is driven 
by a mixture of structural disturbances and measurement errors. Suppose, for 
instance, that ​​v​t​​​ is a measurement error. Then, a VAR with (​​k​t​​, ​c​t​​​) will still display 
cross-sectional deformation and a VAR with (​​c​t​​, ​o​t​​​) will display both cross-sectional 
and time deformations. Finally, in the VAR with the two great ratios, a researcher 
will be able to identify the preference disturbance (but not the TFP disturbance).

To sum up, deformation may emerge even when traditional forms of 
non-invertibility are absent and it is produced by a dimensionality mismatch between 
the empirical model and the disturbances of the DGP. In this situation, the variables 
entering the empirical system determine the informational content of the reduced-
form innovations and the dimensionality mismatch problem becomes more severe 
when endogenous state variables are omitted. In general, strict conditions are needed 
to recover a “class” or a particular disturbance and one needs to verify they hold for 
the vector of observables used. The next section formalizes these conclusions.

II.  The Analytical Results

This section derives the mapping between structural disturbances and reduced-
form innovations when the empirical model contains different combinations of 
endogenous states and controls (Propositions 1 and 2) and compares the dynamic 
responses in the theory with those obtained in various empirical systems (Proposition 
3). We employ the generic term “empirical system” throughout the section because 
the implications we derive hold when a researcher estimates a VAR or a state space 
model. We assume that the DGP is of the form:

(12)	​​ x​t​​  =  A​(θ)​​x​t−1​​ + B​(θ)​​e​t​​​

(13)	​​ y​t​​  =  C​(θ)​​x​t−1​​ + D​(θ)​​e​t​​​

where ​​x​t​​​ is a ​k × 1​ vector of endogenous and exogenous states, ​​y​t​​​ is a ​m × 1​ vec-
tor of endogenous controls, ​​e​t​​  ∼  N​(0, Σ​(θ)​)​​ is a ​q × 1​ vector of disturbances,  
​Σ​(θ)​​ a diagonal matrix and ​θ​ a vector of structural parameters; ​A​(θ)​​ is ​k × k​,  
​B​(θ)​​ is ​k × q​, ​C​(θ)​​ is ​m × k​, ​D​(θ)​​ is ​m × q​. For convenience, we let the eigenvalues 
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of ​A(θ​) to be all less than 1 in absolute value. Thus, if there are disturbances with 
permanent effects, (12)–(13) represent a properly scaled version of the data process. 
Predictable disturbances or news about future disturbances are not considered to 
leave standard non-invertibility issues aside. While (12)–(13) are general, in our 
applications they are produced by the (log-)linear solution of the optimality condi-
tions of a structural macroeconomic model.

In general, ​m  ≥  q​ and some of the endogenous variables may be latent. Hence, 
the variables entering the empirical model are ​​z​t​​  =  S​​[​x​ t​ ′​, ​y​ t​ ′​]​ ′ ​​, where ​S​ is a selec-
tion matrix. Fernández-Villaverde et  al. (2007) assume ​S  =  diag​[0, I]​​3 and con-
sider ​m  =  q​; Ravenna (2007) and Pagan and  Robinson (2022) assume that 
either ​S  =  I​ and consider ​m + k  =  q​, or ​S  =  diag​[0, I]​​ and consider ​m  =  q​. In 
general, ​S​ is chosen so that the dimension of ​​z​t​​​ matches the number of structural 
disturbances.

The reduced-form (innovation representation) corresponding to (12)–(13) is

(14)	​​ x​t​​  =  A​(θ)​​x​t−1​​ + ​K​x​​​(θ)​​u​t​​​

(15)	​​ y​t​​  =  C​(θ)​​x​t−1​​ + ​K​y​​​(θ)​​u​t​​​

where ​​u​t​​  = ​ z​t​​ − E​[​z​t​​ | ​Ω​t−1​​]​​ is a ​q × 1​ vector of innovations, ​​Ω​t−1​​​ includes (at least) 
lags of ​​z​t​​​, ​​K​x​​​(θ)​​, and ​​K​y​​​(θ)​​ are steady-state Kalman gain matrices, and for those  
​​x​t​​​ and ​​y​t​​​ belonging to ​​z​t​​​, ​​K​i​​​(θ)​​ has a row with zeros except in one position.

Given (14)–(15), the identification of the structural disturbances requires a map-
ping from ​​u​t​​​ into ​​e​t​​​. When the empirical model is a VAR, Sims and Zha (2006) and  
Plagborg-Møller and Wolf (forthcoming) developed sufficient conditions to obtain ​​
e​t​​​ from current and past ​​z​t​​​; Chahrour and Jurado (2022) discuss sufficient conditions 
to recover ​​e​t​​​ from current, past and future ​​z​t​​​. Here, when ​S  =  I​, one needs to invert ​​

(​ 
B​(θ)​

​ 
D​(θ)​

​)​​e​t​​  = ​ u​t​​​; when ​S  =  diag​[0, I]​​, one needs to invert ​D​(θ)​​e​t​​  = ​ u​t​​​. In both 

cases, standard conditions apply, see Rubio-Ramírez, Waggoner, and Zha (2010).
In the identification exercise two assumptions are implicitly made. First, there is 

no misspecification in (12)–(13), at least, as far as sources of disturbances are con-
cerned, so that ​dim​(​z​t​​)​  =  dim​(​e​t​​)​​. If disturbances are left out, the identification 
exercises becomes problematic, even when excluded disturbances are orthogonal 
to included ones, and included disturbances account for a large portion of the vari-
ability of ​​z​t​​​. Second, when ​​z​t​​  = ​ y​t​​​, and ​dim​(​z​t​​)​  =  dim​(​e​t​​)​​, ​​Ω​t−1​​​ it is typically 
specified to include long lags of ​​z​t​​​ to take care of omitted states. When disturbances 
are left out, having a rich ​​Ω​t−1​​​ is generally insufficient to make the identification 
problem well behaved.

3 ​diag​[a, b]​​ is the operator that combines the matrices ​a​ and ​b​ into a block diagonal matrix of appropriate 
dimensions.
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Three Small Empirical Systems.—In our analysis ​dim​(​z​t​​)​  <  dim​(​e​t​​)​​. Thus, we 
focus on the situation when, say, a two-variable VAR is used to collect dynamic 
facts but the DGP features more than two disturbances. A researcher who wants 
to interpret the dynamics of the small-scale empirical system may employ a theo-
retical model that is less complex than the DGP and may specify only enough dis-
turbances to match the number of empirical variables. We show that the dynamics 
produced by such model may not be relevant for the comparison and omitted distur-
bances may play a crucial role. To ease the notation, we omit the dependence of the 
reduced-form matrices ​A, B, C, D, ​K​x​​, ​K​y​​, Σ​ on the structural parameters ​θ​, unless it 
creates confusion. Let ​​z​it​​  ≡ ​ S​i​​​​[​x​ t​ ′​, ​y​ t​ ′​]​ ′ ​​, where ​​S​i​​​ is a ​​q​i​​ × ​(m + k)​​ and ​dim​(​z​it​​)​  = 
​q​i​​  <  dim​(​e​t​​)​  =  q, ∀ i​. We consider three ​​S​i​​​ matrices.

•	 Case 1: ​​S​1​​  =  diag​[I, ​S​12​​]​​. This choice of ​​S​i​​​ generates an empirical system 
which retains the states but integrates out part of the controls. The DGP in terms 
of ​​z​1t​​  = ​​ [​x​ t​ ′​, ​y​ 1t​ ′ ​]​ ′ ​​, ​​y​1t​​  ≡ ​ S​12​​ ​y​t​​​ is

(16)	​​ x​t​​  =  A ​x​t−1​​ + B​e​t​​​

(17)	​​ y​1t​​  = ​ C​1​​​x​t−1​​ + ​D​1​​​e​t​​​

or ​​z​1t​​  = ​ F​1​​​z​1t−1​​ + ​G​1​​​e​t​​​, where ​​F​1​​  = ​ (​ 
A

​ 
0
​ 

 ​C​1​​
​ 

0
​)​​ and ​​G​1​​  = ​ (​ 

B
​ ​D​1​​
​)​​. Let  

​F  = ​ (​ A​  0​ 
C

​ 
0
​)​​, ​G  = ​ (​ B​ 

D
​)​​.

•	 Case 2: ​​S​2​​  =  diag​[​S​21​​, ​S​22​​]​​. This choice of ​​S​i​​​ generates an empirical system 
which integrate out part of the states and part of the controls. Let ​​x​ t​ ′​  = ​ (​x​ 1t​ ′ ​, ​x​ 2t​ ′ ​)​,  
​y​ t​ ′​  = ​ (​y​ 1t​ ′ ​, ​y​ 2t​ ′ ​)​​, where ​​(​x​1t​​, ​y​1t​​)​​ are the variables excluded from the empirical 
system.

The DGP in terms of ​​z​2t​​  = ​​ [​x​ 2t​ ′ ​, ​y​ 2t​ ′ ​]​ ′ ​​, where ​​x​2t​​  ≡ ​ S​21​​ ​x​t​​​, ​​y​2t​​  ≡ ​ S​22​​ ​y​t​​​, is

(18)	​​ x​2t​​  = ​ A​2​​ ​x​2t−1​​ + ​B​2​​ ​e​t​​ + ​w​1t−1​​​

(19)	​​ y​2t​​  = ​ C​2​​ ​x​2t−1​​ + ​D​2​​ ​e​t​​ + ​w​2t−1​​​

or ​​z​2t​​  = ​ F​2​​ ​z​2t−1​​ + ​G​2​​ ​e​t​​ + ​w​t−1​​​, where ​​F​2​​  = ​ (​
​A​2​​ ​ 

0
​ 

​C​2​​
​ 

0
​)​​ and ​​G​2​​  = ​ (​ 

​B​2​​​ 
​D​2​​

​)​​, where ​​

w​1t−1​​  = ​ H​2​​ ​x​1t−1​​​ and ​​H​2​​  = ​​ [​A​21​​  ​C​21​​]​ ′ ​​. Alternatively, using (12) to separate 
observable and non-observable states, and integrating ​​x​1t​​​ out, the DGP for ​​z​2t​​​ is

(20)	​​ x​2t​​  = ​​ A ̃ ​​21​​ ​x​2t−1​​ + ​​A ̃ ​​22​​ ​x​2t−2​​ + ​​B ̃ ​​20​​ ​e​t​​ + ​​B ̃ ​​21​​ ​e​t−1​​​

(21)	​​ y​2t​​  = ​​ C ̃ ​​21​​ ​x​2t−1​​ + ​​C ̃ ​​22​​ ​x​2t−2​​ + ​​D ̃ ​​20​​ ​e​t​​ + ​​D ̃ ​​21​​ ​e​t−1​​​.

(18)–(19) point out the misspecification present using a first-order VAR for ​​z​2t​​​. 
(20)–(21) shows that DGP for the observables is a VARMA(2,1).
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•	 Case 3: ​​S​3​​  =  diag​[​S​31​​, 0]​​. This choice of ​​S​i​​​ generates an empirical system 
which repackages the states and eliminates the controls. The DGP in terms of ​​
z​3t​​  = ​ x​3t​​  ≡ ​ S​31​​ ​x​t​​​ is

(22)	​​ x​3t​​  = ​ A​3​​ ​x​3t−1​​ + ​B​3​​ ​e​t​​ + ​w​3t−1​​​

where ​​w​3t−1​​​ is a function of the repackaged states. Analogously with Case 2, one 
may write (22) as

(23)	​​ z​3t​​  = ​​ A 
–
 ​​31​​ ​z​3t−1​​ + ​​A 

–
 ​​32​​ ​z​3t−2​​ + ​​B 

–
 ​​30​​ ​e​t​​ + ​​B 

–
 ​​31​​ ​e​3t−1​​​.

The processes for ​​z​it​​, i  =  1, 2, 3​ are obtained integrating out the relevant vari-
ables from the decision rules. They can also be equivalently obtained substituting 
optimality conditions into others, prior to the computation of the decision rules. The 
matrices characterizing these solutions generally differ from those obtained solving 
the original model and crossing out the rows corresponding to the variables absent 
from ​​z​it​​​, because not all the original states are necessarily used in the computation of 
the decision rules. Section III provides examples of smaller scale empirical systems 
which correspond to (16)–(17), (20)–(21), and (23) for a specific DGP.

The innovation representation of (12)–(13), when ​​z​it​​​ are observables is

(24)	​​ x​it​​  =  A​x​it−1​​ + ​​K ˆ ​​ix​​ ​u​it​​​

(25)	​​ y​it​​  =  C​x​it−1​​ + ​​K ˆ ​​iy​​ ​u​it​​​

where ​​u​it​​  = ​ z​it​​ − E​[​z​it​​ | ​Ω​it−1​​]​​is a ​​q​i​​ × 1​ vector, ​​​K ˆ ​​ix​​​, ​​​K ˆ ​​iy​​​ are steady-state Kalman 
gain matrices featuring some rows with zeros except in one position.

We study the mapping between ​​u​it​​​ and ​​e​t​​​ when ​​q​i​​  <  q​. Given that not all distur-
bances can be identified, we ask whether a researcher can recover a “class” of dis-
turbances or a particular disturbance appearing in the DGP. We then study whether 
the dynamic induced by identified shocks match those in the DGP.

The Mapping between Innovations and Structural Disturbances When the 
Empirical System Eliminates Theoretical Controls.—We analyze the relationship 
between ​​u​1t​​​ and ​​e​t​​​, when ​E​[​z​1t​​ | ​Ω​1t−1​​]​  = ​​ F ̃ ​​1​​ ​z​1t−1​​​ and thus

(26)	​​ u​1t​​  = ​ z​1t​​ − ​​F ̃ ​​1​​ ​z​1t−1​​​.

PROPOSITION 1: 

	 (i)	 If ​​​F ̃ ​​1​​  = ​ S​1​​F​S​ 1​ 
∗​  ≡ ​ F​1​​​, then ​​u​1t​​  = ​ G​1​​​e​t​​​, where ​​S​ 1​ 

∗​​ is the generalized inverse 
of ​​S​1​​​, ​​G​1​​  = ​ S​1​​G​ depends on ​θ​, and is a ​​q​1​​ × q​ matrix.

	 (ii)	 A block diagonal ​​G​1​​​ is sufficient to identify classes of disturbances.
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	 (iii)	 If ​​G​1​​​ has at most one nonzero element in row ​k​, one can obtain ​​e​jt​​​, for some ​k​ 
and ​j​.

(The proof of all the propositions is in the Appendix).

As point (i) indicates, when ​​z​1t​​​ is used in the VAR, the innovations ​​u​1t​​​ respect 
the timing protocol of the structural disturbances ​​e​t​​​, but cross-sectionally deform 
them because ​​G​1​​​ is a ​​q​1​​  <  q​ matrix. Because ​​G​1​​​ is rectangular, one may ask when 
elements of the innovation vector carry enough information to recover some struc-
tural disturbances. Suppose that structural disturbances are order by classes, i.e., 
disturbances 1 to ​​j​1​​​ belong to class 1, disturbances ​​j​1​​ + 1​ to ​​j​2​​​ belong to class 2, etc. 
As point (ii) indicates, the ​k​-th element of ​​u​1t​​​ compresses a class of structural dis-
turbances only if ​​G​1​​​ has a block diagonal structure. Finally, as point (iii) suggests, 
the ​k​-th element of ​​u​1t​​​ carries information about ​​e​jt​​​ if ​​G​1​​​ has at most one nonzero 
element in row ​k​ in position ​j​.

The restrictions in (ii) and (iii) are strong and unlikely to be satisfied in a large 
class of general equilibrium models. They require that the theory features many 
“conveniently” placed delay restrictions so that, contemporaneously, either a 
reduced number of disturbances of the same class affects the ​k​-th variable of the 
empirical model or only one structural disturbance affects the ​k​-th variable.

Proposition 1 determines the properties of ​​u​1t​​​, given ​​e​t​​​. Thus, ​​u​1t​​​ will be a mean 
zero process and its autocovariance function will be restricted by

(27)	​ E​(​u​1t​​ ​u​ 1t−s​ ′  ​)​  =  E​(​G​1​​​e​t​​ ​e​ t−s​ ′  ​​G​ 1​ ′ ​)​, s  ≥  0​.

When ​​e​t​​​ are i.i.d., the variance of ​​u​1t​​​ and ​​e​t​​​ differ and the magnitude of the ampli-
fication depends on ​​G​1​​​. Thus, a ​​e​jt​​​ disturbance with a small variance or small load-
ings ​​G​1j​​​ will be hard to identify. Similarly, the serial correlation properties of ​​u​1t​​​ 
depend on the structure and magnitude of ​​G​1​​​ and its row dimension. In general, 
cross-sectional distortions may make the autocovariance function of ​​u​1t​​​ insufficient 
to recover the autocovariance of some ​​e​jt​​​, unless additional restrictions are imposed.

The Mapping between Innovations and Structural Disturbances When the States 
in the Empirical and the Theoretical Models Differ.—We analyze the relationship 
between ​​u​it​​​ and ​​e​t​​​ when ​E​[​z​it​​ | ​Ω​it−1​​]​  = ​​ F ̃ ​​i​​ ​z​it−1​​, i  =  2, 3​ so that

(28)	​​ u​it​​  = ​ z​it​​ − ​​F ̃ ​​i​​ ​z​it−1​​​.

PROPOSITION 2: 

	 (i)	 ​​u​it​​  = ​ λ​i​​​(L)​​e​t​​​, where ​​λ​i​​​ depends on ​θ​ and is ​​q​i​​ × q​ for each ​L​, ​i  =  2, 3​.

	 (ii)	 ​​u​it​​  = ​ ψ​i​​​(L)​​u​1t​​, i  =  2, 3​, where ​ψ​(L)​​ is a function of ​A​, ​​K ˆ ​​ and ​K​, ​​​x ˆ ​​t​​​ and ​​x​t​​​.

Point (i) states that when the empirical system eliminates state variables, ​​u​2t​​​ will 
not respect the timing protocol of the structural disturbances ​​e​t​​​ and cross-sectionally 
deform them. However, an empirical system including only the state variables of the 
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DGP does not solve time deformation problems since their law of motion may be 
altered. Thus, also ​​u​3t​​​ will, in general carry too little information to recover one or 
more components of ​​e​t​​​. Note that ​​S​2​​ F​S​ 2​ 

∗​  = ​​ F ̃ ​​2​​​, or ​​S​31​​A​S​ 31​ 
∗ ​  = ​​ F ̃ ​​3​​​ are insufficient to 

avoid time deformation problems.
Point (ii) indicates that, in general, ​​u​it​​  ≠ ​ u​1t​​, i  =  2, 3​ and the timing of informa-

tion they contain differs even when ​​S​i​​F​S​ i​ 
∗​  = ​​ F ̃ ​​i​​, ∀ i​. In other words, it matters which 

variables enter the empirical system. To clearly see this, let ​​λ​1​​​​(L)​​​ ∗​​ be the general-
ized inverse of ​​λ​1​​​(L)​​. Then,

(29)	​​ u​it​​  = ​ λ​i​​​(L)​​λ​1​​​​(L)​​​ ∗​​u​1t​​  ≡ ​ ψ​i​​​(L)​​u​1t​​​.

By construction ​​ψ​i0​​  =  I​. Thus, an impulse in ​​u​1t​​​ and ​​u​it​​, i  =  2, 3​ has identi-
cal effects on the variables present in both ​​z​1t​​​ and ​​z​it​​, i  =  2, 3​ but will last longer 
when ​​z​it​​​ are the observables—persistence is altered. Hence, the dynamics induced 
by identified shocks in small-scale empirical systems of the same dimension but 
featuring different variables will generally differ.

Equation (28) is misspecified when states are omitted or repackaged. 
What happens when ​​u​it​​​ are constructed using a larger information set, e.g.,  
​​u​it​​  = ​ z​it​​ − ​​F ̃ ​​i​​​(L)​​z​it−1​​, L  =  1, 2, …​? Because both ​​z​2t​​​ and ​​z​3t​​​ are VARMA pro-
cesses, standard issues discussed in the literature apply. In principle, ​​​F ̃ ​​i​​​(L)​​ must 
be nonzero for ​L  →  ∞​ for time deformation biases to disappear. Still, even 
when ​L  →  ∞​, cross-sectional deformations will remain.

Proposition 1 is related to the aggregation results of Faust and Leeper (1997). 
Because their DGP is a VAR, they can not analyze the consequences of omitting 
states or altering their law of motion. Proposition 2 has the same flavor as the 
main result in Fernández-Villaverde et al. (2007). The main difference is that here  
​​u​it​​, i  =  2, 3​ are reduced ranked moving averages of ​​e​t​​​ and the reason is time defor-
mation rather than non-invertibility.

Dynamic Responses.—Consider ​​z​it​​​ responses to an impulse in the shocks. In the 
DGP they are

(30)	​​ z​it​​  = ​ S​i​​​(​ B​ 
D

​)​ ​e​t​​​

	​​ z​it+h​​  = ​ S​i​​​(​  ​A​​ h​ B​ 
C​A​​ h−1​ B

​)​ ​e​t​​    i  =  1, 2, 3; h  =  1, 2, …​

In the empirical system with ​​z​1t​​​ as observables, they are

(31)	​​ z​1t​​  = ​ u​1t​​​,

	​​ z​1t+h​​  = ​​ F ̃ ​​ 1​ 
h
​ ​u​1t​​​.
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The impact effect differs because ​​u​t​​  = ​ G​1​​ ​e​t​​​ and ​​G​1​​​ is not a square matrix. Thus, 
having the correct ​B, D​ matrices may be insufficient to recover some ​​e​jt​​​, unless ​​G​1​​​ 

only has one nonzero element in the ​j​-th row. However, if ​​​F ̃ ​​1​​  = ​ (​ 
A

​ ​S​12​​ C
​)​​ responses 

at longer horizons to a properly identified shock are proportional to those of the 
DGP. Thus, qualitatively, (31) provides a good approximation to (30), if some ele-
ment of ​​e​t​​​ can be recovered from ​​u​1t​​​.

The responses computed in systems with ​​z​it​​, i  =  2, 3​ as observables are instead:

(32)	​​ z​it​​  = ​ u​1t​​​,

	​​ z​it+h​​  = ​ (​ ∑ 
k=0

​ 
h

  ​​​​F ̃ ​​ i​ 
h−k

​​ψ​ik​​)​​u​1t​​​.

Here, the dynamic responses of ​​z​it​​​ will be distorted, even in the (unlikely) case 
that some of element of ​​e​t​​​ can be recovered from the ​​u​it​​​ vector. Thus, both quantita-
tively and qualitatively, the dynamics of these systems may have nothing to do with 
those of the DGP. We summarize the discussion in a proposition.

PROPOSITION 3:

	 (i)	 Identified impulse responses constructed in a ​​z​1t​​​ system could match those of 

the structural model if ​​​F ̃ ​​1​​  = ​ (​ 
A

​ ​S​12​​ C
​)​​ and ​​G​1​​​ has at most one nonzero ele-

ment in one row.

	 (ii)	 Even if the conditions in (i) holds, the dynamic responses obtained from iden-
tified shocks in a ​​z​it​​​ system, ​i  =  2, 3​, differ from those of the DGP.

(31)–(32) provide an analytic approach to compute deformation biases in impulse 
responses. Braun and Mittnik (1993) derived a similar expression when the empiri-
cal model and the DGP are VARs.

Summary.—When ​​q​i​​  <  q​, the variables entering in the empirical model 
determine the quality of the (small) VAR- (large) DSGE matching exercises. 
Eliminating controls generally creates innovations that cross sectionally com-
bine the structural disturbances, but eliminating states or repackaging their law of 
motion creates both cross-sectional and time distortions. However, an empirical 
model with all the theoretical states (and none of the controls) may not be enough 
for proper inference. When the VAR omits or repackages some of the states, long 
lags are needed for a VAR to reproduce the VARMA of the DGP and for identified 
shocks to have any relationship with the structural disturbances. When long lags 
can not be used because of short samples, careful variable selection may reduce 
time deformation. In general, the qualitative and quantitative dynamics produced 
by the identified shocks under deformation may have nothing to do with those of 
the structural disturbances.
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III.  Given a Theory, How Do I Choose the Variables of a Small-Scale VAR?

To illustrate the practical implications of the propositions and the problems that 
may emerge matching a larger DGP to a small-scale VAR model we use a standard 
New Keynesian model featuring five structural disturbances: a permanent ​​a​t​​​ and a 
transitory ​​ζ​t​​​ TFP shock, a preference ​​χ​t​​​ shock, a cost push ​​μ​t​​​ shock, and a monetary 
policy ​​ε​t​​​ shock. The optimality conditions are (see Canova and Ferroni 2011 for 
details):

(33)	​​ χ​t​​  = ​ E​t​​ ​χ​t+1​​ − ​  1 _ 
1 − h ​ ​E​t​​ ​g​t+1​​ + ​  h _ 

1 − h ​ ​g​t​​ + ​r​t​​ − ​E​t​​ ​π​t+1​​​

(34)	​​ π​t​​  = ​ E​t​​ ​π​t+1​​β + ​k​p​​​[​  h _ 
1 − h ​ ​g​t​​ + ​(1 + ​σ​n​​)​​n​t​​]​ + ​k​p​​​(​μ​t​​ − ​χ​t​​)​​

(35)	​​ o​t​​  = ​ ζ​t​​ + ​(1 − α)​​n​t​​​

(36)	​​ r​t​​  = ​ ρ​r​​ ​r​t−1​​ + ​(1 − ​ρ​r​​)​​(​ϕ​y​​ ​g​t​​ + ​ϕ​p​​ ​π​t​​)​ + ​ε​t​​​

(37)	​​ g​t​​  = ​ a​t​​ + ​o​t​​ − ​o​t−1​​​,

where (33) is the Euler equation, (34) is the Phillips curve, (35) is the production 
function, (36) is the Taylor rule, and (37) is the definition of output growth. ​​o​t​​​ is out-
put and ​​g​t​​​ its growth rate, ​​n​t​​​ is hours worked, ​​π​t​​​ is the inflation rate, ​​r​t​​​ is the nominal 
interest rate, and ​​c​t​​​ is consumption. ​h​ is the coefficient of (external) consumption 
habit, ​β​ the discount factor, ​​σ​n​​​ the inverse of the Frisch elasticity of labor supply, ​​κ​p​​​ 
the slope of the Phillips curve, ​α​ the labor share in production, ​​ϕ​y​​, ​ϕ​π​​​ the coefficients 
of the Taylor rule. The disturbances evolve as AR(1) processes with persistence 
​0  < ​ ρ​j​​  <  1​​ j  =  z, a, χ, μ, ε​ while ​​ρ​ϵ​​​ is assumed to be zero.

We solve the model4 using a first-order perturbation setting α  =  0.33; 
β  =  0.99; ​σ​n​​  =  1.5; h  =  0.9; ​k​p​​  =  0.05; ​ϕ​y​​  =  0.1; ​ϕ​p​​  =  1.5; ​ρ​r​​  =  0.8; 
​ρ​z​​  =  0.1; ​ρ​a​​  =  0.5; ​ρ​χ​​  =  0.5; ​ρ​μ​​  =  0.1; ​ρ​ε​​  =  0. We obtain decision rules 
of the form (12)–(13). The minimal state vector is ​​x​t−1​​  = ​​ [​o​t−1​​, ​r​t−1​​, ​ζ​t−1​​, ​a​t−1​​,  
​μ​t−1​​, ​χ​t−1​​]​ ′ ​​, and the control vector is ​​y​t​​  = ​​ [​g​t​​, ​o​t​​, ​π​t​​, ​n​t​​, ​r​t​​]​ ′ ​​. Thus, ​A​(θ)​​ is ​6 × 6​,  
​B​(θ)​​ is ​6 × 5​, ​C​(θ)​​ is ​5 × 6​ and ​D​(θ)​​ is ​5 × 5​. It is easy to verify that the “poor 
man invertibility” condition holds when ​​z​t​​  = ​ y​t​​​ and that all disturbances are iden-
tifiable from the VAR once a sufficient number of lags and proper identification 
restrictions are employed.

Smaller Scale VARs.—Given that the theory has five disturbances, we consider 
systems with less than five variables. We ask (i) which deformation distortions 
each system displays; (ii) which disturbance could be identified using theory-based 
restrictions; (iii) whether there is a minimum size of the VAR below which all iden-
tified shocks become mongrels.

4 The structural models are solved using Dynare, see Adjemian et al. (2011).
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The first system employs four observable variables, ​​z​t​​  = ​ (​o​t​​, ​π​t​​, ​n​t​​, ​r​t​​)​​. The 
theory corresponding to this system, can be obtained integrating out ​​g​t​​​ from the 
solution. Alternatively, one can use (37) in (33)–(36) and solve the resulting set 
of equations (the optimality conditions of all smaller scale models discussed in 
this section  are in the online Appendix). Since ​​g​t​​​ is a control, the minimal state 
vector remains ​​x​t−1​​  = ​​ [​o​t−1​​, ​r​t−1​​, ​ζ​t−1​​, ​a​t−1​​, ​μ​t−1​​, ​χ​t−1​​]​ ′ ​​. It is easy to verify that  
​A​(θ)​, B​(θ)​​ are unaltered. This system corresponds to Case 1 of Section II. Because 
five structural disturbances are mapped into four innovations, Proposition 1 tells us 
that cross-sectional deformation will be present.

The second empirical system employs three variables, ​​z​t​​  = ​ (​o​t​​, ​π​t​​, ​n​t​​)​​. It is 
obtained integrating out ​​g​t​​, ​r​t​​​ from the solution or substituting (37) in (33)–(36) and 
then (36) in the remaining equations. Here a control, ​​g​t​​​, and an endogenous state, ​​
r​t−1​​​, are eliminated. Thus, this empirical system corresponds to Case 2 of Section II. 
When ​​r​t​​​ is integrated out, the minimal state vector is ​​x​ t−1​ 

∗  ​  = ​​ [​o​t−1​​, ​o​t−2​​, ​ζ​t−1​​, ​a​t−1​​, ​ 
μ​t−1​​, ​χ​t−1​​]​ ′ ​​, because the Euler equation becomes a second difference equation. 
Proposition 2 tells us that the innovations of this system will mix ​​e​t−s​​, s  ≥  0​, 
cross-sectionally, and Proposition 3 that dynamic biases will be larger than in the 
four-variables system.

The third system employs ​​z​t​​  = ​ (​π​t​​, ​n​t​​, ​r​t​​)​​ as observables. In this VAR an endoge-
nous control, ​​g​t​​​, and an endogenous state, ​​o​t−1​​​, are integrated out. Here the minimal 
state vector is now ​​​x ̃ ​​t−1​​  = ​​ [​n​t−1​​, ​r​t−1​​, ​ζ​t−1​​, ​a​t−1​​, ​μ​t−1​​, ​χ​t−1​​]​ ′ ​​ because the optimal-
ity conditions remain a system of first-order difference equations. Since, given  
​​ζ​t−1​​​, ​​n​t−1​​​ proxies for ​​o​t−1​​​, states are simply repackaged. Thus, deformation prob-
lems should be less pronounced than in an empirical system with ​​z​t​​  = ​ (​o​t​​, ​π​t​​, ​n​t​​)​​.

Time Deformation.—To evaluate whether time deformation distortions are pres-
ent, it is sufficient to check if the autocorrelation function of the innovations of the 
three systems, which we calculate analytically from the solution and the innovation 
representation (24) and (25), have any element significantly different from zero. 
Online Appendix Figures C1–C3 present the function for each system, together with 
a 95 percent asymptotic tunnel for the hypothesis that the autocorrelation at each 
horizon is zero—which would hold if time deformation is absent.

As expected, the ​​(​o​t​​, ​π​t​​, ​n​t​​)​​ system has innovations displaying considerable serial 
correlation and numerous elements of the autocorrelation function are significant. 
The other two systems have serially uncorrelated innovations. Figure 1 provides 
evidence on the causes of time deformation in the ​​(​o​t​​, ​π​t​​, ​n​t​​)​​ system. It presents the 
cross-correlation function between the innovations and the structural disturbances 
together with a 95 percent asymptotic tunnel for the hypothesis that they are all 
zero—absent time deformation, only the contemporaneous elements should be sig-
nificant. The innovations correlate with several lags of the transitory TFP and mon-
etary policy disturbances. Thus, the shocks that one may be able to identify in this 
system will be time contaminated.

Cross-Sectional Deformation.—Each of the three system displays cross-sectional 
deformation. To examine whether one will still be able to identify, say, a stationary 
technology or a monetary policy disturbances using theory-based restrictions, we 
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present in Table 1, the matrix with the contemporaneous mapping between innova-
tions and structural shocks.

With four observables, the monetary policy disturbance remains identifiable as 
it will maintain, for example, a unique set of theory-based sign restrictions on the 
four observable variables. However, positive stationary TFP and negative preference 
disturbances will be confused when sign restrictions are used for identification, as 
they both produce an instantaneous fall in ​​(​o​t​​, ​π​t​​, ​n​t​​, ​r​t​​)​​.

In the (​​o​t​​, ​π​t​​, ​n​t​​)​ system, distortions are magnified. Here sign restrictions can 
not separate any of the stationary structural disturbances. Intuitively, larger distor-
tions occur for two reasons. First, the Euler equation defines a dynamic aggregate 
demand in output and inflation, while the Phillips curve and the production function 
define a dynamic aggregate supply equation in the same variables. Because they 
are both instantaneously moved by, e.g., TFP and preference disturbances, it will 
be impossible to separate them using output, inflation and hours data. Second, the 
Euler equation depends on ​​a​t−1​​, ​ζ​t−1​​​ and, because ​​o​t−2​​​ enters the equation, also on ​​
ζ​t−2​​​. Thus, the aggregate demand equation evolves more persistently in response to 
disturbances than in the original model.

In the (​​π​t​​, ​n​t​​, ​r​t​​​) system, the sign and the magnitude of the loadings of the struc-
tural disturbances are the same as in the four-variable system. As compared with 
the (​​o​t​​, ​π​t​​, ​n​t​​, ​r​t​​)​ system, we loose the possibility to distinguish stationary TFP, per-
manent TFP and preference shocks. However, there is no change in the ability to 
recover monetary policy disturbances. Hence, a careful choice of observables in 
a smaller scale system may minimize time deformation distortions and allow the 
identification of monetary policy disturbances using theory-based restrictions. In 

Figure 1. Cross-Correlation Function, Innovations in the (​​o​t​​, ​π​t​​, ​n​t​​​) System and Structural Shocks

Note: Parallel lines delimit 95 percent asymptotic tunnel for the hypothesis of zero.
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particular, since inclusion of the nominal rate in the system may drastically change 
the conclusions, VAR users should experiment with different information sets and 
present the results obtained in each of them in their papers.

Cholesky Factors.—Table 2 displays the Cholesky factors of the covariance 
matrix of the innovations of original model (assuming disturbances have unit vari-
ance and with the rows and columns corresponding to the variables solved out elim-
inated) and of the three smaller systems. While zero restrictions are not a feature of 
our model, applying the same recursive restrictions to the innovations of the original 
and of the reduced systems, as suggested in, e.g., Chari, Kehoe, and McGrattan 
(2005), provides useful summary statistics for comparing the two representations.

In the ​​(​o​t​​, ​π​t​​, ​n​t​​, ​r​t​​)​​ system the signs of the Cholesky factor match those of the 
original model, but magnitudes are altered, sometimes substantially (see the (3,2) 
or (4,2) elements). A similar picture emerges for the ​(π, ​n​t​​, ​r​t​​​) system. Thus, instan-
taneous responses to orthogonal shocks in these two systems qualitatively mimic 
those of the original model, but display magnitude distortions.

For the ​(​o​t​​, ​π​t​​, ​n​t​​​) system, biases are more significant as the signs and magnitudes 
are affected. For example, while in the original system an orthogonal unitary shock 
to ​​n​t​​​ implies a roughly similar instantaneous effect on ​​o​t​​​ and ​​π​t​​​, the same shock in 
the ​(​o​t​​, ​π​t​​, ​n​t​​​) system has a 15 times larger effect on ​​o​t​​​ and a negative effect on ​​π​t​​​.

Impulse Responses.—We show dynamic deformation distortions when we iden-
tify shocks with contemporaneous sign restrictions.

Figure 2 presents the responses to a monetary policy shock in the ​​(​π​t​​, ​n​t​​, ​r​t​​)​​ sys-
tem when policy disturbances are identified assuming that an increase in ​​r​t​​​ leads 
to a contemporaneous fall in ​​π​t​​, ​n​t​​​. Online Appendix Figure C.4 has the responses 
to a monetary shock in the ​​(​o​t​​, ​π​t​​, ​n​t​​, ​r​t​​)​​ system. Dotted lines represent the identi-
fied sets consistent with the restrictions. Superimposed as continuous lines are the 
responses of the original five-variable model. The three-variable system encodes 

Table 1—Entries of the ​​λ​0​​​ Matrix

Innovations Structural shocks

​​a​t​​​ ​​ζ​t​​​ ​​χ​t​​​ ​​μ​t​​​ ​​ϵ​t​​​

(​​o​t​​, ​π​t​​, ​n​t​​, ​r​t​​)​ system
​​u​1t​​​ 0.02 −0.72 0.09 −0.01 −0.30
​​u​2t​​​ −0.16 −0.31 0.04 0.04 −0.72
​​u​3t​​​ −1.46 −1.08 0.13 −0.01 −0.45
​​u​4t​​​ −0.05 −0.09 0.01 0.01 0.78

​​(​o​t​​, ​π​t​​, ​n​t​​)​​ system
​​u​1t​​​ −0.00 −0.72 0.08 0.01 −0.31
​​u​2t​​​ −0.16 −0.30 0.04 0.06 −0.73
​​u​3t​​​ −1.50 −1.08 0.13 0.02 −0.46

(​​π​t​​, ​n​t​​, ​r​t​​)​ system
​​u​1t​​​ −0.16 −0.31 0.04 0.04 −0.72
​​u​2t​​​ −1.46 −1.08 0.13 −0.01 −0.45
​​u​3t​​​ −0.05 −0.09 0.01 0.01 0.78
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enough information to recover monetary policy disturbances and omitting output 
and its growth rate does not affect our ability to interpret the responses to identified 
monetary shocks, provided hours enter the empirical system. Given over 25 years of 
empirical literature investigating the dynamics induced by monetary policy distur-
bances, it is comforting to find that these shocks can be identified with conventional 
restrictions, even in trivariate VARs models.

Recall that Table 1 implies that positive stationary TFP and negative preference 
disturbances have the same contemporaneous sign implications in the four-variable 
system. Figure 3, which plots the responses to sign-identified stationary TFP dis-
turbances, shows that indeed the size of estimated impact responses is significantly 
off; and that dynamic responses are more persistent in the smaller system. Hence, 
theory-based restrictions valid in the five-variable model only identify a linear 

Table 2—Cholesky Factors

Observables Original system Reduced system

​​(​o​t​​, ​π​t​​, ​n​t​​, ​r​t​​)​​ 0.75 0.79
0.68 0.26 0.56 0.57
1.06 1.14 0.96 1.14 0.45 1.42

−0.43 −0.14 0.17 0.07 −0.22 −0.70 0.27 0.08

​​(​o​t​​, ​π​t​​, ​n​t​​)​​ 0.75 9.56
0.68 0.26 5.17 1.50
1.06 1.14 0.96 15.37 −0.02 1.52

​​(​π​t​​, ​n​t​​, ​r​t​​)​​ 0.26 0.80
1.14 0.96 1.12 1.51

−0.14 0.17 0.07 −0.66 0.36 0.24

Figure 2. Responses to Identified Monetary Policy Shocks, (​​π​t​​, ​n​t​​, ​r​t​​​) System

Notes: The dashed regions report the profile of the identified set. The solid line reports the responses in the DGP.
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combination of the two disturbances, reminiscent of the masquerading effect dis-
cussed in Wolf (2020).

An Empirical Model with Only the Theoretical States.—Omission of the theo-
retical states or failure to proxy for them generates time deformation. However, an 
empirical system with only the states (and none of the controls) does not necessarily 
produce interpretable identified shocks.

Starting from the original five-variable system and integrating out all but  
​​z​t​​  = ​ (​o​t​​, ​r​t​​)​​ produce a solution where the state vector is unchanged. However, the 
optimization problem is different because, for example, ​​o​t+2​​​ and ​​r​t+1​​​ now appear in 
the equilibrium conditions. Since ​​(​A 

–
 ​​(θ)​, ​B 

–
 ​​(θ)​)​​ differ from the original (​A​(θ)​, B​(θ)​)​  

matrices, this system will also feature timing distortions and mongrel identified 
shocks. Figure 4, which plots the cross-correlation of the innovations with the five 
structural disturbances, confirms this fact: the innovations ​​u​t​​​ are serially correlated 
and load on a number of lags of the monetary policy disturbance.

Cross-sectional deformation also matter. With ​​z​t​​  = ​ (​o​t​​, ​r​t​​)​​, one can at most iden-
tify a linear combination of the five disturbances via sign restrictions. However, no 
combination separates, say, a supply from a demand type disturbance. For example, 
identified monetary policy shock will combine markup and monetary policy dis-
turbances. Hence, a two-variable VAR is too small to make economic sense of the 
shocks one recovers.

Permanent Technology Shocks and Hours Worked.—In the literature it is com-
mon to use a VAR with output growth (or labor productivity) and hours to iden-
tify permanent TFP shocks. The dynamics are then compared with the dynamics 

Figure 3. Responses to Identified Stationary TFP Shocks, ​(​o​t​​, ​π​t​​, ​n​t​​, ​r​t​​​) System

Notes: The dashed regions report the profile of the identified set. The solid line reports the responses in the DGP.
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permanent TFP disturbances produce in standard RBC or new Keynesian models, 
see, e.g., Galí (1999). While the comparison is meaningful when the DGP features, 
say, a permanent TFP and a monetary policy disturbances, it may be inappropriate 
when the model of this section generates the observed data.

When ​​z​t​​  = ​ (​g​t​​, ​n​t​​)​​, lagged output growth and lagged hours become state vari-
ables. Since the states and their law of motion are altered, the innovations of the  
​​(​g​t​​, ​n​t​​)​​ system are related to several lags and leads of the structural disturbances. 
For example, lags of the permanent TFP disturbances and of the preference dis-
turbances load significantly on the second innovation (see online Appendix Figure 
C.5). Hence, in this system, there is no guarantee that the identified technology 
shock will only capture the permanent technology disturbance.

Figure 5 shows that if the DGP only has a permanent TFP and monetary policy 
disturbance, the responses obtained identifying a permanent supply shock in a VAR 
with ​​z​t​​  = ​ (​g​t​​, ​n​t​​)​​ replicate well the dynamics produced by permanent TFP distur-
bances (compare the dashed blue and the solid black lines). Instead, when the model 
of this section is the DGP, magnitude and persistence distortions are important (see 
the red dashed line). Here, the model can not be reduced to a bivariate system with 
output growth and hours and meaningful innovations. Once again, a two-variable 
VAR is too small for identified permanent TFP shocks to make sense. One needs at 
least a four-variable VAR for identified permanent technology shocks to bear any 
resemblance with the permanent TFP disturbances the theory features.

​​R​​ 2​​ for Invertibility.—It is common in the literature to check whether a structural 
disturbance can be obtained from a particular vector of VAR variables using the ​​R​​ 2​​ 
of a regression of that disturbance on the reduced form innovations (alternatively, on 
the variables of the empirical system), see, e.g., Sims and Zha (2006) or Plagborg-
Møller and Wolf (forthcoming). While the approach is appealing when the VAR 
includes as many variables as disturbances in the theory, it may give misleading 

Figure 4. Cross-Correlation Function, Innovations in (​​o​t​​, ​r​t​​)​ System and Structural Shocks
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information in the cases we consider. The reason is that a ​​R​​ 2​​ tells whether there is 
enough information in the observables, but it does not tell us if certain theory-based 
identification restrictions are valid. To clarify the point, consider the ​​z​t​​  = ​ (​o​t​​, ​π​t​​, ​n​t​​,  
​r​t​​)​​ system. The ​​R​​ 2​​ of a regression of the stationary TFP disturbance on ​​z​t​​​ is 0.98, 
suggesting that there is enough information to recover the disturbance. However, 
as we have already discussed, stationary TFP and preference disturbances have the 
same sign implications on these four variables. Hence, if one imposes theory-based 
restrictions, she will end up with a mongrel mixing preference and stationary TFP 
disturbances (see Figure 3). A similar issue also emerges in smaller systems. For 
example, in the ​​z​t​​  = ​ (​o​t​​, ​π​t​​, ​n​t​​)​​ system, the monetary policy disturbance has an ​​R​​ 2​​ 
of 0.99 on ​​z​t​​​, but theory-based sign restrictions will confuse stationary technology, 
preference, markup, and monetary policy disturbances.

Thus, in rectangular systems, having a high ​​R​​ 2​​ is necessary to be able to identify a 
structural disturbance but it may not be enough when theory-based sign restrictions 
are employed for identification. As we have discussed, the sign and the magnitude of 
the entries of the contemporaneous mapping between innovations and disturbances, 
provide complementary information to understand which vector of observable vari-
ables allows the identification of the disturbance of interest.

IV.  Given a Small-Scale VAR, Does a Theory Match the Facts?

The dynamics of output and inflation following house price disturbances have 
become of primary policy importance following the 2008 financial crisis. Starting 
with Iacoviello (2005) many authors have tried to understand whether the responses 
obtained in a SVAR can be rationalized with a structural model featuring housing 
services, leveraged agents, and standard macroeconomic frictions. Since house price 
disturbances are not necessarily a major source of macroeconomic fluctuations, at 

Figure 5. Responses to Identified Permanent TFP Shocks, (​​g​t​​, ​n​t​​)​ System
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least in normal times, the theoretical models employed to interpret the data typically 
contain several other disturbances, see, e.g., Rabanal (2018) and  Lindé (2018) for 
recent examples. However, apart from obvious core choices, it is not clear which 
other disturbances should be included.

Iacoviello (2005) sidesteps the problem by selecting the minimum number of 
disturbances needed to map the empirical evidence into a structural model. He uses 
a four-variable VAR to construct the dynamic responses to recursively identified 
house price shocks and a model with preferences, monetary policy, technology, and 
cost push disturbances to estimate the structural parameters; and then interprets the 
SVAR dynamics through the lenses of preference disturbances. Here we take the 
four-variable VAR and the identified house price shocks as given, and ask whether 
they would still be interpretable though the lenses of preference disturbances when 
the theory is enlarged to include LTV disturbances to the entrepreneurs’ problem, 
which have been extensively used to study the dynamics of house prices since 
Iacoviello’s seminal work. In other words, we ask whether deformation problems 
could prevent a researcher to map preference disturbances into identified house price 
shocks and, if this is the case, what identified house price shocks would capture.

To be clear about the scope of the exercise, in Section III we take a theory as 
given, and ask which small empirical model allows the identification of interesting 
disturbances and with what restrictions. Here we reverse that viewpoint, take a VAR 
and an identification scheme as given, and ask whether omitted disturbances alter 
our perception of the match between the theory and the VAR.

The Properties of the Enlarged Model.—The optimality conditions and the law of 
motion of the disturbances are in online Appendix Section D. The model economy 
features 8 endogenous states (lagged house holdings of impatient consumers and of 
entrepreneurs, lagged bond holdings of patients and impatient consumers, lagged 
capital shock, lagged output, lagged nominal interest rate, and lagged inflation) and 
15 endogenous controls. When the VAR includes output, nominal rate, inflation, 
house prices, and the stock of housing, the “poor man invertibility” condition holds 
(all eigenvalues of ​A − B ​D​​ −1​ C​ are less than 1 in absolute value). Furthermore, the ​​
R​​ 2​​ of a regression of each disturbances on the simulated data is 1. Thus, when at 
least these five variables enter the VAR, there are no informational deficiencies and 
all structural disturbances are potentially recoverable.

We take data for real GDP (​​O​t​​​), the nominal interest rate (​​R​t​​​), inflation rate (​​π​t​​​), 
and real house prices (​​q​t​​​) from the FRED data base for the period 1975:1–2018:3 
and identify house price shocks using the same lag setting (2 lags), the same data 
transformation (HP filtering of GDP and house prices)5, and the same recursive 
identification scheme of Iacoviello (2005).

The Evidence.—The first row of Figure 6 plots the posterior 68 percent response 
intervals to an identified house price shock in the data and the responses to prefer-
ence disturbances in the theory with four disturbances. Iacoviello’s main result holds 

5 While this choice alters the timing of house price shocks and the responses they generate, we decided to stick 
to this transformation since the purpose of the exercise is to show the effects of deformation not of filtering.
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with the extended dataset: after a temporary house price increase, output, inflation 
and the nominal interest rate persistently rise; and a similar pattern is generated 
by preference disturbances, although in the data the maximum output response is 
delayed. The second row demonstrates that truncation lags and the use of recursive 
restrictions (which fail to hold in the theory) do not affect the mapping between 
preference disturbances and identified house price shocks. In fact, comparing the 
data responses with the theoretical responses to preference disturbances or with the 
Cholesky identified house price responses in a VAR(2) on simulated data gives the 
same qualitative conclusions, see also Chari, Kehoe, and McGrattan (2005). Hence, 
in the baseline case, it is legitimate to interpret identified house price responses 
in the data through the lenses of model-based preference disturbances. This is not 
necessarily the case when the theory features one additional disturbance for two 
reasons. Because the five disturbances are mapped into four innovations, cross-sec-
tional deformation matter. Furthermore, because only three state variables (lagged 
output, lagged inflation and lagged nominal interest rate) enter the VAR, time defor-
mation will also be present.

The third row of Figure 6 plots the responses to a preference disturbance in the the-
ory with 5 disturbances and the posterior 68 percent response interval to a Cholesky 

Figure 6. Data and Models, ​​q​t​​​ Innovations

Notes: The first row reports the responses to preference disturbances in the Iacoviello (2005) model and the 68 
percent highest posterior interval in the data; the second row the responses to preference disturbances in the same 
model and the 68 percent highest posterior interval in a four-variable VAR on simulated data; the third row the 
responses to preference disturbances in a model with 5 shocks and the 68 percent highest posterior interval in a 
four-variable VAR on simulated data when only ​​π​t​​, ​r​t​​, ​o​t​​​ are used as states; the fourth row the responses to preference 
disturbances in a model with 5 shocks and the 68 percent highest posterior interval in a four-variable VAR on sim-
ulated data when all the states are used. VAR parameters and Impulse responses are estimated using the Hitchhiker 
Guide to Empirical Macro Toolbox, see Canova and Ferroni (2020).
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identified house price shock in a VAR including output, nominal rate, inflation and 
house prices simulated from the theory which only keeps output, inflation, house 
prices and the nominal rate as endogenous variables.6 Note that the sign and the per-
sistence of the responses to identified price shocks in the VAR now differ from those 
of the theory: output and the nominal interest rate respond negatively; and inflation 
is insignificant after a few quarters. Deformation matters: a four-variable VAR is 
too small to produce identified house price shocks with the same interpretation as 
preference disturbances or, put it differently, the mapping between preference dis-
turbances and identified house price shocks is altered.

Explanations.—Why are rows 2 and 3 different? Is it time or cross-sectional 
deformation that changes the pattern of responses? Row 4 of Figure 6 presents a 
counterfactual where time deformation is absent.7 Because the responses in rows 3 
and 4 have similar sign and quantitative differences are small, it is cross-sectional 
deformation that alters the signs of output and interest rate responses. Alternatively, 
because five structural disturbances are compressed into four VAR innovations, 
the mapping between identified house price shocks and preference disturbances 
is polluted by other disturbances. Standard information sufficiency measures are 
incapable of capturing these distortions. For example, the ​​R​​ 2​​ of a regression of the 
theoretical preference disturbances on simulated output, inflation, nominal interest 
rate, and house prices is 0.94.

To understand what identified house price shocks capture, we compute the matrix 
of contemporaneous loadings of the four innovations on the five structural distur-
bances (the ​​λ​0​​​ matrix). House price innovations load on the monetary policy distur-
bances, ​​e​R​​​ (−2.02), on the borrowing constraint disturbances, ​​e​i1​​​ (−1.62), while the 
weight on the preference disturbances ​​e​j​​​ is small (0.06). Because positive borrowing 
constraint disturbances increase output and the nominal rate, the negative output and 
interest rate responses observed in row 3 are due to the large negative loading that 
borrowing constraint disturbances have on identified house price shocks. To support 
this interpretation, we compute the contemporaneous correlation between identified 
house price shocks and preference disturbances in the model with four and five 
disturbances. The point estimate in the former is 0.91 (95 percent confidence range 

6 The new disturbance has persistence equal 0.75 and standard deviation 1.0. Since we normalize the impulse to 
unity, the magnitude of the standard deviation is irrelevant.

7 The scenario is generated simulating data for the four endogenous variables of interest with the decision rules 
of the model with five disturbances and all the states, identifying house price shocks in a VAR as before. Since all 
the states are retained, only cross-sectional deformation is present.

Table 3—Loading of Structural Disturbances on Innovations in ​​(​R​t​​, ​π​t​​, ​q​t​​, ​O​t​​)​​

Innovations Disturbances

Monetary policy Preference Markup Technology LTV

​​R​t​​​ 1.0 0 0 0 0
​​q​t​​​ −2.02 0.06 −0.62 0.15 −1.62
​​O​t​​​ −2.76 0.01 −1.81 −0.10 4.07
​​π​t​​​ −0.60 −0.00 1.30 −0.12 0.22
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across simulations [0.90, 0.92]); in the latter it is only 0.67 (95 percent confidence 
range [0.63, 0.70]). On the other hand, the contemporaneous correlation of identified 
house price shocks with the borrowing constraint disturbances is −0.68 (95 percent 
confidence range [−0.70, −0.65]).

One may ask what is the minimal dimension of the VAR that allows a direct map-
ping between identified house price shocks and preference disturbances when the 
DGP has five disturbances. Online Appendix Figure D.1 shows that when the VAR 
includes the nominal interest rate, house prices, output, inflation and the total stock 
housing, the dynamics induced by preference disturbances and identified house 
price shocks are again qualitatively similar.

What have we learned? Our exercise shows that a successful matching exercise 
becomes a failure when the structure is kept unchanged, but more shocks are added. 
Because it is standard to specify a theory with as many or fewer shocks in a VAR, 
and because it is likely that more than four disturbances drive fluctuations in the 
data, the matching exercise informally run in the literature is justified under the 
assumption that only the shocks included (and not others or additional ones) are 
present in the data.

Although the enlarged model generates dynamics on the four-variable VAR which 
are different than those in the data, one can not conclude that the model is rejected. 
The correct conclusion is that the data can not be interpreted through the lenses of 
preference disturbances because house price innovations do not carry enough infor-
mation about preference disturbances when an enlarged number of disturbances is 
considered.

V.  An Extension

The process in (12)–(13) may be restrictive in certain situations. For example, 
when analyzing risk or uncertainty disturbances, the model is solved using higher 
order methods. Hence, a nonlinear DGP specification is needed. This section studies 
how the conclusions of Section III change in this case.

As shown in Andreasan, Fernández-Villaverde, and Rubio-Ramírez (2018), the 
pruned solution of a nonlinear state space model approximated with higher order 
perturbations can be written as

(38)	​​ X​t​​  = ​ μ​x​​​(θ)​ + ​ν​1​​​(θ)​​X​t−1​​ + ​ν​2​​​(θ)​​E​t​​​

(39)	​​ Y​t​​  = ​ μ​y​​​(θ)​ + ​ν​3​​​(θ)​​X​t​​​

where, for example in the case of a second-order approximation, ​​X​t​​  = ​​ (​​(​x​ t​ 
f​)​ ′ ​, ​ 

​(​x​ t​ 
s​)​ ′ ​, ​​(​x​ t​ 

f​  ⊗  ​x​ t​ 
f​)​ ′ ​)​ ′ ​​, and ​​x​ t​ 

f​​ are the states of the first-order system, ​​x​ t​ 
s​​ are the states of the 

second-order system; ​​E​t​​  = ​​ (​e​ t​ ′​, ​​(​e​t​​  ⊗  ​e​t​​ − vec​(​I​​n​e​​​​)​)​ ′ ​, ​​(​e​t​​  ⊗  ​x​ t−1​ 
f  ​)​ ′ ​​​(​x​ t−1​ 

f  ​  ⊗  ​e​t​​)​ ′ ​)​ ′ ​​, 
 
where ​​e​t​​​ are the structural disturbances and ​​I​​n​e​​​​​ the identity matrix of dimension ​​
n​e​​​; ​​Y​t​​​ are the controls and the matrices ​​μ​x​​​(θ)​, ​μ​y​​​(θ)​, ​ν​1​​​(θ)​, ​ν​2​​​(θ)​, ​ν​3​​​(θ)​​ are given 
in the Appendix of Andreasan, Fernández-Villaverde, and Rubio-Ramírez (2018). 
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Thus, a higher order DGP has a linear state space representation but with a larger  
number of states and of structural disturbances. If a linear VAR is specified and 
features ​​​Z ̃ ​​t​​  = ​ S ̃ ​​[​X​t​​, ​Y​t​​]​​ as observables, where ​​S ̃ ​  = ​ [​​S ̃ ​​1​​, ​​S ̃ ​​2​​]​​, the conclusions derived 
in Propositions 1–3 still hold. However, cross-section and time deformations will be 
more severe because the dimension of ​​E​t​​​ is larger, and a larger number of states (in 
particular, those involving higher order and cross terms) is omitted.8

To highlight the effects of deformation in this situation, we take the model of 
Basu and Bundick (2017), which features disturbances to the volatility of the prefer-
ence shock, to the level of the technology and to the level of preferences. The model 
is solved with a third-order perturbation so that ​​E​t​​  = ​​ [​E​ 1t​ ′ ​, ​E​ 2t​ ′ ​]​ ′ ​​ where

	​​ E​1t​​  = ​​ (​e​ t​ ′​, ​​(​e​t​​  ⊗  ​e​t​​ − vec​(​I​​n​e​​​​)​)​ ′ ​, ​​(​e​t​​  ⊗  ​x​ t−1​ 
f  ​)​ ′ ​​​(​x​ t−1​ 

f  ​  ⊗  ​e​t​​)​ ′ ​​​(​e​t​​  ⊗  ​x​ t−1​ 
s  ​)​ ′ ​)​ ′ ​​

	​​ E​2t​​  = ​​ (​​(​e​t​​  ⊗  ​x​ t−1​ 
f  ​  ⊗  ​x​ t−1​ 

f  ​)​ ′ ​​​(​x​ t−1​ 
f  ​  ⊗  ​x​ t−1​ 

f  ​  ⊗  ​e​t​​)​ ′ ​​​(​x​ t−1​ 
f  ​  ⊗  ​e​t​​  ⊗  ​x​ t−1​ 

s  ​)​ ′ ​​

	 × ​(​x​ t−1​ 
f  ​  ⊗  ​e​t​​  ⊗  ​e​t​​)​ ′ ​​​(​e​t​​  ⊗  ​x​ t−1​ 

f  ​  ⊗  ​e​t​​)​ ′ ​​​(​e​t​​  ⊗  ​e​t​​  ⊗  ​x​ t−1​ 
f  ​)​ ′ ​

	 × ​(​(​e​t​​  ⊗  ​e​t​​  ⊗  ​e​t​​)​− E​(​e​t​​  ⊗  ​e​t​​  ⊗  ​e​t​​)​)​)​ ′ ​​.

Since ​​e​t​​​ is a ​3 × 1​ vector, and ​​x​ t​ 
f​​ a ​9 × 1​ vector including lagged values of con-

sumption, capital, hours, output, the nominal rate, expected utility and the three 
disturbances, ​​X​t​​​ is a ​432 × 1​ vector and ​​E​t​​​ is a ​1112 × 1​ vector. They use an 
eight-variables VAR to trace out the effects of uncertainty shocks, which are iden-
tified via a Cholesky decomposition with the VXO index ordered first. The VAR 
includes four endogenous states (output, consumption, hours and nominal rate), a 
proxy for the capital state (investment), two controls (inflation, and a volatility mea-
sure) and a money supply variable, which is absent from the model.

The Evidence.—The first row of Figure 7 presents the point estimates and the 95 
percent response intervals of output, consumption, investment, hours and VXO to 
an uncertainty shock in the VAR of the data. The second row has the responses to 
uncertainty shocks in Basu and Bundick’s (2017) original setup and parameteriza-
tion: the dashed line reports theoretical responses, and the solid lines the estimated 
95 percent SVAR response intervals in simulated data, identifying the uncertainty 
shock as in the first row. The match between the theory and the VAR of the data 
appears to be good. Furthermore, theoretical responses and SVAR responses con-
structed with simulated data are similar.

Two features of the authors’ specification are, however, questionable. Although 
the nominal interest rate enters the VAR, the model has little to say about it because 
it posits a deterministic Taylor rule with no persistence (see equation (7), Basu 
and Bundick 2017). Second, it is not obvious why changes in uncertainty are only 
demand driven; second moment shocks to the technology could generate similar 
dynamics in real aggregate variables via a precautionary saving channel. Thus, the 

8 When the class of models suggested by Arouba, Bocola, and Schorfheide (2017) is used, some of the addi-
tional deformation problems are eased.
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DGP potentially features more disturbances than those used in the model and the 
restrictions used to identify uncertainty shocks may be insufficient. For illustration, 
we add a monetary policy disturbance to the model, keeping the structure and the 
parameterization unchanged. As row 3 of Figure 7 shows theoretical and the esti-
mated response intervals obtained from simulated data now differ significantly. 
Moreover, the response intervals in rows 1 and 3 do not line up.

Explanations.—Rows 2 and 3 differ because monetary policy and uncertainty 
disturbances get mixed up: they both increase the nominal rate and make all other 
variables fall. While theoretical responses are constructed conditional on the mon-
etary policy disturbances being zero, in the VAR with simulated data, the monetary 
policy disturbances can be positive and negative. Hence, the sign of the responses 
of output, consumption, investment and hours to uncertainty shocks depends on the 
relative importance of uncertainty and monetary disturbances and the sign of the 
monetary policy disturbances at each ​t​. Given that VAR responses are insignificant, 
identified uncertainty shocks are likely to pick up positive uncertainty and negative 
monetary policy disturbances.

To support this conclusion, we compute the contemporaneous correlation of iden-
tified volatility shocks with the volatility disturbances in the original and in the 
extended model with monetary policy disturbances. In the former, the point esti-
mate is 0.88 (95 percent confidence range across simulations [0.86, 0.89]); in the 
second it is 0.69 (95 percent confidence range [0.66, 0.73]). In the latter system, 

Figure 7. Data and Models, ​VXO​ Innovations

Notes: The solid lines in the first row report 95 percent response intervals and the dashed line the point estimate 
using the actual data; the solid lines in the second and third row report the 95 percent response interval in the sim-
ulated data and the dashed line the conditional response in the theory.
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the contemporaneous correlation between identified volatility shocks and monetary 
policy disturbances is −0.46 (95 percent confidence range [−0.50, −0.42]).

Larger Scale BVAR.—Would the estimation of a larger scale BVAR solve the 
problems? Because deformation is due both to the fact that an eight-variable VAR 
is too small and that the volatility and the monetary policy disturbances need both 
to come first in a Cholesky decomposition to be properly identified, using a larger 
scale BVAR in the exercise will not necessarily resolve the issue. In addition to the 
correctly sized VAR, one needs a set of identification restrictions that differentiate 
the two disturbances, see also Wolf (2020).

VI.  Conclusions and Implication for Practice

It is common in macroeconomics to collect stylized facts about the transmis-
sion of structural shocks using small-scale VAR models and then build larger scale 
DSGE models to interpret the dynamics found. This paper argues that important 
inferential and interpretation distortions may emerge when the process generating 
the data features more disturbances than the variables entering a VAR.

Cross-sectional deformation makes shock identification hard, because “classes” 
of structural disturbances need not to be properly compressed into identified shocks, 
and may make valid theoretical identification restrictions insufficient. Time defor-
mation complicates the matching process because the timing of identified shocks 
and of structural disturbances differs.

We highlight the practical implications of deformation in two ways. First, we take 
the DGP as given and show what happens to identified shocks when the empirical 
model is too small; describe how to reduce time distortions explicitly linking the 
empirical model to the theory; and highlight the disturbances which are recoverable 
from different small-scale empirical systems. Second, we take a small-scale VAR as 
given and ask what would happen to the perceived match between the theory and the 
data when the DGP includes additional disturbances. In both cases, the gap between 
the theory and the VAR of the data may be larger than previously thought.

Although it is tempting to associate cross-sectional deformation with the elim-
ination of theoretical controls and time deformation with the elimination of theo-
retical states, such an association is imperfect. Time distortions emerge also when 
the empirical system contains all the endogenous states. Conversely, integrating out 
controls may induce both biases, if the relationship between the remaining controls 
and the states is altered.

While it is common to sweep deformation under the rug, distortions may be per-
vasive. For example, Central Banks use structural models with dozens of distur-
bances to interpret the data and academic researchers often twist standard models 
in estimation so that structural parameters become exogenous disturbances (e.g., 
an elasticity of substitution becomes a markup disturbance) to improve their fit. If 
there are more than two or three disturbances driving macroeconomic variables, it is 
difficult to take seriously the evidence small-scale VAR models deliver.

Clearly, employing a large-scale VAR can go a long way to ease deformation 
problems. However, while one can estimate large Bayesian VAR models, even with 
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relatively short datasets, their identification is an issue. Hence, small-scale VARs 
are still likely to be preferred by macroeconomists. In that case, proceedings as in 
Sections III and IV, may inform users about potential issues, solidify inference, and 
avoid interpretation confusions. Changing the VAR information set can also help.

Are there empirical alternatives that could make the gap with the theory smaller? 
They do exist, but they have to be appropriately rigged to deliver the correct conclu-
sions. For example, one may be able to reduce time deformation if FAVAR models 
are employed to build dynamic facts, provided factors are constructed using the 
omitted states. However, FAVARs do not necessarily eliminate cross-sectional dis-
tortions. In fact, statistical principal components are unlikely to properly combine 
classes of structural disturbances and to make the mapping between innovations and 
structural disturbances better behaved.

It has become common to use IV approaches to identify certain shocks and 
local projection techniques to compute dynamic responses in the data (see, e.g., 
Rossi 2018 for a survey). Would such methods reduce the deformation gap? They 
could, but a number of conditions need to be met. Take, for example, case 2 of 
Section II, where some states are absent from the empirical model. The DGP for 
the observables is a VARMA(2,1) which, in a companion from, can be written as  

​​W​t​​  =  Q​W​t−1​​ + R ​v​t​​​ where ​​W​t​​  = ​​ [​y​ t​ ′​, ​y​ t−1​ ′  ​]​ ′ ​​​​v​t​​  = ​​ [​e​ t​ ′​, ​e​ t−1​ ′  ​]​ ′ ​​, ​Q  = ​ (​
​F​21​​​ 

​F​22​​​ 
I
​ 

0
 ​ )​​ and​

R  = ​ (​
​G​20​​​ 

​G​21​​​ 
0
​ 

0
 ​ )​​. Projecting ​​W​t+h​​, h  =  1, 2, …​ on ​t − 1​ information:

(40)	​​ W​t+h​​  = ​ Q​​ h+1​​W​t−1​​ + ​Q​​ h​R ​v​jt​​ + ​u​t+h​​​

where ​​v​jt​​​ is the disturbance of interest, ​​u​t+h​​  = ​ Q​​ h​R ​v​−jt​​ + ​Q​​ h−1​R ​v​t+1​​ + …  
+ R ​v​t+h​​​, and ​​v​−jt​​​ are all the disturbances at ​t​ except the ​j − th​ one. Because local 
projections do not rely on VAR innovations, they are less prone to cross-sectional 
deformation. However, for the projections to be successful in recovering ​​Q​​ h​R​, the 
regressors of the projection equation should be ​​W​t−1​​​ and ​​v​jt​​​. When ​​v​jt​​​ is not observ-
able, we need proxies that capture the effect of both ​​e​jt​​​ and ​​e​jt−1​​​. In general, the 
conditions stated in Stock and Watson (2018) must be satisfied.

It is well known since Sims and Zha (2006) that if a structural disturbance is 
invertible in ​​(​x​t​​, ​y​t​​)​​, it is unlikely to be invertible in ​​z​t​​  =  S​[​x​t​​, ​y​t​​]​​ only. However, 
even in that case, impulse responses could be identified, if a proper IV procedure is 
used, see, e.g., Miranda-Agrippino and Ricco (2019) among others. Propositions 1 
and 2 indicate that when deformation is present invertibility in ​​z​t​​​ alone is a very low 
probability event and impulse response hard to identify. In addition, proper instru-
ments may be difficult to find when deformation exists.

Our analysis has implications for two related strands of literature. Rather than 
using small-scale VARs to validate a theoretical mechanism, it is quite common to 
employ them to cross off theories inconsistent with the data (see, e.g., Galí 1999; 
Angeletos, Collard, and Dellas 2020). While the qualitative features of the responses 
are, at times, unchanged by deformation, magnitudes and persistences are generally 
affected. Thus, it is dangerous to exclude theories, say, using variance decomposi-
tion exercises or the magnitude of multipliers, as it is done in the literature.
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It is also popular to estimate the parameters of a theoretical model by match-
ing responses to certain disturbances in the VAR of the data and in the theory, see, 
e.g., Christiano, Eichenbaum, and  Evans (2005). Limited information approaches 
may avoid certain forms of misspecification of the theoretical model in estimation. 
However, they are unsuited to reduce the gap that deformation creates unless a large-
scale VAR is employed, see, e.g., Christiano, Trabant, and Walentin (2010). In fact, 
when the DGP features more disturbances than VAR variables, three conditions need 
to be met to make estimation meaningful. First, to avoid cross-sectional deformation, 
the theory should be reduced to the same observables used in the empirical model 
prior to the computation of the decision rules and to estimation. Second, to avoid time 
deformation, data responses should be computed using a generous lag length and care-
fully selected variables. Third, one needs to check that the disturbances of interest are 
identifiable in the small-scale empirical system using theory-based restrictions. When 
any of these conditions fail, parameter estimates become difficult to interpret.

Appendix A

Derivations of the Equations of the Model of Section II

Combining the optimality conditions yields the Euler equation

	​ αβ​E​t​​​[​ 
​C​t​​/​B​t​​ _ 

​C​t+1​​/​B​t+1​​
 ​ ​Z​ t+1​​​K​ t​ 

α−1​​V​t​​]​  =  1​.

We guess the solution for investment and consumption are constant fractions 
of output (up to preference shocks for consumption). Thus, for ​0  <  s  <  1​:  
​​I​t​​  = ​ K​t​​/​V​t​​  =  s​O​t​​​, ​​C​t​​  = ​ (1 − s)​​O​t​​ ​B​t​​​. Plugging the policy functions into the Euler 
equation, we have:

	​ αβ​E​t​​​[​ 
​(1 − s)​​O​t​​

 ___________ 
​(1 − s)​​O​t+1​​

 ​ ​Z​ t+1​​​K​ t​ 
α−1​​V​t​​]​  =  αβ​E​t​​​[​ 

​O​t​​ _ 
​O​t+1​​

 ​ ​ 
​O​t+1​​ _ 
s​O​t​​

 ​]​  =  1​

which holds when ​s  =  αβ​.

Proof of the Propositions of Section III

PROOF OF PROPOSITION 1: 
Simply match (26) with (16)–(17). ∎

PROOF OF PROPOSITION 2: 
To prove part (i), we first match (28) and (18)–(19). Then ​​u​2t​​  =  (​S​2​​F​S​ 2​ 

∗​ − ​​F ̃ ​​2​​)​ 
× (I − ​S​2​​F​S​ 2​ 

∗​ L)​​ −1​(​G​2​​​e​t−1​​ + ​H​2​​​x​1t−2​​) + ​G​2​​​e​t​​ + ​H​2​​​x​1t−1​​​. Because ​​x​1t​​​ has a 
VARMA(2,1) format: ​M(L)​x​1t​​  =  N(L)​e​t​​​, where ​M(L)​ is invertible, we have ​​u​2t​​ 
= ​ λ​2​​(L)​e​t​​​, where ​​λ​2​​(L)  = ​ G​2​​ + (​S​2​​F​S​ 2​ 

∗​ − ​​F ̃ ​​2​​)​(I − ​S​2​​F​S​ 2​ 
∗​ L)​​ −1​× (​G​2​​ + ​H​2​​ M​(L)​​ −1​

N(L)L + ​H​2​​ M​(L)​​ −1​N(L)​L​​ 2​​. Matching (28) with (22) one similarly obtains that ​​u​3t​​ 
= ​ λ​3​​(L)​e​t​​​. Part (ii) and (iii) are immediate. ∎
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