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Factor analyzing ordinal items requires substantive knowledge of
response marginals

Steffen Grønneberg and Njål Foldnes
BI Norwegian Business School

In the social sciences measurement scales often consist of ordinal items and are commonly ana-
lyzed using factor analysis. Either data are treated as continuous, or a discretization framework
is imposed in order to take the ordinal scale properly into account. Correlational analysis is
central in both approaches, and we review recent theory on correlations obtained from ordinal
data. To ensure appropriate estimation, the item distributions prior to discretization should be
(approximately) known, or the thresholds should be known to be equally spaced. We refer to
such knowledge as substantive, because it may not be extracted from the data, but must be
rooted in expert knowledge about the data-generating process. An illustrative case is presented
where absence of substantive knowledge of the item distributions inevitably leads the analyst
to conclude that a truly two-dimensional case is perfectly one-dimensional. Additional studies
probe the extent to which violation of the standard assumption of underlying normality leads
to bias in correlations and factor models. As a remedy, we propose an adjusted polychoric
estimator for ordinal factor analysis that takes substantive knowledge into account. Also, we
demonstrate how to use the adjusted estimator in sensitivity analysis when the continuous item
distributions are known only approximately.

Keywords: Ordinal data, Factor retention, Factor Analysis, Polychoric correlation

Psychologists often work with theories that relate unob-
served abilities or characteristics (e.g., self-esteem, anxiety,
conscientiousness) to observed human behavior. Such con-
structs are themselves unobservable, but are each thought to
reveal themselves indirectly through their effects on a scale,
that is, a set of observable variables that all tap into the con-
struct in question. In many empirical studies scale data are
gathered through the use of questionnaires, and are ordinal
in nature.

Factor analysis is a commonly applied technique in de-
velopment and analysis of such scales. For instance, factor
modeling plays a pivotal role in the important decision of
how many factors to retain for a given scale. Factor anal-
ysis with continuous data can be performed without strong
assumptions on the distribution of the data, e.g., normal-
ity is not required (Browne, 1984; Satorra, 1989). When
the items that constitute a scale are ordinal in nature, e.g,
of Likert-type, distributional assumptions become more im-
portant, and analysts should carefully consider how to pro-
ceed. One option, widely encountered in practice, is to sim-
ply proceed using continuous methodology, i.e., by fitting
the factor model to regular Pearson correlations among the
scale items. The most common estimator for this is normal-
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theory based maximum-likelihood (ML), and we refer to this
approach as continuous ML (cont-ML). Under very specific
conditions reviewed later in this paper cont-ML may be a
viable option, but it is generally inconsistent. Another pop-
ular option is to properly accommodate the ordinal nature
of the data by adding a non-linear discretization model to
the measurement model of the latent constructs. In the dis-
cretization model we posit that each ordinal variable is the
result of dividing a continuous latent response variable into
a finite number of values. The division is dictated by a set of
cut-off values along the scale of the response variable. These
cut-off values are referred to as thresholds. The unobserved
latent response variable is continuous and is linearly related
to latent factors in the same manner as a manifest variable in
regular continuous factor analysis. At the expense of model
complexity, the covariance structure model implied by the
factor model is thereby accommodated. We refer to the cor-
relations among the latent response variables as underlying
correlations or response correlations. If we assume that two
response variables are bivariate normally distributed the un-
derlying correlation may be estimated (Olsson, 1979a), and
we refer to this estimate as the polychoric correlation. Note
that when the response variables are not bivariate normal,
the polychoric correlation is likely biased with respect to the
true underlying correlation. A common procedure is to fit the
proposed factor or covariance model to the polychoric corre-
lation matrix using least squares (LS) estimation. We refer
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to this approach as categorical LS (cat-LS), and it is reported
to outperform cont-ML in terms of estimation bias and fit in-
ference (e.g., Flora & Curran, 2004; Foldnes & Grønneberg,
2021; Li, 2016). cat-LS is implemented in current software
packages such as EQS (Bentler, 2006), Mplus (Muthén &
Muthén, 2012), LISREL (Jöreskog & Sörbom, 2015), and
lavaan (Rosseel, 2012), and is frequently employed by re-
searchers.

The present study follows Foldnes and Grønneberg (2021)
in adopting a copula perspective when investigating viola-
tions of the normality assumption and its consequences for
the polychoric correlation estimator. As will be explained
in a later section, any multivariate distribution may be sepa-
rated into its marginals and its copula. Violations of normal-
ity can consequently occur in two ways: either some of the
marginal distributions are non-normal, or the copula is non-
normal. The Venn diagram in Figure 1 separates the class of
multivariate distributions into four distinct regions, accord-
ing to normality criteria. Distributions whose copula is not
normal and whose marginals are not all normal are contained
in region A. The class of multivariate normal distributions is
characterised by normal marginal distributions coupled with
normal copulas, represented by region C. Region B contains
distributions whose copula is normal, but whose marginals
are not all normal. Finally, region D consists of distributions
whose marginals are all normal, but whose copula is not nor-
mal. In the present study the main focus is on region B, that
is, on the consequences of marginal non-normality on cat-
LS, while retaining a normal copula.

The effect of non-normality of the type represented by re-
gion D (normal marginals coupled by a non-normal copula)
on ordinal factor analysis may be substantial, as shown by
Foldnes and Grønneberg (2021). Fortunately such conditions
are detectable using statistical tests (Foldnes & Grønneberg,
2019b; Jöreskog, 2005; Maydeu-Olivares, 2006). In the
present work we provide evidence obtained from such tests
that underlying normality in real-world empirical datasets
can not be taken for granted. However, the non-normality
detected in such tests pertain to the copula. As shown in
the appendix, marginal non-normality in the underlying vec-
tor has no testable implications. We are therefore unable to
test whether marginal normality holds in practical settings.
Hence, we deem the topic of non-normal marginals of spe-
cial interest, and make it the focus of the present article. Un-
derlying normality is often justified by invoking forms of the
central limit theorem. However, tests for underlying normal-
ity are not always passed, and it is therefore important to in-
vestigate how ordinal factor analysis is affected by marginal
non-normality.

Several influential simulation studies have concluded that
cat-LS is moderately robust to violation of the underly-
ing normality assumption (Flora & Curran, 2004; Li, 2016;
Rhemtulla, Brosseau-Liard, & Savalei, 2012). Foldnes and
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Figure 1. Venn diagram of multivariate distributions. Region
A consists of all distributions whose copula is non-normal,
and whose marginals are not all normal. Region B con-
sists of all distributions whose copula is normal, but whose
marginals are not all normal. Region C consists of all mul-
tivariate normal distributions. Region D consists of distribu-
tions whose copula is non-normal, and whose marginals are
all normal.

Grønneberg (2021) identified problematic aspects of this
conclusion, and presented conditions where cat-LS was sen-
sitive to underlying non-normality. In the present paper we
continue to study the extent to which cat-LS is sensitive
to underlying normality, focusing on the consequences of
marginal non-normality. There are data conditions where
cat-LS inference is biased, conditions that unfortunately are
not detectable by statistical tests. A theoretical analysis of
the polychoric correlation given later in the paper shows
that when the copula of the response vector is normal but
its marginals are non-normal, the polychoric correlation will
systematically overestimate size of the true correlation. This
systematic overestimation may in turn lead to overoptimistic
assessments of the strength of the factor structure in the data.

The misspecification involved in assuming normal re-
sponse distributions can only be corrected by invoking ex-
pert substantive knowledge of the true distributional forms of
the underlying response variables. In the present article we
propose an approach to implement such a correction, which
we refer to as cat-LS-adj. This adjustment requires the exact
specification of the marginal distributions of the continuous
response variables. In some situations, exact specification of
the marginals may not be available. Then, cat-LS-adj is a
tool for sensitivity analysis, when applied with many com-
binations of marginals that are compatible with approximate
substantive knowledge.

This article makes several contributions to the literature.
First, we explain how the copula perspective helps under-
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stand different ways that multivariate normality may be vi-
olated, and how this may affect inference with ordinal data.
Second, we demonstrate that copula normality may not be
taken for granted in psychometric datasets. Third, using a
newly developed class of non-normal distributions, we con-
struct an informative worst-case scenario in the context of
the number of factors problem, where an exact continuous
two-factor solution is turned into an exact one-factor solution
when analyzed with cat-LS. To solve this problem, a fourth
contribution is a new adjusted cat-LS methodology based on
a simple adjustment of the polychoric correlation estimator
and its standard error. We demonstrate in a series of both
Monte Carlo and population-level studies that cat-LS may be
severely biased under marginal non-normality, while cat-LS-
adj performs well. Fifth, we present a simple illustration of
sensitivity analysis based on cat-LS-adj when only approxi-
mate knowledge of the marginals is available.

The present article is organized as follows. Next, we re-
view the theoretical framework for cat-LS and present a evi-
dence that underlying normality is not to be taken for granted
in empirical datasets. We then present copula theory and il-
lustrate its usefulness when analyzing the polychoric corre-
lation under non-normality. We next present our illustrative
worst-case factor retention scenario, where a two-factor so-
lution is entirely lost, and replaced by a distinctive one-factor
solution in the ordinal data. This is followed by a review of
recent research in ordinal factor analysis. Subsequently, we
propose an adjustment to the polychoric estimator in order to
remedy the problem of marginal non-normality. The adjust-
ment is thereafter evaluated in a series of five studies.1 The
implied need for substantive knowledge is then discussed,
and some practical recommendations for ordinal factor anal-
ysis is provided.

While this paper focuses on ordinal factor analysis esti-
mated via cat-LS, the paper has consequences for related
models and related estimation methods as well. For example,
our discussion is directly relevant also for the more general
class of ordinal structural equation models.

Factor analysis for ordinal data

Factor analysis was historically first developed for
variables that each consisted of a test or scale score
(Bartholomew, 2007; Flora & Flake, 2017). Items were
therefore considered approximately continuous and model
estimation was based on continuous methodology, culminat-
ing in normal-theory based maximum likelihood confirma-
tory factor analysis (Jöreskog, 1969), with later extensions
to non-normal continuous data (Browne, 1984; Satorra &
Bentler, 1988).

However, ordinal data are widely encountered in social
science, for instance in the context of sample surveys. In
such situations it is often of interest to directly factor ana-
lyze the items, instead of forming subscores or parcels based

on more or less arbitrary collections of items. In practice,
nothing stops the analyst from applying cont-ML to factor
analyze ordinal items. However, it has long been known that
Pearson correlations among ordinal variables tend to under-
estimate the underlying true response correlation (e.g., Co-
enders, Satorra, & Saris, 1997). The problems (biased factor
loadings, standard errors and chi-square statistics) associated
with factor-analyzing ordinal data with cont-ML are reported
in many simulation studies (e.g., Beauducel & Herzberg,
2006; Foldnes & Grønneberg, 2021; Li, 2016; Rhemtulla et
al., 2012). As an improvement of cont-ML, Foldnes and
Grønneberg (2021) proposed a simple transformation of the
ordinal sample data before calculating regular correlations.
This new method, referred to as cont-ML-adj, was found
consistently, but marginally, to outperform cont-ML.

cat-LS methodology for factor analyzing ordinal vari-
ables of dichotomous (Christoffersson, 1975) and polyto-
mous (Muthén, 1984) nature is based on the concept of an
underlying latent response variable, which, when discretized
according to threshold values, produces the observed ordi-
nal variable. Let us refer to the continuous response vari-
ables as X∗i , and to the observed ordinal variables as Xi, for
i = 1, 2, . . . , p. For each variable X∗i there are thresholds
denoted by −∞ = τi,0 < τi,1 < . . . < τi,Ki−1 < τi,Ki = ∞. The
discretization rule is as follows:

Xi = xi, j ↔ τi, j−1 ≤ X∗i < τi, j, (1)

where xi,1 < xi,2, . . . < xi,Ki constitute the discrete set of val-
ues realized by the variable Xi. Hence Xi is a Ki-category
ordinal variable. A widespread practice2 is to assign consec-
utive integers x∗i, j = j for j = 1, 2, . . . ,Ki. cat-LS proceeds
by fitting the factor model to the correlation matrix of the
response vector X∗ = (X∗1, X

∗
2, . . . , X

∗
p)′, using unweighted or

diagonally weighted least squares estimation. In the online
appendix (p. 1) the necessity of the discretization model is
further discussed.

It is crucial to observe that the underlying correlation ma-
trix is not identified without making strong distributional as-
sumptions concerning X∗ (Grønneberg & Moss, 2021; Grøn-
neberg, Moss, & Foldnes, 2020). Traditionally, it has been
assumed that the response variables are bivariate normally
distributed, which yields the polychoric correlation, esti-
mated by ML estimation (Olsson, 1979a). Many studies have
confirmed that when X∗ is multivariate normal, cat-LS per-
forms well and better than continuous methodology. When
X∗ departs from normality, the polychoric correlation and its
standard error estimate may be biased, rendering factor anal-
ysis inference invalid (Foldnes & Grønneberg, 2019b, 2021).
These findings challenge the view that cat-LS is moderately

1The online supplementary material contains R computer code
for the illustrative cases, numerical results and simulations.

2A risk with such integer encoding is that it appears to produce
a scale on the interval level of measurement.
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robust to violation of the underlying normality assumption
(Flora & Curran, 2004; Li, 2016; Rhemtulla et al., 2012).

Underlying normality is not always empirically tenable

Using a selection of real-world datasets, we next illustrate
that the testable implications of response normality are not
always empirically tenable. Seven datasets with psychome-
tric items were collected from the psychometrics textbook
Mair (2018). The datasets were selected among all datasets
provided with the book using the following criteria: The
dataset must contain ordinal item-level data from published
psychometric studies with at least three categories, and have
a sample-size of at least 200. The sample-size requirement
comes from the evaluations of the bootstrap test given in
Foldnes and Grønneberg (2019b), which showed that the test
still performed adequately at this sample-size. The require-
ment of having at least three categories is that in the binary
case, it is impossible to test underlying normality with bivari-
ate data (Muthén & Hofacker, 1988), and in our illustration
we will use a test statistic that is based on bivariate distri-
butions and cannot therefore be used with binary data. All
background variables, such as gender, were discarded, and
we consider the unconditional distribution of all remaining
items. This means that it could be that some subgroups of
the datasets behave differently when it comes to tests of un-
derlying normality than when considering the full datasets.

All datasets were subjected to the bootstrap test of Foldnes
and Grønneberg (2019b) as implemented in the R package
discnorm (Foldnes & Grønneberg, 2020) to assess joint and
bivariate response normality. This test is a refinement of the
testing procedures of Maydeu-Olivares (2006). The conclu-
sion the tests are presented in Table 1. Two types of tests of
response normality are reported: A global test for underlying
normality for all item variables in the dataset, and individ-
ual tests for underlying normality among all pairs – i.e., a
sequence of bivariate tests. The bivariate tests are performed
since polychoric correlations among a pair of variables will
be consistent if the underlying continuous variables are nor-
mal. The pairwise tests use the same test statistic as the joint
test but applied to bivariate data.

In all of the seven empirical datasets we found strong sup-
port for the alternative hypothesis, namely that the under-
lying distribution has a non-normal copula. All joint tests
of underlying normality have p-values numerically equal to
zero. The sample-size reported in Table 1 is before any re-
moval of missing values. For all tests, listwise deletion of
missing variables for the variables used in the test was per-
formed. For the global test, this means full listwise dele-
tion of all cases with any missing values. For the pairwise
tests, listwise deletion was applied only to the bivariate pair
considered by the test. The sample size of all datasets are
still above 200 also after the removal of cases with missing
values. The item datasets we consider are analyzed using

different types of psychometric techniques, including net-
work modeling and IRT modeling, where the precise mod-
eling assumptions may be different from the assumption of
underlying normality. Nevertheless, the findings show that
underlying non-normality in psychometric scales may not be
taken for granted. This may have important implications for
statistical estimation and inference with cat-LS, as shown in
Foldnes and Grønneberg (2019b); Foldnes and Grønneberg
(2021) and the studies in the present article.

To investigate the sensitivity of the polychoric correlation
to departures from normality, it is fruitful to adopt the per-
spective of copula theory, to which we turn next.

Copula theory and the polychoric correlation

The present section gives a conceptual introduction to
copula theory and its usefulness for studying the polychoric
correlation. We confine ourselves to the bivariate case, al-
though the theory extends naturally to higher dimensions.
The interested reader is referred to the textbook Nelsen
(2007) for a formal treatment. A major application of cop-
ulas is to construct multivariate distributions and models.
In the psychometric literature some applications of copulas
are found in, e.g., Braeken, Tuerlinckx, and Boeck (2007);
Foldnes and Grønneberg (2021); Krupskii and Joe (2013);
Nikoloulopoulos and Joe (2015), and copulas have recently
been used to handle the endogeneity problem in regression
(Falkenström, Park, & McIntosh, 2021).

Copulas are used to describe the dependency structure be-
tween variables, when taking the marginal distributions out
of the equation. Formally, a copula is a distribution with
univariate margins that are uniform on the interval [0, 1].
Let us denote its cumulative distribution function (CDF) by
C(u1, u2) = P(U1 ≤ u1,U2 ≤ u2). It may be used to construct
statistical distributions as follows. Given univariate CDFs
G(x) and H(y), a valid bivariate CDF F(x, y) = P(X ≤ x,Y ≤
y) is obtained by combining these with the copula:

F(x, y) = C (G(x),H(y)) . (2)

It can be shown that the marginal distributions of F(x, y) are
given by G(x) and H(y).

Also, any distribution may be uncoupled into its cop-
ula and its marginal CDFs. Sklar’s theorem (Sklar, 1959)
states that for any CDF F(x, y) with continuous marginal
CDFs FX and FY , there exists a unique copula CF such that
F(x, y) = CF(FX(x), FY (y)).

Consider the well-known class of bivariate normal dis-
tributions, where we employ the following notation. For
the standard normal distribution, denoted by N(0, 1), the
CDF is denoted by Φ(z). For bivariate normal distribu-
tions with standard normal marginals the CDF is denoted
by Φ12

ρ=ρ0
(z1, z2), where ρ0 is the correlation. For instance,

with correlation ρ = .5 the density contours of the resulting
distribution Φ12

ρ=.5 are depicted in Figure 2a, together with
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1 2 3 4 5 6 7
Dataset ASTI BSSS CEAQ condom Rogers SDOwave Wenchuan

Global p-value 0 0 0 0 0 0 0
Sample size 1129 1626 208 500 408 612 362

Number of variables 25 8 16 6 26 20 17
Number of categories 3 or 4 5 3 4 4 or 5 7 5 or 6

Proportion of p-values = 0 0.16 0.68 0 0.73 0.06 0.46 0.24
Proportion of p-values < 5% 0.58 0.96 0.17 0.93 0.25 0.88 0.72

Mean of p-values 0.1 0.01 0.33 0.01 0.28 0.03 0.06
Table 1
Summaries of tests for underlying copula normality for all datasets from the R package Mair (2020) on psychometric items
with more than two categories. The sample size is before any removal of missing values.

representations of the marginal N(0, 1)-densities. This distri-
bution is of Region C in Figure 1. The associated copula is a
member of the class of normal copulas, and is given by

CN
ρ=.5(u1, u2) = Φ12

ρ=.5

(
Φ−1(u1),Φ−1(u2)

)
.

There are many classes of copulas other than the normal
class, and within each class there is typically a parameter
that controls the strength of dependence. The dependency
parameter in the specific normal copula described above is
ρ = .5. This normal copula may be used to construct bi-
variate distributions whose copula will be normal, but whose
marginal distributions may be freely specified. That is, given
any pair of marginal CDFs G(x) and H(y), we may apply eq.
(2) to obtain a valid bivariate CDF

K(x, y) = CN
ρ=.5(G(x), F(y)),

that defines a distribution whose copula CN
ρ=.5 is normal, and

whose marginal distributions will be G(x) and H(y). We il-
lustrate this by moderately distorting the normal marginals
in Figure 2a as follows. We let F(x) be the CDF associated
with a gamma distribution with shape parameter 2, and G(y)
be the CDF associated with a Weibull distribution with shape
parameter 20. The gamma and Weibull distributions are two-
parameter families, and in each distribution the second pa-
rameter was chosen to yield unit variance. Also, both F(x)
and G(y) are mean centered, so that X ∼ F and Y ∼ G have
zero expectation and unit variance. The densities associated
with F,G and N(0, 1) are depicted in Figure 3. These dis-
tributional forms are sometimes found in empirical datasets
of composite scores in psychometric studies, and belong to
Region B in Figure 1. Skewness and excess kurtosis for
X are 1.4 and 3, respectively, and for Y , −0.9 and 1.3, re-
spectively. To characterize moderate non-normality, typical
skewness and kurtosis values used in simulation studies (Cur-
ran, West, & Finch, 1996, p.28) are 2 and 7, respectively. Ac-
cordingly, F and G depart only mildly from normality, The
density contours of K(x, y) are given in Figure 2b, together
with representations of the distorted marginals. The correla-
tion is distorted by replacing N(0, 1) marginals with X and Y ,
from ρ = .5 in Figure 2a to ρ = .45 in Figure 2b.

Another way to generate non-normality is to distort the
normal copula, while retaining the normal marginals. As an
example, let us replace CN

ρ=.5 associated with the distributions
in Figures 2a and 2b with a copula belonging to the Clayton
class of copulas. This class, in contrast to the normal cop-
ulas, allows lower tail dependency. In Figure 2c we have
coupled the standard normal marginals in Figure 2a with a
Clayton copula CCl

θ=1.1 with dependence parameter θ = 1.1.
The dependency in the lower tails is visible. The correla-
tion is distorted by replacing the normal copula by a Clayton
copula, from ρ = .5 in Figure 2a, to ρ = .525 in Figure 2c.

While the non-normality in the distribution in 2b was pro-
duced by distorting the normal marginals, and retaining the
normal dependence structure, the non-normality in the dis-
tribution in Figure 2c is produced by distoring the normal
copula, and retaining the normal marginals, and is therefore
in Region D in Figure 1.

Finally, we distort both the marginals and the copula of
the normal distribution in Figure 2a, and reach a distribu-
tion in Region A in Figure 1. The contours of the resulting
distribution are depicted in Figure 2d. This distribution has
non-normal marginals coupled together by the Clayton cop-
ula CCl

θ=1.1. The correlation is severely distorted, from ρ = .5
in Figure 2a, to ρ = .440 in Figure 2d.

The four panels in Figure 2 illustrate how the choice of
copula and marginals jointly affect the bivariate distribution.
When investigating the sensitivity of a statistical procedure
to distributional assumptions, the copula perspective allows
us to disentangle violations pertaining to the marginal distri-
butions from violations pertaining to the dependence struc-
ture. The uncoupling of marginal distributions from the de-
pendence structure is well suited to study the sensitivity of
the polychoric correlation to violations of the bivariate nor-
mality assumption, as next illustrated.

Investigating polychorics from a copula perspective

Consider the case illustrated in Figures 2a and 2b, i.e, the
case where the underlying variables are coupled together by
a normal copula CN

ρ=ρ0
, and where the marginals are either

normal or non-normal. In this condition it is straightfor-
ward to analyze the polychoric correlation: At the popula-
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(c) Non-normal copula; normal marginals.
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(d) Non-normal copula; non-normal marginals.
Figure 2. Four bivariate distributions. The normal copula in panels (a) and (b) has parameter θ = 0.5. The non-normal copula
in panels (c) and (d) is a Clayton copula with parameter θ = 1.1. The marginals in panels (a) and (c) are standard normal. The
marginals in panels (b) and (d) are standardized Gamma (X) and Weibull (Y) distributions.

tion level it will estimate ρ0, the parameter of the normal
copula. This observation is general and holds regardless of
the number and placement of thresholds. To show this, con-
sider first the discretization of a univariate variable according
to Equation (1). The resulting ordinal variable could equally
well have been produced by discretizing any other continu-
ous variable by transforming the thresholds using the quan-
tile function of the continuous variable. For instance, dis-
cretization of the gamma distribution in Figure 3 with thresh-

olds τ1 = −1, τ2 = 0, τ3 = 1 is equivalent to discretiza-
tion of the standard normally distributed Z1 with thresholds
τ̃1 = −1.19, τ̃2 = 0.24, and τ̃3 = 1.06, see Figure 4. This
illustrates that the thresholds and the underlying continuous
distribution are not jointly identifiable from data: Either must
the thresholds be known for the distribution to be identified,
or vice versa.

This discretization equivalence holds also when we move
to the bivariate case, provided the two continous distributions
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Figure 3. The normal, a Gamma, and a Weibull distribution.
All three have zero mean and unit variance.

have the same copula. In our illustration the common copula
in Figures 2a and 2b is CN

ρ=.5. Now let us calculate the prob-
ability that both ordinal variables take on the lowest possible
values. This probability is

P(X ≤ τ1,1,Y ≤ τ2,1) = CN
ρ=.5(G(τ1,1),H(τ2,1)).

Transforming the thresholds into τ̃1,1 = Φ
−1(G(τ1,1)) and

τ̃2,1 = Φ
−1(H(τ2,1)), yields

P(Z1 ≤ τ̃1,1,Z2 ≤ τ̃2,1)

= CN
ρ=.5(Φ(Φ−1(G(τ1,1))),Φ(Φ−1(H(τ2,1)))

= CN
ρ=.5(G(τ1,1)), (H(τ2,1)).

The calculation implies that for any set of thresholds, the dis-
cretization of the distribution in Figure 2b leads to the exact
same ordinal distribution that is produced by the discretiza-
tion of the distribution in Figure 2a, after transforming the
thresholds. Now, since the polychoric correlation assumes
underlying normality, it will interpret the ordinal distribution
as stemming from the discretization of the bivariate normal
distribution in Figure 2a. This means that the polychoric cor-
relation will reach ρ = .5 at the population level, regardless
of the number and values of the thresholds. Since the correla-
tion in Figure 2b was equal to ρ = .45, the polychoric correla-
tion is biased, with a relative bias of 100(.5−.45)/.45 = 11%.

Therefore, with an underlying normal copula CN
ρ=ρ0

, the
situation is simple: the population value of the polychoric
correlation is ρ0, regardless of threshold placement. When
the underlying copula is non-normal, as in Figures 2c and
2d, the situation is more complex, and the threshold place-
ments come into play. To illustrate, we consider the ordi-
nal distributions obtained from discretizing all four distribu-
tions in Figure 2, with three different threshold placements

0.0

0.2

0.4

−1 0 1
X

(a) Discretizing a gamma distribution with thresholds −1, 0,
and 1.

0.0

0.2

0.4

−1.19 0.24 1.06
Z1

(b) Discretizing N(0, 1) with thresholds −1.19, 0.24, and 1.06.

Figure 4. Discretizations of X and of Z1 ∼ N(0, 1) that pro-
duce the same ordinal distribution.

for K = 7. The three configurations yield observed ordinal
distributions with ceiling effects, with floor effects and with
symmetry. For each of the distributions in Figure 2 a very
large sample is simulated and discretized according to the
three threshold configurations3. Then, the population values
of the polychoric correlation coefficient ρ̂NT is calculated,
with the following results

ρ̂NT

Figure True ρ Ceiling Floor Symmetrical
2a .5 .5 .5 .5
2b .45 .5 .5 .5
2c .525 .611 .485 .526
2d .440 .536 .499 .520

We see that with a normal copula the polychoric correla-
tion is not dependent upon the thresholds, and will always
reach the underlying copula parameter ρ = .5. In the non-
normal copula case, we see that the placement of thresholds
affects the polychoric correlation, and that its value may be
markedly different from the true underlying correlation. The
role of threshold placement on ordinal SEM was thoroughly
investigated by Foldnes and Grønneberg (2021).

3See the R code in the supplementary material for the threshold
values.
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An illustrative case where non-normal response
marginals impairs factor retention

In this section a case is presented where severe non-
normality in the response marginals leads to a faulty con-
clusion in the number of factors problem. The purpose of the
case is to demonstrate that substantive knowledge is impor-
tant when factor analyzing ordinal items. Also, this example
is revisited in a later Monte Carlo study which evaluates the
adjusted cat-LS method.

The illustrative case is a two-dimensional scale with con-
tinuous items that appears exactly uni-dimensional after be-
ing discretized into ordinal items and estimated using estab-
lished methodology. The fallacy is caused by lacking sub-
stantive knowledge about the univariate response distribu-
tions. That is, applying cat-LS and its default assumption
of underlying bivariate normality, the two-dimensional scale
will appear to fit perfectly to the uni-dimensional parallel fac-
tor model. Our construction holds at the population level for
any discretization according to Equation (1), i.e., regardless
of the number of categories and distributional shape of each
ordinal variable. Also, the idea behind the construction of
this case is general, and allows expansion to any factor num-
ber. For simplicity we limit ourselves to six indicators, but
our construction can be extended to any number of indicators
per factor.

A two-factor scale with continuous items

Consider a researcher that has gathered information on six
variables on an ordinal-categorical scale in order to analyze
the data using ordinal factor analysis. We eliminate sam-
pling variability from our treatment by assuming that the re-
searcher may draw arbitrarily large random samples from the
population. In other words, the population distribution of the
six-dimensional ordinal vector X is fully known. This vector
is a discretized version of an underlying continuous response
vector X∗, as in Equation (1). The distribution of X∗ is per-
fectly in accordance with the two-factor model depicted in
Figure 5. The figure also contains population model param-
eter values. The indicator variables are all standardized, that
is, with zero mean and unit variance. Also, for identifiability,
the two latent variables are standardized. The parameter val-
ues in Figure 5 imply the correlation matrix given in Table
2. It is clear that this matrix has poor fit to a uni-dimensional
model. For instance, consider the population value of the
root mean square error of approximation (RMSEA), defined
as
√

F0/d, where F0 is the minimum of the normal-theory
ML fit function, and d denotes the model degrees of freedom.
In our case, the population RMSEA value when fitting a one-
factor model to the correlation matrix in Table 2 is 0.23, sug-
gesting very poor fit according to conventional cut-off values
(e.g, Browne & Cudeck, 1992). That is, the six continuous
variables are far from forming a uni-dimensional scale, but

fit perfectly to the model with two subscales depicted in Fig-
ure 5.

δ1 δ2 δ3 δ4 δ5 δ6

.36 .36 .36 .36 .36 .36

x∗1 x∗2 x∗3 x∗4 x∗5 x∗6

Scale 1 Scale 2

1 1

.69

.80 .80 .80 .80 .80 .80

Figure 5. Two correlated constructs, with unit variance indi-
cators.

Table 2
Covariance matrix for six continuous variables stemming
from a two-factor model.

X∗1 X∗2 X∗3 X∗4 X∗5 X∗6
X∗1 1
X∗2 .64 1
X∗3 .64 .64 1
X∗4 .45 .45 .45 1
X∗5 .45 .45 .45 .64 1
X∗6 .45 .45 .45 .64 .64 1

Having specified the correlation matrix of the underlying
continuous vector X∗ = (X∗1, X

∗
2, . . . , X

∗
6)′, our next aim is

to give a stochastic representation of X∗, thereby fully spec-
ifying its distribution. Care must be taken, so that X, the
observed ordinal vector after discretization of X∗, has a poly-
choric correlation matrix that is perfectly uni-dimensional.
One way to accomplish this is based on a novel approach for
constructing multivariate random vectors given in Foldnes
and Grønneberg (2021), where piecewise linear transforma-
tions of standard normal variables are used. This new ap-
proach may be used to construct non-normal multivariate
distributions with pre-specified univariate skewness and kur-
tosis, as well as a pre-specified correlation matrix, similar
to earlier methodologies (Foldnes & Olsson, 2016; Vale &
Maurelli, 1983).

For our illustration, we will use the two piecewise linear
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Figure 6. Densities of H1(Z) and H2(Z), where Z ∼ N(0, 1).

functions

H1(Z) =

0.1039 · Z − 0.6216 if Z < 0
1.6619 · Z − 0.6216 if Z ≥ 0

, (3)

and H2(Z) = −H1(−Z). The values of the intercepts and
slopes were chosen so that H1(Z) and H2(Z) both have zero
mean and unit variance (Foldnes & Grønneberg, 2021), given
that Z is a standard normal variable. However, H1(Z) and
H2(Z) are not normal. For instance H1(Z) and H2(Z) have a
skewness of 1.55 and −1.55, respectively. The excess kur-
tosis of both H1(Z) and H2(Z) is 2.1. These skewness and
kurtosis values are not considered extreme, and are deemed
indicative of low to moderate non-normality (see, e.g., Kline,
2015, p. 76). Figure 6 depicts the densities of H1(Z) and
H2(Z). Even though traditionally used skewness and kurto-
sis criteria indicate that these densities are only moderately
non-normal, it is seen that the densities depart markedly from
a normal density. We may speculate that such densities may
arise in practice by mixing two subpopulations, one in which
values are almost uniformly distributed, and one in which
values are highly concentrated.

Next, piecewise linear transformations are applied to
each coordinate of a multivariate normal vector Z =

(Z1,Z2, . . . ,Z6)′. We apply H1 to the first three coordinates,
and H2 to the last three coordinates:

X∗ = (H1(Z1),H1(Z2),H1(Z3),H2(Z4),H2(Z5),H2(Z6))′ (4)

The covariance matrix of X∗ is a function of the correlations
in Z. Importantly, we choose Z to conform to a parallel mea-
surement model by setting all the correlations among Z co-
ordinates to ρ = 0.7. Also, if Z1 and Z2 are bivariate normal
with correlation .7, then H1(Z1) and H1(Z2) will have correla-
tion .64. Moreover, H1(Z1) and H2(Z2) will have correlation
.45. This means that the covariance matrix of X∗ equals the
correlation matrix in Table 2.

So far, we have constructed a continuous non-normal vec-
tor X∗ for which a two-factor model fits perfectly, by trans-

forming coordinate-wise a normal vector Z for which a one-
factor model fits perfectly. We next describe how the dis-
cretization of X∗ removes the true two-factor structure and
replaces it with the one-factor structure of Z, when seen
through the lens of polychoric correlations. Mathematically,
we have

τ1 ≤ X∗1 < τ2 ↔ H−1
1 (τ1) ≤ H−1

1 (X∗1) < H−1
1 (τ2)

↔ τ̃1 ≤ H−1
1 (H1(Z1)) < τ̃2

↔ τ̃1 ≤ Z1 < τ̃2. (5)

Hence, discretizing X∗1 with thresholds τ1 < τ2 < . . . <
τK−1 is statistically indistinguishable from discretizing Z1
with transformed thresholds H−1

1 (τ1) < H−1
1 (τ2) < . . . <

H−1
1 (τK−1). See Figure 4 for the same calculus when H1(Z)

is replaced by a gamma distribution.
This leads to the following remarkable conclusion, when

applying the argument to all six variables in Equation (4):
Discretizing the original X∗ using any set of thresholds pro-
duces the same ordinal vector as discretizing a multivariate
normal vector Z whose pairwise correlations are all equal to
.7, after transforming the thresholds by H−1

1 or H−1
2 . Now

consider what happens when we use the default polychoric
correlation estimator based on the population distribution X.
As explained above, X could have been produced by dis-
cretizing a multivariate normal vector with pairwise corre-
lations equal to .7. The polychoric correlation estimator by
default assumes underlying normality. With underlying nor-
mality, polychoric correlations are consistent. Since the ex-
actly normal Z can generate X, the assumption of underlying
normality is fulfilled, and the polychoric correlation estima-
tor will therefore reach the correlation .7, instead of the true
values .64 or .454. That is, although the latent correlation
between, say, X∗1 and X∗4 is .45, because discretizing the bi-
variate distribution of (X∗1, X

∗
4) is equivalent to discretizing

the bivariate normal vector (Z1,Z4), the polychoric correla-
tion will reach the correlation .7 between Z1 and Z4. So for
(X∗1, X

∗
4), the polychoric correlation is biased at the popula-

tion level, with a relative bias close to 30%.
In conclusion, when we discretize a continuous non-

normal X∗ that stems from a two-factor model, the poly-
choric correlation estimator used in cat-LS will equal

Σ1 =



1
.7 1
.7 .7 1
.7 .7 .7 1
.7 .7 .7 .7 1
.7 .7 .7 .7 .7 1


.

Fitting a one-factor model to this matrix will yield perfect fit.
Furthermore, this factor model is parallel, meaning that all

4This situation is similar to the discussion of Figures 2a and 2b
on p. 5, where the underlying copula is normal.
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loadings are equal to
√
.7. We may conclude that a researcher

working with ordinal data obtained through an arbitrary dis-
cretization of the two-factor continuous vector X∗ will at the
population level find perfect support for a parallel one-factor
measurement model.

This counter-example shows that the specification of cor-
rect marginals is required for ordinal factor analysis. As ex-
plained in more detail in the appendix, a troubling feature
of the example is that any test for underlying non-normality
will fail to detect that X∗ is non-normal. The reason for this
is that the non-normality is concentrated in the marginals,
and the distribution of the ordinal observations do not place
any restrictions on the marginals of the continuous response
variable.

A review of recent results for ordinal factor models

Recent research (Foldnes & Grønneberg, 2019b; Monroe,
2018) demonstrated that the polychoric correlation and its
standard error may be substantially biased under violations
of bivariate normality. Foldnes and Grønneberg (2021) ex-
tended this line of research to structural equation models,
by simulating 20-dimensional response vectors with normal
marginal distributions. The multivariate dependence struc-
ture among the response variables, that is, the copula, was
however not normal. Although cat-LS outperformed cont-
ML, it was in some conditions substantially biased in terms
of parameter and standard error estimation, and model fit
assessment. Also, it was found in Foldnes and Grønneberg
(2021) that the particular details of the discretization in Equa-
tion (1) influenced bias, even within the same number K of
categories, and the same type of observed ordinal distribu-
tions (ceiling, floor or symmetrical). While the performance
of cont-ML and cat-LS was poor in many conditions defined
by non-normal copulas, such conditions may reliably be de-
tected by statistical means using, e.g., the bootstrap test5 pro-
posed by Foldnes and Grønneberg (2019b). This test main-
tained Type I error control and exhibited acceptable power at
sample size 300 for a medium-sized SEM (Foldnes & Grøn-
neberg, 2021).

In the present study we investigate a less tractable non-
normal condition than described above. Instead of isolating
non-normality to the copula, we inject the latent response
marginal distributions with non-normality, depicted as re-
gion B in Figure 1. That is, we consider the case where
the univariate marginal distributions of the response vari-
ables X∗i , i = 1, 2, . . . , p, are non-normal, and mainly cou-
pled together by a normal copula. As explained by Foldnes
and Grønneberg (2021) and further discussed in the appendix
(p. 22), there is no way to formally detect whether ordinal
data stem from discretizing a response vector with normal or
non-normal marginal distributions, due to the confounding
of threshold placement and response distribution illustrated
in Figure 4.
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(a) Discretizing a gamma distribution with thresholds −1, 0,
and 1.
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(b) Discretizing N(0, 1) with thresholds −1.19, 0.24, and 1.06.

Figure 7. Two latent response distributions and their dis-
cretization with (a) Equally spaced thresholds (b) Unequally
spaced thresholds.

Let us illustrate the interplay between the response
marginal distribution and the threshold values τ in gen-
erating ordinal variables. We consider two underlying
response marginal distributions, a skewed beta distribu-
tion and the standard normal. The beta distribution is
scaled to have zero mean and unit variance. Also, we
consider one set of thresholds that are equally spaced
(−1.45,−0.87,−0.29, 0.29, 0.87, 1.45), and one set of un-
equally spaced thresholds (−1.3,−1,−0.1, 0.5, 0.9, 2). In
Figure 7a, we observe that although discretization results in
substantial loss of information with respect to the original
response distribution, main aspects of the original distribu-
tional form are preserved under equally spaced thresholds.
In Figure 7b we apply unequally spaced thresholds, and the
original distributional form is almost completely lost after
discretization.

5Available in the R package discnorm (Foldnes & Grønneberg,
2020).
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The above example illustrates that, as K increases, and for
equally spaced thresholds, the ordinal distribution increas-
ingly approximates the underlying continuous response dis-
tribution. This is the intuition behind the recently proved the-
oretical result (Cor. 1, Foldnes & Grønneberg, 2021) that the
correlation among integer-coded ordinal variables converges
(as K increases) towards the true underlying correlation of re-
sponse distributions, regardless of their distributional forms,
provided the thresholds are equally spaced. Intuitively, inte-
ger coding works well for equally spaced thresholds, since it
roughly preserves the intervals among values on the response
X∗. For an illustration, let us consider four (K = 5 categories)
and nine (K = 10 categories) equally spaced thresholds im-
posed on a bivariate normal response vector whose correla-
tion is .7. Calculating the correlation directly on ordinal data
gives, at the population level, .626 and .68 for K = 5 and
K = 10, respectively.

Unfortunately, there is no way to test statistically whether
thresholds are equally spaced. Claims of even threshold
spacing can only be supported by resorting to substantive
knowledge. Thresholds being equally spaced is roughly
equivalent to claiming that the integer-coded observed or-
dinal scale is measured on an interval scale. If the analyst
can substantively argue that the intervals between any two
adjacent points on the ordinal scale correspond to the same
interval length on the latent response scale, then this is equiv-
alent to stating that the thresholds are equally spaced. How a
substantive researcher might justify such a claim seems not
a trivial matter, and we deem this important question outside
the scope of the present article.

A second type of recent theoretical development concerns
estimation where knowledge of the latent response marginal
distributions is taken into account. Foldnes and Grønneberg
(2021) introduced two new estimators which are consistent
as K, the number of categories, increases indefinitely: cont-
ML-adj, which encode ordinal data in such a way that justify
using the standard Pearson correlation directly on the data,
and an adjustment to cat-LS which estimate thresholds using
the provided latent response marginal distributions. These
methods are summarized in the online appendix. Both are
consistent only as the number of categories increases indef-
initely, as long as the latent response marginal distributions
are correctly specified. This means that at least for large K,
having substantive knowledge of the copula of the response
variables is not needed, but knowing the response marginal
distributions is still required.

The estimator methodology suggested in the present paper
features a simple adjustment procedure for the polychoric
correlation. When the response copula is normal, this esti-
mator is consistent for all K ≥ 2.

What happens if we just treat data from the illustrative
two-factor model as continuous?

Let us return to the two factor model in Figure 5 (p. 8)
with severely non-normal marginals. Although not the rec-
ommended approach (Foldnes & Grønneberg, 2021), cont-
ML is still in wide use in empirical research (e.g., Marsh et
al., 2013; Nilsen et al., 2020). This method estimates Pearson
correlations directly on integer-encoded data. The practice6

is frequently encountered when variables have at least five
categories and are approximately symmetrical. In the simu-
lation design employed by Rhemtulla et al. (2012), cont-ML
and cat-LS performed comparably well in such conditions
when having at least 6-7 categories. We may therefore in-
quire whether the two-factor structure of X∗ would be de-
tectable by cont-ML. According to the recommendation of
Rhemtulla et al. (2012), cont-ML may be used with symmet-
rically distributed items with five or more categories. Let
us therefore assume that we have seven symmetrically dis-
tributed levels in all six categories. Unfortunately, cont-ML
then mistakes the number of factors to be one instead of two.
The reason is that any pair of observed variables, say X1 and
X2, may be thought of as discretizations of the identically
distributed Z1 and Z2, using the same set of thresholds. For
K = 7 the Pearson correlation between X1 and X2 will equal
.662. Therefore, the Pearson correlation matrix of X is struc-
turally equal to Σ1, and with .7 replaced by .662. Such a
correlation matrix fits perfectly to a uni-dimensional parallel
factor model.

Paradoxically, only in a specific situation with asymmet-
rical ordinal observed distributions will cont-ML be approx-
imately unbiased. That is, if there are many thresholds
equally spaced along the scale of the response variables the
Pearson correlation will approximate the correlations in X∗

(Cor. 1, Foldnes & Grønneberg, 2021). This means that
the observed ordinal distributional forms of X1, X2, X3 and
X4, X5, X6 will resemble the densities of H1 and H2, respec-
tively, depicted in Figure 6 (see also the discussion of Figure
7). According to the recommendation of Rhemtulla et al.
(2012), cont-ML should not be employed with such skewed
distributions. Every simulation study is limited by its choice
of distributions to simulate from, and the advice of Rhem-
tulla et al. (2012) that cont-ML may be used with symmetri-
cally distributed items with five or more categories is strictly
speaking valid only for data generated in a manner resem-
bling the simulations in Rhemtulla et al. (2012). Clearly, our
illustrative case represents a data condition not included in
earlier simulation studies.

Our aim with the illustrative case has been to analytically
construct a striking condition where the lack of substantive
knowledge leads cat-LS and cont-ML to grossly miscalcu-
late the number of factors. The bias incurred by the recom-

6The estimator is often referred to as MLR.
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mended cat-LS approach with marginal distributions closer
to normality will be dealt with in the upcoming numerical
studies.

Adjusting ordinal factor analysis to non-normal
response marginals

We have argued that substantive knowledge of the re-
sponse marginal distributions of X∗ and/or the thresholds
is a requirement for using ordinal covariance models. We
here assume that the response marginal distributions of
X∗ are known to have cumulative distribution functions
F∗1, F

∗
2, . . . , F

∗
p. Also, without loss of generality, we assume

that the marginal distributions of X∗ have unit variance. An
adjusted version of cont-ML, cont-ML-adj, that takes sub-
stantive marginal information into account was proposed by
Foldnes and Grønneberg (2021). We next propose a similar
adjustment to cat-LS, denoted by cat-LS-adj, derived under
the assumption that the copula of each pair of latent response
variables is normal.

The idea behind cont-ML-adj is to use substantive knowl-
edge of the marginals of X∗ to encode the ordinal observa-
tions in such a way that continuous factor analysis methods
work as intended for a large number of categories. Foldnes
and Grønneberg (2021) also introduced a modification to the
polychoric correlation which assumed that the number of cat-
egories were large. We here suggest an alternative adjust-
ment to polychoric correlations which works well also when
the number of categories is small. However, the price for
good performance at small K is that we assume that X∗ has
a normal dependence structure, that is, that X∗ has a normal
copula. While the present article focuses on the case when
X∗ has a normal copula, a brief discussion of non-normal
copulas is found in “What if the copula is non-normal?” on
p. 2 in the online appendix.

Recall that cat-LS first estimates the correlation matrix of
the continuous response vector X∗ using polychoric correla-
tions and then use least squares estimation methods to fit the
proposed model to the correlation matrix (Muthén, 1984).
We propose to adjust this procedure, by replacing standard
polychorics with what we call adjusted polychorics. For
valid inference based on adjusted polychorics, we also need
to use an adjustment to the asymptotic covariance matrix of
the polychoric correlations. This adjustment is described in
“Standard errors for cat-LS-adj” on p. 2 in the online ap-
pendix.

Calculating the adjusted polychorics is simple, and does
not require optimization. First, the standard polychoric es-
timator of Olsson (1979a) is computed, using standard soft-
ware. Since the polychoric correlation assumes that X∗ is
fully normal, it is a normal theory estimator, and we denote
it by ρ̂NT. Then a function Ψ is applied to ρ̂NT, giving

ρ̂adj = Ψ(ρ̂NT).

Here, Ψ is a function which depends on the marginal distri-
butions F∗1, F

∗
2 of X∗ through the formula

Ψ(r) =
∫ ∞
−∞

∫ ∞
−∞

CN
ρ=r
(
F∗1(x1), F∗2(x2)

)
−F∗1(x1)F∗2(x2) dx1dx2

where CN
ρ=r is the normal copula with correlation r.

If X∗ has a normal copula and marginals F∗1, F
∗
2, the ad-

justed polychoric correlation will be consistent and asymp-
totically normal. Technical details are given in the appendix
(p. 21). Code to compute adjusted polychorics and their
asymptotic covariance matrix is provided in the online sup-
plementary material.

Polychoric correlations systematically overestimate the
size of the true response correlations
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Figure 8. The function Ψ(0.7) with one marginal following
the standardized Gamma-distribution with varying scale pa-
rameter, and the other marginal following the same distribu-
tion but reflected around zero.

The polychoric correlation ρ̂NT consistently estimates

ρNT = ρ(Φ−1(F∗1(X∗1)),Φ−1(F∗2(X∗2))) (6)

when the copula of X∗1, X
∗
2 is normal (Foldnes & Grønneberg,

2021, online appendix, “On polychoric correlations with
misspecified marginals”). Here, ρ(A, B) is the Pearson cor-
relation between random variables A, B. Typically, ρNT does
not equal the target correlation ρ(X∗1, X

∗
2). By the continuity

of Ψ, the adjusted polychoric correlation estimates Ψ(ρNT),
which equals ρ(X∗1, X

∗
2) under the conditions given in the ap-

pendix. The value of the function Ψ(r) is therefore inter-
pretable as the true response correlation when the polychoric
correlation estimates the response correlation to be r.

An important and, to the best of our knowledge, new find-
ing is that

|ρ(X∗1, X
∗
2)| ≤ |ρNT|, (7)
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provided the underlying copula is normal. That is, unless the
polychoric correlation is consistent, it will always overesti-
mate the size of the true response correlation. This observa-
tion will shortly be proven. The overestimation will in turn
bias ordinal factor models estimated via these correlations,
and may lead to estimates of, e.g., unrealistically strong fac-
tor structures in applications.

Figure 8 illustrates the finding, and plots Ψ(0.7) as a func-
tion of a single parameter that varies the marginal response
distributions. The first marginal is the standardized Gamma-
distribution with a scale parameter that varies, and the sec-
ond marginal follows the same distribution as the first ex-
cept that the distribution is reflected around zero. The re-
sponse marginals are coupled together by a normal copula
with correlation parameter .7. The straight line in the plot
is ρNT = 0.7, the number which the polychoric correlation
necessarily estimates. In contrast, the true response correla-
tion estimated by the adjusted polychoric correlation varies
from around zero up to around 0.7. For very low values of the
scale parameter, which corresponds to extremely non-normal
distributions, the polychoric correlation will severely over-
estimate the true correlation which is close to zero. For distri-
butions closer to normal, corresponding to scale parameters
some distance from 0, the degree of overestimation is van-
ishing. The gamma distributions in the numerical illustration
both converge to normality as the scale parameter increases,
and we see that for large scale parameters the observed over-
estimation is diminishing.

Due to eq. (7), it will never be the case that the true corre-
lation is under-estimated by the polychoric correlation, and
any similar plot with a different choice of marginals will have
true correlations below the straight line at 0.7. The degree of
overestimation depends on the marginals, a relation exactly
quantified in the function Ψ.

Let us now explain why eq. (7) holds and how we can
interpret this bound. Notice first that ρ(X∗1, X

∗
2) and ρNT in

eq. (6) are both of the form

ρ(a(X∗1), b(X∗2)) (8)

for real functions a, b. The maximum correlation ρM of
X∗1, X

∗
2 is a correlation coefficient with a complex history

(Klaassen & Wellner, 1997, Section 6). As far as we know, it
has not been studied in the psychometric literature. It is de-
fined as the supremum of eq. (8) over all functions a, b such
that Var(a(X∗1)) and Var(b(X∗2)) are finite. When X∗1, X

∗
2 have

a normal copula, a classical result re-derived in Klaassen and
Wellner (1997, Theorem 6.1) shows that this supremum is
attained at a(x) = Φ−1(F∗1(x)) and b(x) = Φ−1(F∗2(x)). There-
fore, eq. (6) gives

ρM = |ρNT|,

providing the claimed bound.
When the response copulas are normal but the response

marginals are non-normal, the polychoric correlation there-

fore estimates not the Pearson correlation between the re-
sponse marginals, but the maximum correlation between the
response variables. We consider a full discussion of this new
observation outside the scope of the present paper.

Adjusted polychoric correlations and sensitivity analysis

We have argued that to estimate response correlations,
substantive knowledge of response marginal distributions is
required. The requirement is similar to the specification of
prior distributions in Bayesian statistical analysis (Berger,
1985). The prior is specified based on substantive knowl-
edge, but in many cases, available substantive knowledge al-
lows only a partial specification of the prior. A complete
specification of the prior is required to calculate the posterior,
and is constructed based on arbitrary choices (Leamer, 1985,
p.309). The analysis of the consequences of these choices is
known as Bayesian sensitivity analysis, see e.g. the general
treatments of Berger et al. (1994); Insua and Ruggeri (2012),
as well as Van Erp, Mulder, and Oberski (2018) in a psycho-
metric setting. As shown in the upcoming Monte Carlo illus-
trations, estimates of response correlations and models based
on such estimates may be sensitive to the marginal response
distributions, motivating sensitivity analyses also when fit-
ting ordinal factor models.

Establishing best practice methodology for such sensitiv-
ity analyses is a complex problem left to future research, and
we here sketch a simple pragmatic procedure in this direc-
tion, assuming a normal response copula. Estimation and
inference for the ordinal factor model should be performed
with cat-LS-adj using a selection of marginals that are repre-
sentative of distributions compatible with substantive knowl-
edge. The resulting degree of robustness of statistical con-
clusions should be reported. For example, if the focus in
a study is the statistical significance of a parameter, the p-
value and the parameter estimated should be perturbed with
a selection of marginals, and a plot of the resulting p-values
and estimates should be studied. If the conclusion of, say,
significance at a 5 % level holds under all marginal choices,
the analysis indicates that this conclusion is robust. A simple
illustration of a sensitivity analysis is given in Study 4 in the
next section.

Studies of cat-LS and cat-LS-adj under marginal
non-normality

This section comprises a sequence of five studies, some
conducted at the population level, and some at the finite sam-
ple level using Monte Carlo simulation. The studies investi-
gate how non-normal marginal distributions affect the poly-
choric correlation estimator and its adjusted version, and how
any effect is propagated to factor analysis with cat-LS or
cont-ML. Alongside, the performance of the adjusted poly-
choric estimator and cat-LS-adj is evaluated. Study 4 gives a
simple empirical example of sensitivity analysis.
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Figure 9. Probability distribution of X and Y , for K = 7.

Study 1: Correlation bias at the population level

In this study we examine the biasedness of Pearson and
polychoric correlations in the absence of substantive knowl-
edge. Also, we illustrate that the adjusted Pearson correla-
tion, as the number K of categories increases, eliminates bias
when substantive marginal knowledge is available. The ad-
justed polychoric correlation is demonstrated to be unbiased
for all K. We remark that larger values of K (K > 11) are
seldom encountered in practice, but these are included here
to illustrate that the polychoric and Pearson estimator do not
perform better with large K.

We consider ordinal bivariate vectors obtained by dis-
cretizing a non-normal vector (X∗,Y∗)′ whose copula is nor-
mal. As discussed previously, the same ordinal bivariate dis-
tribution can be obtained by discretizing (using other thresh-
olds) a normal vector (Z1,Z2)′. The first case is taken as the
true data-generating process, and we seek to calculate the
correlation between X∗ and Y∗. We let X∗ = H1(Z1) and
Y∗ = H2(Z2) (see eq. (3)) where Z1 and Z2 are standard
normal variables which together form a bivariate normal dis-
tribution with correlation ρ = .7. The correlation between X∗

and Y∗ is then approximately equal to 0.446 ( Table 2).
We now let the number of categories increase from

K = 2 to K = 20. For each K, the thresholds are
taken to be equally spaced on the standard normal scale.
For instance, for K = 7 we employ equally spaced
thresholds at −2.05,−1.23,−0.41, 0.41, 1.23 and 2.05. Ap-
plying H−1

1 and H−1
2 to these values yields unequally

spaced values: −0.83,−0.75,−0.66, 0.06, 1.42 and 2.78, and
−2.78,−1.42,−0.06, 0.66, 0.75 and 0.83, respectively. Dis-
cretizing H1(Z) and H2(Z) using these thresholds results in
a common ordinal distribution that approximates a normal
distribution, see Figure 9. For each K, in the same manner
equally spaced thresholds are transformed to the X∗ and Y∗

scale. Approximate normality in ordinal data has been re-
ported to be beneficial for inference when treating ordinal
data as continuous (Olsson, 1979b; Rhemtulla et al., 2012).
However, despite the approximately normal distribution of

the ordinal variables, we next illustrate that without substan-
tive knowledge both Pearson and polychoric correlations are
biased.

For each K we calculate four correlations: The regular
Pearson and polychoric correlations, and their respective ad-
justments based on true substantive knowledge, i.e., that the
underlying response variables X∗ and Y∗ follow the non-
normal distributions depicted in Figure 6. Now, since the
ordinal distribution of (X,Y)′ is consistent with discretizing
a normal vector with correlation ρ = 0.7, the polychoric cor-
relation will equal 0.7 for all K. The Pearson correlation will
also reach this correlation as K increases, since the observed
ordinal distribution is approximately normal. The adjusted
correlations require that we correctly specify the marginals
of X∗ and Y∗. The adjusted Pearson correlation will approach
zero bias with respect to the true underlying correlation 0.446
as K increases, while the adjusted polychoric correlation will
be consistent for all K. This is confirmed in Figure 10, which
is based on population-level calculations. The figure shows
that the Pearson (for large K) and polychoric correlations are
highly biased, with more than 50% relative bias. Also, incor-
porating correct substantive knowledge of the latent response
distributions clearly reduces bias dramatically in the adjusted
Pearson correlation adjustment, and totally removes bias for
the adjusted polychoric correlation.

An alternative interpretation of Study 1. We here re-
call (Foldnes & Grønneberg, 2021, Section “Marginal Dis-
tributions and Thresholds are Confounded”) that when sim-
ulating a vector of ordinal observations through discretizing
a continuous random vector, we are in a sense simulating
discretizations from all possible continuous random vectors
that is capable of being discretized to the ordinal observa-
tions. This means that the above simulation can just as well
be interpreted as simulating from the continuous normal ran-
dom vector that follows a one-factor model with all correla-
tions equal to 0.7. Our illustration therefore symmetrically il-
lustrates that cat-LS-adj and cont-ML-adj may reach grossly
inaccurate conclusions when the marginal distributions are
misspecified. This further underlines the importance of hav-
ing substantive knowledge of the marginals. This type of
symmetric interpretation holds for all upcoming studies.

Study 2: Monte Carlo study of the factor retention prob-
lem under substantial non-normality

In this study we examine by Monte Carlo simulations the
finite-sample behaviour of nested model testing. Our con-
text is to determine whether a one-factor solution is sufficient
for the six dimensional scale in Figure 5. We know that the
six-dimensional vector X∗ defined in Equation (4) fits a two-
factor solution depicted in the figure, but has a poor fit to
a one-dimensional solution. In our simulations we repeat-
edly draw samples of sizes n = 100 and n = 500 from X∗,
which we then discretize using the same thresholds as de-
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Figure 10. Population level correlation values for the Pearson
and polychoric estimators, and their adjustments. K=number
of categories.

scribed in the previous study, which produces symmetrical
observed ordinal variables, for K = 4 and K = 7. For each of
the resulting four conditions, 1000 samples were drawn and
discretized. Four estimators of the 1-factor and 2-factor mod-
els were evaluated: cont-ML and cat-LS, together with their
adjusted versions. Nested model testing based on the scaled-
and-shifted statistic (Asparouhov & Muthén, 2010) was em-
ployed for all estimators. This test statistic, and standard er-
ror estimates, require an estimate of the asymptotic covari-
ance matrix Γ of the correlation vector. For cont-ML-adj, Γ
was estimated using bootstrapping with 1000 bootstrap sam-
ples. For cat-LS-adj, we implemented the formula deduced
in the online supplementary material.

Results are provided in Table 3. Let us first consider the
mean estimated correlation ϕ̂ between the factors in the 2-
factor model. As expected, the unadjusted versions tend to
estimate perfect correlation between the factors, indicating
that only one factor is necessary to describe the scale. This is
reflected in the unadjusted estimators having rejection rates
close to the nominal Type I error rate associated with the
nested model test. For cat-LS-adj, the mean ϕ̂ value is close
to the true value 0.692, while the rejection rates of the nested
model test are close to 100%, even at n = 100. It is seen that
cont-ML-adj improves upon cont-ML, but it is still markedly
biased at K = 4, with reduced bias at K = 7. At K = 7
cont-ML-adj almost always rejects the misspecified 1-factor
model, even at the smallest sample size. In order to validate
the standard errors based on new estimates of Γ, Table 3 also
reports the % relative bias of standard errors, and it is seen
that bias reduces generally with increasing n.

We conclude that the adjusted estimators performed well

in identifying a 1-factor model as untenable, in contrast to
the unadjusted estimators. Also, the adjusted standard error
estimation procedures were found to perform quite well at
n = 500.

Table 3
Study 3: Monte Carlo evaluation of four estimators.

Etimator K n Mean of ϕ̂ RB SE RB Rej

cat-LS
4

100 1.00 0% -1% 0.05
500 1.00 0% 1% 0.04

7
100 1.00 0% -4% 0.06
500 1.00 0% 0% 0.04

cat-LS-adj
4

100 0.69 -1% -5% 1.00
500 0.69 0% 0% 1.00

7
100 0.69 0% -8% 1.00
500 0.69 0% 4% 1.00

cont-ML
4

100 1.00 0% -7% 0.06
500 1.00 0% -3% 0.05

7
100 1.00 0% -7% 0.07
500 1.00 0% -1% 0.04

cont-ML-adj
4

100 0.80 16% -16% 0.62
500 0.81 17% -3% 1.00

7
100 0.72 4% -14% 0.97
500 0.72 4% 0% 1.00

Note. K= number of categories. n= sample size.
RB=Relative bias of ϕ̂. SE RB= relative bias of stan-
dard error of ϕ̂. The targeted estimand for ϕ̂ is .692.
Rej= Rejection rate of chi-square difference test.

Study 3: Monte Carlo study of polychoric inference un-
der moderate non-normality

The previous study involved a rather striking case where
marginal non-normality was carefully chosen to illustrate a
breakdown of conventional ordinal inference. In this study
we consider the finite-sample performance of the polychoric
correlation and its adjustment under a set of mild to moderate
deviations from marginal normality, depicted in Figure 11a.
The densities Γ1 − Γ3 are standardized gamma distributions
which are increasingly non-normal, with skewness 0.6 and
excess kurtosis 0.6 for Γ1, skewness 1.3 and excess kurtosis
2.4 for Γ2, and skewness 1.6 and excess kurtosis 4.0 for Γ3.
These values of skewness and excess kurtosis represent mild
to moderate non-normality (Kline, 2015, p. 76). To include
negatively skewed distributions, reversed versions Γ̃1−Γ̃3 are
included in the design, see Figure 11b.

Marginal variables were selected from
N(0, 1),Γ1,Γ2,Γ3, Γ̃1, Γ̃2, and Γ̃3 to form a total of 28
pairs. The pairs represent a range of distributions with
marginals spanning from normal to moderate non-normality,
and with skewness in the marginals being positive or
negative, and of the same, or of opposite, signs. Each pair
was coupled together by a normal copula, calibrated with
the vita function in package covsim (Grønneberg, Foldnes,
& Marcoulides, 2021), so that the resulting continuous
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Figure 11. The standard normal N(0, 1) and standardized
gamma distributions Γ1,Γ2, and Γ3, with shape parameters
10, 2.5, and 1.5, respectively. The associated reversed distri-
butions are denoted by Γ̃1, Γ̃2, and Γ̃3.

bivariate distribution had (underlying) correlation .2, .4 and
.7. Three sample sizes were specified: n = 100, 300, 1000.
In each of the resulting 28 · 3 · 3 = 252 conditions, 1000
samples were generated. Each generated continuous data
sample was then discretized with thresholds specific to
each of the seven marginal distributions, chosen so that in
the population the resulting ordinal marginals distributions
had seven symmetrically distributed levels, see Figure 12.
That is, for every simulated dataset of sufficiently large
sample size, a plot of a marginal variable would resemble
the distribution in Figure 12.

The polychoric correlation and its standard error, as well
as the adjusted polychoric correlation and its adjusted stan-
dard error, were calculated in each generated ordinal sample.
Also, the 95% confidence interval (CI) for the underlying
correlation was calculated based on the polychoric estimator
and on its adjusted value. Relative bias for the two estimators
are depicted in Figure 13, at the largest sample size n = 1000.
The results are essentially the same for the smaller sample
sizes, and are not reported here. We remark that bias in all
conditions was positive, thereby verifying that the polychoric
correlation will overestimate the size of the true underlying
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Figure 12. Study 3: Symmetric ordinal distribution with
seven levels.

correlation.
Under bivariate normality (both marginals N(0, 1)), there

is no bias. However, when at least one of the marginals de-
parts from N(0, 1), the polychoric estimator is biased. The
overall relative bias associated with the polychoric estima-
tor is 7.3%, across all 28 pairs, sample sizes and ρ values.
The adjusted polychoric estimator, in contrast, is unbiased,
with overall a mean relative bias of −0.1%. The polychoric
estimator is severely biased when the marginals are skewed
in opposite directions. For instance, with marginal distri-
butions Γ2 and Γ̃2, the relative bias across all sample sizes
of the polychoric estimator is 10.8%, 14.1%, and 17.4% for
ρ = .2, .4, and .7, respectively. In the most extreme condi-
tion, with oppositely skewed marginals Γ3 and Γ̃3, and with
underlying correlation ρ = .7, the polychoric bias was 33%
across all sample sizes. This means that the mean polychoric
estimate was .93, missing severely the true underlying value
of .7. Although bias was not associated with sample size,
there was an association between the underlying correlation
ρ and polychoric estimation bias, as exemplified above with
Γ2 and Γ̃2. In general, when the marginals were oppositely
skewed, the higher underlying correlation lead to higher bias,
while for marginals skewed in the same direction, an increase
in underlying correlation led to decreased bias.

Coverage rates for CIs at the 95% level of confidence are
reported in Table 4 for the largest sample size7. The adjusted
polychoric correlation attains the nominal rate in all condi-
tions. The polychoric correlation are close to the nominal
rate only in mildly non-normal conditions. When the un-
derlying correlation ρ increases, coverage rates tend to fall
markedly below the nominal 95% level, especially when the
margins are skewed in opposite directions. For instance,
when ρ = .4, under Γ̃3 − Γ1 the coverage is 62%. When
ρ = .7 there are conditions where the polychoric confidence
interval failed to cover the vale .7 in all the 1000 simulated
datasets. The polychoric estimator had acceptable coverage

7Tables for n = 100 and n = 300 are provided in the online
supplementary material.
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Figure 13. Study 3: Relative bias for the polychoric estimator and its adjusted version as a function of marginal distributions.
Sample size n = 1000.

in only one condition, namely the bivariate normal condition.
For the smaller sample sizes, coverage rates expectedly were
higher for the polychoric estimator, given the larger standard
error estimates under smaller sample sizes. For n = 100,
the overall polychoric estimator coverage rates (across all 28
distributions) were 91%, 89%, and 70% for ρ = .2, .4, and
.7, respectively, while the overall adjusted polychoric cover-
age rates were 92%, 92%, and 93%, for ρ = .2, .4, and .7,
respectively. For n = 300, the overall polychoric estimator
coverage rates (across all 28 distributions) were 93%, 86%,
and 61% for ρ = .2, .4, and .7, respectively, while the over-
all adjusted polychoric coverage rates were 94%, 94%, and
94%, for ρ = .2, .4, and .7, respectively.

Study 4: Sensitivity to marginal non-normality in an em-
pirical case

Included in the MPsychoR package (Mair, 2020) is pro-
vided a dataset taken from Mair et al. (2015) who exam-
ined motivation among R package developers. In this study
we follow Mair (2018, Chapter 2.4.1) and consider a two-

factor model for intrinsic and extrinsic motivation, where
intrinsic motivation was measured by five binary indicators,
and extrinsic motivation by 12 binary indicators. The sam-
ple size is n = 794, and our focus in this sensitivity anal-
ysis is the correlation between intrinsic and extrinsic moti-
vation. Cat-LS estimation based on the tetrachoric corre-
lations8 yields an inter-factor correlation of .148 with a p-
value of .002. To conduct a sensitivity analysis with re-
spect to the assumption of normal marginals, we need to
specify non-normal marginal distributions corresponding to
each of the 17 marginals. This may be done in many ways.
Our focus here is to illustrate, so we posit that the de-
parture from marginal non-normality is not extreme, and
that each marginal may be distributed according to one of
Γ1,Γ2,Γ3, Γ̃1, Γ̃2, Γ̃3 defined above in Study 3. We follow
Mair (2018, Chapter 2.4.1) and assume that the underlying
bivariate copulas are normal. Since the items are binary,
there is to the best of our knowledge presently no available

8Polychoric correlations with binary data are known as tetra-
choric correlations (Pearson, 1900).
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Polychoric Adjusted polychoric
Margins ρ = .2 ρ = .4 ρ = .7 ρ = .2 ρ = .4 ρ = .7
Γ1Γ1 94.4 95.5 91.8 94.3 96.0 95.0
Γ̃1Γ1 94.1 93.7 57.4 94.7 95.3 94.3
Γ̃1Γ̃1 94.0 94.1 92.6 94.1 95.3 95.3
Γ2Γ1 93.2 92.6 82.9 93.7 94.3 95.0
Γ2Γ̃1 92.4 79.9 1.1 93.8 93.9 95.3
Γ2Γ2 92.2 88.4 83.4 94.4 94.5 95.5
Γ̃2Γ1 90.7 78.4 1.4 93.3 95.9 95.2
Γ̃2Γ̃1 92.9 90.9 83.3 95.2 94.7 93.9
Γ̃2Γ2 87.4 46.3 0.0 96.0 93.8 93.6
Γ̃2Γ̃2 92.3 88.6 83.4 93.8 95.0 95.0
Γ3Γ1 93.3 86.6 51.1 94.4 95.8 95.2
Γ3Γ̃1 90.6 61.4 0.0 93.9 95.7 94.9
Γ3Γ2 89.6 83.9 60.0 93.3 94.6 94.1
Γ3Γ̃2 81.6 21.2 0.0 92.7 94.0 94.9
Γ3Γ3 87.4 73.9 60.5 93.8 95.1 94.7
Γ̃3Γ1 87.7 62.1 0.0 95.0 95.6 95.7
Γ̃3Γ̃1 92.6 85.3 54.1 95.1 94.2 94.8
Γ̃3Γ2 83.2 19.6 0.0 93.6 93.4 93.8
Γ̃3Γ̃2 90.7 84.0 63.2 95.8 94.4 93.9
Γ̃3Γ3 74.0 4.3 0.0 95.1 93.9 94.2
Γ̃3Γ̃3 87.5 72.9 60.4 94.5 94.6 95.1
NΓ1 95.0 94.0 90.0 95.5 94.5 94.3
NΓ̃1 94.3 94.8 91.0 94.4 95.0 95.4
NΓ2 93.9 87.1 47.4 95.2 94.4 94.1
NΓ̃2 94.1 89.4 48.5 95.4 94.9 95.1
NΓ3 91.7 80.7 12.8 93.9 94.7 95.2
NΓ̃3 92.7 79.8 12.0 95.9 96.0 93.2
NN 94.8 95.2 94.8 94.8 95.2 94.8
Mean 90.7 75.9 47.3 94.5 94.8 94.7

Table 4
Study 3: Coverage rates at the 95% level of confidence, sam-
ple size n = 1000.

implementation of tests for underlying normality, such as the
test from Muthén and Hofacker (1988). After having speci-
fied the 17 marginals, we assume a normal copula, and em-
ploy the transform in Equation (6) to the tetrachoric correla-
tion calculated in the original sample, to calculate a new cor-
relation matrix. Then the two-factor model is estimated from
this new correlation matrix, and its associated asymptotic co-
variance matrix. To each specification of the 17 marginals
corresponds a new inter-factor correlation and an associated
p-value. The p-value is calculated based on an adjusted
asymptotic covariance matrix derived in the online appendix.
To get a representative set of marginal configurations, we
randomly generated 1000 marginal configurations and cal-
culated the inter-factor correlation and its associated p-value
in each configuration. The result is depicted in Figure 14,
where it is seen that the inter-factor correlation is rather ro-
bust to moderate underlying marginal non-normality. Also,
the p-value is not markedly affected by deviations from un-
derlying non-normality. We may therefore conclude that our
estimate of .148 and its statistical significance is not very sen-
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Figure 14. Study 4: Sensitivity analysis of the correlation
between intrinsic and extrinsic motivation in an empirical
dataset. The red cross represents the values obtained from
the empirical dataset using cat-LS.

sitive to moderate marginal non-normality. We note that our
illustration concerns only one parameter in the model.

Study 5: The consequences of mild marginal misspecifi-
cation at the population level on cat-LS

We now consider a population study where we generate
distributions that exactly follow a two-factor model. Each
generated distribution has different non-normal response dis-
tribution. This is done across four conditions generated by
varying some of the parameters in the two-factor model.
We then study how cat-LS performs in terms of inter-factor
correlation bias and RMSEA. The variation in this study is
driven by the different marginal distributions within each of
the four conditions, and not by sampling error. Therefore,
the obtained inter-factor correlation and RMSEA values may
be considered population values. We therefore omit cat-LS-
adj in this study, since it will always reach the population ϕ
value, and since its RMSEA will always equal zero.

This study employed a two-factor model as illustrated in
Figure 5. Four conditions were specified by varying the
residual error variances and the inter-factor correlation ϕ.
The residual error variances θδ were either all equal to .4 or
to .7, while ϕ was equal to either .4 or to .7. Factor variances
and factor loadings were all equal to one in all four condi-
tions. Each of the four specifications imply a correlation ma-
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trix:

Σθδ=0.4,ϕ=.4 =



1
.71 1
.71 .71 1
.29 .29 .29 1
.29 .29 .29 .71 1
.29 .29 .29 .71 .71 1



Σθδ=0.7,ϕ=.4 =



1
.59 1
.59 .59 1
.24 .24 .24 1
.24 .24 .24 .59 1
.24 .24 .24 .59 .59 1



Σθδ=0.4,ϕ=.7 =



1
.71 1
.71 .71 1
.50 .50 .50 1
.50 .50 .50 .71 1
.50 .50 .50 .71 .71 1



Σθδ=0.7,ϕ=.7 =



1
.59 1
.59 .59 1
.41 .41 .41 1
.41 .41 .41 .59 1
.41 .41 .41 .59 .59 1


We generated 1000 random configurations of marginal

distributions, where each marginal was randomly and in-
dependently chosen from Γ1,Γ2,Γ3, Γ̃1, Γ̃2, Γ̃3. For each
marginal configuration a large sample of size n = 2 · 105 was
drawn from a six-dimensional distribution whose correlation
matrix was equal to Σθδ,ϕ, with marginal distributions dictated
by the marginal configuration. Hence, a very large sample of
continuous data with non-normal marginals was drawn from
a population whose correlation matrix was equal to Σθδ,ϕ, so
that the two-factor model fitted perfectly. Next, the sample
was discretized into an ordinal dataset with K = 10 cate-
gories in each variable. The thresholds were chosen sepa-
rately for each marginal so that the ordinal distribution was
uniform, i.e., the thresholds are selected in such a way that
each of the ten categories are equally likely. Then, we fit-
ted the two-factor model with cat-LS to the ordinal dataset,
and extracted the inter-factor correlation ϕ̂ and the RMSEA
model fit index. The RMSEA is a measure of accumulated
bias that is contained in the polychoric correlation matrix
in relation to estimating the two-factor model. It is often
used as a measure of closeness of fit, where values exceed-
ing 0.05 are typically interpreted as lack of close fit. This
cut-off is based on the normal-theory ML fit function, which
differs from the DWLS fit function utilized in cat-LS. The
cut-off 0.05 is used in the present study, since the DWLS
based RMSEA tends to be lower than the normal-theory ML
based RMSEA (Xia & Yang, 2019). Therefore, lack of close
fit using the DWLS based RMSEA in general implies lack
of poor fit under the normal-theory ML based RMSEA. The

very large sample size ensures that ϕ̂ and the RMSEA value
are approximately equal to their population counterparts.

The results are depicted in Figure 15. It is is seen that both
bias and lack of close fit become more substantial in the con-
dition with largest underlying correlations, namely θδ = 0.4
and ϕ = .7. In this condition two-thirds of the marginal
configurations result in lack of poor fit, and there are some
marginal configurations where ϕ̂ exceeds .8 (see Table 5).
The most extreme bias occurs when all response distribu-
tions in one factor are skewed in the same direction, while
the response distributions in the second factor are all skewed
in the opposite direction. For instance, when the first three
response variables are Γ3 distributed, while the last three re-
sponse variables are Γ̃3 distributed, the inter-factor correla-
tion was estimated at .853. This exceeds the max value re-
ported in Table 5, so we may infer this extreme configuration
was not among the 1000 randomly chosen configurations.

Overall, the estimated ϕ̂ does not stray markedly from its
target value, as indicated by short interquartile ranges and
close-to-nominal median values in all four conditions. In
contrast, model fit assessment is adversely affected by mod-
erate marginal non-normality. Only in the condition with the
lowest correlations, i.e., θδ = .7 and ϕ = .4, did the model
pass the RMSEA test with high certainty. Note that all dis-
tributions simulated from in this study fitted perfectly to the
two-factor model. Therefore, it is problematic that a cor-
rectly specified model was indicated as lacking good fit in an
overall of 31% of all 4000 distributions generated.

ϕ̂ RMSEA
ϕ θδ Min Max Median IQR > .05 %
.4 0.4 .372 .458 .395 .019 23.3
.4 0.7 .376 .448 .396 .016 0.2
.7 0.4 .664 .830 .697 .031 67.3
.7 0.7 .660 .804 .693 .025 39.9

Table 5
Study 5: Summary statistics for the inter-factor correlation
ϕ̂ across four conditions, and the percentage of RMSEA ex-
ceeding the close fit value of .05. IQR=interquartile range.

Discussion

Recently, progress has been made concerning the sensi-
tivity of ordinal factor and structural equation modeling to
underlying non-normality. Foldnes and Grønneberg (2021)
focused on region D in Figure 1, with normal marginal dis-
tributions and non-normal response copula, and found that
the polychoric estimator may be substantially biased, lead-
ing to bias in estimation and fit assessment in a medium sized
structural equation model. These new insights into the sen-
sitivity of cat-LS and cont-ML to underlying non-normality
were made possible by employing newly developed simula-
tion methodology. Fortunately, such conditions may be reli-
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Figure 15. Study 5: Population-level analysis from 1000 randomly generated non-normal marginal configurations in each
panel. The horizontal line represents the RMSEA cutoff 0.05 for close model fit. Upper and lower panels correspond to the
inter-factor correlation ϕ being equal to .7 and .4, respectively.

ably detected in ordinal data by using, e.g., a bootstrap test
(Foldnes & Grønneberg, 2019b).

In the present study we considered the reverse kind of un-
derlying non-normality, as represented by Region B in Figure
1, where the copula is normal, and the response marginals
are non-normal. Through the use of illustrative examples
and probability arguments, we have argued that such con-
ditions are impossible to detect by purely statistical means.
It is therefore of importance to evaluate the extent to which
cat-LS is sensitive to non-normality in the response marginal
distributions. We have seen that if the response marginals
specified in the estimation methodology is far away from
the true marginals, the resulting factor model estimates may
be severely biased. This highlights the need for substantive
knowledge concerning the response marginal distributions.
While exact knowledge of the marginals enables the analyst
to reach the strongest type of conclusions, we have also il-
lustrated that substantive knowledge of a more approximate
form may be incorporated through the use of sensitivity anal-
ysis methods. For example, if marginals are known to be
close to normal, the analyst may try out cat-LS-adj using dif-
ferent approximately normal marginal distributions and in-
spect how stable the statistical conclusions are. The cost
of this is that the analyst ends up with one conclusion per
marginal configuration, and standard methodology such as
reporting a single p-value is no longer possible to follow.

A natural extension of the present research is to consider
the case when neither the copula class nor the marginals are
known exactly. Some notes on this case is given in the on-
line appendix “What if the copula is non-normal?” (p. 2).
We consider the full development of this problem outside the
scope of the present paper.

Practitioners ought to start their ordinal data analysis with
a test for the normality of the copula of the response vector
using the bootstrap test of Foldnes and Grønneberg (2019b)
as implemented in the R package discnorm (Foldnes &

Grønneberg, 2020). If the test for underlying copula normal-
ity is passed, and this is compatible with substantive knowl-
edge, the material in the present article is highly relevant.

In contrast, if the test for underlying copula normality is
clearly rejected and the copula is unknown, there are to the
best of our knowledge just three available options in the lit-
erature, all derived in Foldnes and Grønneberg (2021), and
all assuming that the number of categories K is large: First,
cont-ML may be used if equally spaced thresholds are known
to hold. And cont-ML-adj and cat-LS-thr (both reviewed in
the online appendix of the present paper) can be used when
the response marginals are known. Both cont-ML-adj and
cat-LS-thr can be used in sensitivity analyses if the marginals
are not known exactly.

If the number of categories K is not large, knowledge of
both the response marginal distributions and of the copula is
required. Otherwise the underlying correlation matrix is not
identified from the ordinal data. For example, if the response
marginals are known, but the response copula is unknown,
we may calculate the set of possible correlation values an
underlying vector may have and still be able to generate the
ordinal dataset (Grønneberg & Moss, 2021; Grønneberg et
al., 2020). These sets are unfortunately always large, and
this is in contrast to the single value required to use cat-LS.

The present work shows that using methodology which
wrongly assumes normal response marginals may reach
statistically invalid conclusions. Wrongly assuming other
marginals will also be problematic, and this can happen with
cat-LS-adj. As mentioned at the end of Study 1, our numeri-
cal illustrations can be interpreted in a symmetric fashion by
viewing the the true response distribution as having normal
marginals. They therefore also illustrate how the cat-LS-adj
is sensitive towards response marginal misspecification when
the response marginals are normal but non-normal marginals
are specified.

Our focus has been solely on traditional covariance based



SUBSTANTIVE KNOWLEDGE IN ORDINAL FACTOR ANALYSIS 21

ordinal factor models. Other types of factor models exist, for
instance the factor copula model (Nikoloulopoulos & Joe,
2015). This model is based solely on underlying copulas,
and therefore has identified parameters without assumptions
on continuous marginals. There is in general no simple cor-
respondence between a factor copula model and a covari-
ance based copula model, except under normality. Also, the
covariance calculations that usually motivate ordinal covari-
ance models do not lead directly to a factor copula model.

Conclusion

We have provided an analysis of ordinal factor analysis
with non-normal response marginal distributions, mainly un-
der the assumption that the response copula is normal. Cur-
rent software operates on the assumption that these distribu-
tions are normal, and given the impossibility of statistically
testing for non-normal response marginal distributions, we
deemed it important to examine whether cat-LS is sensitive
to their occurrence. We provide empirical support for the
relevance of non-normal response distributions, and show
that their effect on cat-LS may be highly detrimental. Us-
ing an analytically constructed example, we show that the
important factor retention problem in ordinal factor analysis
cannot be solved through fully empirical means. The factor
retention problem is therefore shown to rest on substantive
knowledge not derivable through statistical means. We have
shown through a series of illustrations and studies that or-
dinal factor analysis rests on substantive knowledge about
the response marginal distributions provided by an expert.
The more exact such knowledge is, the more exact conclu-
sions can be reported. With only partial knowledge of the
response marginal distributions, sensitivity analysis can help
the analyst demarcate the robustness of the statistical con-
clusions. Methodological and theoretical developments for
specifying response marginals distributions and for assess-
ing the consequences of erroneous response distributional as-
sumptions should be an important topic for further research,
as the sensitivity of cat-LS and related techniques to response
marginal distributional misspecification may have important
consequences in foundational topics in psychological and be-
havioral research, such as scale development.

Appendix

A formal definition of the adjusted polychorics

Since polychoric correlations are based only on bivariate
information, we consider the case when p = 2 without loss
of generality. We note that our adjustment is not tied to the
polychoric correlation, but will work with any consistent pro-
cedures for the covariance matrix of X∗ when assuming nor-
mality, such as full information estimates.

Assumption 1. 1. We assume that F∗1, F
∗
2 are the

marginals of X∗ = (X∗1, X
∗
2)′, and that they are stan-

dardized, continuous, and strictly increasing.

2. We assume that (X∗1, X
∗
2)′ has a normal copula.

We wish to estimate the underlying correlation, namely

ρX∗ = Cov(X∗1, X
∗
2), (9)

which equals the correlation of X∗1, X
∗
2 since F∗1, F

∗
2 are stan-

dardized.
Assume that we observe n independent and identically

distributed random vectors, distributed as X = (X1, X2)′ ful-
filling Equation (1). Based on these observations, we com-
pute the the full or the two-step normal theory polychoric
correlation of Olsson (1979a) using standard software. Let
the resulting estimator be denoted ρ̂NT. Unless F∗1, F

∗
2 are

standard normal distributions, ρ̂NT will be an inconsistent es-
timator of ρX∗ . We here derive a correction for ρ̂NT to esti-
mate ρX∗ in a consistent manner.

Recall that X∗ has a normal copula with correlation ρZ∗ if

Z∗ =
(
Φ−1(U∗1),Φ−1(U∗2)

)
is bivariate normal with standardized marginals and correla-
tion ρZ∗ , where

(U∗1,U
∗
2)′ = (F∗1(X∗1), F∗2(X∗2))′.

From Sklar’s Theorem, the copula and the marginal distri-
butions uniquely describe the full probability distribution of
X∗, and hence also X (Nelsen, 2007, Chapter 2.3). The pa-
rameter of interest is the Pearson correlation ρX∗ of X∗. The
normal copula is parameterized by the Pearson correlation
ρZ∗ of Z∗. Since F∗1, F

∗
2,Φ

−1 are all strictly increasing func-
tions from Assumption 1, and copulas are preserved under
strictly increasing coordinate-wise transformations (Nelsen,
2007, Theorem 2.4.3), X∗ and Z∗ have the same copula, and
X∗ and Z∗ can both be discretized to X as shown in Equation
(5) (p. 9).

Therefore, the normal theory polychoric correlation ρ̂NT
will consistently estimate the correlation of Z∗, which is the
parameter of the normal copula. It is a ML type estimator for
ρZ∗ , and the parameter we wish to estimate is ρX∗ of Equa-
tion (9). The relation between these parameters is given by
the following result, whose proof is in the appendix.

Proposition 1. Under Assumption 1, we have that

ρX∗ = Ψ(ρZ∗ ),

where

Ψ(r) =
∫ ∞
−∞

∫ ∞
−∞

Cr
(
F∗1(x1), F∗2(x2)

)
− F∗1(x1)F∗2(x2) dx1dx2,
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and Cr is the normal copula with correlation r. We have that
Ψ is a strictly increasing function, and that

Ψ′(r) =
∫ ∞
−∞

∫ ∞
−∞

ϕ2,r

(
Φ−1(F∗1(x1)),Φ−1(F∗2(x2))

)
dx1dx2

where ϕ2,r is the density of a bivariate normal random vector
with standardized marginals and correlation r.

SinceΨ in the proposition is strictly increasing, estimating
ρX∗ = Ψ(ρZ∗ ) is a reparametrization of the previous ML esti-
mator ρ̂NT for ρZ∗ . Since ML estimators are invariant under
reparametrizations, the ML estimator for ρZ∗ equals

ρ̂X∗ = Ψ(ρ̂NT). (10)

This is the adjusted polychoric correlation. A simple adjust-
ment for calculating standard errors for adjusted polychorics,
and therefore for cat-LS-adj, is given in the online appendix
“Standard errors for cat-LS-Adj” on p. 2.

The impossibility of detecting marginal non-normality in
the response variables

We here explain why and in what sense it is impossible
to detect marginal non-normality in the response variables.
This influences the interpretation of tests for underlying nor-
mality, as all such tests can do is test whether the copula
evaluated at certain points is compatible with normality.

Suppose we have access to unlimited repeated observa-
tions from X. Without further substantive knowledge, the
multivariate cumulative distribution function of X, given by
FX(x1, . . . , xp) = P(X1 ≤ x1, . . . , Xp ≤ xp) encodes every-
thing we may know statistically, and therefore also what we
can statistically say about the underlying X∗ without substan-
tive knowledge. We assume that X∗ is a continuous random
vector.

Let the response variables in the vector X∗ have marginal
distributions F∗1, . . . , F

∗
p, and recall that the copula C∗ of X∗

is the cumulative distribution of (F∗1(X∗1), . . . , F∗p(X∗p)) (Joe,
1997; Nelsen, 2007). By Equation (1) on p. 3, we have
pi(x j) = P(Xi ≤ x j) = P(X∗i ≤ τi,x j ) = F∗i (τi,x j ). The val-
ues pi(x j) are known from FX , and hence known. However,
if both the thresholds and the marginal distributions are un-
known, we cannot conclude anything about either from the
relations pi(x j) = F∗i (τi,x j ), since each F∗i is a continuous
cumulative distribution function, which attains any value be-
tween zero and one.

Also by Equation (1), we have

FX(x1, . . . , xp)
= P(X∗1 ≤ τ1,x1 , . . . , X

∗
p ≤ τp,xp )

= P(F∗1(X∗1) ≤ F∗1(τ1,x1 ), . . . , F∗p(X∗p) ≤ F∗p(τp,xp ))

= C∗(F∗1(τ1,x1 ), . . . , F∗p(τp,xp ))

= C∗(p1(x1), . . . , pp(xp)).

This shows that C∗ has known values at the points
(p1(x1), . . . , pp(xp)) for varying x1, . . . , xp. But even if we
were to know the copula C∗ exactly, Sklar’s theorem (Nelsen,
2007; Sklar, 1959) implies that this knowledge would not
provide us with any information concerning the thresholds
or the marginal distributions, as any copula can be connected
to any marginal distribution and still result in a valid prob-
ability distribution. Our knowledge of X∗ is therefore re-
stricted to knowing the value of C∗ at some points, and that
pi(x j) = F∗i (τi,x j ), a statement where thresholds and marginal
distributions are confounded. We cannot say anything about
the marginals F∗1, . . . , F

∗
p or the thresholds, except for this

confounded statement.
In study 2, each response variable is a strictly increasing

transformation of a corresponding coordinate belonging to a
fully normal random vector. This means that the copula of
X∗ is normal, see Nelsen (2007, Theorem 2.4.3) and Foldnes
and Grønneberg (2015). As seen above, our knowledge of
X∗ from X does give some restrictions on the copula C∗. But
in our illustration, C∗ is exactly normal. Since the one- and
two-factor solutions differ only in their response marginals,
which are completely unknown to us if our knowledge comes
only from observing X, it is impossible in principle to empir-
ically detect that the fully normal one-factor solution is not
correct.

Finally, we mention that while it is impossible to test
marginal normality when only knowing the distribution of
X, it may be possible to test marginal normality if we know
something about the thresholds. We have knowledge con-
tained in the confounded statement pi(x j) = F∗i (τi,x j ), which
opens up for the possibility of using substantive knowledge
of the thresholds to test statements of the marginals. Con-
ceptually, this possibility is similar to being able to test the
goodness of fit in confirmatory factor models: This test re-
quires that the factor model is over-identified, and not just
identified. While the identification of the model requires
substantive knowledge, having an over-identified model re-
quires more substantive knowledge than what is required to
reach a just identified model. When combined, we may reach
testable implications of substantive knowledge, yet the sub-
stantive knowledge all in all required to apply a confirmatory
factor model cannot be tested or derived from data alone.

References

Asparouhov, T., & Muthén, B. (2010). Simple second order chi-
square correction. Mplus technical appendix, 1–8.

Bartholomew, D. J. (2007). Three faces of factor analysis.
In R. Cudeck & R. C. MacCallum (Eds.), Factor analy-
sis at 100: Historical developments and future directions
(Vol. 100, pp. 9–21). Erlbaum.

Bartholomew, D. J., Steele, F., Galbraith, J., & Moustaki, I. (2008).
Analysis of multivariate social science data. Chapman and
Hall/CRC.



SUBSTANTIVE KNOWLEDGE IN ORDINAL FACTOR ANALYSIS 23

Beauducel, A., & Herzberg, P. Y. (2006). On the performance
of maximum likelihood versus means and variance adjusted
weighted least squares estimation in cfa. Structural Equation
Modeling: A Multidisciplinary Journal, 13(2), 186-203.

Bentler, P. (2006). Eqs 6 structural equations program manual.
Encino, CA: Multivariate Software, Inc.

Berger, J. O. (1985). Statistical decision theory and bayesian anal-
ysis. Springer-Verlag New York. doi: 10.1007/978-1-4757-
4286-2

Berger, J. O., Moreno, E., Pericchi, L. R., Bayarri, M. J., Bernardo,
J. M., Cano, J. A., . . . others (1994). An overview
of robust bayesian analysis. Test, 3(1), 5–124. doi:
10.1007/BF02562676

Bollen, K. A. (1989). Structural equations with latent variables.
New York: Wiley. doi: 10.1002/9781118619179

Braeken, J., Tuerlinckx, F., & Boeck, P. (2007, June). Copula
Functions for Residual Dependency. psychometrika, 72(3),
393–411. doi: 10.1007/s11336-007-9005-4

Browne, M. W. (1984). Asymptotically distribution-free methods
for the analysis of covariance structures. British Journal of
Mathematical and Statistical Psychology, 37(1), 62–83.

Browne, M. W., & Cudeck, R. (1992). Alternative ways of as-
sessing model fit. Sociological methods & research, 21(2),
230–258.

Christoffersson, A. (1975). Factor analysis of dichotomized vari-
ables. Psychometrika, 40(1), 5–32.

Coenders, G., Satorra, A., & Saris, W. E. (1997). Alter-
native approaches to structural modeling of ordinal data:
A monte carlo study. Structural Equation Modeling: A
Multidisciplinary Journal, 4(4), 261-282. Retrieved from
https://doi.org/10.1080/10705519709540077 doi:
10.1080/10705519709540077

Curran, P. J., West, S. G., & Finch, J. F. (1996). The robustness
of test statistics to nonnormality and specification error in
confirmatory factor analysis. Psychological Methods, 1(1),
16-29. doi: 10.1037/1082-989X.1.1.16

Efron, B., & Tibshirani, R. J. (1994). An introduction to the boot-
strap. CRC press.

Falkenström, F., Park, S., & McIntosh, C. N. (2021). Using copulas
to enable causal inference from non-experimental data: Tu-
torial and simulation studies. Psychological Methods. doi:
10.1037/met0000414

Flora, D. B., & Curran, P. J. (2004). An empirical evaluation of al-
ternative methods of estimation for confirmatory factor anal-
ysis with ordinal data. Psychological methods, 9(4), 466–
491.

Flora, D. B., & Flake, J. K. (2017). The purpose and practice of ex-
ploratory and confirmatory factor analysis in psychological
research: Decisions for scale development and validation.
Canadian Journal of Behavioural Science/Revue canadienne
des sciences du comportement, 49(2), 78.

Foldnes, N., & Grønneberg, S. (2015). How general is the Vale–
Maurelli simulation approach? Psychometrika, 80(4), 1066–
1083.

Foldnes, N., & Grønneberg, S. (2019a). On identification and non-
normal simulation in ordinal covariance and item response
models. Psychometrika, 84(4), 1000–1017.

Foldnes, N., & Grønneberg, S. (2019b). Pernicious polychorics:

The impact and detection of underlying non-normality.
Structural Equation Modeling: A Multidisciplinary Journal,
1–19. doi: 10.1080/10705511.2019.1673168

Foldnes, N., & Grønneberg, S. (2021). The sensitiv-
ity of structural equation modeling with ordinal data
to underlying non-normality and observed distributional
forms. Psychological Methods. Retrieved from
https://doi.org/10.1037/met0000385 (Online first)

Foldnes, N., & Grønneberg, S. (2020). discnorm:
Test for discretized normality in ordinal data
[Computer software manual]. Retrieved from
https://CRAN.R-project.org/package=discnorm
(R package version 0.1.0)

Foldnes, N., & Grønneberg, S. (2021). Non-normal data simu-
lation using piecewise linear transforms. Structural Equa-
tion Modeling: A Multidisciplinary Journal, 0(0), 1-11. doi:
10.1080/10705511.2021.1949323

Foldnes, N., & Olsson, U. H. (2016). A simple simulation technique
for nonnormal data with prespecified skewness, kurtosis, and
covariance matrix. Multivariate behavioral research, 51(2-
3), 207–219.

Galarza, C. E., Kan, R., & Lachos, V. H. (2021). Momtrunc:
Moments of folded and doubly truncated multivariate dis-
tributions [Computer software manual]. Retrieved from
https://CRAN.R-project.org/package=MomTrunc (R
package version 5.97)

Grønneberg, S., Foldnes, N., & Marcoulides, K. M. (2021). covsim:
An r package for simulating non-normal data for structural
equation models using copulas. Journal of Statistical Soft-
ware. (forthcoming)

Grønneberg, S., & Moss, J. (2021). Partial identification of latent
correlations with polytomous data. Psychometrika. (Submit-
ted)

Grønneberg, S., Moss, J., & Foldnes, N. (2020). Partial identifica-
tion of latent correlations with binary data. Psychometrika,
85(4), 1028–1051. doi: 10.1007/s11336-020-09737-y

Höffding, W. (1940). Masstabinvariante korrelationstheorie.
Schriften des Mathematischen Instituts und Instituts fur
Angewandte Mathematik der Universitat Berlin, 5, 181–
233.

Insua, D. R., & Ruggeri, F. (2012). Robust bayesian analy-
sis (Vol. 152). Springer Science & Business Media. doi:
10.1007/978-1-4612-1306-2

Jin, S., & Yang-Wallentin, F. (2017). Asymptotic robustness study
of the polychoric correlation estimation. Psychometrika,
82(1), 67–85.

Joe, H. (1997). Multivariate models and multivariate dependence
concepts (Vol. 73). Chapman & Hall/CRC.

Jöreskog, K. G. (1969). A general approach to confirmatory maxi-
mum likelihood factor analysis. Psychometrika, 34(2), 183–
202.

Jöreskog, K. G. (2005). Structural equation modeling with ordinal
variables using lisrel. Technical report, Scientific Software
International, Inc., Lincolnwood, IL.

Jöreskog, K. G., & Sörbom, D. (2015). Lisrel 9.20 for windows
[computer software]. Skokie, IL: Scientific Software Interna-
tional, Inc..

Klaassen, C. A., & Wellner, J. A. (1997). Efficient estimation in



24 STEFFEN GRØNNEBERG AND NJÅL FOLDNES

the bivariate normal copula model: normal margins are least
favourable. Bernoulli, 55–77. doi: 10.2307/3318652

Kline, R. B. (2015). Principles and practice of structural equation
modeling. Guilford publications.

Krupskii, P., & Joe, H. (2013). Factor copula models for multivari-
ate data. Journal of Multivariate Analysis, 120, 85–101. doi:
10.1016/j.jmva.2013.05.001

Leamer, E. E. (1985). Sensitivity analyses would help. The Amer-
ican Economic Review, 75(3), 308–313. Retrieved from
https://www.jstor.org/stable/1814801

Li, C.-H. (2016). Confirmatory factor analysis with ordinal
data: Comparing robust maximum likelihood and diagonally
weighted least squares. Behavior Research Methods, 48(3),
936–949.

Mair, P. (2018). Modern psychometrics with r. Springer. doi:
https://doi.org/10.1007/978-3-319-93177-7

Mair, P. (2020). Mpsychor: Modern psychometrics
with r [Computer software manual]. Retrieved from
https://CRAN.R-project.org/package=MPsychoR (R
package version 0.10-8)

Mair, P., Hofmann, E., Gruber, K., Hatzinger, R., Zeileis, A.,
& Hornik, K. (2015). Motivation, values, and work
design as drivers of participation in the r open source
project for statistical computing. Proceedings of the Na-
tional Academy of Sciences, 112(48), 14788–14792. doi:
10.1073/pnas.1506047112

Marsh, H. W., Abduljabbar, A. S., Abu-Hilal, M. M., Morin, A. J.,
Abdelfattah, F., Leung, K. C., . . . Parker, P. (2013). Fac-
torial, convergent, and discriminant validity of timss math
and science motivation measures: A comparison of arab and
anglo-saxon countries. Journal of Educational Psychology,
105(1), 108.

Maydeu-Olivares, A. (2006). Limited information estimation and
testing of discretized multivariate normal structural models.
Psychometrika, 71(1), 57–77. doi: 10.1007/s11336-005-
0773-4

Monroe, S. (2018). Contributions to estimation of polychoric corre-
lations. Multivariate behavioral research, 53(2), 247–266.

Muthén, B. (1984). A general structural equation model with di-
chotomous, ordered categorical, and continuous latent vari-
able indicators. Psychometrika, 49(1), 115–132.

Muthén, B., & Hofacker, C. (1988). Testing the assumptions under-
lying tetrachoric correlations. Psychometrika, 53(4), 563–
577.

Muthén, B., & Muthén, L. (2012). Mplus version 7: User’s guide.
Los Angeles, CA: Muthén & Muthén.

Nelsen, R. B. (2007). An introduction to copulas. Springer Science
& Business Media.

Nikoloulopoulos, A. K., & Joe, H. (2015). Factor copula models
for item response data. Psychometrika, 80(1), 126–150. doi:
10.1007/s11336-013-9387-4

Nilsen, F. A., Bang, H., Boe, O., Martinsen, Ø. L., Lang-Ree, O. C.,
& Røysamb, E. (2020). The multidimensional self-control
scale (mscs): Development and validation. Psychological
Assessment, 32(11), 1057.

Olsson, U. (1979a). Maximum likelihood estimation of the poly-
choric correlation coefficient. Psychometrika, 44(4), 443–
460.

Olsson, U. (1979b). On the robustness of factor analysis against
crude classification of the observations. Multivariate behav-
ioral research, 14(4), 485–500.

Pearson, K. (1900). Mathematical contributions to the theory of
evolution. vii. on the correlation of characters not quantita-
tively measurable. Philos. Trans. R. Soc. SA, 196, 1–47.

Rhemtulla, M., Brosseau-Liard, P. É., & Savalei, V. (2012). When
can categorical variables be treated as continuous? a com-
parison of robust continuous and categorical SEM estima-
tion methods under suboptimal conditions. Psychological
methods, 17(3), 354.

Rosseel, Y. (2012). lavaan: An R package for structural equation
modeling. Journal of Statistical Software, 48(2), 1–36.

Satorra, A. (1989). Alternative test criteria in covariance structure
analysis: A unified approach. Psychometrika, 54(1), 131–
151.

Satorra, A., & Bentler, P. (1988). Scaling corrections for statis-
tics in covariance structure analysis (UCLA statistics series
2). Los Angeles: University of California at Los Angeles,
Department of Psychology.

Sklar, M. (1959). Fonctions de repartition a n dimensions et leurs
marges. Université Paris 8.

Takane, Y., & De Leeuw, J. (1987). On the relationship between
item response theory and factor analysis of discretized vari-
ables. Psychometrika, 52(3), 393–408.

Tallis, G. (1962). The maximum likelihood estimation of correla-
tion from contingency tables. Biometrics, 18(3), 342–353.

Vaida, F., & Liu, L. (2009). Fast implementation for normal mixed
effects models with censored response. Journal of Compu-
tational and Graphical Statistics, 18(4), 797–817.

Vale, C. D., & Maurelli, V. A. (1983). Simulating multivariate
nonnormal distributions. Psychometrika, 48(3), 465–471.

Van der Vaart, A. W. (2000). Asymptotic statistics (Vol. 3). Cam-
bridge university press.

Van Erp, S., Mulder, J., & Oberski, D. L. (2018). Prior
sensitivity analysis in default bayesian structural equation
modeling. Psychological Methods, 23(2), 363. doi:
10.1037/met0000162

Xia, Y., & Yang, Y. (2019). Rmsea, cfi, and tli in structural equa-
tion modeling with ordered categorical data: The story they
tell depends on the estimation methods. Behavior research
methods, 51(1), 409–428.



SUBSTANTIVE KNOWLEDGE IN ORDINAL FACTOR ANALYSIS 1

Online Supplementary Material to Article
Factor analyzing ordinal items requires

substantive knowledge

Steffen Grønneberg & Njål Foldnes

The necessity of a discretization model

We here briefly motivate the importance of the discretiza-
tion framework for ordinal factor models.

There are three main ways to think about factor analy-
sis with ordinal data. Firstly, we may use a discretization
model, as discussed above. Secondly, we may use condi-
tional probability assumptions, such as the considerations
leading to the multivariate item response theory (IRT) model
as discussed in (Bartholomew, Steele, Galbraith, & Mous-
taki, 2008, Chapters 8 and 9). While we will not discuss
the IRT perspective in this article, we note that IRT mod-
els may usually be re-written as discretization models, see
Takane and De Leeuw (1987) and Foldnes and Grønneberg
(2019a, Appendix).

Thirdly, we may attempt to apply a factor analysis model
for continuous data directly to the observations. As Foldnes
and Grønneberg (2021) showed mathematically, this may
work well under certain assumptions, but we need to be care-
ful about how we quantify the degree of success. In Foldnes
and Grønneberg (2021), we start out with a random vector
X∗ following a continuous factor model, and X∗ is then dis-
cretized into X. We identify conditions for when estimat-
ing X via cont-ML will succeed, meaning that it will reach
approximately the same model that X∗ follows. This argu-
ment takes the discretization process as its starting point, and
does assume that the the assumptions leading to a covariance
structure are fulfilled for the ordinal observations.

Taking a covariance based factor model for an ordinal X as
a starting point is not recommended (Bollen, 1989, Chapter
9). Let us briefly review why this is so. Consider the equa-
tions of a factor model the form X = µ + Λξ + ϵ. Identifying
assumptions include Cov(ξ, ϵ) = 0. If ξ and/or ϵ take on only
a finite number of outcomes, we get a conceptually complex
interplay between the support and distribution of ξ, ϵ, the at-
tained values of µ,Λ, and the restriction that Cov(ξ, ϵ) = 0,
which induces problems of such a serious character that this
option should not be considered. If in contrast, ξ is to be con-
tinuous, which is the traditional perspective, there will be a
non-linear dependence between ξ, ϵ: if ξ is continuous, ϵ has
to convert the continuous vector λξ into the strict categories
of X, which is a highly non-linear process. The dependence
between ξ and ϵ seems difficult to interpret and motivate, as it
must be of such a character that we still have the identifying
assumption Cov(ξ, ϵ) = 0.

Implementing the adjustments in the illustrative case for
Study 1 & 2

We here consider some computational details for the im-
plementation of cont-ML-adj and cat-ls-adj for Study 1 & 2.

The cont-ML-adj of Foldnes and Grønneberg (2021) ad-
justs the observable variables encoding the data using

x̂k, j = m(τ̂k, j−1, τ̂k, j) (11)

where m(x, y) = E[X∗k |x ≤ X∗k ≤ y]. In the later section
“Mathematical results for implementing cont-ML-adj in the
illustration” (p. 3) we provide exact formulas for computing
m for the distributions we consider in the illustration, and
these are implemented in R code provided as supplementary
material.

Using the cat-LS-adj for estimation and inference requires
the calculation of Ψ and Ψ′. While calculating Ψ can always
be done using numerical integration of the integral given in
Proposition 1, our illustration consists of simple transforma-
tions of normal variables, and there exist well-established
formulas for moments of truncated multivariate normal vari-
ables which can be used to calculateΨ directly. In our imple-
mentation given in the supplementary material, we use the R
package MomTrunc (Galarza, Kan, & Lachos, 2021), which
is based on recursive formulas from Vaida and Liu (2009),
to calculate Ψ. Due to the resulting fast evaluation of Ψ, our
implementation use numerical differentiation of Ψ to calcu-
late Ψ′. In the case at hand, this is quicker than numerically
evaluating the integral definition of Ψ′ in Proposition 1.

Proof of Proposition 1

Proof of Proposition 1. The formula for Ψ is the Höffd-
ing formula for covariances (Höffding, 1940), using that
F∗1, F

∗
2 are standardized. Since r 7→ Cr(u, v) is strictly

increasing for any 0 < u, v < 1 (Joe, 1997, Section
5.1), Ψ is strictly increasing. Finally, since all cumulative
distribution functions are in probabilities, and hence con-
tained within the interval [0, 1], also |Cr

(
F∗1(x1), F∗2(x2)

)
−

F∗1(x1)F∗2(x2)| ≤ |Cr

(
F∗1(x1), F∗2(x2)

)
| + |F∗1(x1)F∗2(x2)| =

|Cr

(
F∗1(x1), F∗2(x2)

)
| + |F∗1(x1)||F∗2(x2)| ≤ 1 + 1 · 1 =

2 by the triangle inequality. We may therefore inter-
change derivation and integration, and we have Ψ′(r) =∫ ∞
−∞

∫ ∞
−∞

d
dr Cr

(
F∗1(x1), F2(x∗2)

)
dx1dx2. Letting Φ2,r be the

cumulative distribution function of a bivariate normal ran-
dom vector with standardized marginals and correlation
r, we recall Φ2,r(z1, z2) = Cr(Φ(z1),Φ(z2)). Therefore,
with z1 = Φ

−1(F∗1(x1)) and z2 = Φ
−1(F∗2(x2)), we have

Cr

(
F∗1(x1), F∗2(x2)

)
= Cr(Φ(z1),Φ(z2)) = Φ2,r(z1, z2) =

Φ2,r(Φ−1(F∗1(x1)),Φ−1(F∗2(x2))). As in Olsson (1979a), we
use that d

drΦ2,r(z1, z2) = ϕ2,r(z1, z2) from Tallis (1962, p.
344). The result then follows. □
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Standard errors for cat-LS-adj

By the delta method (e.g. Van der Vaart, 2000, Chapter 3),
we have that

√
n(ρ̂ − ρX∗ ) =

√
n(Ψ(ρ̂NT) − Ψ(ρZ∗ ))

= Ψ′(ρZ∗ )
√

n(ρ̂NT − ρZ∗ ) + oP(1) (12)

where oP(1) means a quantity converging in probability to
zero as n → ∞. This forms the basis for computing the
asymptotic covariance matrix of a vector of adjusted poly-
choric correlations using a simple formula: Let us gather
p(p − 1)/2 normal theory polychoric correlations in a vec-
tor P̂NT, with respective normal theory limits contained in a
vector PNT. Assume

√
n[P̂NT − PNT)

d
−−−−→
n→∞

N(0,Γ) (13)

for some matrix Γ, as derived e.g. in Olsson (1979a). Let the
respective adjusted estimators and limits be contained in vec-
tors P̂ and P. Let Λ be a q× q matrix, where q = d(d − 1)/2,
containing zeros except for its diagonal, which contain ele-
ments of the form Ψ′(ρZ∗ ) for the Ψ′ function of the corre-
sponding coordinate as deduced above. Then Equation (12)
combined with Equation (13) implies that

√
n[P̂ − P] = Λ

√
n[P̂NT − PNT] + oP(1)

d
−−−−→
n→∞

N(0,ΛΓΛ′).

The asymptotic covariance matrix of the adjusted polychoric
estimators is therefore given by ΛΓΛ′. Alternatively, statis-
tical inference can be done using the parametric bootstrap
(Efron & Tibshirani, 1994).

What if the copula is non-normal?

While Assumption 1.1 is a weak assumption, Assumption
1.2 is a strong assumption, which will likely often not be
fulfilled. An investigation of non-normal copulas in the con-
text of ordinal factor models is found in Foldnes and Grøn-
neberg (2021), and we consider the subject as partly outside
the scope of the present article. Surprisingly, the require-
ment of knowing the copula is less absolute than knowing
the marginals: Foldnes and Grønneberg (2021, Lem. 1) con-
sidered a modification of the normal theory polychoric cor-
relation which takes into account the marginal information
in a slightly different way than the adjusted polychoric cor-
relation considered in the present article. For that alternative
polychoric correlation, as K → ∞, we consistently estimate
the Pearson correlation of the response variables as long as
the marginals are correctly specified, but the copula of the
response variables need not be normal nor even known.

For completeness, we here briefly discuss what happens if
we know that (X∗1, X

∗
2)′ has a non-normal copula that fulfills

some regularity conditions specified shortly. The full devel-
opment of this problem is considered outside the scope of the
present paper.

Assumption 1.2 can be extended as follows

Assumption 2. 2.’ We assume that (X∗1, X
∗
2)′ has a cop-

ula with cumulative distribution function Cθ for θ ∈ Θ
where Θ is an interval of real numbers with possibly
infinite length. Here, Cθ is such that for all u, v ∈ (0, 1)
the function θ 7→ Cθ(u, v) is strictly increasing.

Lemma 1. Under 2.2’, θ is identified.

Proof. The θ parameter is identified by just dichotomous
knowledge, using the argument just above Theorem 1 in
Grønneberg et al. (2020). Since this dichotomous informa-
tion is derivable from the full distribution of X, the parameter
is identified. □

The parameter θ may now be estimated by standard
ML, or some variant of it as in Jin and Yang-Wallentin
(2017). From the estimated copula parameters, and the
known marginals F∗1, F

∗
2, we may compute the Pearson cor-

relation of the response distribution. The result of this cal-
culation is our proposed estimator for response correlations.
Inference theory then follows by standard asymptotics for
ML estimators, or inference theory that takes into account
e.g. two step estimation such as in Jin and Yang-Wallentin
(2017). Since we have a fully specified parametric model, in-
ference may also follow from the parametric bootstrap (Efron
& Tibshirani, 1994). These correlation estimates, and their
asymptotic covariance matrix, are then used in cat-LS, re-
placing the normal theory polychoric correlations and their
asymptotic covariance matrix.

A review of cat-LS-thr, and a comparison to cat-LS-adj

Foldnes and Grønneberg (2021) suggested an adjustment
to normal theory polychoric correlations, which we may
call threshold adjusted polychorics, took response marginals
F∗1, F

∗
2, . . . , F

∗
p as input, and provided an estimate of the re-

sponse correlation matrix as output. As K → ∞, this es-
timate is consistent as long as the response marginals are
correctly specified. This property is shared with cont-ML-
adj, and holds irrespective of the true underlying response
copula.

When replacing standard polychorics in cat-LS estima-
tion with threshold adjusted polychorics, we get an estimator
which we call cat-LS-thr.

In normal theory polychorics, the thresholds are estimated
using

τ̂NT,k, j = Φ
−1(P̂(Xk ≤ j))

where P̂(Xk ≤ j) is an empirical probability based on a given
sample, and Φ is the cumulative distribution function of the
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standard normal distribution. In threshold adjusted poly-
chorics, the thresholds are instead estimated based on the
relation τk, j = F∗k

−1(P(Xk ≤ j)), and set to

τ̂k, j = F∗k
−1(P̂(Xk ≤ j)),

where P̂(Xk ≤ j) is the empirical probability of this
event. The estimator τ̂k, j will be consistent as long as the
marginals are (F∗k ). Code to implement the threshold ad-
justed polychorics is given in the online supplementary ma-
terial of Foldnes and Grønneberg (2021). Standard errors are
presently only available for normal marginals, in which case
the cat-LS-thr is the standard cat-LS. Standard errors may
be computed using bootstrap methods, and the derivation of
analytical formulas is left for future research.

The threshold adjusted polychorics of Foldnes and Grøn-
neberg (2021) is then the normal theory polychorics, but in-
stead of using (τ̂NT,k, j) as threshold estimates, (τ̂k, j) is rather
used. Of course, if response marginals are fixed to standard
normal, the standard normal theory polychoric estimates re-
appear.

We now compare cat-LS-thr with the cat-LS-adj sug-
gested in the present paper. Without loss of generality, we
assume p = 2. The only difference between these meth-
ods is that cat-LS-thr use threshold adjusted polychoric cor-
relations, say ρ̂thr(F∗1, F

∗
2), and cat-LS-adj use adjusted poly-

chorics as described above, say ρ̂adj(F∗1, F
∗
2). The population

limits of these estimators are denoted by ρthr,K(F∗1, F
∗
2) and

ρadj,K(F∗1, F
∗
2) respectively, where we introduce a subscript K

to indicate the dependence on the number of thresholds. We
wish to estimate

ρX∗ = Cov(X∗1, X
∗
2).

As shown in Foldnes and Grønneberg (2021, Lem. 1), we
have

lim
K→∞
ρthr,K(F∗1, F

∗
2) = ρX∗

if the marginals of (X∗1, X
∗
2) indeed are F∗1, F

∗
2. When the

marginals are misspecified, expressions for the limit of the
threshold adjusted polychoric was also derived in Foldnes
and Grønneberg (2021, see the discussion right after Lem.
1), which we may use to see that

lim
K→∞
ρthr,K(Φ,Φ) = Cov(Φ−1(F∗1(X∗1)),Φ−1(F∗2(X∗2)))

where F∗1, F
∗
2 are the true marginals. We therefore have that

ρ̂adj(F∗1, F
∗
2) = Ψ(ρ̂thr(Φ,Φ))
−−−−→
n→∞

Ψ(ρthr(Φ,Φ))

−−−−→
K→∞

Ψ(Cov(Φ−1(F∗1(X∗1)),Φ−1(F∗2(X∗2)))).

Now unless X∗1, X
∗
2 happens to have a normal copula, this

limit is not equal to ρX∗ , showing that cat-LS-adj and the

briefly mentioned cat-LS-ext which extends cont-ML-adj to
non-normal copulas, are both inconsistent as K → ∞ if the
copula is misspecified. In contrast, cat-LS-thr is consistent
as K → ∞, as long as the marginals are correctly specified.

Mathematical results for implementing cont-ML-adj in
study 1 & 2

The following results should already be available in the
literature. Since we do not know a reference that derive all
of these results and state them in a simple form, and since it
has some value to illustrate the process required to derive the
conditional expectation used in the cont-ML-adj, we provide
complete calculations of the following results for the reader’s
convenience. We do not aim at generality, but instead aim at
providing enough explanation to reproduce our illustrations.

Let

Y = (α0 + α1Z)I{Z < 0} + (β0 + β1Z)I{Z ≥ 0} (14)

where we usually assume Z ∼ N(0, 1).
Let us first consider how to standardize these distribu-

tions. Suppose given Y in the above form. Then also
Ỹ = (Y − E Y)/sd(Y) is of the same algebraic form, but with
new coefficients α̃0, α̃1, β̃0, β̃1. To see this, notice firstly that

aY = (aα0 + aα1Z)I{Z < 0} + (aβ0 + aβ1Z)I{Z ≥ 0},

and secondly that

Y + a = Y + a · 1 = Y + a(I{Z < 0} + I{Z ≥ 0})
= (a + α0 + α1Z)I{Z < 0} + (a + β0 + β1Z)I{Z ≥ 0}.

To standardize Y , we therefore only need to compute its
expectation and variance, and then use updated coefficients
α̃0 = (α0 − E Y)/sd(Y), β̃0 = (α0 − E Y)/sd(Y) and α̃1 =

α1/sd(Y), β̃1 = β1/sd(Y). Code to compute the expectation
and variance of Y when Z ∼ N(0, 1) is given in the online
supplementary material.

We here consider the conditional distribution and expecta-
tion of Y given knowledge of Y being contained in an interval
[x, y]. We only consider the case when α1, β1 have the same
sign. The general case follows by the same arguments, but
will not be useful for our illustrations in the present article.

The following results assumes that α1, β1 are positive.
When they are both negative, we may use the presented re-
sults as follows. Notice that

Ỹ := −Y = (−α0+ (−α1)Z)I{Z < 0}+ (−β0+ (−β1)Z)I{Z ≥ 0}

is of the form

Ỹ = (α̃0 + α̃1Z)I{Z < 0} + (β̃0 + β̃1Z)I{Z ≥ 0}

with α̃1, β̃1 both positive.
Let P(Y ≤ y) = FY (y) and fY (y) = (d/dx)FY (y). We have

P(Ỹ ≤ y) = P(−Y ≤ y) = P(Y ≥ −y) = 1 − P(Y ≤ −y) =
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1 − FY (−y), with a density given by fỸ (y) = (d/dx)P(Ỹ ≤
y) = fY (−y).

Finally, consider FỸ (y) = x. Then 1 − FY (−y) = x, so
that FY (−y) = 1 − x and so −y = F−1

Y (1 − x), which means
F−1

Ỹ
(x) = −F−1

Y (1 − x).
For the conditional mean, notice that since x ≤ Y ≤

y ⇐⇒ −y ≤ −Y ≤ −x ⇐⇒ −y ≤ Ỹ ≤ −x, we have

E[Y |x ≤ Y ≤ y] = −E[−Y |−y ≤ Ỹ ≤ −x] = E[Ỹ |−y ≤ Ỹ ≤ −x].

We may therefore reduce the case where α1, β1 are both neg-
ative to the case where α1, β1 are both positive, using the
above equations.

The following results allow x = −∞, y = ∞. We derive
the density to draw exact plots of the densities in the article.

Lemma 2. Suppose Y follows Equation (14), with
Z ∼ N(0, 1) and α1, β1 > 0. Then FY (y) =

P(Y ≤ y) = Φ
(
α−1

1 (y − α0)
)

I{y < α0} + I{y ≥

β0}
[
Φ(β−1

1 (y − β0))
]

+ Φ(0)
[
I{y ≥ α0} − I{y ≥ β0}

]
,

and f (y) = F′Y (y) = α−1
1 ϕ
(
α−1

1 (y − α0)
)

I{(y <

α0} + β
−1
1 ϕ(β

−1
1 (y − β0))I{y ≥ β0}. If also α0 = β0, then

F−1
Y (x) = (β1I{1/2 ≤ x ≤ 1} + α1I{0 ≤ x < 1/2})Φ−1(x)+α0.

Proof. Using the notation x− = min(x, 0) we get

P(Y ≤ y)
(a)
= P(Y ≤ y,Z < 0) + P(Y ≤ y,Z ≥ 0)

= P(α0 + α1Z ≤ y,Z < 0) + P(β0 + β1Z ≤ y,Z ≥ 0)
(b)
= P(Z ≤ α−1

1 (y − α0),Z < 0) + P(Z ≤ β−1
1 (y − β0),Z ≥ 0)

(c)
= P(Z < [α−1

1 (y − α0)]−)

+ I{β−1
1 (y − β0) ≥ 0}P(0 ≤ Z ≤ β−1

1 (y − β0))

= Φ
(
[α−1

1 (y − α0)]−
)

+ I{β−1
1 (y − β0) ≥ 0}

[
Φ(β−1

1 (y − β0)) − Φ(0)
]

= Φ
(
α−1

1 (y − α0)
)

I{y < α0} + Φ(0)I{y ≥ α0}

+ I{y ≥ β0}
[
Φ(β−1

1 (y − β0)) − Φ(0)
]

= Φ
(
α−1

1 (y − α0)
)

I{y < α0} + I{y ≥ β0}
[
Φ(β−1

1 (y − β0))
]

+ Φ(0)
[
I{y ≥ α0} − I{y ≥ β0}

]
.

(a) For disjoint A, B we have P(C) = P(C∩A)+P(C∩B). (b)
We assume α1, β1 > 0. (c) Comma is short hand for intersec-
tion, so {Z ≤ a1,Z < a2} = {Z < min(a1, a2)}. Also, if β−1

1 (y−
β0) < 0, we have P(Z ≤ β−1

1 (y − β0),Z ≥ 0) = 0, but other-
wise, we have P(Z ≤ β−1

1 (y−β0),Z ≥ 0) = P(0 ≤ Z ≤ β−1
1 (y−

β0)). (d) Since α1, β1 > 0, we have I{β−1
1 (y−β0) ≥ 0} = I{y ≥

β0}. We also have α−1
1 (y − α0)]− = α−1

1 (y − α0)]I{y < α0} and
therefore Φ

(
[α−1

1 (y − α0)]−
)
= Φ
(
α−1

1 (y − α0)]I{y < α0}
)
=

Φ
(
α−1

1 (y − α0)
)

I{y < α0} + Φ(0)I{y ≥ α0}.

The density of Y is therefore

f (y) = (d/dy)P(Y ≤ y)

= α−1
1 ϕ
(
α−1

1 (y − α0)
)

I{(y < α0}

+ β−1
1 ϕ(β

−1
1 (y − β0))I{y ≥ β0}.

We now show the second statement of the lemma, and ad-
ditionally assume α0 = β0. We then have

FY (y) = Φ
(
α−1

1 (y − α0)
)

I{y < α0} + I{y ≥ α0}
[
Φ(β−1

1 (y − α0))
]

+ Φ(0)
[
I{y ≥ α0} − I{y ≥ α0}

]
= Φ
(
α−1

1 (y − α0)
)

I{y < α0} +
[
Φ(β−1

1 (y − α0))
]

I{y ≥ α0}.

Let FY (y) = x. If 0 ≤ x < 1/2 = Φ(0), then we
must have y < α0, and so α−1

1 (y − α0) = x, which means
α−1

1 (y − α0) = Φ−1(x) and so y = α1Φ
−1(x) + α0. If

x ≥ 1/2, we have y ≥ α0, and so by the same argument,
y = β1Φ

−1(x)+α0. Therefore, we have the claimed F−1
Y (x) =

(β1I{1/2 ≤ x ≤ 1} + α1I{0 ≤ x < 1/2})Φ−1(x) + α0. □

In the following proposition, we may use that when Z ∼
N(0, 1), we have

E
(
Z
∣∣∣x ≤ Z ≤ y

)
= [ϕ(x) − ϕ(y)]/[Φ(y) − Φ(x)], (15)

and that P(x ≤ Y ≤ y) can be computed using the cumulative
distribution function identified in Lemma 2.

Proposition 2. Let Y be defined as in Equation (14), where
Z has finite mean and is a continuous distribution. Suppose
α1, β1 are both positive. We then have that

m(x, y) = E[Y |x ≤ Y ≤ y]

=
P([α−1

1 (x − α0)]− ≤ Z ≤ [α−1
1 (y − α0)]−)

P(x ≤ Y ≤ y)

·
[
α0 + α1 E[Z

∣∣∣α−1
1 (x − α0)]− ≤ Z ≤ [α−1

1 (y − α0)]−]
]

+
P([β−1

1 (x − β0)]+ ≤ Z ≤ [β−1
1 (y − β0)]+)

P(x ≤ Y ≤ y)

·
[
β0 + β1 E[Z

∣∣∣[β−1
1 (x − β0)]+ ≤ Z ≤ [β−1

1 (y − β0)]+]
]
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Proof. The assumption that Z has a continuous distribution
is only used to not have to keep track of sharp inequalities.

We assume α1, β1 are both positive. We have that

m(x, y) = E[Y |x ≤ Y ≤ y]

= P(x ≤ Y ≤ y)−1 E[YI{x ≤ Y ≤ y}].

We also have

E[YI{x ≤ Y ≤ y}] = E(α0 + α1Z)I{Z < 0, x ≤ Y ≤ y}

+ E(β0 + β1Z)I{Z ≥ 0, x ≤ Y ≤ y}
(a)
= E(α0 + α1Z)I{[α−1

1 (x − α0)]− ≤ Z ≤ [α−1
1 (y − α0)]−}

+ E(β0 + β1Z)I{[β−1
1 (x − β0)]+ ≤ Z ≤ [β−1

1 (y − β0)]+}
(b)
= α0P([α−1

1 (x − α0)]− ≤ Z ≤ [α−1
1 (y − α0)]−)

+ α1P([α−1
1 (x − α0)]− ≤ Z ≤ [α−1

1 (y − α0)]−)

· E[Z
∣∣∣[α−1

1 (x − α0)]− ≤ Z ≤ [α−1
1 (y − α0)]−]

+ β0P([β−1
1 (x − β0)]+ ≤ Z ≤ [β−1

1 (y − β0)]+)

+ β1P([β−1
1 (x − β0)]+ ≤ Z ≤ [β−1

1 (y − β0)]+)

· E[Z
∣∣∣[β−1

1 (x − β0)]+ ≤ Z ≤ [β−1
1 (y − β0)]+]

= P([α−1
1 (x − α0)]− ≤ Z ≤ [α−1

1 (y − α0)]−)

·
[
α0 + α1 E[Z

∣∣∣α−1
1 (x − α0)]− ≤ Z ≤ [α−1

1 (y − α0)]−]
]

+ P([β−1
1 (x − β0)]+ ≤ Z ≤ [β−1

1 (y − β0)]+)

·
[
β0 + β1 E[Z

∣∣∣[β−1
1 (x − β0)]+ ≤ Z ≤ [β−1

1 (y − β0)]+]
]

(a) Since Y = α0 + α1Z if Z < 0, we have I{Z < 0, x ≤ Y ≤
y} = I{Z < 0, x ≤ α0 + α1Z ≤ y} = I{Z < 0, α−1

1 (x − α0) ≤
Z ≤ α−1

1 (y − α0)} = I{[α−1
1 (x − α0)]− ≤ Z ≤ [α−1

1 (y − α0)]−}.
Similarly, I{Z ≥ 0, x ≤ Y ≤ y} = I{[β−1

1 (x − β0)]+ ≤ Z ≤
[β−1

1 (y − β0)]+}. (b) We use again that for any random vari-
able Y with finite mean, we have E[Y |x ≤ Y ≤ y] = P(x ≤
Y ≤ y)−1 E[YI{x ≤ Y ≤ y}]. We also use that E I{A} = P(A).

□
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Monte Carlo results

Study 3
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Polychoric Adjusted polychoric
Margins ρ = .2 ρ = .4 ρ = .7 ρ = .2 ρ = .4 ρ = .7
Γ1Γ1 1.0 0.7 0.7 -0.6 -0.6 0.1
Γ̃1Γ1 2.0 3.0 4.0 -0.7 -0.2 0.0
Γ̃1Γ̃1 2.0 1.0 0.9 0.4 -0.3 0.2
Γ2Γ1 3.6 3.5 2.1 -0.8 -0.1 -0.2
Γ2Γ̃1 5.6 7.3 9.3 -1.1 -0.3 -0.0
Γ2Γ2 6.8 4.5 2.4 0.2 -0.5 0.0
Γ̃2Γ1 6.4 7.1 9.4 -0.3 -0.6 0.1
Γ̃2Γ̃1 5.1 2.7 2.2 0.7 -0.9 -0.1
Γ̃2Γ2 10.8 14.1 17.4 -0.6 0.3 -0.2
Γ̃2Γ̃2 6.7 4.9 2.2 0.1 -0.0 -0.2
Γ3Γ1 7.2 5.9 4.3 0.4 0.1 0.2
Γ3Γ̃1 9.4 10.8 13.1 -0.6 -0.5 -0.4
Γ3Γ2 10.0 7.1 3.6 1.2 0.5 0.3
Γ3Γ̃2 14.7 18.0 24.3 -0.6 -0.4 0.0
Γ3Γ3 12.7 8.6 3.7 1.8 0.7 -0.0
Γ̃3Γ1 9.8 10.9 13.2 -0.2 -0.4 -0.4
Γ̃3Γ̃1 6.8 5.8 4.3 -0.1 0.0 0.2
Γ̃3Γ2 15.1 18.4 24.2 -0.2 -0.1 -0.1
Γ̃3Γ̃2 9.9 6.2 3.7 1.0 -0.4 0.4
Γ̃3Γ3 20.0 24.3 33.0 0.1 0.0 -0.1
Γ̃3Γ̃3 11.2 8.8 3.9 0.3 0.9 0.1
N(0, 1)Γ1 0.5 0.6 1.3 -0.6 -0.5 0.2
N(0, 1)Γ̃1 -0.3 1.1 1.3 -1.2 -0.0 0.2
N(0, 1)Γ2 3.2 4.3 4.6 -1.1 -0.1 0.2
N(0, 1)Γ̃2 4.1 4.0 4.6 -0.2 -0.4 0.2
N(0, 1)Γ3 6.1 7.0 7.1 -1.1 -0.3 -0.2
N(0, 1)Γ̃3 7.6 7.4 7.2 0.3 0.2 -0.0
N(0, 1)N(0, 1) 0.1 -0.4 -0.1 0.1 -0.4 -0.1

Table 6
Relative bias for the polychoric estimator and its adjusted version. The results are aggregated over sample sizes n =
100, 300, 1000.
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Polychoric Adjusted polychoric
Margins ρ = .2 ρ = .4 ρ = .7 ρ = .2 ρ = .4 ρ = .7
Γ1Γ1 92.3 93.3 91.8 92.5 93.1 92.2
Γ̃1Γ1 91.1 92.3 86.5 91.3 92.4 92.5
Γ̃1Γ̃1 91.9 92.8 89.9 92.1 92.6 90.1
Γ2Γ1 91.4 92.3 89.2 91.8 92.7 92.4
Γ2Γ̃1 92.9 88.6 63.1 93.5 91.7 91.8
Γ2Γ2 91.1 91.2 89.0 91.8 92.7 93.3
Γ̃2Γ1 91.6 89.6 62.0 91.8 91.0 92.5
Γ̃2Γ̃1 91.9 92.9 89.7 91.7 91.5 92.3
Γ̃2Γ2 90.9 82.5 16.6 93.0 91.4 93.6
Γ̃2Γ̃2 90.1 91.0 90.3 90.9 92.8 93.5
Γ3Γ1 91.2 89.7 84.3 91.7 90.8 92.9
Γ3Γ̃1 90.7 85.1 41.6 91.2 91.7 93.7
Γ3Γ2 91.6 89.1 88.1 92.4 92.5 92.2
Γ3Γ̃2 88.9 79.4 0.3 91.4 93.0 93.1
Γ3Γ3 90.3 88.3 85.5 92.3 91.3 92.7
Γ̃3Γ1 91.0 86.4 40.3 91.8 92.2 92.7
Γ̃3Γ̃1 92.7 88.9 83.0 93.0 92.2 90.4
Γ̃3Γ2 89.9 77.1 0.9 91.5 94.0 93.9
Γ̃3Γ̃2 91.2 91.9 85.8 91.9 92.8 92.3
Γ̃3Γ3 87.7 69.2 0.0 91.4 92.7 93.8
Γ̃3Γ̃3 90.5 90.0 86.9 92.4 93.9 93.0
N(0, 1)Γ1 91.9 92.5 91.9 91.7 92.5 92.8
N(0, 1)Γ̃1 91.4 91.1 90.2 91.6 91.2 91.2
N(0, 1)Γ2 92.9 90.1 82.8 92.4 91.1 92.4
N(0, 1)Γ̃2 91.3 91.0 84.7 92.1 92.6 93.0
N(0, 1)Γ3 93.4 88.5 74.2 93.8 91.3 92.9
N(0, 1)Γ̃3 93.1 90.0 73.5 93.7 93.1 92.2
N(0, 1)N(0, 1) 90.7 93.4 93.5 90.7 93.4 93.5
Mean 91.3 88.5 69.8 92.0 92.3 92.6

Table 7
Study 3: Coverage rates at the 95% level of confidence, sample size n = 100.
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Polychoric Adjusted polychoric
Margins ρ = .2 ρ = .4 ρ = .7 ρ = .2 ρ = .4 ρ = .7
Γ1Γ1 92.2 94.1 93.6 92.3 94.2 94.6
Γ̃1Γ1 94.0 92.4 80.4 93.5 93.5 95.0
Γ̃1Γ̃1 94.8 93.5 91.7 95.2 93.8 92.9
Γ2Γ1 94.0 91.8 87.4 94.2 93.4 92.7
Γ2Γ̃1 94.4 88.1 32.9 95.3 93.4 93.6
Γ2Γ2 92.5 92.3 91.1 93.7 94.9 94.9
Γ̃2Γ1 93.5 90.4 31.2 94.9 95.5 92.5
Γ̃2Γ̃1 94.6 91.5 88.8 95.3 93.6 94.4
Γ̃2Γ2 91.1 76.4 0.4 93.3 93.2 95.0
Γ̃2Γ̃2 91.7 91.5 88.4 92.1 94.1 94.8
Γ3Γ1 94.5 91.2 77.9 94.3 94.4 93.1
Γ3Γ̃1 92.4 81.4 6.0 93.8 93.6 95.5
Γ3Γ2 92.3 88.9 81.0 94.2 94.5 93.0
Γ3Γ̃2 89.1 63.5 0.0 94.2 95.1 95.5
Γ3Γ3 93.2 86.5 81.1 95.1 94.3 93.2
Γ̃3Γ1 91.6 82.6 7.0 94.3 93.9 94.3
Γ̃3Γ̃1 93.3 91.5 79.8 94.2 93.9 94.4
Γ̃3Γ2 90.2 62.7 0.0 94.0 92.2 93.9
Γ̃3Γ̃2 92.3 89.8 85.5 94.8 93.0 95.3
Γ̃3Γ3 88.6 46.4 0.0 94.0 94.5 94.8
Γ̃3Γ̃3 91.8 87.2 80.5 94.2 95.2 93.2
N(0, 1)Γ1 94.0 94.2 91.0 94.2 94.8 93.4
N(0, 1)Γ̃1 94.5 94.5 91.8 94.1 94.7 93.5
N(0, 1)Γ2 93.7 90.5 75.9 93.5 93.7 94.7
N(0, 1)Γ̃2 92.8 93.8 75.5 94.1 94.9 93.8
N(0, 1)Γ3 93.4 86.5 54.8 94.0 93.0 94.2
N(0, 1)Γ̃3 92.4 88.4 53.1 94.5 94.6 95.2
N(0, 1)N(0, 1) 93.6 94.7 92.9 93.6 94.7 92.9
Mean 92.7 86.3 61.4 94.1 94.1 94.1

Table 8
Study 3: Coverage rates at the 95% level of confidence, sample size n = 300.


