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A B S T R A C T   

One of the most controversial issues in the mid-term load forecasting literature is the treatment of weather. 
Because of the difficulty in obtaining precise weather forecasts for a few weeks ahead, researchers have, so far, 
implemented three approaches: a) excluding weather from load forecasting models altogether, b) assuming 
future weather to be perfectly known and c) including weather forecasts in their load forecasting models. This 
article provides the first systematic comparison of how the different treatments of weather affect load forecasting 
performance. We incorporate air temperature into short- and mid-term load forecasting models, comparing time- 
series methods and feed-forward neural networks. Our results indicate that models including future temperature 
always significantly outperform models excluding temperature, at all-time horizons. However, when future 
temperature is replaced with its prediction, these results become weaker.   

1. Introduction 

The literature on forecasting electricity consumption (commonly 
referred to as “load”) identifies three possible time horizons, each of 
them characterized by different methodologies and practical applica
tions [1]. The short-term horizon is typically defined as being up to a few 
days ahead, and it is essential for control, power system scheduling and 
short-term price forecasting [2–8]. Mid-term forecasting ranges from a 
few days to about one year, and it informs system operation, mainte
nance scheduling, and the negotiation of forward contracts [9–13]. The 
long-term horizon can vary from one year to several decades, and it 
guides capacity planning [14–16]. 

The short-term load forecasting literature is extensive and spans 
several decades [17]. Mid-term forecasting has received, in comparison, 
less attention [10]. Arguably, one of the most controversial issues in this 
relatively newer literature is the treatment of weather. One of the 
possible explanations for this controversy is that developing accurate 
weather forecasts for several weeks (or months) ahead is extremely 
difficult, and weather projections of this sort are typically not available 
from weather bureaus [18,19]. 

Given these premises, several authors simply decide to not include 
weather at all in their mid-term load forecasting models [9,20–22]. 

Other researchers prefer to side-step the issue by including future 
weather data in their forecasting models [12,13,23–25]. Obviously, 
their forecasting performances are not genuine, because they do not 
consider the impact that weather forecasting errors can have on load 
forecasting. A third strategy is to include weather predictions (and not 
actual future weather) in the models for mid-term load forecasting. For 
instance Refs. [26–28], implement linear regression, time series models 
and support vector machines to forecast daily and monthly load in Italy, 
Chen et al. [10,18] use artificial intelligence methods to forecast 
one-to-twelve-months ahead load in China, and Hu et al. [29] use 
multi-output support vector regression and memetic algorithm to fore
cast interval loads up to one month in North America and Australia. This 
diversity of assumptions and approaches creates uncertainty not only for 
the development of new models, but also for comparing modelling re
sults across different papers. 

Considering this issue, the main contribution of this study is imple
menting a systematic comparison of the effect of the different treatments 
of weather on load forecasting performance at different time-horizons. 
Our study forecasts load in the short-to mid-term using linear regres
sion and non-linear feed-forward neural network methods. While the 
importance of weather for short-term forecasting is well established (i. 
e., [30]; examine the impact of weather forecasts from 1 to 10 days 
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ahead), comparing the same approaches from one-day to six-months 
ahead is still useful in order to investigate if the conclusions drawn in 
short-run analyses extend to the mid-term horizon or not. In this respect, 
to the best of our knowledge, this is the first paper exploring this open 
question. Focusing on air temperature as the main weather variable for 
load forecasting and using daily data, we compare three groups of 
models: 1) specifications without temperature data, 2) specifications 
with actual future temperature data, and 3) specifications with pre
dicted temperature data. In terms of techniques for forecasting, we 
employed the most established approaches for load forecasting. We use 
time series and linear regression approaches, since they are not black 
boxes and allow us to compare differences across models also in terms of 
parameters’ estimates. We also use feed-forward neural networks, which 
are powerful non-linear modelling forecasters and are general enough in 
their model-building assumptions [31]. We implement our analysis on 
Italian Power Exchange (IPEX) day-ahead daily data from the January 1, 
2016 to the December 31, 2019. 

We find that models with perfect information on future temperature 
significantly outperform models without temperature data. This result is 
valid at all time horizons. However, when we replace future temperature 
with its prediction, results become weaker, and remain significant only 
for the shorter horizons. These conclusions are valid using both linear 
regressions and neural network models. Our results also indicate that, as 
expected, forecasting performance deteriorates with the time-horizon. 
However, this relation is highly non-linear as forecasting performance 
decreases significantly in the first few days and then stabilizes (i.e., 
forecasting one-week ahead appears to be about as hard as forecasting 
six-months ahead). For shorter horizons, autoregressive and moving 
average components provide an advantage, while for longer horizons, 
static models perform better. Finally, forecasts from neural network 
models outperform forecasts from linear regression models at all hori
zons; however, the difference is only significant in the short-term. 

The remainder of the paper is structured as follows. Section 2 pro
vides description of the data. Section 3 describes the models and 
methodology applied for estimation and forecasting. Section 4 presents 
the results. Finally, Section 5 concludes. 

2. Data 

We downloaded hourly day-ahead IPEX (Italian Power Exchange) 
load data in Gigawatt hour (GWh) from the European Network of 
Transmission System Operators for Electricity (ENTSO-E, https://www. 
entsoe.eu/) and converted them at daily frequency by taking the average 
of each day. The Italian Power exchange, the IPEX, was inaugurated in 
2004, which makes it one of the youngest power markets in Europe. 
Short-term forecasting models for the IPEX have been developed by 
Ref. [32]; while mid-term load forecasting approaches are proposed by 
Refs. [26–28]. 

Terna (https://www.terna.it/) reports that in 2019–2020 the total 
electricity consumption in Italy was 302.75 TW-hour (TWh), and that 
the share of renewable energies production grew from 14% in 2005 to 
35% in 2018–2019. Among fuels, the shares of natural gas, coal and 
biomass were around 45%, 9.3% and 9%, respectively, while other fossil 
fuels were responsible for about 6% of electricity generation. Further
more, among renewable sources (RES), the shares of hydroelectric, solar 
and wind were about 16%, 8% and 6%, respectively. The RES are 
important issues for the behavior of the grid and this is crucial when 
predicting prices for markets with large RES size. However, energy de
mand is less affected by RES at short and middle horizons. The reason is 
that agents do not have precise information about future hourly prices, 
and they do not adjust their energy consumption in the short and middle 
term to account for stochastic behavior of the supply. 

In Italy, electricity is traded in a wholesale market, organizing in 
day-ahead, intraday, and balancing sequential sessions [33]. In this 
liberalized market, the day-ahead session consists of consumption units 
and generators that submit bids to buy and offers to sell (both for prices 

and quantities) for each hour of the next day with no obligation to act. 
Such Day-Ahead Market is the host for most of the electricity 
transactions. 

Regarding weather, we include what is arguably the most important 
driver of short- and mid-term load forecasting: air temperature [34,35]. 
We represent this variable for the entire country as the daily average 
between the temperature in Rome and in Milan (expressed in Fahrenheit 
degrees), downloaded from the University of Dayton weather archive 
(http://academic.udayton.edu/kissock/http/Weather). 

Our analysis considers the period from January 1, 2016, to December 
31, 2019, for total of 1461 observations. We decided to focus on the pre- 
COVID period, since during the coronavirus pandemic (especially during 
its first wave) there was a significant structural break in the dynamics of 
load, following the widespread lockdowns, which curtailed economic 
activity across Europe [36]. 

Fig. 1 reports the daily load time series. We observe a moderate 
annual seasonality, with peaks in the winter and summer months, when 
electricity consumption for heating and cooling is at its maximum. We 
also notice a pronounced weekly seasonality with demand decreasing by 
about 15 GWh during the weekends, when many businesses are shut 
down. 

Fig. 2 presents the scatterplot between load and temperature, fitted 
using a locally estimated smoothing (loess) function. The Figure shows 
an asymmetric V-shaped relationship, with a minimum at about 60 ◦F 
(~15.5 ◦C), in line with the load modelling literature [37,38]. 

Table 1 reports summary statistics and unit root tests. The average 
daily load ranges from about 20 GWh during Spring and Autumn 
weekends to 45 GWh in the summer weekdays. Average daily temper
ature also varies significantly, going from 28 ◦F (~ − 2.5 ◦C) to 84 ◦F (~ 
29 ◦C). The Augmented Dickey-Fuller [40] unit root tests strongly reject 
the null hypothesis for both series, which suggests modelling the series 
on the levels rather than on the first differences. In the table we report 
the value of the tests for the ADF with intercept and no trend, but results 
are robust to different specification of the test. 

All our analyses are performed using the statistical software R [41] 
using the packages forecast [42], ggplot2 [43], lmtest [44], psych [45], 
sandwich [46], and urca [47]. 

3. Methodology 

3.1. Linear regression forecasting models 

We compare different specifications, including linear regression, 
Auto-Regressive Moving Average (ARMA), and ARMA with explanatory 
variables (ARMAX) models. Our first model is a multiple linear regres
sion capturing weekly and yearly seasonality effects, and the effect of 
public holidays. Regarding the weekly seasonality, we tested a model 

Fig. 1. IPEX daily average load.  

N. Bashiri Behmiri et al.                                                                                                                                                                                                                       

https://www.entsoe.eu/
https://www.entsoe.eu/
https://www.terna.it/
http://academic.udayton.edu/kissock/http/Weather


Energy 278 (2023) 127831

3

including a dummy variable for each day of the week, but the forecasting 
performance improved when including only Saturdays, Sundays and 
Mondays dummy variables and, therefore, we retained this more 
parsimonious specification.1 Following previous studies (e.g. Refs. [48, 
49], we capture the yearly seasonality via monthly dummy variables. 
They encompass the average monthly differences in weather, daylight 
hours and cultural practices. Finally, we include a dummy variable for 
public holidays [50,48]. The resulting equation is: 

lt = β0 +
∑3

i=1
βWiWi,t +

∑11

j=1
βMjMj,t + βHHt + εt (1)  

where t indicates the day, lt is the average daily load (GWh), Wi,t are 
dummy variables for Saturdays, Sundays and Mondays, Mj,t are monthly 
dummy variables, Ht is a dummy variable for public holidays, βs are the 
parameters to be estimated, and εt is the error component assumed to be 
white noise. 

In the second model we remove the monthly variables and introduce 
the effect of temperature. As shown in Fig. 2, the relationship with load 
is non-linear and V-shaped. Following [36]; we allow such relation to be 

asymmetric by specifying a linear spline function, with a knot where 
load is at its minimum, which we define as 60 ◦F. The resulting equation 
is: 

lt = β0 +
∑3

i=1
βWiWi,t + βHHt + βtemptempt + βtemp′ d60(tempt − 60) + εt, (2)  

where tempt is the average daily temperature (◦F), d60 is a dummy var
iable equal to 1 if temperature is higher or equal to 60 ◦F and zero 
otherwise, and all other symbols are defined as previously. 

In the third model, we include both monthly binary variables and the 
non-linear effect of temperature: 

lt=β0 +
∑3

i=1
βWiWi,t+

∑11

j=1
βMjMj,t+βHHt+βtemptempt+βtemp′ d60(tempt − 60)

+εt,
(3) 

All symbols are defined as previously. Our fourth model is an ARMA 
process, which is a widely applied benchmark for load forecasting (e.g. 
Refs. [51–53],: 

φ(L)(lt)=ψ(L)εt, (a)  

where φ(L) and ψ(L) are, respectively, the autoregressive and moving- 
average polynomials, which are functions of the lag operator L. After 
testing models up to seven lags, we selected the ARMA(1,1) as the best 
performing model, where φ(L) = 1 − φ1L and ψ(L) = ψ0 + ψ1L. This 
model can be written as: 

lt =ψ0 + φ1lt− 1 + ψ1εt− 1 + εt, (4)  

where ψ s and φ1 are parameters to be estimated and all other symbols 
are defined as previously. We extend model 4 by including exogenous 
inputs in a “regression with ARMA errors” specification, defined as: 

φ(L)[lt − ψ0 − β
′

Xt] =ψ(L)εt, (b)  

where Xt represents a vector of exogenous variables. In model 5, Xt in
cludes dummy variables for days of the week, month and public holi
days, creating the ARMAX version of model 1: 

lt = β0 + φ1lt− 1 +
∑3

i=1
βWiWi,t +

∑11

j=1
βMjMj,t + βHHt + ψ1εt− 1 + εt. (5) 

By the same logic, model 6 is the ARMAX version of model 2: 

lt = β0 +φ1lt− 1 +
∑3

i=1
βWiWi,t + βHHt + βtemptempt

+ βtemp′ d60(tempt − 60)+ψ1εt− 1 + εt,
(6) 

Finally, model 7 is the ARMAX model corresponding to model 3: 

lt = β0 +φ1lt− 1 +
∑3

i=1
βWiWi,t +

∑11

j=1
βMjMj,t + βHHt + βtemptempt

+ βtemp′ d60(tempt − 60)+ψ1εt− 1 + εt,
(7) 

All symbols are defined as previously. We perform the in-sample 
estimations using the Maximum Likelihood (ML) estimator. 

Fig. 2. Scatterplot of temperature and load 
Notes: The scatterplot shows the relationship between daily average load and 
temperature. The line smooths the relationship using a loess function with span 
= 0.7 [39]. 

Table 1 
Summary statistics.  

Variables Unit of measurement mean min max Standard deviation ADF 

Actual load Gigawatt hour (GWh) 33.25 20.72 45.3 4.76 − 23.82*** 
Temperature Fahrenheit (◦F) 59.27(15.5 ◦C) 28.00(-2.22 ◦C) 84.7 (29.28 ◦C) 12.8 − 3.75*** 

Notes: ADF indicates Augmented Dickey Fuller unit root test with intercept and no trend and lags chosen according to the Akaike Information Criterion. Significance is 
indicated as: *** probability-value<0.01. 

1 During weekends many economic activities are suspended and, therefore, 
electricity load significantly decreases, while Monday is characterized by a 
quicker increase in demand compared to the other weekdays, at the same time, 
demand is typically lower during other working days [50]. 
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3.2. Neural network forecasting 

We also test the performance of Artificial Neural Networks (ANNs). 
We opt the multilayer feed-forward neural network (FNN) approach, 
which is a version of ANN with three types of layers: input, hidden, and 
output. The FNN is an established type of ANN in the load forecasting 
literature (e.g., Refs. [31,54,55]. In FNN the information goes only 
forward, from the input nodes, through the hidden nodes and to the 
output nodes [56]. The input layer takes the data and delivers them to 
the hidden layer using the weights between the input and the hidden 
layers. The neurons in the hidden layer process the data and deliver 
them to the output layer using the weights between the hidden and the 
output layers. Then, the neurons in the output layer again process the 
data and give the results as the output [57]. The mathematical model of 
the FNN can be written as: 

yt = f

(

b+
∑h

j=1
vj g

(

bj +
∑n

i=1
wijX

))

, (c)  

where yt represents the output variable at time t, X denotes a vector of 
input variables including the lagged output variable as well as the 
exogenous variables, n represents the number of input variables, h in
dicates the number of neurons in hidden layer that is half of the number 
of input variables plus one, and f(.) = 1

1+exp− f and g(.) = 1
1+exp− g are the 

sigmoid non-linear activation functions. Furthermore, vj and wij are the 
weight parameters that respectively represent the strength of the con
nections between the hidden nodes to the output and between the input 
nodes to the hidden nodes [31], and b and bj are the bias parameters 
analogous to the intercept in linear models. All parameters are unknown 
and need to be estimated. We use four models for forecasting. In FNN1 
we fit a simple model that uses as input one lag of the endogenous 
variable without exogenous variables, FNN2 includes the lag of load 
alongside monthly (Mj,t) weekly (Wi,t) and holidays (Ht) dummy vari
ables, FNN3 includes the load lag, temperature variables (tempt and 
d60(tempt − 60)) and Wi,t and Ht dummy variables, and FNN4 includes 
the load lag together with tempt, d60(tempt − 60), Wi,t, Ht and Mj,t . We 
use BFGS for optimization [58]. 

3.3. Forecasting setting 

We compare the forecasting performance of our models at different 
time horizons: a) short-term: from 1 day until 7 days ahead; and b) mid- 
term: 1 month, 3 months and 6 months ahead. We divide our 2016–2019 
dataset into two parts: we use a one-year dataset for estimation, while 
we compare the different models’ forecasting performance on the years 
2018–2019. We estimate all models using a one-year rolling window, i. 
e., a window going from time t*– 364 – J to t*– J, where t* indicates the 
day we want to forecast and J is the number of steps ahead corre
sponding to the forecasting horizon (e.g., J = 1 for day-ahead forecasts, 
J = 2 for two-days ahead forecasts, J = 30 for one-month ahead forecasts 
and so forth). For example, the models used to carry out one-day ahead 
forecast for 01-01-2018 are estimated on data from 01 to 01–2017 to 31- 
12-2017, the models to carry out the two-days ahead forecast for 01-01- 
2018 are estimated on data from 31 to 12–2016 to 30-12-2017, and to 
carry out the six-months ahead forecast for January 01, 2018, we use 
data from 06 to 07–2016 to 05-07-2017. By doing so, all models use the 
same length of the estimation window. We run recursive (iterated) 
multi-step ahead forecasts. Therefore, all our dynamic models (equa
tions (4)–(7)) use previous load predictions as inputs for any forecasting 
horizon longer than one-day. Regarding temperature, (included in 
models 2, 3, 6 and 7), we compare two approaches. In the first one, we 
assume that we can perfectly forecast temperature, in effect estimating a 
lower bound for the forecasting errors of the models including this 
variable. In the second approach, we use some simple methods in order 
to predict temperature, inspired by the mid-term load forecasting 

literature [29]. This enables us to assess how the load forecasting per
formance changes at different time horizon when we use forecasted 
temperature instead of actual one. 

We compare the price forecasting performances of our models by 
calculating the Root Mean Square Errors (RMSEs): 

RMSEk =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑N

t=1

(
l̂ t,k − lt

)2

N

√
√
√
√
√

, (d)  

where N is the number of observations in the forecasting comparison 
window (years 2018–19), and ̂lt,k is the forecasted load at time t. In total, 
we have k = 1, …,212 RMSEs for different models, methods and hori
zons. Furthermore, we use the RMSE and the Mean Absolute Percentage 
Errors (MAPEs) to evaluate temperature forecasting performance. The 
MAPE is defined as: 

MAPE=

(

1

/

N
∑N

t=1

⃒
⃒
⃒
⃒
lt − l̂ t
lt

⃒
⃒
⃒
⃒

)

× 100, (e) 

We compare the accuracy of models by using the [59] test (D-M). We 
apply a one-sided test, where the alternative hypothesis indicates one 
forecast shows a higher accuracy than another one. 

All information in this section applies to both the regressions and the 
neural network approaches. We represent our framework in brief in 
Fig. 3. 

4. Results 

4.1. Regression estimates 

Table 2 presents the estimates for regression models 1–7 on our 
entire dataset, i.e., from January 1, 2016, to December 31, 2019, for a 
total of 1461 observations. The AR(1) and MA(1) terms are always 
significant at the 1% level with a positive sign. Each group of dummy 
variables including monthly and day of the week variables are jointly 
statistically significant, and the public holidays variable is also signifi
cant, all at the 1% level. Models including temperature allow us to es
timate two different linear relationships connecting at 60oF. Consistent 
with Fig. 2, the effect of temperature before the threshold is negative, 
while it is positive after the threshold. These effects are highly asym
metric: in models without the ARMA terms, the impact of each degree 
above 60oF is about twice the effect of each degree below 60 ◦F, and in 
models including the ARMA terms, this asymmetry is even stronger, 
with the effect of warm temperatures being about four times that of cold 
temperatures. Arguably, this is because in Italy a significant share of the 
energy used for heating is derived by natural gas, while air cooling is all 
achieved via electricity consumption. Note that using a quadratic 
specification of temperature would have not been able to capture this 
asymmetry, since parabolas are symmetric. 

4.2. Out of sample forecasting performance 

We began the analysis by comparing the forecasting performance 
across regression models. We classify them in four different groups. The 
first group includes all models that do not contain temperature (models 
1, 4, 5). The second group includes models with temperature in which 
temperature is represented by its future value, i.e., temperature is 
perfectly forecasted (models 2, 3, 6,7). The third and fourth groups also 
include models with temperature (models 2, 3, 6,7), but this time future 
temperature is replaced by its prediction for the test period. Depending 
on the forecasting horizon, we consider two possible approaches for 
predicting temperature. In the first one, we simply use the average 
temperature during the day in which we run the forecast as the best 
prediction of future temperatures, assuming that the best predictor for 
future values is today’s value. For example, for computing one-step 
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ahead forecasts, we use temperature at time t-1, for computing two-steps 
ahead forecasts, we use temperature at time t-2 and so forth. We 
consider this “random walk” approach for up to one-week ahead fore
casts since it is clearly not appropriate for longer time horizons. As an 

alternative temperature forecasting method, we use the “climatology 
approach” as a simple way of forecasting temperature. This method 
averages temperature statistics that is accumulated over several years to 
make the forecast (see Ref. [60]. For instance, if we want to predict the 

Fig. 3. Diagram of the proposed methodology.  

Table 2 
Model estimates on the full sample.  

Dependent variable: load (GWh) Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 

AR(1)    0.26*** (0.03) 0.87*** (0.01) 0.86*** (0.01) 0.85*** (0.01) 
MA(1)    0.60*** (0.03) 0.15*** (0.03) 0.09*** (0.03) 0.13*** (0.02) 
Tempt  − 0.20*** (0.02) − 0.15*** (0.02)   − 0.04*** (0.01) − 0.04*** (0.01) 
d60(Temp60)  0.46*** (0.04) 0.56*** (0.05)   0.22*** (0.03) 0.23*** (0.03) 
Weekly seasonality Yes Yes Yes No Yes Yes Yes 
Holidays seasonality Yes Yes Yes No Yes Yes Yes 
Monthly seasonality Yes No Yes No Yes No Yes 
Akaike’s Information Criterion 6729.43 6873.64 6416.70 7847.00 4999.90 4967.29 4952.41 

Notes: The estimation covers data from January 1, 2016, to December 31, 2019, with 1461 observations. Standard errors (HAC robust standard errors for Models 1–3) 
are given in parentheses. Significance is indicated as: *** probability-value <0.01. The AR(1) and MA(1) represent the first order autoregressive and the first order 
moving average, respectively, Temp shows temperature (◦F), d60 indicates the dummy variable equal to 1 if temperature is higher or equal to 60 ◦F and zero otherwise, 
Weekly seasonality includes dummy variables for Saturdays, Sundays and Mondays, Holidays seasonality contains a dummy variable for public holidays and Monthly 
seasonality enters eleven dummy variables for each month of the year. 
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temperature on January 1st, we would go through the temperature data 
that has been recorded for every January 1st in previous years and take 
an average. In this regard, we follow the load forecasting literature (e.g. 
Ref. [29], and employ the average of the temperature of the same day 
during the previous five years. 

Table 3 compares the RMSEs and the MAPEs of the two temperature- 
forecasting approaches for the period from 01 to 01–2018 to 31-12- 
2019. Overall, our simple strategies perform well, with the MAPEs 
going from 3.5% to 7%, depending on the time horizon. As expected, the 
random-walk approach performs best in the very short term, while its 
performance slowly deteriorates with the increasing of the forecasting 
horizon. For example, the RMSE more than doubles from one-day ahead 
(2.5 ◦F) to seven-days ahead (5.1 ◦F). On the other hand, using historical 
averages gives, by construction, the same RMSE for all forecasting ho
rizons. This second method provides performances which are superior to 
those provided by the random-walk from 4-days ahead onwards. 

Comparison across load-forecasting models using the linear re
gressions is reported in Table 4. For each group of models, we highlight 
the best performing forecasts in bold. Furthermore, we compare best 
performing models across groups by using the [59] test. More precisely, 
at each time horizon, we test if the best performing model of each group 
provides significantly better forecast than the best performing model of 
the first group, in order to evaluate if including (future or forecasted) 
temperature significantly improves predictions. 

In Table 4, the first column reports the RMSEs for one-day ahead 
forecasts. The best performing model amongst those that do not include 
temperature (group 1) is model 5, the ARMAX(1,1) with weekdays, 
holidays, and monthly dummies. ARMAX models are, in fact, the best 
specifications in each group at one-day-ahead predictions. As expected, 
including temperature significantly improves RMSEs. Not surprisingly, 
the best results are obtained when using future temperature (group 2). 
Nevertheless, using temperature at time t-1 provides comparable results 
(group 3). On the other hand, using the last five-years historical average 
does not generate significantly better RMSEs compared with those ob
tained using the best model of group 1. 

The ARMAX models are the best performing ones in each group until 
three/four-day-ahead predictions. After that, the ARMA terms do not 
appear anymore in the top performing models in any of the four groups. 
This is consistent with the fact that AR and MA terms are useful for 
capturing the short-term effect of unexpected shocks. Since in these time 
series all shocks are mean reverting (i.e., the series are stationary), after 
a few lags their effects tend to fade and, therefore, the ARMA terms no 
longer contribute to improving predictions. 

Knowing future temperature provides a considerable edge. As shown 
in Table 4, predictions obtained by the best performing model of group 2 
are significantly better than those from group 1, at any time horizon. On 
the other hand, when using predicted temperatures, findings are mixed. 
For short leads (up to four days), using models with predicted temper
ature provides significantly lower RMSEs than excluding temperature. 

For longer leads, the gap with the models with no temperature tends to 
disappear and become insignificant. This is not necessarily due to the 
loss in precision of the temperature forecasts, since we observe this 
feature also in group 4, in which temperature forecasts are based on 
historical averages and, therefore, have the same forecasting errors at all 
horizons (recall Table 3). 

We finally examine how the prediction accuracy deteriorates with 
the time horizon. Fig. 4 represents the RMSEs for all the best models of 
each group. Even if we assume future temperature as known, the RMSEs 
almost double when we go from one-day-ahead predictions to six- 
months-ahead ones. Interestingly, most of the increase in RSME is in 
the first three/four days, while the forecasting errors corresponding to 
one-month-ahead predictions are just slightly smaller than those per
taining to six-months-ahead ones. In other words, forecasting six- 
months-ahead does not appear to be much more challenging than 
forecasting one-month-ahead. These results do not change if we exclude 
temperature from our models or if we use forecasted temperature. 

In Table 5, we report the results for FNN. We classify models in four 
groups. Group one includes models that do not contain temperature 
(FNN1 and FNN2). Group two includes models with temperature (FNN3 
and FNN4) that is represented by its future value, i.e., temperature is 
perfectly forecasted. The third and fourth groups also include models 
with temperature (FNN3 and FNN4), but this time future temperature is 
replaced by its prediction for the test period. In the third group we use a 
random-walk temperature up to one-week ahead forecasts, and in the 
fourth group we employ the average of the temperature of the same day 
during the previous five years as the temperature forecasts. 

The first column reports the RMSEs for one-day ahead forecasts. The 
best performing model amongst those that do not include temperature 
(group 1) is FNN2, which includes weekdays, holidays, and monthly 
dummies. In the second group, including temperature significantly im
proves the RMSEs, which generates the best results among the four 
groups. Therefore, including temperature significantly improves the 
RMSE. The best results are obtained when using future temperature in 
group 2. Nevertheless, using temperature at time t-1 in group 3 provides 
comparable results and using the last five-years historical average in 
group 4 also generates significantly better RMSE than those obtained by 
models in group 1 that do not contain temperature. This output confirms 
the evidence from the regression models. 

In line with the linear regressions forecasts, predictions obtained by 
the best performing model of group 2 are significantly better than those 
from group 1, at any time horizon. However, when using predicted 
temperatures, findings are mixed. For short leads (up to three days), 
using models with predicted temperature provides significantly lower 
RMSEs than excluding temperature. For longer leads, the gap with the 
models with no temperature tends to disappear and become insignifi
cant. Finally, from one-to-six months ahead models excluding temper
ature (group 1) outperform models including predicted temperature 
(group 4). 

In Fig. 5 we illustrate how the prediction accuracy deteriorates with 
the time horizon using feed-forward neural networks. We represent the 
RMSEs for all the best models of each group in Table 5. Similar to the 
regressions forecasts, the RMSEs almost double when we go from one- 
day-ahead predictions to six-months-ahead ones and most of the in
crease in RSME is in the first few days. These results do not change if we 
exclude temperature from our models or if we use forecasted 
temperature. 

These sets of findings from the linear regressions and non-linear 
neural network models demonstrate that comparing models assuming 
future temperature as known is likely to provide misleading conclusions, 
in particular for longer time horizons. They also showcase the impor
tance of accurate temperature predictions for mid-term load forecasting. 
In our example, when we include future temperature in the models, the 
best regression and the best neural network models that include future 
temperature always generate lower RMSEs than those with no temper
ature, and the differences are always statistically significant at all 

Table 3 
Temperature forecasting performance.  

Time horizon Forecast method Forecast evaluation 

RMSE (oF) MAPE (%) 

1-day ahead Random walk 2.54 3.59 
2-days ahead Random walk 3.57 5.00 
3-days ahead Random walk 4.16 5.86 
4-days ahead Random walk 4.54 6.47 
5-days ahead Random walk 4.84 6.92 
6-days ahead Random walk 5.02 7.18 
7-days ahead Random walk 5.10 7.22 
All horizons Five-years average 4.27 6.08 

Notes: “Five-years average” indicates models with temperature represented as 
the average of the previous five years in the same day of the year. “Random 
walk” indicates models using temperature forecasted as a random walk, i.e. 
using temperature at time t as the best forecast for its future values. 
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horizons. However, when we include forecasted temperature for the test 
period, the best regression models that include forecasted temperature 
always generate lower RMSEs than those with no temperature, while 
this difference is not always statistically significant. Furthermore, the 
best forecasts using neural network models that include forecasted 
temperature generate lower RMSEs than those with no temperature only 
up to seven-days ahead forecasts and this difference is not always sig
nificant. Overall, these findings bring us to conclude that forecasted 
temperature should be included in the load forecasting models for all the 
horizons considered in our analysis specially when using linear regres
sion models for mid-term forecasting. In the short-term load forecasting 
literature this conclusion is well-established, and our results indicate 
that it should be extended also to the mid-term. 

Fig. 6 compares the performance of the regressions and the neural 
network models. We plot the RMSEs of the best performing model for 
each horizon. Overall, the neural network method outperforms the 

regression models for all horizons; however, the difference is only sta
tistcally significant for two-to-seven days ahead. 

4.3. Robustness 

In order to assess whether increasing the sample size improves 
forecast performance of our models, we tested two alternative strategies 
for defining the sample sizes of our in-sample windows. In the first 
strategy, we use an expanding window (rather than the fixed, one-year, 
rolling window we used in our main analysis). This method has a fixed 
starting point and includes new data when it becomes available (i.e., the 
window gets bigger at each step). For example, to carry out one-day 
ahead forecast for 01-01-2018 we use data from 01 to 01–2016 to 31- 
12-2017, then to carry out one-day ahead forecast for 02-01-2018 we 
use data from 01 to 01–2016 to 01-01-2018, and finally to carry out one- 
day ahead forecast for 31-12-2019 we use data from 01 to 01–2016 to 

Table 4 
The regressions forecasting performance (RMSEs).  

Models One day Two 
days 

Three 
days 

Four 
days 

Five 
days 

Six days Seven 
days 

One 
month 

Three 
months 

Six 
months 

Group1: Without temperature 
M 1: Week/Holidays/Months 2.24 2.25 2.26 2.28 2.29 2.29 2.31 2.42 2.43 2.45 
M 4: ARMA(1,1) 3.57 4.75 4.82 4.82 4.82 4.81 4.81 4.83 4.83 4.84 
M 5: ARMAX(1,1)- Week/Holidays/ 

Months 
1.38 1.95 2.13 2.27 2.40 2.46 2.56 3.36 3.24 3.21 

Group 2: Actual temperature 
M 2: Temp/Week/Holidays 2.39 2.39 2.38 2.38 2.38 2.38 2.39 2.42 2.45 2.47 
M 3: Temp/Week/Holidays/Months 2.02 2.03 2.03 2.04*** 2.04*** 2.04*** 2.05*** 2.13*** 2.18*** 2.22*** 
M 6: ARMAX(1,1)-Temp/Week/Holidays 1.23*** 1.71*** 1.91*** 2.07 2.17 2.22 2.29 2.71 2.76 2.79 
M 7: ARMAX(1,1)-Temp/Week/ 

Holidays/Months 
1.32 1.83 1.98 2.13 2.25 2.29 2.37 3.01 2.87 2.83 

Group 3: Random walk temperature forecast 
M 2: Temp/Week/Holidays 2.39 2.41 2.45 2.49 2.53 2.56 2.60 – – – 
M 3: Temp/Week/Holidays/Months 2.01 2.07 2.14 2.22 2.28 2.32 2.36 – – – 
M 6: ARMAX(1,1)-Temp/Week/Holidays 1.24*** 1.76*** 1.98*** 2.16*** 2.29 2.35 2.44 – – – 
M 7: ARMAX(1,1)-Temp/Week/ 

Holidays/Months 
1.33 1.88 2.07 2.24 2.37 2.44 2.54 – – – 

Group 4: Five-years average temperature forecast 
M 2: Temp/Week/Holidays 2.54 2.53 2.53 2.53 2.53 2.54 2.54 2.57 2.60 2.63 
M 3: Temp/Week/Holidays/Months 2.22 2.22 2.23 2.24 2.24 2.25 2.26 2.37 2.40 2.41 
M 6: ARMAX(1,1)-Temp/Week/Holidays 1.33 1.80* 2.00*** 2.15*** 2.25 2.30 2.37 2.78 2.81 2.85 
M 7: ARMAX(1,1)-Temp/Week/ 

Holidays/Months 
1.43 1.91 2.06 2.21 2.32 2.37 2.45 3.08 2.95 2.91 

Notes: We report in bold the smallest RMSE for each group of models and forecasting horizon. Asterisks (* probability-value<0.10, *** probability-value<0.01) 
represent the Diebold-Mariano t-test statistical significance comparing the smallest RMSEs in groups 2, 3 and 4 (models with temperature) to the best performing model 
in the first group (models without temperature). “Five-years average temperature forecast” indicates models with temperature represented as the average of the 
previous five years in the same day of the year. “Random walk temperature forecast” indicates models using temperature forecasted as a random walk, i.e. using 
temperature at time t as the best forecast for its future values. M means Model and the ARMAX(1,1) represents the first order autoregressive and moving average with X 
explanatory variables. Temp indicates temperature, Week represents dummy variables for Saturdays, Sundays and Mondays, Holidays contains a dummy variable for 
public holidays and Months enters eleven dummy variables for each month of the year. The unit of measurement for RMSE is GWh. 

Fig. 4. The regressions best performing models at 
different time horizons (RMSEs) 
Notes: This graph illustrates the minimum RMSE 
(GWh) for each forecast horizon across four groups of 
forecasts. “No temperature” represents the best model 
without temperature data. “Actual temperature” 
represents the best model using the future tempera
ture data. “Five years average temperature” indicates 
the best model using temperature forecasted as the 
average of the previous five years in the same day of 
the year. “Random walk temperature” indicates the 
best model using temperature forecasted as a random 
walk, i.e. using temperature at time t as the best 
forecast for its future values.   
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30-12-2019. Therefore, we use all available data up to a specific point. 
The results are reported in the Appendix, Tables A1-A2, for the re
gressions and the neural network models, respectively. The outputs 
imply no systematic improvement in forecasts accuracies compared with 
the fixed one-year rolling window that we have as our main results. 

In the second strategy, at each horizon we use all available data 
allowed by rolling window approach, with a fixed size for each specific 
horizon. For instance, the models used to forecast one-day-ahead for 01- 
01-2018 are estimated on data from 01 to 01–2016 to 31-12-2017 (i.e. 2 
years of data), the models used to forecast two-days-ahead for 01-01- 
2018 are estimated on data from 01 to 01–2016 to 30-12-2017, and 

those used to forecast six-months-ahead for 01-01-2018, are estimated 
on data from 01 to 01–2016 to 05-07-2017. Therefore, we have bigger 
estimation samples size compared with the one-year sample we used in 
the main analysis. These windows roll on by keeping the size of the 
estimation sample fixed for each forecasting horizon. We use this 
strategy and repeat the forecasting comparison only for those models 
that showed the highest accuracy in each group in Tables 4 and 5 The 
results are reported in the Appendix, Table A3, and indicate no 
improvement in forecasts accuracies compared with the one-year sam
ple window size for all horizons we have as our main results in the text. 

As a robustness test, following the same forecast setting and strategy 

Table 5 
The neural network forecasting performance (RMSEs).  

Models One day Two 
days 

Three 
days 

Four 
days 

Five 
days 

Six days Seven 
days 

One 
month 

Three 
months 

Six 
months 

Group 1: Without temperature 
FNN1: FNNAR(1) 3.66 4.99 5.24 5.28 5.16 5.10 5.31 5.69 5.70 5.77 
FNN2:FNNAR(1)-Week/Holidays/ 

Months 
1.34 1.78 1.92 2.01 2.05 2.07 2.10 2.23 2.22 2.22 

Group 2: Actual temperature 
FNN3: FNNAR(1)-Temp/Week/Holidays 1.15*** 1.55*** 1.72*** 1.80*** 1.88*** 1.91*** 1.96*** 2.08** 2.18 2.22 
FNN4: FNNAR(1)-Temp/Week/ 

Holidays/Months 
1.30 1.74 1.89 1.98 2.03 2.01 1.99 2.08 2.09** 2.17*** 

Group 3: Random walk temperature forecast 
FNN3: FNNAR(1)-Temp/Week/Holidays 1.16*** 1.59** 1.81* 1.95 2.05 2.13 2.22 - - - 
FNN4: FNNAR(1)-Temp/Week/ 

Holidays/Months 
1.34 1.89 2.07 2.19 2.32 2.34 2.30 - - - 

Group 4: Five-year average temperature forecast 
FNN3: FNNAR(1)-Temp/Week/Holidays 1.23*** 1.65* 1.84 1.94 2.01 2.07 2.12 2.27 2.31 2.35 
FNN4: FNNAR(1)-Temp/Week/ 

Holidays/Months 
1.41 1.84 1.96 2.05 2.04 2.04 2.01* 2.51 2.43 2.43 

Notes: We report in bold the smallest RMSE for each group of models and forecasting horizon. Asterisks (* probability-value<0.10, ** probability-value<0.05, *** 
probability-value<0.01) represent the Diebold-Mariano t-test statistical significance comparing the smallest RMSEs in groups 2, 3 and 4 (models with temperature) to 
the best performing model in the first group (models without temperature). “Five-years average temperature forecast” indicates models with temperature represented 
as the average of the previous five years in the same day of the year. “Random walk temperature forecast” indicates models using temperature forecasted as a random 
walk, i.e. using temperature at time t as the best forecast for its future values. FNN means feed-forward neural network, and FNNAR(1) represents feed-forward neural 
network including the first order autoregressive term. Temp indicates temperature, Week represents dummy variables for Saturdays, Sundays and Mondays, Holidays 
contains a dummy variable for public holidays and Months enters eleven dummy variables for each month of the year. The unit of measurement for RMSE is GWh. 

Fig. 5. The neural network best performing models at different time horizons (RMSEs) 
Notes: This graph illustrates the minimum RMSE (GWh) for each forecast horizon across four groups of forecasts. “No temperature” represents the best model without 
temperature data. “Actual temperature” represents the best model using the future temperature data. “Five years average temperature” indicates the best model using 
temperature forecasted as the average of the previous five years in the same day of the year. “Random walk temperature” indicates the best model using temperature 
forecasted as a random walk, i.e. using temperature at time t as the best forecast for its future values. 
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we have in the main text, we evaluate the accuracy of load forecasts 
using MAPE instead of RMSE. The results in Tables B1-B2 of the Ap
pendix indicate that the MAPEs generate conclusions that are compa
rable to those provided by the RMSEs. 

In Tables C1-C2 of the Appendix we forecast load for the Northern 
region of Italy. Northern Italy is a good example of a regional study. The 
zone is well interconnected with foreign countries, where electricity can 
be imported from at lower prices. Also, the demand for electricity in this 
region represents almost half of the national demand [61]. We forecast 
load for Northern Italy and use the average daily temperature in Milan to 
represent weather. We achieve results that are akin to those obtained at 
the national level, while the RMSEs are, of course, lower.2 

In Table D of the Appendix, we provide a nomenclature list for the 
abbreviations we used in the manuscript. 

5. Concluding remarks 

How one should include weather information in mid-term load 
forecasting models is arguably one of the most controversial factors in 
this recently growing literature. While weather is one of the most 
important drivers of electricity demand, weather conditions for several 
weeks ahead are especially hard to predict. In this paper we compared 
different load forecasting models with and without weather variables 
(represented by air temperature) at different time horizons, going from 
one-day to six-months ahead. Furthermore, we evaluated performance 
in two alternative scenarios: 1) assuming that we perfectly know future 
temperature and 2) using simple temperature predictions. We compared 
forecasts using the regressions and the neural network models and drew 
several conclusions that we believe should guide further mid-term load 
forecasting research. 

First, applying both regressions and neural network methods, models 
with perfect information on future temperature significantly outperform 
models without temperature at all time horizons. In our case study, we 
observe an improvement in RMSEs that is between 10% and 20% 
depending on the specification. However, this is not a fair comparison 
since future temperature cannot be perfectly forecasted. When we 
replace future temperature with a simple prediction, results became 
weaker. When using the regression models, the RMSEs are still smaller 
for the models including forecasted temperature compared with models 
without temperature, but the statistical significance is retained only for 
short horizons, up to four-days ahead. When using the neural network 
models, the RMSEs are smaller for the models including forecasted 
temperature up to seven-days ahead, but statistical significance is pre
served only for up to three-days ahead. 

This leads us to draw two conclusions. First, comparisons across 
models should not be carried out assuming future temperature as 
known, as previously done in some research. Second, forecasted tem
perature should be included not only in short-term forecasting models 
(for which it is probably the most well-established driver), but also in 
mid-term forecasting. This output is more profound under the re
gressions than the neural network models. This conclusion is likely to 
grow in strength in the coming years, considering the constant 
improvement that we are witnessing in weather-prediction models [62]. 

Our results also clearly indicate that short-term forecasting (up to a 
few-days ahead) can be done much more accurately than mid-term one 
(one-month ahead or more). However, effects are highly non-linear with 
the RMSEs increasing significantly in the first few days and then stabi
lizing. In other words, one-day ahead load can be forecasted with much 
more accuracy than two-days ahead load, but one-week ahead load is 
not much easier to predict than one-month or even six-months ahead 
load. This pattern is consistent in all models (both with and without 
temperature) and, therefore, it is not due to weather prediction errors 
but, more likely, to omitted and short-living shocks. Such shocks can be 
captured well by AR and MA components which, in fact, provide an edge 
for short-term horizons (up to three or four days). However, these 
temporary dynamics no longer have an impact in the mid-term and, in 

Fig. 6. Best regression model vs. best neural network model (RMSEs) 
Notes: This graph illustrates the minimum RMSE (GWh) for each forecast horizon across the regressions and the feed-forward neural network models. “Neural 
network” represents the best models using feed-forward neural network. “Econometrics” represents the best models using the regressions. Asterisks (*probability- 
value<0.10, ** probability-value<0.05, *** probability value < 0.01) represent the Diebold-Mariano t-test statistical significance comparing the RMSEs between the 
best performing regression model and the best performing neural network model for each horizon. 

2 We also try alternative approaches to forecast temperature including av
erages over different number of years (from two to ten) and moving averages of 
historical values (with 2, 3 and 7 days). Finally, we tested models which 
included a time trend. Our results (available upon request) remain unaffected. 
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fact, ARMA components disappear from the best specifications at longer 
horizons. From five-days ahead or more, our results tend to favor 
simpler, static models with only seasonal effects and other exogenous 
variables. 

All these results hold to a series of robustness tests, including variable 
definitions, estimation window choices and forecasting evaluation 
methods. We believe that further research should investigate if our 
findings also hold when using more complex neural networks or other 
computational intelligence methods. 
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Appendix  

Table A1 
The regressions forecasting performance with expanding window (RMSEs)  

Models One 
day 

Two 
days 

Three 
days 

Four 
days 

Five 
days 

Six 
days 

Seven 
days 

One 
month 

Three 
months 

Six 
months 

Group 1: Without temperature 
M 1: Week/Holidays/Months 2.43 2.45 2.47 2.48 2.49 2.50 2.51 2.51 2.51 2.52 
M 4: ARMA(1,1) 3.57 4.78 4.86 4.87 4.87 4.87 4.87 4.89 4.88 4.89 
M 5: ARMAX(1,1)- Week/Holidays/Months 1.24 1.83 2.11 2.31 2.45 2.54 2.66 3.19 3.14 3.13 
Group 2: Actual temperature 
M 2: Temp/Week/Holidays 2.51 2.51 2.52 2.52 2.53 2.53 2.54 2.55 2.56 2.57 
M 3: Temp/Week/Holidays/Months 2.19 2.21 2.22 2.23 2.24 2.25 2.26 2.25 2.25 2.25 
M 6: ARMAX(1,1)-Temp/Week/Holidays 1.22 1.74 1.95 2.11 2.23 2.29 2.39 2.82 2.87 2.88 
M 7: ARMAX(1,1)-Temp/Week/Holidays/ 

Months 
1.23 1.76 1.99 2.17 2.29 2.37 2.47 2.79 2.77 2.76 

Group 3: Random walk temperature forecast 
M 2: Temp/Week/Holidays 2.50 2.53 2.57 2.62 2.66 2.69 2.73 – – – 
M 3: Temp/Week/Holidays/Months 2.17 2.24 2.32 2.39 2.45 2.48 2.53 – – – 
M 6: ARMAX(1,1)-Temp/Week/Holidays 1.24 1.79 2.04 2.22 2.35 2.42 2.53 – – – 
M 7: ARMAX(1,1)-Temp/Week/Holidays/ 

Months 
1.24 1.82 2.09 2.29 2.44 2.53 2.64 – – – 

Group 4: Five-years average temperature forecast 
M 2: Temp/Week/Holidays 2.69 2.70 2.70 2.71 2.71 2.72 2.72 2.74 2.75 2.76 
M 3: Temp/Week/Holidays/Months 2.45 2.46 2.47 2.49 2.49 2.50 2.51 2.52 2.52 2.53 
M 6: ARMAX(1,1)-Temp/Week/Holidays 1.34 1.84 2.06 2.22 2.33 2.39 2.49 2.92 2.95 2.97 
M 7: ARMAX(1,1)-Temp/Week/Holidays/ 

Months 
1.37 1.89 2.12 2.29 2.41 2.48 2.58 2.90 2.88 2.87 

Notes: We report in bold the smallest RMSE for each group of models and forecasting horizon. “Five-years average temperature forecast” indicates models with 
temperature represented as the average of the previous five years in the same day of the year. “Random walk temperature forecast” indicates models using temperature 
forecasted as a random walk, i.e. using temperature at time t as the best forecast for its future values. M means Model and the ARMAX(1,1) represents the first order 
autoregressive and moving average with X explanatory variables. Temp indicates temperature, Week represents dummy variables for Saturdays, Sundays and Mondays, 
Holidays contains a dummy variable for public holidays and Months enters eleven dummy variables for each month of the year. The unit of measurement for RMSE is 
GWh.  

Table A2 
The neural network forecasting performance with expanding window (RMSEs)  

Models One 
day 

Two 
days 

Three 
days 

Four 
days 

Five 
days 

Six 
days 

Seven 
days 

One 
month 

Three 
months 

Six 
months 

Group 1: Without temperature 
FNN1: FNNAR(1) 3.66 5.10 5.39 5.46 5.37 5.30 5.55 6.01 6.03 6.07 
FNN2:FNNAR(1)-Week/Holidays/Months 1.16 1.59 1.84 1.99 2.10 2.21 2.29 2.43 2.43 2.50 
Group 2: Actual temperature 
FNN3: FNNAR(1)-Temp/Week/Holidays 1.19 1.63 1.83 1.97 2.08 2.13 2.20 2.43 2.40 2.43 
FNN4: FNNAR(1)-Temp/Week/Holidays/ 

Months 
1.13 1.51 1.73 1.90 2.03 2.09 2.16 2.32 2.34 2.38 

Group 3: Random walk temperature forecast 
FNN3: FNNAR(1)-Temp/Week/Holidays 1.21 1.69 1.95 2.17 2.33 2.41 2.50 – – – 
FNN4: FNNAR(1)-Temp/Week/Holidays/ 

Months 
1.16 1.61 1.92 2.12 2.29 2.40 2.49 – – – 

Group 4: Five-year average temperature forecast 
FNN3: FNNAR(1)-Temp/Week/Holidays 1.26 1.75 1.97 2.14 2.26 2.34 2.41 2.64 2.62 2.66 
FNN4: FNNAR(1)-Temp/Week/Holidays/ 

Months 
1.22 1.69 1.95 2.14 2.28 2.39 2.49 2.65 2.69 2.70 
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Notes: We report in bold the smallest RMSE for each group of models and forecasting horizon. “Five-years average temperature forecast” indicates models with 
temperature represented as the average of the previous five years in the same day of the year. “Random walk temperature forecast” indicates models using temperature 
forecasted as a random walk, i.e. using temperature at time t as the best forecast for its future values. FNN means feed-forward neural network, and FNNAR(1) 
represents feed-forward neural network including the first order autoregressive term. Temp indicates temperature, Week represents dummy variables for Saturdays, 
Sundays and Mondays, Holidays contains a dummy variable for public holidays and Months enters eleven dummy variables for each month of the year. The unit of 
measurement for RMSE is GWh.  

Table A3 
Alternative sample selection (RMSEs)  

Models One day Two 
days 

Three 
days 

Four 
days 

Five 
days 

Six days Seven 
days 

One 
month 

Three 
months 

Six months 

Regressions 
Without temperature 1.24 1.82 2.08 2.28 2.41 2.43 2.44 2.42 2.42 2.44 
Actual temperature 1.22 1.72 1.93 2.15 2.16 2.17 2.18 2.14 2.15 2.16 
Random walk temperature forecast 1.24 1.78 2.01 2.20 2.36 2.40 2.45 – – – 
Five-years average temperature 

forecast 
1.34 1.83 2.04 2.19 2.39 2.40 2.41 2.38 2.39 2.40 

Feed-forward neural network 
Without temperature 1.14 1.57 1.88 1.93 2.09 2.17 2.25 2.48 2.49 2.50 
Actual temperature 1.15 1.57 1.77 1.88 1.97 2.04 2.09 2.35 2.34 2.41 
Random walk temperature forecast 1.16 1.62 1.87 2.07 2.21 2.27 2.35 – – – 
Five-years average temperature 

forecast 
1.22 1.68 1.90 2.05 2.18 2.25 2.30 2.49 2.47 2.50 

Note: In this table the RMSEs correspond to the models that had shown the smallest RMSEs in Tables 4 and 5 “Five years average temperature forecast” indicates 
models with temperature represented as the average of the previous five years in the same day of the year. “Random walk temperature forecast” indicates models using 
temperature forecasted as a random walk, i.e. using temperature at time t as the best forecast for its future values. The unit of measurement for RMSE is GWh.  

Table B1 
The regressions forecasting performance (MAPEs)  

Models One 
day 

Two 
days 

Three 
days 

Four 
days 

Five 
days 

Six 
days 

Seven 
days 

One 
month 

Three 
months 

Six 
months 

Group 1: Without temperature 
M 1: Week/Holidays/Months 4.73 4.80 4.85 4.90 4.94 4.98 5.02 5.37 5.39 5.47 
M 4: ARMA (1,1) 9.24 12.46 12.54 12.49 12.49 12.47 12.44 12.5 12.54 12.59 
M 5: ARMAX(1,1)- Week/Holidays/Months 2.64 4.02 4.57 5.00 5.29 5.47 5.69 7.90 7.64 7.62 
Group 2: Actual temperature 
M 2: Temp/Week/Holidays 4.88 4.87 4.87 4.87 4.88 4.88 4.89 4.97 5.12 5.22 
M 3: Temp/Week/Holidays/Months 4.17 4.22 4.25 4.27 4.29 4.31 4.33 4.48 4.65 4.78 
M 6: ARMAX(1,1)-Temp/Week/Holidays 2.45 3.54 4.00 4.33 4.54 4.67 4.88 6.09 6.24 6.36 
M 7: ARMAX(1,1)-Temp/Week/Holidays/ 

Months 
2.60 3.83 4.24 4.59 4.81 4.93 5.12 6.96 6.72 6.68 

Group 3: Random walk temperature forecast 
M 2: Temp/Week/Holidays 4.90 5.01 5.10 5.26 5.38 5.45 5.58 – – – 
M 3: Temp/Week/Holidays/Months 4.19 4.4 4.55 4.71 4.86 4.98 5.14 – – – 
M 6: ARMAX(1,1)-Temp/Week/Holidays 2.44 3.61 4.18 4.60 4.87 5.05 5.30 – – – 
M 7: ARMAX(1,1)-Temp/Week/Holidays/ 

Months 
2.59 3.90 4.43 4.85 5.14 5.35 5.61 – – – 

Group 4: Five-years average temperature forecast 
M 2: Temp/Week/Holidays 5.27 5.26 5.26 5.25 5.26 5.26 5.27 5.35 5.50 5.62 
M 3: Temp/Week/Holidays/Months 4.71 4.74 4.75 4.78 4.80 4.82 4.86 5.10 5.17 5.27 
M 6: ARMAX(1,1)-Temp/Week/Holidays 2.78 3.79 4.23 4.53 4.72 4.82 5.02 8.18 6.31 6.45 
M 7: ARMAX(1,1)-Temp/Week/Holidays/ 

Months 
2.93 4.03 4.42 4.77 4.96 5.09 5.28 7.11 6.88 6.79 

Notes: We report in bold the smallest MAPE for each group of models and forecasting horizon. “Five-years average temperature forecast” indicates models with 
temperature represented as the average of the previous five years in the same day of the year. “Random walk temperature forecast” indicates models using temperature 
forecasted as a random walk, i.e. using temperature at time t as the best forecast for its future values. M means Model and the ARMAX(1,1) represents the first order 
autoregressive and moving average with X explanatory variables. Temp indicates temperature, Week represents dummy variables for Saturdays, Sundays and Mondays, 
Holidays contains a dummy variable for public holidays and Months enters eleven dummy variables for each month of the year. The unit of measurement for MAPE is %.  

Table B2 
The neural network forecasting performance (MAPEs)  

Models One 
day 

Two 
days 

Three 
days 

Four 
days 

Five 
days 

Six 
days 

Seven 
days 

One 
month 

Three 
months 

Six 
months 

Group 1: Without temperature 
FNN1: FNNAR(1) 9.62 13.60 14.03 14.00 13.51 13.35 13.77 14.44 14.48 14.61 
FNN2:FNNAR(1)-Week/Holidays/Months 2.72 3.70 4.13 4.29 4.35 4.46 4.54 4.90 4.54 4.86 
Group 2: Actual temperature 
FNN3: FNNAR(1)-Temp/Week/Holidays 2.28 3.11 3.47 3.65 3.73 3.78 3.84 4.14 3.84 4.45 

(continued on next page) 
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Table B2 (continued ) 

Models One 
day 

Two 
days 

Three 
days 

Four 
days 

Five 
days 

Six 
days 

Seven 
days 

One 
month 

Three 
months 

Six 
months 

FNN4: FNNAR(1)-Temp/Week/Holidays/ 
Months 

2.55 3.40 3.63 3.78 3.88 3.90 3.86 4.33 3.86 4.51 

Group 3: Random walk temperature forecast 
FNN3: FNNAR(1)-Temp/Week/Holidays 2.30 3.31 3.86 4.20 4.29 4.42 4.67 – – – 
FNN4: FNNAR(1)-Temp/Week/Holidays/ 

Months 
2.64 3.79 4.20 4.37 4.62 4.72 4.62 – – – 

Group 4: Five-year average temperature forecast 
FNN3: FNNAR(1)-Temp/Week/Holidays 2.43 3.41 3.81 4.03 4.12 4.22 4.33 4.64 4.76 4.89 
FNN4: FNNAR(1)-Temp/Week/Holidays/ 

Months 
2.85 3.78 4.06 4.18 4.17 4.23 4.14 5.12 5.00 5.04 

Notes: We report in bold the smallest MAPE for each group of models and forecasting horizon. “Five-years average temperature forecast” indicates models with 
temperature represented as the average of the previous five years in the same day of the year. “Random walk temperature forecast” indicates models using temperature 
forecasted as a random walk, i.e. using temperature at time t as the best forecast for its future values. FNN means feed-forward neural network, and FNNAR(1) 
represents feed-forward neural network including the first order autoregressive term. Temp indicates temperature, Week represents dummy variables for Saturdays, 
Sundays and Mondays, Holidays contains a dummy variable for public holidays and Months enters eleven dummy variables for each month of the year. The unit of 
measurement for MAPE is %.  

Table C1 
The regressions forecasting performance (RMSEs) for the North of Italy  

Models One day Two 
days 

Three 
days 

Four 
days 

Five 
days 

Six 
days 

Seven 
days 

One 
month 

Three 
months 

Six 
months 

Group 1: Without temperature 
M 1: Week/Holidays/Months 1.60 1.60 1.60 1.61 1.61 1.61 1.62 1.68 1.69 1.70 
M 4: ARMA(1,1) 2.44 3.29 3.33 3.32 3.32 3.32 3.31 3.33 3.33 3.34 
M 5: ARMAX(1,1)- Week/Holidays/ 

Months 
0.98 1.39 1.50 1.61 1.67 1.74 1.80 2.33 2.22 2.22 

Group 2: Actual temperature 
M 2: Temp/Week/Holidays 1.79 1.79 1.79 1.79 1.79 1.79 1.79 1.81 1.83 1.85 
M 3: Temp/Week/Holidays/Months 1.49 1.50 1.50 1.50 1.50** 1.50** 1.51** 1.56*** 1.56*** 1.58*** 
M 6: ARMAX(1,1)-Temp/Week/Holidays 0.90*** 1.25*** 1.38*** 1.49** 1.56 1.59 1.64 1.93 1.94 1.97 
M 7: ARMAX(1,1)-Temp/Week/Holidays/ 

Months 
0.96 1.34 1.45 1.54 1.62 1.65 1.71 2.19 2.09 2.07 

Group 3: Random walk temperature forecast 
M 2: Temp/Week/Holidays 1.79 1.81 1.83 1.84 1.86 1.87 1.90 – – – 
M 3: Temp/Week/Holidays/Months 1.48 1.52 1.56 1.59 1.62 1.63 1.66 – – – 
M 6: ARMAX(1,1)-Temp/Week/Holidays 0.91*** 1.27*** 1.42*** 1.54 1.62 1.66 1.73 – – – 
M 7: ARMAX(1,1)-Temp/Week/Holidays/ 

Months 
0.97 1.36 1.49 1.60 1.69 1.73 1.81 – – – 

Group 4: Five-years average temperature forecast 
M 2: Temp/Week/Holidays 1.86 1.86 1.86 1.86 1.86 1.86 1.86 1.88 1.90 1.92 
M 3: Temp/Week/Holidays/Months 1.61 1.61 1.61 1.62 1.62 1.62 1.63 1.70 1.70 1.72 
M 6: ARMAX(1,1)-Temp/Week/Holidays 0.97 1.30** 1.44*** 1.54 1.61 1.64 1.70 1.97 1.98 2.01 
M 7: ARMAX(1,1)-Temp/Week/Holidays/ 

Months 
1.03 1.38 1.49 1.59 1.66 1.70 1.76 2.24 2.14 2.12 

Notes: We report in bold the smallest RMSE for each group of models and forecasting horizon. Asterisks (* probability-value<0.10, ** probability-value<0.05, *** 
probability-value<0.01) represent the Diebold-Mariano t-test statistical significance comparing the smallest RMSEs in groups 2, 3 and 4 (models with temperature) to 
the best performing model in the first group (models without temperature). “Five-years average temperature forecast” indicates models with temperature represented 
as the average of the previous five years in the same day of the year. “Random walk temperature forecast” indicates models using temperature forecasted as a random 
walk, i.e. using temperature at time t as the best forecast for its future values. M means Model and the ARMAX(1,1) represents the first order autoregressive and moving 
average with X explanatory variables. Temp indicates temperature, Week represents dummy variables for Saturdays, Sundays and Mondays, Holidays contains a dummy 
variable for public holidays and Months enters eleven dummy variables for each month of the year. The unit of measurement for RMSE is GWh.  

Table C2 
The neural network forecasting performance (RMSEs) for the North of Italy  

Models One day Two 
days 

Three 
days 

Four 
days 

Five 
days 

Six 
days 

Seven 
days 

One 
month 

Three 
months 

Six 
months 

Group 1: Without temperature 
FNN1: FNNAR(1) 2.58 3.59 3.78 3.79 3.72 3.77 3.92 4.03 4.05 4.11 
FNN2:FNNAR(1)-Week/Holidays/Months 0.92 1.22 1.34 1.41 1.49 1.51 1.57 1.56 1.64 1.63 
Group 2: Actual temperature 
FNN3: FNNAR(1)-Temp/Week/Holidays 0.82*** 1.16** 1.34 1.42 1.45 1.50 1.51 1.64 1.57*** 1.63 
FNN4: FNNAR(1)-Temp/Week/Holidays/ 

Months 
0.91 1.23 1.37 1.48 1.55 1.59 1.64 1.74 1.73 1.79 

Group 3: Random walk temperature forecast 
FNN3: FNNAR(1)-Temp/Week/Holidays 0.84 1.17 1.36 1.50 1.53 1.55 1.63 – – – 
FNN4: FNNAR(1)-Temp/Week/Holidays/ 

Months 
0.89 1.28 1.46 1.58 1.69 1.70 1.78 – – – 

(continued on next page) 
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Table C2 (continued ) 

Models One day Two 
days 

Three 
days 

Four 
days 

Five 
days 

Six 
days 

Seven 
days 

One 
month 

Three 
months 

Six 
months 

Group 4: Five-year average temperature forecast 
FNN3: FNNAR(1)-Temp/Week/Holidays 0.88 1.21 1.35 1.44 1.49 1.55 1.60 1.68 1.67 1.72 
FNN4: FNNAR(1)-Temp/Week/Holidays/ 

Months 
0.99 1.32 1.50 1.62 1.71 1.73 1.75 1.83 1.85 1.92 

Notes: We report in bold the smallest RMSE for each group of models and forecasting horizon. Asterisks (** probability-value<0.05, *** probability-value<0.01) 
represent the Diebold-Mariano t-test statistical significance comparing the RMSE to the best performing model in the first group of models (without temperature). 
“Five-years average temperature forecast” indicates models with temperature represented as the average of the previous five years in the same day of the year. 
“Random walk temperature forecast” indicates models using temperature forecasted as a random walk, i.e. using temperature at time t as the best forecast for its future 
values. FNN means feed-forward neural network, and FNNAR(1) represents feed-forward neural network including the first order autoregressive term. Temp indicates 
temperature, Week represents dummy variables for Saturdays, Sundays and Mondays, Holidays contains a dummy variable for public holidays and Months enters eleven 
dummy variables for each month of the year. The unit of measurement for RMSE is GWh.  

Table D 
Nomenclature list  

IPEX Italian Power Exchange 

ENTSO-E European Network of Transmission System Operators for Electricity 
GWh Gigawatt hour 
TWh Terawatt-hour 
◦F Degree Fahrenheit 
◦C Degree Celsius 
ADF Augmented Dickey-Fuller 
ARMA Auto-Regressive Moving-Average 
l Daily load 
l̂ Daily forecasted load 
temp Daily temperature 
d60 Dummy variable equal to 1 if temperature is higher or equal to 60 ◦F and zero otherwise 
W Dummy variables for Saturdays, Sundays and Mondays 
M Monthly dummy variables 
H Dummy variable for public holidays 
φ(L),ψ(L) Autoregressive and moving average polynomials 
L Lag operator 
βs, ψs, φs Parameters to be estimated 
ML Maximum likelihood 
ANN Artificial Neural Network 
FNN Feed-forward Neural Network 
FNNAR(1) Feed-forward neural network including the first order autoregressive term 
BFGS Broyden-Fletcher-Goldfarb-Shanno algorithm 
y Output variable 
X Vector of input variables 
n Number of input variables in the neural network model 
f(.), g(.) Sigmoid non-linear activation functions 
bs Bias parameters 
v, w Weighted parameters 
h Number of neurons in hidden layer of the neural network model 
exp Exponentiate 
RMSE Root Mean Square Errors 
MAPE Mean Absolute Percentage Errors 
N Number of observations in the forecasting comparison window 
D-M [59] test  
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