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A flexible predictive density combination is introduced for large financial data sets which
allows for model set incompleteness. Dimension reduction procedures that include
learning allocate the large sets of predictive densities and combination weights to
relatively small subsets. Given the representation of the probability model in extended
nonlinear state-space form, efficient simulation-based Bayesian inference is proposed
using parallel dynamic clustering as well as nonlinear filtering, implemented on graphics
processing units. The approach is applied to combine predictive densities based on a
large number of individual US stock returns of daily observations over a period that
includes the Covid-19 crisis period. Evidence on dynamic cluster composition, weight
patterns and model set incompleteness gives valuable signals for improved modelling.
This enables higher predictive accuracy and better assessment of uncertainty and risk
for investment fund management.
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1. Introduction

Predicting with large sets of data involving many model structures and explanatory variables is a topic of substantial
nterest to academic researchers as well as to professional forecasters. It has been studied in several papers (e.g., see Stock

✩ This paper should not be reported as representing the views of Norges Bank. The views expressed are those of the authors and do not necessarily
reflect those of Norges Bank. Paper was presented at the ISBA2022 World Meeting. The authors are indebted to Mike West, James Mitchell and
several participants for very useful discussions and comments. We are also indebted to Jamie Cross, Lennart Hoogerheide and, in particular, to
the editor, Torben Andersen, the associate editor and three anonymous referees for valuable comments on earlier versions of this paper, Casarin
et al. (2020) which led to a substantial revision and extension. Roberto Casarin’s research is supported by the Venice center in Economic and Risk
Analytics for public policies. Stefano Grassi gratefully acknowledges financial support from the University of Rome ‘Tor Vergata’, Italy under Grant
‘‘Beyond Borders’’ (CUP: E84I20000900005). Roberto Casarin and Francesco Ravazzolo acknowledge financial support from Italian Ministry MIUR
under the PRIN project Hi-Di NET - Econometric Analysis of High Dimensional Models with Network Structures in Macroeconomics and Finance
(grant 2017TA7TYC).

∗ Corresponding author.
E-mail address: hkvandijk@ese.eur.nl (H. K. van Dijk).
Please cite this article as: R. Casarin, S. Grassi, F. Ravazzolo et al., A flexible predictive density combination for large financial data sets in regular and crisis
periods. Journal of Econometrics (2023), https://doi.org/10.1016/j.jeconom.2022.11.004.

ttps://doi.org/10.1016/j.jeconom.2022.11.004
304-4076/© 2022 Erasmus University Rotterdam. Published by Elsevier B.V. This is an open access article under the CC BY license (http:

//creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.jeconom.2022.11.004
https://www.elsevier.com/locate/jeconom
http://www.elsevier.com/locate/jeconom
http://creativecommons.org/licenses/by/4.0/
mailto:hkvandijk@ese.eur.nl
https://doi.org/10.1016/j.jeconom.2022.11.004
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


R. Casarin, S. Grassi, F. Ravazzolo et al. Journal of Econometrics xxx (xxxx) xxx

a
p
a
a
s
t

p
a
m
i
r
s
f
A
d
u

(
f
s
o
b
d
(
t

m
i
d
w
o
a
T

e
i
w
e
o
T
l
t
t
d
r
w
t
S
t
(

r
S
w

t
i

p
(

nd Watson, 1999, 2002, 2005, 2014, and Bańbura et al., 2010). The recent fast growth in big data allows researchers to
redict variables of interest more accurately (e.g., see Choi and Varian, 2012; Varian, 2014; Varian and Scott, 2014; Einav
nd Levin, 2014). Stock and Watson (2005, 2014), Bańbura et al. (2010) and Koop and Korobilis (2013) suggest that there
re also potential gains from predicting using a large set of predictors. However, such predictions require new modelling
trategies, efficient inference methods and extra computing power possibly resulting from parallel computing. We refer
o Granger (1998) for an early discussion of these issues.

Given a large financial micro-data set consisting of US individual stock returns of daily observations over an extended
eriod which includes the Covid-19 crisis period, we propose a flexible predictive density combination in order to
pproximate such data accurately while allowing for model set incompleteness and combination weight learning. A major
otivation for our approach is that in portfolio analysis the process of collecting such a large data set and clustering it

n a relatively small number of groups where each group has typical data characteristics is a popular strategy. Next, one
eplicates an aggregate index through a weighted combination of assets which can be used for a predictive asset allocation
trategy in investment funds (e.g., see Corielli and Marcellino, 2006; Kim and Kim, 2020). Our approach provides tools
or the quantification of predictive uncertainty and risk for such funds which may be useful management information.
second related motivation is the appearance of fat tail behaviour (and possibly skewness) in most financial data

istributions. These data features are usually ignored in point prediction and this may give wrong signals about financial
ncertainty and risk.
In terms of methodology, we extend the combination strategies of Billio et al. (2013) and McAlinn and West

2019). McAlinn and West (2019) is founded on a decision theory framework providing a coherent Bayesian interpretation
or Bayesian Model Averaging (BMA). However, when the time series tend to become large BMA tends to select one model,
upposedly the true model, see Amisano and Geweke (2010). In empirical analysis it is, however, known that the concept
f a true model is not very realistic, see Geweke (2010). Our aim is not to pursue the approach of finding the true model,
ut rather to introduce a flexible predictive density combination that provides an accurate approximation to nonstandard
ata distributions in finance such as bimodal ones and/or distributions with heavy tails. We refer to Hall and Mitchell
2007), Amisano and Geweke (2010), Billio et al. (2013), Gneiting and Ranjan (2013), Yao et al. (2018) and the discussion
herein for further insight on the different combination approaches.

Our extensions to Billio et al. (2013) are threefold. First, replace their normal combination model with a flexible
ixture of predictive distributions to account for possible multimodality and heavy tails and specify a measure for model

ncompleteness or misspecification. Second, make the combination approach operational for large data sets by applying
imension reduction which includes learning about the large sets of predictive densities as well as the combination
eights. A major reason for these different dimension reductions is that investment fund managers are interested to
btain not only predictions of the fund but also to learn about the composition over time of the clusters of assets and,
lso, to learn about the behaviour of weights of these clusters. This may lead to improved modelling, prediction and policy.
hird, for efficient inferential purposes make use of a recent parallel Sequential Monte Carlo method.
Extension one is described in the beginning of Section 2, here we explain extensions two and three. Our empirical

xample contains a large data set of individual US stock returns of daily observations over an extended time period which
ncludes the Covid-19 crisis. As a consequence, we deal with a large set of predictive densities in the combination process,
hich makes the inference task a substantial challenge. Inference based on the normal combination model from (Billio
t al., 2013) is not operational in large panels since the latent space of combination weights is high dimensional and
verparameterization and overfitting issues can easily arise. We extend (Billio et al., 2013) with two dimension reductions.
he first one is based on dynamic clustering of the large set of predictive densities exploiting common data features in the
arge set of stock return series such as wide data bands and time-varying volatility. The dynamic clustering maps, at each
ime t , the large set of predictive densities to a much smaller subset where the cluster composition at time t depends on
he past composition. We note that clustering strategies have been successfully used in other models to cope with high
imensional parameter spaces, MacLehose and Dunson (e.g., see 2010), Billio et al. (e.g., see 2019). The second dimension
eduction deals with the large number of combination weights. A nonlinear dynamic factor model is specified for these
eights which contains learning, possibly, using information about past predictive performance. An alternative is to shrink
he combination weights to zero as in the sparse factor model literature, Carvalho et al. (e.g., see 2008), Kaufmann and
chumacher (e.g., see 2017, 2019) but learning is not included. We note that our approach contributes to the literature on
ime series models with time-varying parameters that take values on a bounded domain, see, e.g., Aitchinson and Shen
1980) and Aitchinson (1982), and applies it to large financial data extending the intuition in Stock and Watson (2014).

With respect to the inference method we show that our mixture model allows for an extended nonlinear state-space
epresentation. This enables us to construct an efficient simulation-based Bayesian inference procedure, where parallel
equential Monte Carlo is used to filter the set of probabilistic weights and integrate the set of random parameters. Here
e make use of the recently developed M-Filter, see Baştürk et al. (2019) and Hoogerheide et al. (2012).
In terms of empirical analysis we provide three contributions: accuracy gains in predictive moments compared

o benchmark results; time-varying composition of clusters and cluster weights; diagnostic information on model set
ncompleteness.

Evidence on substantial accuracy gains in predictive means, volatilities and tail events is presented compared to the no-
redictive ability benchmark and predictions from individual models and combination methods as BMA and Equal Weights
EW). The time-varying composition of the set of clusters shows learning. Individual stocks may switch across clusters
2



R. Casarin, S. Grassi, F. Ravazzolo et al. Journal of Econometrics xxx (xxxx) xxx

o
o
e
m

b

o
o
c
a

2

L
o
i
M
t

w

y

w
i
t
f
o
e
c
v
p

w

f
b
A
t
o
f
b
A
a

r eventually exit them, for example, during and after a crisis like the financial crisis and the Covid-19 crisis. Measures
f model set incompleteness and dynamic patterns in the cluster-based weights give valuable diagnostic signals. These
mpirical results may provide useful information for improved financial modelling and policy analysis by investment fund
anagement.
For a recent survey about the evolution of predictive density combinations we refer to Aastveit et al. (2019), for

ackground to Billio et al. (2013), McAlinn and West (2019) and for a policy application to Baştürk et al. (2019).
The contents of this paper are structured as follows. Section 2 provides details of the methodological contributions of

ur approach. Section 3 contains an efficient simulation-based Bayesian inference procedure. Section 4 contains results
f the empirical application using a large set of US stock return data in regular and crisis periods. Section 5 presents
onclusions and suggestions for further research. Some additional results are given in Supplementary Material that serves
s an online Appendix.

. Mixture process with model set incompleteness, dimension reduction and time-varying component weights

We start with extending a standard mixture process for predictive densities to include model set incompleteness.
et the conditional predictive probability distribution of a financial variable of interest, yt , be specified as a mixture
f conditional predictive probability distributions of yt coming from a large set of n individual financial models with
nformation sets Ii,t−1, where the information set Ii,t−1 includes data information as well as model structure, denoted by
i, with i = 1, . . . , n. Define weights wit that form a convex combination of the conditional predictive probabilities. In

erms of densities this implies a standard mixture process:

f (yt |It−1) =

n∑
i=1

wit f (yt |Ii,t−1), 0 ≤ wit ≤ 1,
n∑

i=1

wit = 1, (1)

here It−1 is the joint information set.
A key step is to give specific content to the ith mixture component f (yt |Ii,t−1). Let yt = y∗

it with probability wit , where
∗

it is defined for all models Mi as the sum of the following two random variables:

y∗

it = ỹit + εit , (2)

here ỹit is a generated draw from the predictive distribution with density f
(
ỹit |Ii,t−1

)
from model Mi. A new feature

s the addition of the disturbance εit . It points towards two sources of error. There may be misspecification errors due
o model set incompleteness and prediction errors due to, for instance, sudden shocks in the series. In this paper we
ocus on the former, that is, a larger specification error implies a larger error εit . Investigating the relative importance
f a prediction error component is a topic for further research. We note that Terui and van Dijk (2002), Hoogerheide
t al. (2010), Takanashi and McAlinn (2019), McAlinn and West (2019) and recently (Aastveit et al., 2022) make use of a
ombination equation which can be interpreted as a linear regression model with time-varying parameters and a time-
arying constant and one disturbance term. In contrast, we work with a flexible mixture approach in the combination
rocess where for each component of the mixture there exists a time-varying weight and a disturbance.
The probability density function of εit is given as:

εit ∼ N
(
0, σ 2

it

)
, (3)

here

σ 2
it = σ 2

i exp(hit ), hit = hi,t−1 + ζit , ζit ∼ N (0, σ 2
ζ ,i), (4)

or each i = 1, . . . , n. That is, σ 2
it follows a Stochastic volatility (SV) process. The use of an SV specification is introduced

y Clark (1973) and further extended by Taylor (1982), in particular for asset prices, see the survey by Shephard and
ndersen (2009). Our random walk assumption is chosen as it makes the specification convenient and parsimonious and
he MCMC estimation method becomes straightforward and efficient. For one-period prediction, to which we restrict
ur attention in this paper, the random walk assumption does not hamper the predictive performance. For long-term
orecasting the random walk specification may adversely affect (density) forecast performance by allowing volatility to
low up (becoming either unduly high or low). In such a situation, application of stationary SV processes, see Shephard and
ndersen (2009) and Johannes et al. (2014), or stationary GARCH specifications, see Andersen et al. (2010), are interesting
lternative specifications to explore. This topic is left for further research.
Given Eq. (2), the probability density function of y∗

it is the convolution of two densities given as:

f (y∗

it |Ii,t−1, σ
2
it ) =

∫
R

1
σit

φ

(
y∗

it − ỹit
σit

)
f (ỹit |Ii,t−1)dỹit (5)

where φ(·) is the standard normal density. So, for our mixture of n models we have

f (yt |It−1, σ
2
t ) =

n∑
wit

∫
1
σ

φ

(
yt − ỹit

σ

)
f (ỹit |Ii,t−1)dỹit (6)
i=1 R it it

3
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Table 1
Dimension reduction and computation of latent weights for predictive density combination
using a large financial data set. The function g(·) refers to the logistic transformation given
in Eq. (8).

Large set of financial series leading to n predictive densities
↘ ↓ ↓ ↙

Dynamic clustering allocates n densities to m ≪ n groups
↓ ↓ ↓ ↓

Cluster 1 Cluster 2 · · · Cluster m

Cluster weights zjt are logistic transformations of unrestricted random walk variables vjt :
(z1t , . . . , zmt ) = g(v1t , . . . , vmt )
↙ ↓ ↓ ↘

Mapping m cluster weights zjt to n model weights wit
↓ ↓ ↓ ↓

Construction of convex combination of large set of n predictive densities

where σ 2
t = {σ 2

1t , . . . , σ
2
nt}. One may interpret the information from the predictive densities f

(
ỹit |Ii,t−1

)
, i = 1, . . . , n as

prior-predictive information that is fed into the predictive density combination (6).
However, a large set of predictive densities for each time observation allowing for time-varying combination weights

is not easy to handle in terms of econometric inference. Reduction of the large information set is necessary. Dimension
reduction techniques are widely used in machine learning to reduce the information of high-dimensional data sets (see
e.g., Varian, 2014; Casarin and Veggente, 2020, and references cited therein). We make use of dimension reduction steps
for the large number of components in the predictive mixture and the accompanying large number of latent probabilistic
weights. The different steps are schematically shown in Table 1.

In our financial case, we start with a preliminary step using diagnostic graphical evidence about typical data features
in individual financial series of stock returns like high and low time-varying volatility and wide and narrow data bands.
Our motivation for this is that in financial applications large differences across predictions occur in the higher moments
and tail behaviour. This leads in our case to the, a priori, choice of a Normal density with high and low volatility and
a Student-t density with large and small degrees of freedom. We use these data features for dimension reduction of
the large number of components in the predictive mixture into four groups using dynamic K-means clustering where
the current cluster composition depends on the past composition. This allows for learning about model dependence,
cluster grouping and model dimensionality reduction, see e.g. Varian (2014), Casarin and Veggente (2020), and for more
general applications of machine learning methods to financial predictions (Gu et al., 2020; Bianchi et al., 2020). This is
well documented in data but largely ignored in the predictive density combination literature. We note that Bianchi and
McAlinn (2018) and Takanashi and McAlinn (2019) also discuss clustering procedures. Usually, these methods make use
of constant clustering. The clustering process is depicted in the second row of Table 1 and empirical results are presented
in Section 4. For general background on K-Means clustering we refer to Frühwirth-Schnatter (2006, pp. 97) and Malsiner
Walli et al. (2016) and for details about the implementation of our dynamic clustering procedure we refer to Favirar et al.
(2008) and to Appendix B.1 in the Supplementary Material.

In order to complete the specification of the probability model given in Eq. (6), we specify a law of motion, which
involves dimension reduction and learning, for the latent probabilistic weights wit , i = 1, . . . , n, t = 1, . . . , T with large
n and large T . The weight model, given in Eqs. (7)–(9), is a nonlinear dynamic factor model of wit . Factor models are
well-known as a vehicle for dimension reduction, see Anderson (1984) and Lopes and West (2004) and we make use of
a simple nonlinear extension. Let

vjt = vj,t−1 + ηjt , ηjt ∼ N (0, σ 2
η ), j = 1, . . . ,m, (7)

zjt =
exp(vjt )∑m
i=1 exp(vit )

, 0 ≤ zjt ≤ 1,
m∑
j=1

zjt = 1, (8)

wit =

m∑
j=1

bijtzjt , i = 1, . . . , n. (9)

The unrestricted latent variables vjt , j = 1, . . . ,m in the m = 4 clusters are normal random walk variables, see Eq. (7).
This dynamic specification can be generalised, see Billio et al. (2013). Next, a logistic transformation is applied from the
unrestricted latent variables vjt , j = 1, . . . ,m to an auxiliary set of probabilistic cluster weights zjt , j = 1, . . . ,m, see
Eq. (8), which is depicted in the bottom part of Table 1. The purpose of the factor loadings bijt is to transform the m
weights zjt of the convex combination of m clusters to the n weights wit of the convex combination of n ≫ m models.
Therefore, the factor loadings bijt are restricted to be nonnegative and sum to 1. We assume in our case, for convenience,
that each model i has an equal weight within its cluster j. To allow for learning one may consider a case where the weights
are driven by model-specific predictive performance using the log score, see Billio et al. (2013) and also (Mitchell and Hall,

2005). Note that in our case there exists no noise in the connection between wit , zjt and vjt , but this assumption can be

4
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elaxed to account for contemporaneous uncertainty with the addition of logistic-normal noise in the equation for wit .
his is left for further research.
Given Eqs. (7)–(9) we can complete the specification of the probability model given in (6) with the specification of

he law of motion for the probabilistic weights wit , i = 1, . . . , n. Consider the m × 1 vector vt = (v1t , . . . , vmt )′ with
he multivariate normal distribution vt ∼ Nm(vt−1,Ση) where Ση is a diagonal matrix. Given that the m × 1 vector
t = (z1t , . . . , zmt )′ is given as a logistic transformation, see Eq. (8), the vector z̃t = (z1t , . . . , zm−1,t )′ follows a logistic-
ormal distribution given as z̃t ∼ Lm−1(Dvt−1,DΣηD′) with zmt = 1 −

∑m−1
j=1 zjt , where the expression of the matrix D is

iven in the proof of the result which is presented in the Supplementary Material, Appendix A.
Since the large set of n probabilistic weights wit , i = 1, . . . , n consists of linear combinations of the small set of m

ogistic-normal probabilistic weights zjt , j = 1, . . . ,m, see Eq. (9), the distribution of the weights wit is logistic-normal.
ere, use is made of the class preserving property of the logistic-normal distribution. In matrix notation, consider the
ector w̃t = (w1t , . . . , wn−1,t )′ with wnt = 1−

∑n−1
i=1 wit . Then we make use of w̃t = B̃t z̃t where B̃t is an (n−1)×m matrix

that contains an appropriate subset of elements bijt . As a consequence, one can write that the implied logistic-normal
distribution of w̃t is given as :

w̃t ∼ Ln−1

(
B̃tDvt−1, B̃tDΣηD′B̃′

t

)
, (10)

or details on this result, see the Supplementary Material, Appendix A. Note that the density of the complete vector
t = (w1t , . . . , wnt )′ is singular due to the adding-up restriction of the n weights. A second source of degeneracy is

ntrinsic to our projection strategy which implies rank deficiency of the matrix B̃tDΣηD′B̃′
t .
1

The analytic solution of the probability model of Eqs. (6) and (10) is generally not known but the model can be
represented in extended nonlinear state-space form given as:

yt =

n∑
i=1

(ỹit + εit )sit , εit ∼ N (0, σ 2
it ) (11)

(s1t , . . . , snt ) ∼ Mn(1, (w1t , . . . , wnt )), (12)

wit =

m∑
j=1

bijtzjt , i = 1, . . . , n, (13)

zjt =
exp(vjt )∑m
i=1 exp(vit )

, j = 1, . . . ,m, (14)

vjt = vj,t−1 + ηjt , ηjt ∼ N (0, σ 2
η ), j = 1, . . . ,m. (15)

he measurement Eq. (11) has as extension that the right-hand side variable ỹit is not an observation from our data set but
efers to a random draw from the predictive distribution of modelMi and εit gives an indication of possible incompleteness.
Using the Multinoulli distribution (also known as the Categorical distribution) of (s1t , . . . , snt ) with parameter vector
(w1t , . . . , wnt ) given in Eq. (12), one generates draws from the ith component of the mixture distribution with probability
wit where (s1t , . . . , snt ) contains n − 1 0’s and one element equal to 1. That is, sit = 1 means that model i is selected.

A schematic figure of the extended nonlinear state-space representation is given in Fig. 1. The sequence of steps starts
with the dynamic clustering step shown at the bottom left, then one proceeds upwards and next to the middle centre
where the nonlinear dynamic factor model is shown which is constructed at the bottom right and going upwards. At
the top, the measurement equation is shown from the finite mixture process with the n generated predictive draws and
disturbances that follow a stochastic volatility process. The complete state-space representation enables us to make use
of filtering methods of the nonlinear time series literature to evaluate and update the unobserved weight components in
the predictive density combination.

3. Bayesian inference applying the M-filter

The analytic solution of the optimal filtering problem is in most applications not known, except for the case of a
Kalman filter where use is made of well-known properties of the multivariate normal distribution. For our large finite
mixture process with time-varying weights based on a nonlinear dynamic factor model, we make use of simulation-based
numerical methods to tackle the filtering problem and we make use of Bayesian inference to update information about the
random model parameters. For a fundamental discussion about a coherent Bayesian framework for evaluation, calibration,
and data-informed combination of multiple predictive densities, see McAlinn and West (2019), McAlinn et al. (2020).

1 Other distributions can be used for weights such as the Dirichlet distribution, but as shown in Aitchinson and Shen (1980) this distributional
assumption can be too restrictive in our analysis since the components of a Dirichlet composition have a correlation structure determined solely by
the normalisation operation, so that only negative correlations are possible (and given the means, there is only one free parameter for the variances
and covariances).
5
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Fig. 1. Directed acyclic graph of the extended nonlinear state-space model. It shows the connections between the variable of interest yt , the
predicted variables ỹit (rectangles, solid line), the dynamic clustering, the random walk process, the categorical Multinoulli distribution, the stochastic
volatility specification (ellipses), the link functions exp(vjt−vmt )∑m

k=1 exp(vkt−vmt )
, bijt and the nonlinear dynamic factor model of the latent probabilistic weights

it (rectangles, dashed line). The directed arrows show the dependence structure.

Apart from the fundamental motivation for applying Bayesian inference there exists a practical one which is based on
imulation-based Bayesian methods. That is, the generated draws ỹit from the predictive distributions of the different
odels are carried forward into the predictive combination density. Thus, the uncertainty in the predictions of the
ifferent models carries directly forward into the uncertainty of the combined predictive density. In contrast, frequentist
ethods like method of moments or maximum likelihood proceed in a two-step fashion by first computing point
redictions for the different models and substituting these in a second stage into the combined predictive density. As such
he second stage results suffer from the generated regressor problem, that is, uncertainty measures of the second-stage
redictions are sensitive to the estimation procedure used for the model predictions, see Pagan (1984) for background
etails.
In order to filter the latent weights in Eqs. (11)–(14) we make use of the recently developed M-Filter introduced

n Baştürk et al. (2019) and based on (Hoogerheide et al., 2012). We restrict ourselves to a summary of the novel, efficient
nd robust properties of this method and refer to the cited references and Appendix B.2 in the Supplementary Material
or technical background.

The M-Filter is a member of the class of Sequential Monte Carlo (SMC) algorithms that are suitable to solve filtering
roblems in nonlinear state-space models, see Creal (2007) and Herbst and Schorfheide (2014) for background. The basic
dea of SMC is that a set of draws, labelled particles, is generated from an approximation to the so-called target density,
n our case, the combined predictive density, in a sequential way at each time t . That is, such an SMC method consists in
general at each time point t of two steps: a sampling step to generate particles from the approximate density and next
a correction step to adjust for the distance between the approximate density and the target. However, the propagation
of particles over time points leads to the situation that after many iterations one particle receives all weights which
implies degeneracy of the approximate density. In order to avoid this, a so-called resampling step is introduced where
the approximate density is updated in such a way that degeneracy does not occur.

The M-filter has two innovations. First, this rather cumbersome resampling procedure in the propagation step is
replaced by independent sampling at each time t . This also reduces Monte Carlo variation. Second, the independent
sampling step occurs in an online-fashion, contrary to other methods that make use of independent sampling like
Efficient Importance Sampling of Richard and Zhang (2007) and Liesenfeld and Richard (2003), or Numerically Accelerated

Importance Sampling of Koopman et al. (2015) that are off-line methods.

6



R. Casarin, S. Grassi, F. Ravazzolo et al. Journal of Econometrics xxx (xxxx) xxx
Table 2
Computing time for number of threads (1, 6, 12, 24), number of draws (5000, 10000, 20000) and maximum number of Student-t
components (C). All values are in ratio with the benchmark model given by 5000 draws and one thread. Values higher that 1
means that the computing time is higher than the benchmark. Values lower than 1 means that the computing time is lower
than the benchmark.
C 1 Thread 6 Threads 12 Threads 24 Threads

5000 10000 20000 5000 10000 20000 5000 10000 20000 5000 10000 20000

2 1.000 1.953 3.773 0.171 0.314 0.725 0.093 0.171 0.377 0.083 0.164 0.325
3 1.067 2.086 3.970 0.178 0.317 0.750 0.098 0.181 0.379 0.083 0.165 0.326
4 1.068 2.097 3.981 0.186 0.322 0.782 0.099 0.185 0.383 0.083 0.168 0.331

The choice of an accurate approximate density is crucial for the performance of any filter method and has received
considerable attention in the SMC literature, see Doucet et al. (2001), Liu (2001), Kunsch (2005) and Creal (2012). The
M-Filter method approximates a target density using the Mixture of t by Importance Sampling Weighted Expectation–
Maximisation (MitISEM) algorithm proposed by Hoogerheide et al. (2012) and further developed in Baştürk et al. (2016).
MitISEM has been shown to be able to effectively approximate complex, non-elliptical distributions due to two features
of this algorithm: the class of importance distributions (mixtures of multivariate Student’s t distributions), and their
joint optimisation (with the Expectation–Maximisation, EM, algorithm). The former allows to closely track distributions
of nonstandard shape (multimodal, skewed). The latter is iteratively carried out with the objective of minimising the
Kullback–Leibler (KL) divergence between target density and approximate density. This robustness and flexibility of the
M-Filter in constructing approximate densities is particularly important in econometrics where breaks in time series are
often observed.

The application of the M-Filter requires to choose the values of a few tuning parameters. First, the number of
components of the Student-t mixture to approximate the target density is restricted to be no larger than a maximum
of four. For each component the initial mean, variance and degrees of freedom parameter are set to zero, one and three,
respectively. Those parameters are then updated with an EM step. Second, the number of draws is fixed to 10000 which
is sufficient for good convergence in our case. Third, the measure that is used in order to check the convergence of the
algorithm is the relative change in the Coefficient of Variation (CoV) of the Importance Sampling weights, where the
Importance Sampling weight is the ratio of target and approximate density. The default convergence criterion is chosen
as the change of the CoV being smaller than 0.5%.

The M-Filter is easy to parallelise, this enables our approach to speed up the computations using Multiple CPUs or
GPUs. In Table 2, we report results from an experiment about the computing time of the M-Filter with different numbers
of threads, numbers of draws and maximum numbers of components of the Student-t mixture. All the values reported are
in ratio with the benchmark model given by 5000 draws, one thread and two threads. For a comparison of the computing
time between the M-Filter and particle filters we refer to Baştürk et al. (2019), where extensive Monte Carlo studies
in benchmark exercises are presented. The results reported in Table 2 show that using multiple threads reduces the
computing time considerably in our case. Results are not sensitive to the choice of the maximum number of components
in the mixture approximation, while doubling the number of draws also doubles the computing time.

The information on the priors for the SV model in Eq. (4) and for the random walk in Eq. (7) is given as follows. For
the σ 2

it we select a log-normal distribution with mean log(0.1) and standard deviation 0.175; for σ 2
ζ , we also select a log-

normal distribution with mean −2.3 and standard deviation 0.175. Our prior corresponds to an average incompleteness
value that is equal to 10% of the unconditional volatility of our S&P500 data. For the σ 2

η , in Eq. (7), we select a log-normal
distribution with mean −0.7 and standard deviation equal to 0.175. Therefore the prior mean for σ 2

η is 5 times higher than
for σ 2

ζ , assuming bigger changes for the cluster weights than for the incompleteness over time. The standard deviation
of 0.175 for both priors implies a relative loose prior in both cases. For the parameters in the four equation models we
make use of rather uninformative proper priors. All our priors are default choices, that can be modified by the user, in the
MATLAB toolbox that carries out the M-Filter, which is available at http://www.francescoravazzolo.com/pages/DeCo.html.

4. Predicting and tracking the S&P500

As discussed in the introduction many investors of mutual funds, hedge funds and exchange-traded funds try to
replicate the performance of the S&P500 index by holding a set of stocks, which are not necessarily the exact same stocks
included in the index.

We collected 496 individual daily stock prices, components of the S&P500, from Datastream over the sample January 2,
2014, to June 30, 2021, for a total of 1888 daily observations for each series. We computed the time series of log-returns
for all stocks, see Fig. 2. Table 3 reports several cross-section average statistics of the individual series together with
the same statistics for S&P500 index. Some series have much lower average returns than the index with volatility up to
3 times higher than the index. Heterogeneity in skewness and kurtosis is also evident with the series with the lowest
skewness equal to −1.829 and the highest skewness equal to 0.335 and with the lowest kurtosis equal to 9.135 and the

highest kurtosis equal to 42.164.
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Fig. 2. Daily (%) log-returns for 496 individual stock components of the S&P500 over the sample January 2, 2014 to June 30, 2021. The red line on
anuary 2, 2019 indicates the beginning of the out-of-sample period.

Table 3
Average cross-section statistics for the 500 daily log-returns of individual stocks for the sample January 2,
2014 to June 30, 2021. The columns ‘‘Lower’’, ‘‘Median’’ and ‘‘Upper’’ refer to the cross-section 5% lower
quantile, median and 95% upper quantile of the 500 statistics in rows, respectively. The rows ‘‘Average’’,
‘‘St dev’’, ‘‘Skewness’’, ‘‘Kurtosis’’, ‘‘Min’’ and ‘‘Max’’ refer to sample average, sample standard deviation,
sample skewness, sample kurtosis, sample minimum and sample maximum statistics, respectively. The
column ‘‘S&P500’’ reports the sample statistics for the log-returns of the aggregate S&P500 index.

Subcomponents S&P500

Lower Median Upper

Average −0.012 0.051 0.116 0.045
St dev 1.328 1.810 2.997 1.111
Skewness −1.829 −0.469 0.335 −1.045
Kurtosis 9.135 16.707 42.164 24.640
Min −34.907 −17.013 −10.182 −12.765
Max 9.551 14.662 26.722 8.968

The inclusion in our series of the Covid-19 pandemic explains such high values.2 We report results on several features
f the combined predictive density of the replication of the S&P500 index, including the economic value of tail events.

Diagnostic determination of four clusters and model estimation. Given the basic statistics about time-series and
ross-section patterns, we have determined as typical data features of our financial micro-data set wide and narrow data
ands and high and low time-varying volatility.
This led us to specify two clusters of predictive densities based on a Normal GARCH(1,1) model: one cluster with high

olatility (labelled n1) and one cluster with low volatility (labelled n2). Next, two clusters based on a Student-t GARCH(1,1)
odel: one cluster with low degrees of freedom (labelled t1) and one cluster with high degrees of freedom (labelled t2).3

ur motivation for this choice is to obtain a mixture of densities which fits both in the centre of the empirical distribution
for mean prediction) and in the tails (for measuring uncertainty and risk).

To ease on the computational workload, we have applied an optimisation method to estimate the posterior modes of
he parameters from a Normal GARCH(1,1) model and a Student-t GARCH(1,1) model. Given our rather uninformative
roper priors, these mode estimates are equal to approximate Bayes mean estimates.
We use rolling samples of 1258 trading days (about five years) for each stock return in the model:

yit = ci + κitξit (16)
κ2
it = θi0 + θi1(yi,t−1 − ci)2 + θi2κ

2
i,t−1, i = 1, 2, . . . , n, (17)

2 It has been suggested to make use of the information about shares outstanding to determine better the time behaviour of weights. We consider
only stocks that have survived in the S&P500 basket over the period of our sample, but the methodology can handle series with different sample
lengths. We leave these as topics for further research.
3 Low degrees of freedom occur jointly with a large scale and high degrees of freedom occur jointly with a low scale.
8
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Fig. 3. Top left: the average variance of the predictions from the n1 (solid blue line) and n2 (dashed blue line) clusters. Top right: the average
egree of freedom of the predictions from the t1 (solid red line) and t2 (dashed red line) clusters. The degrees of freedom are bounded to 30.

Middle left: cluster allocation over time between the two clusters for the Normal case: n1 (solid blue line) and n2 (dashed blue line). Middle right:
luster allocation over time between the two clusters for the Student’s t case: t1 (solid red line) and t2 (dashed red line). Bottom left: the mean
ogistic-normal weights for the n1, n2, t1 and t2 clusters. Bottom right: posterior mean estimates of the incompleteness measures in the four clusters.

here yit is the log return of stock i at day t , ξit ∼ N (0, 1) and ξit ∼ T (νi) for the Normal and Student-t cases, respectively.
he number of degrees of freedom νi is estimated in the latter model. We produce 629 one day ahead predictive densities
rom January 2, 2019 to June 30, 2021, see red line in Fig. 2 for the sample split. Our out-of-sample period is associated
ith relatively low volatility in 2019 and high volatility from the end of February 2020 driven by the Covid-19 crisis. In
he initial and most dramatic part of the pandemic, the lowest daily return is almost -80%.

Results are reported in Fig. 3. It is seen that the Normal models in cluster n2 have a predictive variance (top left plot,
ashed line) more than double in size than cluster n1 with several spikes over time and this increases further at the
eginning of the Covid-19 pandemic. Cluster n1 has a relatively constant predicted variance (top left plot, solid line) over
he entire period except at the beginning of the Covid-19 pandemic. The Student-t models in cluster t1 have a relatively
onstant thick tail just above 4 over the entire period (top right plot, solid line) while cluster t2 has values around 7 for
he degrees of freedom (top right plot, dashed line) before the beginning of the Covid-19 which decreases to 6.5 after it.
ome instability is also measured in the second wave of the Covid-19 at the end of 2020 and beginning of 2021.

Time-varying cluster composition and weights. The clustering of the predictive densities is repeated at every time t
nd therefore the cluster composition and weights vary over time. The middle and bottom panels in Fig. 3 present results
bout these features. The number of stocks varies across consecutive vintages of predictions with the clusters n1 and t1
eing dominant in terms of attracting many individual stocks. The cluster n1 contains on average 400 stocks, whereas
luster n2 has the remaining 100. The Covid-19 pandemic creates some instability in the stock allocation, but similar
atterns existed also in 2019. The cluster t1 includes on average 450 stocks, whereas cluster t2 has on average 50 stocks.
he beginning of the Covid-19 pandemic is associated with a 5% increment in the allocation of stocks to cluster t1; the
econd wave at the end of 2020 and early months of 2021 produces some changes in the stock allocation.
Plots of the estimated cluster weights are shown at the bottom left panel in Fig. 3. These weights are the average

eights of wit per cluster. In terms of the importance of the different clusters, we notice that the clusters n1 and t1
eceive large part of the weight over the full sample, see the bottom panel in Fig. 3. At the end of the period, they sum
lmost to 70% of the total weight. Therefore, the two clusters include most of the stocks and give the larger contribution
o the combination. However, there is also evidence of time variations in the weights. The weights of clusters n2 and t2
re larger at the beginning of sample, but their size reduces from 50% to 30% just before the Covid-19 pandemic. The
9
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Table 4
Predictive results for next day S&P500 log-returns. Root mean square prediction error (RMSPE), logarithmic score (LS)
and the continuous rank probability score (CRPS) are reported. Bold numbers indicate the best statistic for each loss
function. One or two asterisks indicate that differences in accuracy from the white noise (WN) benchmark are credibly
different from zero at 5%, and 1%, respectively, using Bayes estimates of the Diebold–Mariano t-statistic for equal
loss. The underlying p-values are based on t-statistics computed with a serial correlation-robust variance, using the
pre-whitened quadratic spectral estimator of Andrews and Monahan (1992). The alternative models considered are:
GARCH model with Normal error for the aggregate index (Normal GARCH); GARCH model with Student-t error for the
aggregate index (Student-t GARCH); Glosten–Jagannathan–Runkle GARCH model for the aggregate index (GJR GARCH,
see Glosten et al., 1993); Equal Weights of all disaggregate models (EW); Bayesian Model Averaging of the models of
all disaggregate models (BMA); Density Combination with Equal Weights within the clusters and Stochastic Volatility
(DCEW-SV). The column ‘‘Violation’’ shows the number of times the realised value exceeds the 5% Value-at-Risk (VaR)
predicted by the different models over the sample.
Models RMSPE LS CRPS avQS-T avQS-L Violation

WN 1.518 −2.129 0.689 0.085 0.114 7.15%
Normal GARCH 1.513 −1.532∗∗ 0.638∗∗ 0.072∗∗ 0.104∗∗ 5.73%
Student-t GARCH 1.525 −1.420∗∗ 0.649∗∗ 0.074∗∗ 0.106∗∗ 3.50%
GJR GARCH 1.512 −1.517∗∗ 0.639∗∗ 0.072∗∗ 0.105∗∗ 5.56%
EW 1.522 −14.303 0.804 0.119 0.130 32.11%
BMA 1.525 −21.095 0.822 0.116 0.126 32.47%
DCEW-SV 1.509∗

−1.372∗∗ 0.557∗∗ 0.065∗∗ 0.090∗∗ 4.97%

crisis increases substantially their weights, in particular for n2 when volatility increases. The weights of clusters n2 and
2 reduce after the first part of the Covid-19 period and in the final part of the sample their contribution is similar to the
re-Covid-19 period.

Measures of incompleteness. We measure incompleteness for the model set Density Combination with Equal Weights
nd Stochastic Volatility, (DCEW-SV) at the bottom right panel in Fig. 3. We plot the average estimate of the four clusters
ncompleteness. The estimates are similar over time and they show a 500% increase in February–March 2020, which is
ue to the Covid-19 pandemic. In particular, the incompleteness for cluster n2 has the larger increase. Interestingly, the
olatilities start to reduce quite fast and they do over the remaining part of the sample. The values for clusters n1 and t1
n June are still twice the value pre-Covid-19; whereas the values for clusters n2 and t2 are closer to pre-Covid-19 values.

Predictive accuracy of centre and shape of the distribution. We compare the performance of our combination
pproach with results from five different basic models applied to the S&P500 log-returns: a white noise model in
ean, often used as the main benchmark in equity premium predictability; the Normal GARCH(1,1) and the Student-t
ARCH(1,1) models described above and applied to the aggregate S&P500 log-returns.
To explore the sensitivity of our results for model set incompleteness in more detail, we include the Normal GJR

ARCH(1,1) model in Glosten et al. (1993) that includes leverage effects in the model set. This model is a richer model
han the standard GARCH and should fit the data better. The leverage effect is considered among the stylised facts of
inancial returns and the added feature may become relevant in our analysis. Finally, given that simple combination
ethods might handle uncertainty accurately, we apply an equal weight combination of the all disaggregated GARCH
odels, labelled EW; and Bayesian model averaging, labelled BMA. In Section C in the Supplementary Material we also

un AR models, AR GARCH models, different EW and BMA combinations of the models in the different clusters, see Table
.1. None of these provides very accurate predictions and are therefore excluded from the main text.
Out-of-sample predictive result are presented in Table 4. The first three columns deal with location and shape features

f the predictive densities. It is seen that our combination scheme produces the lowest Root Mean Squared Prediction
rror (RMSPE) and Cumulative Rank Probability Score (CRPS) and the highest Log Score (LS). The results indicate that
he combination scheme is statistically superior to the no-predictability WN benchmark and it offers the most accurate
tatistics. The Normal GARCH(1,1) model, the Student-t GARCH(1,1) model and the Normal GJR GARCH(1,1) model fitted
n the index also provide more accurate density predictions than the WN in terms of density prediction, but not on point
rediction while our DCEW-SV is the only model that is statically superior at 5% level. For all three score criteria, the
tatistics given by BMA and EW are inferior to our combination scheme. In particular the density performance is very
nferior. The lack of time-varying learning weights appears responsible for the poor performance in our data set.

Tail estimates and their economic value. We consider two statistics that refer to tails of the predictive densities.
hese statistics are the weighted averages of the (Gneiting and Raftery, 2007) quantile scores that are based on quantile
redictions that correspond to the predictive densities from the different models. In the Supplementary Material, it is
hown that avQS-T emphasises both tails and avQS-L the left tail of the predictive density relative to the realisation
-step ahead. The fourth and fifth columns of Table 4 show results for tail evaluation. Our scheme provides the lowest
vQS-T and avQS-L statistics, confirming the accuracy of our method in the tails of the distribution.
As an economic measure, we apply a Value-at-Risk (VaR) based measure, see Jorion (2006). We compare the accuracy

f our models in terms of violations, that is the number of times that negative returns exceed the VaR predictions at
ime t , with the implication that actual losses on a portfolio are worse than was predicted. Higher accuracy results in
10
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umbers of violations close to the nominal value of 5%.4 When looking at VaR violations, reported in the final column
f Table 4, the number for all individual models is not very accurate, with the WN higher than 7%, the normal GARCH
lmost at 6%, the other two GARCH models at 3.5% indicating too large and a conservative density. Our DCEW-SV is the
nly one having a realised violation close to the 5% nominal value. The dramatic events in particular at the beginning of
he Covid-19 pandemic in February/March 2020 drive the results. The property of our combination scheme to increase
olatility in both normal clusters, and moreover, allocating more stock series to the fat tail cluster and a larger weight
o the high volatility normal one, helps to model more accurately the lower tail of the index returns and covers more
dequately risk.

. Conclusions

We proposed in this paper a flexible Bayesian modelling approach with the construction of a predictive density
ombination with model set incompleteness and combination weight learning that can deal with large data sets in
inance. The approach makes use of dimension reduction by dynamic clustering of the large number of components of the
redictive mixture in mutually exclusive small subsets. Using a nonlinear dynamic factor model reduces the dimension
f the large number of combination weights to a small set of cluster weights where a learning step is added. A parallel
equential Monte Carlo algorithm is introduced for efficient Bayesian inference.
We applied the methodology to a large financial data set of individual stock returns which includes the Covid-19 crisis

eriod. Empirical results show that our approach yields substantial accuracy gains in predictive means, volatilities and tail
vents compared to predictions from individual models and combination methods as Bayesian Model Averaging (BMA)
nd Equal Weights (EW). Measures of model set incompleteness and dynamic patterns in the cluster weights give valuable
ignals for improved financial modelling and policy analysis. These empirical results may provide useful information for
nvestment fund management.

The line of research presented in this paper can be extended in several directions. For example, the cluster-based
eights contain relevant signals about the importance of the predictive performance and composition of each of the
lusters. Some clusters have a substantial weight while others have only little weight and such a pattern may vary over
ong time periods. This may lead to the construction of alternative model combinations for more accurate out-of-sample
rediction and improved policy analysis. Another suggestion is to make use of judgemental information from individual
orecasters, see McAlinn and West (2019), and combine this with the predictive information based on our modelling
pproach. Finally, we emphasise a fruitful connection and possible extension of our approach with work in the field of
ynamic portfolio allocation, see Baştürk et al. (2019) for a basic analysis of a momentum strategy with a relatively small
et of financial assets, and for a connection with work on machine learning methods for stock and bond market predictions,
ee Gu et al. (2020), Bianchi et al. (2020).

ppendix A. Supplementary data

Supplementary material related to this article can be found online at https://doi.org/10.1016/j.jeconom.2022.11.004.
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