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Abstract

This paper develops two instrumental variable (IV) estimators for dynamic panel data
models with exogenous covariates and a multifactor error structure when both the cross-
sectional and time series dimensions, N and T respectively, are large. The main idea is
to project out the common factors from the exogenous covariates of the model, and to
construct instruments based on defactored covariates. For models with homogeneous slope
coefficients, we propose a two-step IV estimator. In the first step, the model is estimated
consistently by employing defactored covariates as instruments. In the second step, the entire
model is defactored based on estimated factors extracted from the residuals of the first-step
estimation, after which an IV regression is implemented using the same instruments as in
step one. For models with heterogeneous slope coefficients, we propose a mean-group-type
estimator, which involves the averaging of first-step IV estimates of cross-section-specific
slopes. The proposed estimators do not need to seek for instrumental variables outside the
model. Furthermore, these estimators are linear, and therefore computationally robust and
inexpensive. Notably, they require no bias correction. We investigate the finite sample
performances of the proposed estimators and associated statistical tests, and the results
show that the estimators and the tests perform well even for small N and T .
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1 Introduction

The rapid increase in the availability of panel data over the last few decades has inspired con-
siderable interest in the development of effective ways of modelling and analysing these data.
In particular, the issue of characterising cross-sectional dependence, and subsequently developing
estimation methods that are consistent and yield asymptotically-valid inferences, has proven both
popular and challenging. The factor structure approach has been used widely for modelling cross-
sectional dependence. It escapes from the curse of dimensionality by asserting that there exists
a common component that is a linear combination of a finite number of time-varying common
factors with individual-specific factor loadings. Different interpretations of this approach can be
provided, depending on the application considered. In macroeconomic panels, the unobserved
factors are frequently viewed as economy-wide shocks that affect all individuals, albeit with dif-
ferent intensities; see e.g. Favero et al. (2005). In microeconomic panels, the factor error structure
may reflect distinct sources of unobserved individual-specific heterogeneity, the impact of which
varies over time. For instance, in a model of wage determination the factor loadings may represent
several unmeasured skills that are specific to each individual, while the factors may capture the
price of these skills, which changes intertemporally in an arbitrary way; see e.g. Carneiro et al.
(2003) and Heckman et al. (2006).

A large body of literature has focused on the development of statistical inferential methods
for models with an error factor structure. Two estimation approaches have been popular for
large panels: Pesaran (2006) proposed the Common Correlated Effects (CCE) estimator, which
approximates the unobserved factors using linear combinations of cross-sectional averages of the
dependent and explanatory variables, while Bai (2009a) proposed an iterative least squares estima-
tor with bias corrections, which approximates the unobserved factors using a principal component
(PC) estimator.1 For both estimators it is assumed that the regressors are strictly exogenous with
respect to the idiosyncratic error component, whereas possible correlation between the regressors
and the error factor component is permitted. Under somewhat weaker assumptions, Moon and
Weidner (2015) show that the estimator of Bai (2009a) can be interpreted as a quasi maximum
likelihood estimator (QMLE), the consistency of which is maintained even when the number of
factors is not specified correctly, as long as it is larger than or equal to the true number of factors.

This paper considers the estimation of linear dynamic panel data models with an error factor
structure in large panels.2 Recently, the CCE and PC estimators have been extended to accom-
modate this case as well. In particular, Chudik and Pesaran (2015a) propose mean group CCE
(CCEMG) estimation for panel autoregressive distributed lag models. The dynamic structure that
they consider is very general for two reasons. Firstly, it permits cross-sectionally heterogeneous
slope coefficients. Secondly, their model can be seen as a structural transformation of a mul-
tivariate dynamic process, such as a vector autoregressive model. Chudik and Pesaran (2015a)
employ a mean-group-type estimator and propose that the regression be augmented with the
cross-sectional averages of dependent variables and covariates and their lags, in order to control
for the common components.

On the other hand, Moon and Weidner (2017) propose a bias-corrected QMLE (BC-QMLE)
estimator for dynamic panel data models with homogeneous slopes, and put forward bias-corrected
likelihood-based tests. Unlike CCEMG and the approach proposed in the present paper, they
allow covariates to be correlated with the common component in disturbances without imposing
a linear factor structure. Furthermore, the precision of the estimator is expected to be higher
than those of existing estimators in large samples under certain regularity conditions.

1See Westerlund and Urbain (2015) for a comparison analysis of the CCE and PC estimation methods. Chudik
and Pesaran (2015b), Sarafidis and Wansbeek (2012) and Bai and Wang (2016) also provide excellent surveys on
the related literature.

2The estimation of such models for short panel data is considered by Ahn et al. (2013), Robertson and Sarafidis
(2015), and Juodis and Sarafidis (2018, 2020).
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This paper develops two instrumental variable (IV) estimators for dynamic panel data models
with exogenous covariates and a multifactor error structure when both the cross-sectional and
time series dimensions, N and T respectively, are large. We consider models with homogeneous
and heterogeneous slope coefficients. In both cases, the main idea of the proposed approach is
to project out the common factors from the exogenous covariates of the model, and to construct
instruments based on defactored covariates.3 The assumption underlying our IV approach is that
any sources of endogeneity of the covariates arise due solely to the non-zero correlation between the
common components in the covariates and in the model disturbances. Notably, this assumption
can be tested using an overidentifying restrictions test.

In particular, we propose a two-step IV estimator for models with homogeneous slope co-
efficients. The first-step IV estimator is obtained simply by employing the aforementioned in-
struments based on the defactored covariates. In the second step, the entire morel based is
defactored based on the factors extracted from the residuals of the first-step estimation. Subse-
quently, an IV regression is implemented using the same instruments as in step one. We derive
the

√
NT -consistency of the two-step estimator and establish its asymptotic normality. Although

the proposed IV approach and the BC-QMLE approach of Moon and Weidner (2017) are both
based on the PC estimator, there are important differences between them in practice. Firstly,
since our estimator is an instrumental variable estimator, it is not subject to the “Nickell bias”
that arises with least squares type estimators in dynamic panel data models when T is relatively
small. Secondly, our estimator is linear, and therefore robust and computationally inexpensive. In
comparison, the BC-QMLE estimator requires nonlinear optimisation, which can be more costly
and could fail to reach the global minimum.4 Thirdly, unlike the QMLE estimator, which requires
bias-correction to re-centre the limiting distribution of the original estimator, the proposed IV
estimator does not have an asymptotic bias.

For models with heterogeneous slope coefficients, we propose a mean group-type estimator,
which is the cross-sectional average of first-step IV estimates of individual-specific slopes. We
establish the

√
N -consistency of our estimator to the population average of the slopes and its

asymptotic normality. Our estimator has some advantages over the CCEMG estimator of Chudik
and Pesaran (2015a). Firstly, since we employ the PC approach for defactoring the exogenous
covariates, there is no need to seek external variables for approximating the factors when the
number of unobserved factors is larger than the number of covariates plus one. In contrast, the
CCE estimation requires additional sets of variables in this situation that are not in the original
model of interest but are expected to form a part of the dynamic system. In practice, this might
not be a trivial exercise. Secondly, CCE is subject to “Nickell bias”. Chudik and Pesaran (2015a)
propose that the bias be adjusted using the jackknife method, which might not be very effective
for small or moderate values of T , especially with persistent data. Simulation results reported in
this paper tend to confirm this observation.

Using simulated data, it is shown that the proposed approach performs satisfactorily under all
circumstances examined. In particular, unlike the aforementioned alternative methods, the two
IV estimators proposed here appear to have little or negligible bias in most circumstances, and a
correct size of the t-test even for small sample sizes. Furthermore, the overidentifying restrictions
test appears to have high power when the key assumption of the model is violated, namely the
exogeneity of the covariates with respect to the purely idiosyncratic disturbance. In addition, the
test tends to have good power under slope parameter heterogeneity, unless the number of degrees
of freedom of the test statistic is very small. In contrast, the CCEMG estimator can suffer from
a non-negligible bias and large size distortions of the associated t-test. Similarly, although BC-
QMLE tends to exhibit the smallest dispersion in most cases under slope homogeneity, it suffers
from a large bias and substantial size distortions of the associated bias-corrected test, unless both
N and T are large.

3This idea can be regarded as an extension of the approach taken by Sarafidis et al. (2009).
4See Moon and Weidner (2019) for more details.
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It is worth mentioning that our approach can be regarded as being opposite to those employed
by Bai and Ng (2010) and Kapetanios and Marcellino (2010). Specifically, in their model the
idiosyncratic errors of the reduced form regression of the covariates cause endogeneity, and there-
fore no error factor structure is considered in the structural model of interest. They propose that
instruments be constructed by extracting the common components from external variables and
the endogenous covariates in the model. Our approach essentially complements theirs.5

The remainder of the paper is organised as follows. Section 2 focuses on the model with homo-
geneous slopes, and develops a consistent and asymptotically normal two-step IV estimator. Sec-
tion 3 focuses on heterogeneous panels and puts forward consistent estimators of cross-sectionally
heterogeneous slope coefficients and their averages. It also establishes the asymptotic normality
of the mean group estimator. Section 4 studies the finite sample performance of the proposed
estimators along with the CCE estimator of Chudik and Pesaran (2015a) and the BC-QMLE
estimator of Moon and Weidner (2017). Section 5 contains concluding remarks. Proofs of propo-
sitions, theorems and corollaries, together with the lemmas used, are contained in Appendix A.
Appendix B gives proofs of all of the lemmas, and Appendix C provides extra simulation results.
Both these appendices are available as Supplemental Material to this paper.

2 Model and Estimation Method

Consider the following autoregressive distributed lag, ARDL(1, 0), panel data model with homo-
geneous slopes and a multifactor error structure:6

yit = ρyi,t−1 + β′xit + uit; i = 1, 2, ..., N ; t = 1, 2, ..., T, (1)

with
uit = γ0′

yif
0
y,t + εit, (2)

where |ρ| < 1; β = (β1, β2, ..., βk)
′ such that at least one of {βℓ}kℓ=1 is non-zero; xit = (x1it, x2it, ..., xkit)

′

is a k × 1 vector of regressors, and f0y,t = (f 0
y,1t, f

0
y,2t, ..., f

0
y,myt)

′ denotes an my × 1 vector of true

unobservable factors. The my × 1 vector γ0
yi contains the true factor loadings associated with f0y,t,

and εit is an idiosyncratic error. xit is subject to the following process:

xit = Γ0′
xif

0
x,t + vit, (3)

where Γ0
xi = (γ0

1i,γ
0
2i, ...,γ

0
ki) denotes the truemx×k factor loading matrix, f0x,t = (f 0

x,1t, f
0
x,2t, ..., f

0
x,mxt)

′

denotes an mx×1 vector of true factors, and vit = (v1it, v2it, ..., vkit)
′ is an idiosyncratic error term

that is independent of εit.

Remark 1 Our approach permits correlations between and within γ0
yi and Γ0

xi. Moreover,
(non)overlapping elements in f0y,t and f0x,t may be correlated to each other. Importantly, our
approach controls for endogeneity of xit that stems from the common components, but assumes
that xit is strongly exogenous with respect to εit.

Remark 2 The results presented in this paper remain valid when individual-specific and common
time effects are present, provided that {yit,x′

it} is replaced with the transformed variables {ẏit, ẋ′
it},

where ẏit = yit − ȳi − ȳt + ȳ and ẋit = xit − x̄i − x̄t + x̄ with ȳi = T−1
∑T

t=0 yit, ȳt = N−1
∑N

i=1 yit
and ȳ = N−1

∑N
i=1 ȳi, and x̄i, x̄t and x̄ are defined analogously. Indeed, the experiments for

our proposed estimators and the tests implemented in Section 4 are based on the transformed
variables.

5Another important related work is that by Harding and Lamarche (2011), which proposes an instrumental
variable estimator for a model with an error factor structure.

6The main results of this paper extend naturally to models with higher-order lags, i.e. ARDL(p, q) for p > 0
and q ≥ 0. Models with heterogeneous slopes are considered in Section 3.
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Stacking the T observations for each i yields

yi = ρyi,−1 +Xiβ + ui with ui = F0
yγ

0
yi + εi, (4)

where yi = (yi1, yi2, ..., yiT )
′ and yi,−1 = L1yi = (yi0, yi1, ..., yiT−1)

′, with Lj being the jth

lag operator, Xi = (xi1,xi2, ...,xiT )
′, ui = (ui1, ui2, ..., uiT )

′, F0
y = (f0y,1, f

0
y,2, ..., f

0
y,T )

′ and εi =
(εi1, εi2, ..., εiT )

′. Similarly,
Xi = F0

xΓ
0
xi +Vi, (5)

where F0
x = (f0x,1, f

0
x,2, ..., f

0
x,T )

′ and Vi = (vi1,vi2, ...,viT )
′.

Let Wi = (yi,−1,Xi) and θ = (ρ,β′)′. The model in Eq. (4) can be written more concisely as

yi = Wiθ + ui. (6)

Our estimation approach involves two steps. In the first step, we asymptotically eliminate the
common factors in Xi by projecting them out. Subsequently, we use the defactored regressors
as instruments for estimating the structural parameters of the model. To illustrate the first-step
estimator, consider the following projection matrices:

MF 0
x
= IT − F0

x

(
F0′

xF
0
x

)−1
F0′

x ; MF 0
x,−1

= IT − F0
x,−1

(
F0′

x,−1F
0
x,−1

)−1
F0′

x,−1, (7)

where F0
x,−1 = L1F0

x. Suppose for the moment that F0
x is observed. Premultiplying Xi by MF 0

x

would yield MF 0
x
Xi = MF 0

x
Vi. Assuming that Vi is independent of εi,F

0
x,F

0
y and γ0

yi, it is easy to
see that E(X′

iMF 0
x
ui) = E(V′

iMF 0
x
ui) = 0. Furthermore, let Xi,−j = LjXi. So long as {yit,x′

it},
t = 0, 1, ..., T is observed, and the T ×k matrix Xi,−1 is also observed. Using similar assumptions,
one can show that E(X′

i,−1MF 0
x,−1

ui) = E(V′
i,−1MF 0

x,−1
ui) = 0. Collect the set of instruments:

Zi =
(
MF 0

x
Xi,MF 0

x,−1
Xi,−1

)
(T × 2k). (8)

Given the model in Eq. (6), it is clear that Zi satisfies E(Z′
iui) = 0, and also E(Z′

iWi) ̸= 0.
Thus, Zi is a valid instrument set.7

Having obtained a consistent first-step estimator, the second step of our approach involves
estimating the factors in the error term, F0

y, using the residuals in the first-step IV regression.
Then, we asymptotically eliminate F0

y from the entire model by projecting them out from {yi,Wi},
and use the instruments Zi to obtain the second-step estimator. To portray the second-step
estimator, suppose for the moment that F0

y is observable and define the projection matrix

MF 0
y
= IT − F0

y

(
F0′

y F
0
y

)−1
F0′

y . (9)

Premultiplying the model in Eq. (6) by MF 0
y
, we obtain

MF 0
y
yi = MF 0

y
Wiθ +MF 0

y
εi, (10)

where the factor component F0
yγ

0
yi in the error term is swept away. Based on similar reasoning as

in the earlier discussion, we can see easily that E(Z′
iMF 0

y
εi) = 0 and E(Z′

iMF 0
y
Wi) ̸= 0. Thus,

it is straightforward to apply instrumental variable (IV) estimation using Zi to the transformed
model in Eq. (10).8

7In general, for ARDL(p, q) models, the usual order condition for IV identification requires using (s + 1)k

instruments of the form
{
MF 0

x,−r
Xi,−r

}s

r=0
, where s = q + ⌈p/k⌉ and ⌈.⌉ is the ceiling function.

8This IV estimation is equivalent to that using the transformed instrument set, MF 0
y
Zi, for the original model

in Eq. (6).
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In practice, the factors F0
x, F

0
x,−1 and F0

y usually are not observed. As will be discussed in
detail below, we replace these factors with the ones estimated based on the principal components
approach, as advanced by Bai (2003) and Bai (2009a), among many others.9

This section and the next treat the number of factors, mx and my, as given. In practice,
though, these should be estimated. mx can be estimated from the raw data xit, t = 0, ..., T ,
i = 1, ..., N , using methods that have been proposed in the literature, such as the information
criterion approach of Bai and Ng (2002) or the eigenvalue methods of Ahn and Horenstein (2013).
my can be estimated from the residual covariance matrix using the methods mentioned above.10

The Monte Carlo section below uses the various existing methods to determine the number of
factors, and show that these provide quite an accurate determination of the number of factors in
our experimental design.

Remark 3 Since our approach makes use of the transformed x’s as instruments, the identification
of ρ requires that at least one element of β is not equal to zero, given the model in Eq. (3).
We believe that this is a mild restriction, especially compared to the restriction that all of the
elements in β be non-zero. Specifically, the identification of the autoregressive parameter can
be achieved based on the covariate(s) and lagged value(s) that correspond to the non-zero slope
coefficient(s). Notably, it is not necessary to know which covariates have non-zero coefficients,
since by construction the IV estimation procedure does not require that all instruments be relevant
to all endogenous regressors.

Remark 4 More instruments may be available when further lags of xit are observed. In par-
ticular, given the model in Eq. (3), (j + 1)k instruments can be used instead of Eq. (8) when
{xit}Tt=1−j for j ≥ 1 are observable:

Zi =
(
MF 0

x
Xi,MF 0

x,−1
Xi,−1, ...,MF 0

x,−j
Xi,−j

)
(T × (j + 1)k). (11)

It is well documented in the literature that including larger numbers of instruments makes the
estimator more efficient but also more biased. This paper assumes a small finite number j ≥ 1
that does not depend on T .11 Without loss of generality, we set j = 1 for the theoretical analysis
in Sections 2 and 3. Section 4 conducts a finite sample experiment with different values of j.12

To obtain our results it is sufficient to make the following assumptions, where tr [A] and
||A|| =

√
tr [A′A] denote the trace and Frobenius (Euclidean) norm of the matrix A, respectively,

and ∆ is a finite positive constant.

Assumption 1 (idiosyncratic error in y): εit is distributed independently across i and t, with
E(εit) = 0, E(ε2it) = σ2

ε,it, and E |εit|8+δ ≤ ∆ < ∞ for a small positive constant δ.

Assumption 2 (idiosyncratic error in x): (i) vℓit is distributed independently across i and
group-wise independent from εit; (ii) E (vℓit) = 0 and E |vℓit|8+δ ≤ ∆ < ∞;

(iii) T−1
∑T

s=1

∑T
t=1E |vℓisvℓit|1+δ ≤ ∆ < ∞; (iv) E

∣∣∣N−1/2
∑N

i=1 [vℓisvℓit − E (vℓisvℓit)]
∣∣∣4 ≤

∆ < ∞ for every ℓ, t and s; (v)N−1T−2
∑N

i=1

∑T
t=1

∑T
s=1

∑T
r=1

∑T
w=1 |cov (vℓisvℓit, vℓirvℓiw)| ≤

∆ < ∞; and (vi) the largest eigenvalue of E (vℓiv
′
ℓi) is bounded uniformly for every ℓ, i and

T .

9One could also employ Pesaran’s (2006) approach for estimating the common factors in the regressors.
10See Bai (2009b, C.3) for a discussion on the estimation of the number of factors in disturbances.
11The limit behaviour of the estimators when the number of instruments increases with T might be of theoretical

interest, but is beyond the scope of this paper. See Alvarez and Arellano (2003), among others, for a related analysis.
12The simulation results confirm that different values of j are subject to the well-known trade-off between bias

and efficiency. In principle, one could devise a lag selection procedure for optimising the bias-variance trade-off for
the GMM estimator, as per Okui (2009); however, we leave this avenue for future research.
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Assumption 3 (stationary factors): f0x,t = Cx(L)efx,t and f0y,t = Cy(L)efy ,t, where Cx(L)
and Cy(L) are absolutely summable, efx,t ∼ i.i.d.(0,Σfx) and efy ,t ∼ i.i.d.(0,Σfy), with
Σfx and Σfy being positive definite matrices. Each element of efx,t and efy ,t has finite
fourth-order moments and all are group-wise independent from vit and εit.

Assumption 4 (random factor loadings): Γ0
xi ∼ i.i.d.(0,ΣΓx), γ

0
yi ∼ i.i.d.(0,Σγy), where

ΣΓx and Σγy are positive definite matrices, and each element of Γ0
xi and γ0

yi has finite
fourth-order moments. Γ0

xi and γ0
yi are independent groups from εit, vit, efx,t and efy ,t.

Assumption 5 (identification of θ): (i) Ãi,T = T−1Z′
iWi, B̃i,T = T−1Z′

iZi,Ai,T = T−1Z′
iMF 0

y
Wi

and Bi,T = T−1Z′
iMF 0

y
Zi have full column rank for all i for a sufficiently large value of

T ; (ii) E
∥∥∥Ãi,T

∥∥∥2+2δ

≤ ∆ < ∞, E
∥∥∥B̃i,T

∥∥∥2+2δ

≤ ∆ < ∞, E ∥Ai,T∥2+2δ ≤ ∆ < ∞ and

E ∥Bi,T∥2+2δ ≤ ∆ < ∞ for all i for a sufficiently large value of T ; and (iii) E ∥φFiT∥
2+δ ≤

∆ < ∞ for all i for a sufficiently large value of T , where φFiT = T−1/2Zi
′MF 0

y
εi, and

E(φFiTφ
′
FiT ) is a positive definite matrix for all i for a sufficiently large value of T . In

addition, limN,T→∞N−1
∑N

i=1E (φFiTφ
′
FiT ) = Ω, which is a fixed positive definite matrix.

These assumptions merit some discussion. First of all, note that Assumption 1 allows non-
normality and (unconditional) time series and cross-sectional heteroskedasticity in the idiosyn-
cratic errors in the equation for y. Assumptions 2 and 3 allow for serial correlation in the idiosyn-
cratic errors in the equation for x and the factors. Assumption 2 is in line with Bai (2003), but
assumes independence across i, which can be relaxed such that the factors and (εit,vit) and/or εjt
and εis are weakly dependent, provided that higher-order moments exist; see Assumptions D–F
of Bai (2003).13 Assumptions 3 and 4 are standard in the principal components literature; see e.g.
Bai (2003), among others. Assumption 3 permits correlations between f0x,t and f0y,t, and within

each of them. Assumption 4 allows for possible non-zero correlations between γ0
yi and Γ0

xi, and
within each of them. Since the variables yit and xit of the same individual unit i can be affected
by the common shocks in a related manner, it is potentially important in practice to allow for
this possibility. Finally, Assumption 5(i)–(ii) is common in overidentified instrumental variable
(IV) estimation; for example, see Wooldridge (2002, Ch. 5). Assumption 5(iii) is required for the
identification of the estimator, the consistency property of the variance-covariance estimator and
the asymptotic normality of the estimator, as N and T tend to infinity jointly.

Let us begin with a discussion of our approach’s first-step IV estimator. Given mx, the
factors are extracted from {Xi}Ni=1 using principal components (PC). Define F̂x as

√
T times the

eigenvectors that correspond to the mx largest eigenvalues of the T × T matrix
∑N

i=1 XiX
′
i/NT .

F̂x,−1 is defined in the same way, but this time based on
∑N

i=1Xi,−1X
′
i,−1/NT .

Remark 5 Note that F0
x, Γ

0
xi, F

0
x,−1, (F

0
y and γ0

yi) can be identified and estimated up to an
invertible mx ×mx (and my ×my) matrix transformation; see Bai and Ng (2013), among others.

For example, F̂x is a consistent estimator of Fx = F0
xGx, where Gx is an invertible matrix such

that F′
xFx/T = IT , γℓi = G−1

x γ0
ℓi, with

∑k
ℓ=1

∑N
i=1 γℓiγ

′
ℓi being a diagonal matrix. We define

Fx,−1, (Fy and γyi) in an analogous manner.

The empirical counterparts of the projection matrices that are defined in Eqs. (7) and (9) are
given by

MF̂x
= IT − F̂x

(
F̂′

xF̂x

)−1

F̂′
x; MF̂x,−1

= IT − F̂x,−1

(
F̂′

x,−1F̂x,−1

)−1

F̂′
x,−1. (12)

The associated transformed instrument matrix discussed above is

Ẑi =
(
MF̂x

Xi,MF̂x,−1
Xi,−1

)
. (13)

13This includes conditional heteroskedasticity, such as ARCH or GARCH processes.
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The first-step instrumental variable (IV) estimator is given by θ:

θ̂IV =

(
ˆ̃A

′

NT
ˆ̃B

−1

NT
ˆ̃ANT

)−1
ˆ̃A

′

NT
ˆ̃B

−1

NT
ˆ̃gNT , (14)

where

ˆ̃ANT =
1

NT

N∑
i=1

Ẑ′
iWi,

ˆ̃BNT =
1

NT

N∑
i=1

Ẑ′
iẐi, ˆ̃gNT =

1

NT

N∑
i=1

Ẑ′
iyi. (15)

Firstly, we will derive consistency for the above estimator. To begin with, from Eqs. (6) and
(14) we obtain

√
NT

(
θ̂IV − θ

)
=

(
ˆ̃A

′

NT
ˆ̃B

−1

NT
ˆ̃ANT

)−1
ˆ̃A

′

NT
ˆ̃B

−1

NT

(
1√
NT

N∑
i=1

Ẑ′
iui

)
. (16)

Since the asymptotic properties of the estimator are determined primarily by those of
∑N

i=1 Ẑ
′
iui/

√
NT ,

we focus on this term. The formal analysis is provided as a proposition below, where (N, T )
j→ ∞

signifies that N and T tend to infinity jointly.

Proposition 1 Under Assumptions 1–5, as (N, T )
j→ ∞ such that N/T → c with 0 < c < ∞,

1√
NT

N∑
i=1

Ẑ′
iui =

1√
NT

N∑
i=1

Z̃′
iui +

√
T

N
b1NT +

√
N

T
b2NT + op (1) ,

where Ẑi is defined by Eq. (13), Z̃i = (MF 0
x
X̃i,MF 0

x,−1
X̃i,−1), X̃i = Xi− 1

N

∑N
n=1XnΓ

0′
xn (Υ

0
xkN)

−1
Γ0

xi,

X̃i,−1 = Xi,−1− 1
N

∑N
n=1Xn,−1Γ

0′
xn (Υ

0
xkN)

−1
Γ0

xi, Υ
0
xkN = 1

N

∑k
ℓ=1

∑N
i=1 γ

0
ℓiγ

0′
ℓi and b1NT = [b′

11NT ,b
′
12NT ]

′,
b2NT = [b′

21NT ,b
′
22NT ]

′, with

b11NT = − 1

N

N∑
i=1

N∑
j=1

Ṽ′
iVj

T
Γ0′

xj

(
Υ0

xkN

)−1
(
F′

xF
0
x

T

)−1
F0′

x ui

T
;

b12NT = − 1

N

N∑
i=1

N∑
j=1

Ṽ′
i,−1Vj,−1

T
Γ0′

xj

(
Υ0

xkN

)−1
(
F0′

x,−1F
0
x,−1

T

)−1
F0′

x,−1ui

T
;

b21NT = − 1

NT

N∑
i=1

Γ0′
xi

(
Υ0

xkN

)−1
(
F0′

xF
0
x

T

)−1

F0′
x Σ̄kNTMF 0

x
ui;

b22NT = − 1

NT

N∑
i=1

Γ0′
xi

(
Υ0

xkN

)−1
(
F0′

x,−1F
0
x,−1

T

)−1

F0′
x,−1Σ̄kNT,−1MF 0

x,−1
ui,

Ṽi = Vi− 1
N

∑N
n=1VnΓ

0′
xn (Υ

0
xkN)

−1
Γ0

xi, Ṽi,−1 = Vi,−1− 1
N

∑N
n=1Vn,−1Γ

0′
xn (Υ

0
xkN)

−1
Γ0

xi, Σ̄kNT =
1
N

∑k
ℓ=1

∑N
j=1E

(
vℓjv

′
ℓj

)
and Σ̄kNT,−1 =

1
N

∑k
ℓ=1

∑N
j=1E

(
vℓj,−1v

′
ℓj,−1

)
.

Remark 6 The source of the bias term in Proposition 1 differs from those of the bias terms
reported by Bai (2009a) and Moon and Weidner (2017). In particular, the bias term of our
estimator arises primarily due to the correlation between the factor loadings associated with Fx

in x and the error term in the equation of y, ui. On the other hand, the two bias terms in Bai
(2009a) and Moon and Weidner (2017) arise from error serial dependence and weak cross-sectional
dependence. In our case, error serial correlation in the idiosyncratic part of the x process, vℓit,
does not result in bias because vℓit is not correlated with the error term in the y equation, εit.
Also note that Moon and Weidner (2017) report that an additional bias term that generalises the
small T bias, called the “Nickell bias”, typically occurs in the least squares estimation of dynamic
panel models. Our estimator is not subject to such a bias, as it is based on instrumental variables.
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It can be shown from the result stated in Proposition 1 that
∑N

i=1 Z̃
′
iui/

√
NT is Op(1) and

tends to a multivariate distribution. In addition,
√

T/Nb1NT and
√

N/Tb2NT are Op(1) as

(N, T )
j→ ∞ such that N/T → c with 0 < c < ∞. Therefore, the IV estimator is

√
NT -consistent

in such situations.
The above discussion is summarised formally in the following theorem:

Theorem 1 Consider the model in Eqs. (1)–(3) and suppose that Assumptions 1–5 hold true.
Then, √

NT
(
θ̂IV − θ

)
= Op (1)

as (N, T )
j→ ∞ such that N/T → c with 0 < c < ∞, where θ̂IV is defined in Eq. (14).

Even though the estimator θ̂IV is
√
NT -consistent, under our assumptions the limiting dis-

tribution of
√
NT

(
θ̂IV − θ

)
will contain asymptotic bias terms such as the limits of b1NT and

b2NT , which are defined in Proposition 1.14 Rather than bias-correcting this estimator, we put
forward a potentially more efficient second-step estimator, by projecting Fy out from the model

asymptotically using θ̂IV .
We compute the second-step estimator by estimating the factors Fy using principal components

from {ûi}Ni=1, where ûi = yi − Wiθ̂IV , with θ̂IV being a first-step IV estimator defined in Eq.
(14). We define F̂y as

√
T times the eigenvectors that correspond to the my largest eigenvalues

of the T × T matrix
∑N

i=1 ûiû
′
i/NT .

The second-step IV estimator is defined as

ˆ̂
θIV =

(
Â′

NT B̂
−1
NT ÂNT

)−1

Â′
NT B̂

−1
NT ĝNT , (17)

where

ÂNT =
1

NT

N∑
i=1

Ẑ′
iMF̂y

Wi, B̂NT =
1

NT

N∑
i=1

Ẑ′
iMF̂y

Ẑi, ĝNT =
1

NT

N∑
i=1

Ẑ′
iMF̂y

yi, (18)

with

MF̂y
= IT − F̂y

(
F̂′

yF̂y

)−1

F̂′
y. (19)

In order to derive the consistency of ˆ̂θIV , we use again Eqs. (6) and (17) to obtain:

√
NT

(
ˆ̂
θIV − θ

)
=
(
Â′

NT B̂
−1
NT ÂNT

)−1

Â′
NT B̂

−1
NT

(
1√
NT

N∑
i=1

Ẑ′
iMF̂y

ui

)
. (20)

The asymptotic property of the key term 1√
NT

∑N
i=1 Ẑ

′
iMF̂y

ui in Eq. (20) is stated in the following
proposition.

Proposition 2 Under Assumptions 1–5, as (N, T )
j→ ∞ such that N/T → c with 0 < c < ∞,

1√
NT

N∑
i=1

Ẑ′
iMF̂y

ui =
1√
NT

N∑
i=1

Z′
iMF 0

y
εi + op (1) ,

where Ẑi is defined by Eq. (13).

14Of course, we could estimate these bias terms consistently.
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We see from Proposition 2 that the estimation effect in 1√
NT

∑N
i=1 Ẑ

′
iMF̂y

ui can be ignored

asymptotically. Since εi is independent of Zi and F0
y with zero mean, the limiting distribution of

1√
NT

∑N
i=1 Ẑ

′
iMF̂y

ui is centred at zero. The following theorem provides asymptotic normality of

the distribution of ˆ̂θIV , based on Hansen’s (2007) law of large numbers and central limit theorem,
which are restated as Lemmas 1 and 2 in Appendix A.

Theorem 2 Suppose that Assumptions 1–5 hold true under the model in Eqs. (1)–(3). Then, as

(N, T )
j→ ∞ such that N/T → c with 0 < c < ∞,

(i)
√
NT

(̂̂
θIV − θ

)
d→ N (0,Ψ) ,

where ˆ̂θIV is defined by Eq. (17) and

Ψ =
(
A′B−1A

)−1
A′B−1ΩB−1A

(
A′B−1A

)−1
,

is a positive definite matrix, where A = plimN,T→∞ ÂNT and B = plimN,T→∞ B̂NT with ÂNT and

B̂NT defined in Eq. (18), and Ω is defined in Assumption 5.

(ii) Ψ̂NT −Ψ
p→ 0, where

Ψ̂NT =
(
Â′

NT B̂
−1
NT ÂNT

)−1

Â′
NT B̂

−1
NT Ω̂NT B̂

−1
NT ÂNT

(
Â′

NT B̂
−1
NT ÂNT

)−1

, (21)

with

Ω̂NT =
1

NT

N∑
i=1

Ẑ′
iMF̂y

ûiû
′
iMF̂y

Ẑi (22)

and ûi = yi −Wiθ̂IV .

Observe that the estimator above is asymptotically unbiased.
Finally, we propose the optimal second-step estimator, which we recommend be used:15

ˆ̂
θIV 2 =

(
Â′

NT Ω̂
−1
NT ÂNT

)−1

Â′
NT Ω̂

−1
NT ĝNT , (23)

where ÂNT and B̂NT are defined in Eq. (18) and Ω̂NT is given in Eq. (22). The following corollary
describes the asymptotic properties of the estimator:

Corollary 1 Suppose that Assumptions 1–5 hold true under the model in Eqs. (1)–(3). Then, as

(N, T )
j→ ∞ such that N/T → c with 0 < c < ∞,

√
NT

(
ˆ̂θIV 2 − θ

)
d→ N

(
0,
(
A′Ω−1A

)−1
)

and
Â′

NT Ω̂
−1
NT ÂNT −A′Ω−1A

p→ 0,

where ˆ̂θIV 2 is defined by Eq. (23), A = plimN,T→∞ ÂNT and Ω is defined in Assumption 5.

15The optimality of the two-step estimator is conditioned upon the chosen finite set of instruments. Our second-
step estimator can be seen as sub-optimal in that it does not exploit all available instruments. See Remark 4 for
a related discussion.
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The associated overidentifying restrictions test statistic is given by

SNT =
1

NT

(
N∑
i=1

ˆ̂u
′
iMF̂y

Ẑi

)
Ω̂−1

NT

(
N∑
i=1

Ẑ′
iMF̂y

ˆ̂ui

)
, (24)

where ˆ̂ui = yi −Wi
ˆ̂
θIV 2, and Ω̂NT is defined by Eq. (22). The limit distribution of the overiden-

tifying restrictions test statistic is established in the following theorem:

Theorem 3 Suppose that Assumptions 1–5 hold true under the model in Eqs. (1)–(3). Then, as

(N, T )
j→ ∞ such that N/T → c with 0 < c < ∞,

SNT
d→ χ2

k−1 (25)

for k > 1, where SNT is defined in Eq. (24).

Remark 7 The overidentifying restrictions test is particularly useful in our approach. Firstly, it
is expected to pick up a violation of the exogeneity of the defactored covariates with respect to the
idiosyncratic error in the equation for y. Secondly, the orthogonality condition of the instruments
is violated if the slope vector, θ, is cross-sectionally heterogeneous, meaning that the estimators
proposed in this section may become inconsistent. In such cases, the test is expected to reject the
null hypothesis.

The next section discusses the estimation of models with heterogeneous slope coefficients.

3 The Model with Heterogeneous Coefficients

We now turn our focus to a model with heterogeneous coefficients. Let

yi = Wiθi + ui, (26)

where Wi = (yi,−1,Xi), Xi follows the factor structure defined in Eq. (5), θi = (ρi,β
′
i)
′ with

sup1≤i≤N |ρi| < 1, and ui is defined by Eq. (4). It is known widely that the pooled estimator,

including ˆ̂
θIV 2, will be inconsistent for dynamic panel data models with, say, θ = E (θi), if the

slopes are cross-sectionally heterogeneous.16 Henceforth, we introduce an estimator of θi and
propose a mean group IV estimator of the population average of θi. Thus, consistency and
asymptotic normality are both established.

To begin with, we employ the following additional assumptions about the heterogeneous slopes,
θi:

Assumption 6 (random coefficients): (i) θi = θ + ηi, ηi ∼ i.i.d. (0,Ση), where Ση is a fixed
positive definite matrix; (ii) ηi is independent of Γ

0
xi, γ

0
yi, εit, vit, efx,t and efy ,t; and (iii) ηi

satisfies the tail bound:

P (|ηir| > z) ≤ 2exp

(
−1

2
× z2

a+ bz

)
for all z (and all i) and fixed a, b > 0, where ηir is the rth element of ηi for 2 ≤ r ≤ k + 1.

Assumption 7 (moment condition): (i) E∥ηi∥4 ≤ ∆; (ii) E∥T−1/2V′
iF

0
x∥4 ≤ ∆; and

(iii) E∥N−1/2T−1/2
∑k

ℓ=1

∑N
j=1(V

′
ivℓj − E(V′

ivℓj))γ
0′
ℓj∥4 ≤ ∆. In addition,

(iv) E(T−1/2
∑k

ℓ=1

∑T
t=1(v

2
ℓit − Ev2ℓit))

2 ≤ ∆.

16See Pesaran and Smith (1995).
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Assumption 8 (identification of θi): Ai = p limT→∞ Ãi,T has full column rank, Bi =

p limT→∞ B̃i,T , and Σi = p limT→∞ T−1Z′
iMF 0

x
uiu

′
iMF 0

x
Z′

i are positive definite, uniformly.

Assumptions 6(i)–(ii) are standard in the random coefficients literature; see for example Pe-
saran (2006). Assumptions 6(iii), 7 and 8 are required in order for the estimators of θi to tend to
their limiting distributions, uniformly.

The first-step IV estimator of θi is defined as

θ̂IV,i =

(
ˆ̃A

′

i,T
ˆ̃B

−1

i,T
ˆ̃Ai,T

)−1
ˆ̃A

′

i,T
ˆ̃B

−1

i,T ĝi,T , (27)

where
ˆ̃Ai,T =

1

T
Ẑ′

iMF̂x
Wi,

ˆ̃Bi,T =
1

T
Ẑ′

iMF̂x
Ẑi, ˆ̃gi,T =

1

T
Ẑ′

iMF̂x
yi. (28)

We can see from Eq. (28) that the instrument set here is MF̂x
Ẑi. This is tantamount to making

use of Ẑi for the model in Eq. (26) premultiplied by MF̂x
, which is expected to lead to a more

efficient first-step IV estimator of θi if the span of F0
y includes a subset of F0

x.
17 Using Eqs. (26)

and (27), we have

√
T
(
θ̂IV,i − θi

)
=

(
ˆ̃A

′

i,T
ˆ̃B

−1

i,T
ˆ̃Ai,T

)−1
ˆ̃A

′

i,T
ˆ̃B

−1

i,T

(
T−1/2Ẑ′

iMF̂x
ui

)
. (29)

The limiting property of T−1/2Ẑ′
iMF̂x

ui is given by the following proposition.

Proposition 3 Consider the model in Eq. (26). Under Assumptions 1–6, as (N, T )
j→ ∞ such

that N/T → c with 0 < c < ∞, we have

T−1/2Ẑ′
iMF̂x

ui = T−1/2Z′
iMF 0

x
ui +

√
TOp

(
δ−2
NT

)
,

where Ẑi, MF̂x
and Zi are defined by Eqs. (8), (12) and (13), respectively, and δNT = min

{√
T ,

√
N
}
.

Using the result stated in Proposition 3 we see that T−1/2Ẑ′
iMF̂x

ui is Op(1) and tends to a

random vector as (N, T )
j→ ∞, such that N/T → c with 0 < c < ∞. The formal result is

summarised in Theorem 4.

Theorem 4 Consider the model in Eq. (26) and suppose that Assumptions 1–8 hold true. Then,

as (N, T )
j→ ∞ such that N/T → c with 0 < c < ∞, for each i,

√
T
(
θ̂IV,i − θi

)
d→ N

(
0, (A′

iB
−1
i Ai)

−1A′
iB

−1
i ΣiB

−1
i Ai(A

′
iB

−1
i Ai)

−1
)
, (30)

where θ̂IV,i is defined in Eq. (27), and Ai, Bi and Σi are defined in Assumption 8.

Therefore, the estimator θ̂IV,i is
√
T -consistent with θi.

Using a similar line of argument as in the discussion of the IV estimator in Section 2, we could
consider a mean group IV estimator using the second-step estimator in an attempt to project F0

y

out from the model asymptotically, i.e. MF 0
y
yi = MF 0

y
Wiθi+MF 0

y
ui, and then use our IV method

to estimate θi. However, the need to deal with heterogeneous slopes means that Fy should be

estimated using the residuals from the time series IV regression, ûi = yi −Wiθ̂IV,i. Since θ̂IV,i

17We could construct the first-step IV estimator of θ in Section 2 using MF̂x
Ẑi instead of Ẑi, but the second-step

estimator would be asymptotically equivalent to the proposed one that is based on MF̂y
Ẑi when the span of F0

y

includes a subset of F0
x.
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is
√
T -consistent rather than

√
NT -consistent, the estimation of Fy may become very inefficient.

As a result, we will not pursue such an estimator here. Note that the estimation of Fx for the
first-step IV estimator does not suffer from a similar problem, because it can be estimated using
the raw data {Xi}Ni=1.

The mean group estimator of θ is defined as

θ̂IV MG =
1

N

N∑
i=1

θ̂IV,i, (31)

where θ̂IV,i is given in Eq. (27). It can be shown from Eqs. (26) and (29) and Assumptions 1–8
that18

√
N
(
θ̂IV MG − θ

)
=

1√
N

N∑
i=1

ηi + op (1) . (32)

It is easy to see that 1√
N

∑N
i=1 ηi

d→ N (0,Ση) as N → ∞, which implies that θ̂IV MG is
√
N -

consistent. The asymptotic normality of θ̂IV MG and the consistency of an estimator of Ση are
summarised in the following theorem:

Theorem 5 Consider the model in Eq. (26) combined with Eq. (5), and suppose that Assumptions

1–7 hold true. Then, as (N, T )
j→ ∞ such that N/T → c with 0 < c < ∞,

(i) √
N
(
θ̂IV MG − θ

)
d→ N (0,Ση) , (33)

where θ̂IV MG is defined in Eq. (31); and
(ii)

Σ̂η −Ση
p→ 0, (34)

where

Σ̂η =
1

N − 1

N∑
i=1

(
θ̂IV,i − θ̂IV MG

)(
θ̂IV,i − θ̂IV MG

)′
, (35)

and θ̂IV,i and θ̂IV MG are given by Eqs. (27) and (31), respectively.

4 Monte Carlo Experiments

This section investigates the finite sample behaviour of the proposed estimators by means of Monte
Carlo experiments, based on the bias, the root mean squared error (RMSE), and the empirical
size and power of the t-test. In particular, we examine the optimal two-step IV estimator (IV2),
which is defined in Eq. (23), and the mean group IV estimator (IVMG), defined in Eq. (31). We
investigate the effects of the choice of the number of instruments (see Remark 4) by considering
two sets of instruments for IV2 and IVMG, Ẑi:

IV set a:
(
MF̂x

Xi;MF̂x,−1
Xi,−1

)
(T×2k)

IV set b:
(
MF̂x

Xi,MF̂x,−1
Xi,−1,MF̂x,−2

Xi,−2

)
(T×3k). (36)

The instrument sets used for the IV estimators are denoted by the superscripts a and b (e.g. IV2b

makes use of IV set b).

18See the proof of Theorem 5.
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For the purposes of comparison, we also investigate the performance of the bias-corrected quasi
maximum likelihood estimator (BC-QMLE) that was proposed recently by Moon and Weidner
(2017), as well as the CCE mean group (CCEMG) estimator and its bias-corrected version (BC-
CCEMG), put forward by Chudik and Pesaran (2015a).

The bias-corrected QMLE estimator, θ̂BC−QMLE, is defined as19

θ̂BC−QMLE = θ̂QMLE − b̂QMLE, (37)

where

θ̂QMLE = argmin
θ∈Θ

LNT (θ) ;

LNT (θ) = min
Γy ,Fy

LNT (θ,Γy,Fy) ;

LNT (θ,Γy,Fy) = min
Fy

1

NT

N∑
i=1

(yi −Wiθ)
′MFy (yi −Wiθ) ,

with Γy =
(
γy,1, . . . ,γy,N

)′
, whereas the estimator of the bias, b̂QMLE, is defined in Definition 1 of

Moon and Weidner (2017). The t-test is computed using the estimator of the variance-covariance
matrix for θ̂BC−QMLE (Moon and Weidner, 2017, p. 174). It should be highlighted that Moon
and Weidner (2017) do not assume a linear factor process in xit, which is specified by Eq. (3),
and therefore they may permit more general processes for the covariates.

The CCEMG estimator is given by

θ̂CCEMG = N−1

N∑
i=1

θ̂CCE,i, (38)

where θ̂CCE,i = (W′
iMH̄Wi)

−1W′
iMH̄yi, MH̄ = IT − H̄

(
H̄′H̄

)−1
H̄′, H̄ = N−1

∑N
i=1Hi. Hi

contains (yi;Xi) and their lags:

Hi =
(
yi,yi,−1, ...,yi,−py ,Xi,Xi,−1, ...,Xi,−px , ιT

)
, (39)

where ιT is a T×1 vector of ones, yi,−j = Ljyi and Xi,−j = LjXi. In view of the strict exo-
geneity of Xi in our experimental design, which is discussed shortly below, we include py = p
lags of yi but no lags of Xi, namely px = 0 in Hi; see Chudik and Pesaran (2015a, equa-
tion 38).20 Following Chudik and Pesaran (2015a), we choose the integer part of T 1/3 as the

value of p. The t-test is computed using the estimated variance-covariance matrix, Σ̂MGCCE =
1

N−1

∑N
i=1

(
θ̂CCE,i − θ̂MGCCE

)(
θ̂CCE,i − θ̂MGCCE

)′
. The bias-corrected CCEMG estimator, θ̂BC−CCEMG,

is given by

θ̂BC−CCEMG = 2θ̂CCEMG − 1

2

(
θ̂
(1)

CCEMG + θ̂
(2)

CCEMG

)
, (40)

where θ̂
(1)

MGCCE denotes the mean group CCE estimator computed from the first half of the

available time period and θ̂
(2)

MGCCE that computed from the second half. See Chudik and Pesaran
(2015a) for more details.21

Following Remark 2, the data are demeaned using the within transformation before computing
the proposed IV estimators, in order to eliminate individual-specific effects. m̂x and m̂y are

19We are grateful to Martin Weidner for providing to us the computational algorithm for the BC-QMLE esti-
mator.

20We have also considered py = px = p, such that yi and Xi have the same number of lags in Hi. The
performance of the CCEMG estimator is slightly worse in this case. The results are reported in Tables C11–C12
in Appendix C.

21We are grateful to Alex Chudik for sharing with us his code for computing the (BC-)CCEMG estimator.
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obtained in each replication, based on the eigenvalue ratio (ER) statistic proposed by Ahn and
Horenstein (2013, p. 1207). In our experiment we set mx = 2 and my = 3, as will be shown
shortly. For the estimation, we set the maximum number of factors equal to three for m̂x and
four for m̂y. For the CCEMG estimator, we use the untransformed data, (yi,Wi), but include
a T×1 vector of ones along with the cross-sectional averages, as described above. Finally, for
the computation of BC-QMLE, we follow the practice of Moon and Weidner (2015) and use the
within-transformed data, as in our IV estimators. To avoid introducing further uncertainty by
estimating the number of factors in uit, the BC-QMLE is computed using the true number of
factors, my.

4.1 Design

We consider the following dynamic panel data model:

yit = αi + ρiyit−1 +
k∑

ℓ=1

βℓixℓit + uit; uit =

my∑
s=1

γ0
sif

0
s,t + εit, (41)

i = 1, ..., N , t = −49, ..., T , where

f 0
s,t = ρf,sf

0
s,t−1 + (1− ρ2fs)

1/2ζs,t, (42)

with ζs,t ∼ i.i.d.N(0, 1) for s = 1, ...,my. We set k = 2 and my = 3, and set ρf,s = 0.5 for all s.
The idiosyncratic error, εit, is non-normal and heteroskedastic across both i and t, such that

εit = ςεσit(ϵit−1)/
√
2, ϵit ∼ i.i.d.χ2

1, with σ2
it = ηiφt, ηi ∼ i.i.d.χ2

2/2, and φt = t/T for t = 0, 1, ..., T
and unity otherwise.

It is straightforward to see that the average variance of εit depends only on ς2ε . Let πu denote the
proportion of the average variance of uit that is due to εit. That is, we define πu := ς2ε / (my + ς2ε ).
Thus, for example, πu = 3/4 means that the variance of the idiosyncratic error accounts for 75%
of the total variance in u. In this case, most of the variation in the total error is due to the
idiosyncratic component, and the factor structure has relatively minor contribution. Solving in
terms of ς2ε yields

ς2ε =
πu

(1− πu)
my. (43)

We set ς2ε such that πu ∈ {1/4, 3/4}.
The process for the covariates is given by

xℓit = µℓi +
mx∑
s=1

γ0
ℓsif

0
s,t + vℓit; i = 1, 2, ..., N ; t = −49,−48, ..., T, (44)

for ℓ = 1, 2.
We set mx = 2. This implies that the first two factors in uit, f

0
1t, f

0
2t, are also contained in

xℓit, for ℓ = 1, 2, whilst f 0
3t is included in uit only. Observe that, using the notation from earlier

sections, f0y,t = (f 0
1t, f

0
2t, f

0
3t)

′ and f0x,t = (f 0
1t, f

0
2t)

′.
The idiosyncratic error of the process for the covariates are serially correlated, such that

vℓit = ρυ,ℓvℓit−1 + (1− ρ2υ,ℓ)
1/2ϖℓit, ϖℓit ∼ i.i.d.N(0, ς2υ), (45)

for ℓ = 1, 2. We set ρυ,ℓ = 0.5 for all ℓ.
Initially, all individual-specific effects and factor loadings are generated as correlated and

mean-zero random variables; these are distinguished using the superscript “*”. In particular, the
mean-zero individual-specific effects are drawn as

α∗
i ∼ i.i.d.N(0, (1− ρi)

2), µ∗
ℓi = ρµ,ℓα

∗
i + (1− ρ2µ,ℓ)

1/2ωℓi, (46)
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where ωℓi ∼ i.i.d. N(0, (1− ρi)
2), for ℓ = 1, 2. We set ρµ,ℓ = 0.5 for ℓ = 1, 2.

Moreover, the mean-zero factor loadings in uit are generated as γ0∗
si ∼ i.i.d.N(0, 1) for s =

1, ...,my = 3, and the factor loadings in x1it and x2it are drawn as

γ0∗
1si = ργ,1sγ

0∗
3i + (1− ρ2γ,1s)

1/2ξ1si; ξ1si ∼ i.i.d.N(0, 1), (47)

γ0∗
2si = ργ,2sγ

0∗
si + (1− ρ2γ,2s)

1/2ξ2si; ξ2si ∼ i.i.d.N(0, 1), (48)

respectively, for s = 1, ...,mx = 2. The process in Eq. (47) allows the factor loadings on f 0
1,t and

f 0
2,t in x1it to be correlated with the factor loadings that correspond to the factor that is specific
to uit, f

0
3,t. On the other hand, Eq. (48) ensures that the factor loadings on f 0

1,t and f 0
2,t in x2it

are allowed to be correlated with the factor loadings that correspond to the same factors in uit,
f 0
1,t and f 0

2,t. We consider ργ,11 = ργ,12 ∈ {0, 0.5}, while ργ,21 = ργ,22 = 0.5.
Finally, the factor loadings that enter the model are generated such that

Γ0
i = Γ0 + Γ0∗

i , (49)

where

Γ0
i =

 γ0
1i γ0

11i γ0
21i

γ0
2i γ0

12i γ0
22i

γ0
3i 0 0

 and Γ0∗
i =

 γ0∗
1i γ0∗

11i γ0∗
21i

γ0∗
2i γ0∗

12i γ0∗
22i

γ0∗
3i 0 0

 .

Observe that, using the notation from earlier sections, γ0
yi = (γ0

1i, γ
0
2i, γ

0
3i)

′ and Γ0
x,i = (γ0

1i,γ
0
2i)

′,
with γ0

ℓi = (γ0
ℓ1i, γ

0
ℓ2i)

′ for ℓ = 1, 2. Also, it is easy to see that the average of the factor loadings is
given by E

(
Γ0

i

)
= Γ0. To ensure that the rank condition for CCEMG is satisfied, we set22

Γ0 =

 1/4 1/4 −1
1/2 −1 1/4
1/2 0 0

 . (50)

We note that our estimators and BC-QMLE do not require this condition, and we also consider
the experiment with Γ0 = 0.23

In a similar manner, the individual effects that enter the data generating process are such that

αi = α + α∗
i , µℓi = µℓ + µ∗

ℓi, (51)

for ℓ = 1, 2, setting α = 1/2, µ1 = 1, µ2 = −1/2.
The slope coefficients are generated as

ρi = ρ+ ηρi, β1i = β1 + ηβ1i and β2i = β2 + ηβ2i. (52)

We consider ρ ∈ {0.5, 0.8}. Following Bai (2009a), we set β1 = 3 and β2 = 1 as a benchmark case,
though we also consider β1 = 3 and β2 = 0 in order to investigate the properties of the estimator
when one of the slope coefficients is equal to zero.

For the homogeneous slopes design, we set ρi = ρ, β1i = β1 and β2i = β2. For the heterogeneous
slopes design, we specify ηρi ∼ i.i.d. U [−c,+c] and

ηβℓi =
[
(2c)2/12

]1/2
ρβξβℓi +

(
1− ρ2β

)1/2
ηρi,

where ξβℓi is the standardised squared idiosyncratic error in xℓit, computed as

ξβℓi =
v2ℓi − v2ℓ[

N−1
∑N

i=1

(
v2ℓi − v2ℓ

)2]1/2 ,
22See Assumption 6 of Chudik and Pesaran (2015a).
23The results are reported in Tables C7 and C8 in Appendix C.
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with v2ℓi = T−1
∑T

t=1 v
2
ℓit, v

2
ℓ = N−1

∑N
i=1 v

2
ℓi, for ℓ = 1, 2. We set c = 1/5, ρβ = 0.4 for ℓ = 1, 2.

Denoting ρυ = ρυ,ℓ, ℓ = 1, 2, we define the signal-to-noise ratio (SNR) for the homogeneous
model, conditional on the factor structure and the individual-specific effects, as follows:

SNR :=
var [(yit − εit) |L]

var (εit)
=

(
β2
1+β2

2

1−ρ2υ

)
ς2υ +

ς2ε
1−ρ2υ

− ς2ε

ς2ε
, (53)

where L is the information set that contains the factor structure and the individual-specific
effects,24 and var (εit) is the overall average of E (ε2it) over i and t. Solving for ς2υ yields

ς2υ = ς2ε

[
SNR− ρ2υ

1− ρ2υ

](
β2
1 + β2

2

1− ρ2υ

)−1

. (54)

We set SNR = 4, which lies within the range {3, 9} considered by the simulation study of
Bun and Kiviet (2006). We consider all combinations of (T,N) for T ∈ {25, 50, 100, 200} and
N ∈ {25, 50, 100, 200}.

We investigate the power of the overidentifying restrictions test, which is defined in Eq. (24),
by considering violations of the null due to slope heterogeneity and endogeneity as a result of the
contemporaneous correlation between xit and εit. For the slope heterogeneity, we use the DGP
specified in Eq. (52). For the case of endogeneity, we replace the DGP given by Eq. (45) with
vℓit = ρυvℓit−1 + (1− ρ2υ)

1/2ϖℓit + εit, where ϖℓit is as defined previously and ℓ = 1, 2.
All of our results are obtained based on 2,000 replications, and all tests are conducted at the

5% significance level. For the size of the t-test, H0 : ρ = ρ0 (or H0 : βℓ = β0
ℓ for ℓ = 1, 2), where

ρ0, β0
1 , β

0
2 are the true parameter values. For the power of the test, we consider H0 : ρ = ρ0 + 0.1

(or H0 : βℓ = β0
ℓ +0.1 for ℓ = 1, 2) against two-sided alternatives. The power of the t-test reported

below is the size-corrected power, for which the 5% critical values used are obtained as the 2.5%
and 97.5% quantiles of the empirical distribution of the t-ratio under the null hypothesis.25

4.2 Results

Tables 1–4 report the bias (×100) and RMSE results of IV2b, the BC-QMLE of Moon and Weidner
(2017), IVMGb and the CCEMG of Chudik and Pesaran (2015a), as well as the size (nominal level
is 5%) and power (size-adjusted) of the associated t-tests for the panel ARDL(1,0) model with
ρ = 0.5, β1 = 3, β2 = 1 and πu = 3/4.26 We compare the sensitivity of the estimators to
the correlation structure of the factor loadings in xit and uit by considering independent factor
loadings in xit and uit in Tables 1 and 2, and correlated loadings in Tables 3 and 4.

We have investigated two different sets of instruments for our estimators, as Eq. (36) explains.
IV2a (IVMGa) uses 2k instruments and IV2b (IVMGb) 3k. As one might expect, the former
has a smaller bias but the latter has a smaller dispersion. In terms of RMSE, the latter always
performs better. Therefore, we only report results for IV2b and IVMGb.27 Moreover, we do not
report results for BC-CCEMG, since it did not reduce the bias of CCEMG in our experiments,
nor did it mitigate the size-distortion of the associated t-tests.28

Table 1 reports results for the model under slope homogeneity. Panel A corresponds to ρ and
Panel B to β1. The results for β2 are not reported because they are qualitatively similar to those

24Our reason for conditioning on these variables is that they influence both the composite error in the equation
for the dependent variable and the covariates.

25The size-adjusted power is employed in this experiment because the finite T bias of the CCEMG and BC-
QMLE estimators, and the size distortion of the associated statistical tests, often makes the power comparison too
confusing.

26The results for the specifications where {ρ, β1, β2} = {0.8, 3, 1} , {0.5, 3, 0} and πu = 1/4 are very similar
qualitatively. See Tables C1–C6 in Appendix C.

27The results for IV2a and IVMGa are reported in Tables C9 and C10 in Appendix C.
28The results for BC-CCEMG are provided in Tables C11 and C12 in Appendix C.
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for β1.
29 As can be seen, IV2b appears to have virtually no bias. In particular, the largest reported

value of the absolute bias (×100) is 0.1 for T = 50, N = 25. On the other hand, the absolute
bias of BC-QMLE appears to be much larger, perhaps indicating that bias correction is not able
to remove the bias completely under these circumstances. However, the absolute bias declines
steadily with larger values of N and T . In terms of RMSE, BC-QMLE outperforms IV2b and
other estimators, which reflects the higher efficiency of the maximum likelihood approach over IV
and least-squares. For larger values of N or T (especially N), though, the RMSE values of IV2b

are very close to those of BC-QMLE. The bias of IVMGb is similar to that of BC-QMLE, whereas
that of CCEMG tends to be much larger, especially when N = 25 or T = 25, 50. IVMGb mostly
outperforms CCEMG in terms of the RMSE.

In regard to inference, the size of the t-test that is associated with IV2b is close to the nominal
value in most cases, though moderate size distortions are observed for N = 25. The size of
IVMGb appears to be very accurate unless T is much smaller than N . In contrast, both BC-
QMLE and CCEMG exhibit substantial size distortions, which may be attributable in part to
the relatively large biases of these estimators. In view of these size distortions, we report the
size-adjusted power. As expected, under slope parameter homogeneity, the power of the IV2b and
BC-QMLE estimators is higher than that of the MG-type estimators, at least when N and T are
both relatively small.

Next, we turn our attention to Panel B of Table 1, which reports results for β1. The bias of
IV2b is slightly larger for small N and T than in Panel A but it remains smaller than that of
other estimators. For instance, the absolute bias of BC-QMLE is large when N = 25, although
it declines steadily as the sample size increases. As a result, IV2b mostly outperforms BC-QMLE
in terms of the RMSE. Moreover, the size of the IV2b is close to its nominal level, with moderate
distortion for N = 25. In contrast, BC-QMLE suffers from large size distortions. In regards to
heterogeneous estimators, the relative properties of the absolute bias of both IVMGb and CCEMG
are similar to those for ρ, in the sense that IVMGb has a smaller bias than CCEMG. The size of
the t-test of IVMGb is very close to 5% for all combinations of N and T , whilst CCEMG exhibits
moderate size distortions even for large values of N or T .

Table 2 reports results for the model with heterogeneous slopes. Note that IV2b and BC-
QMLE are not justified asymptotically in this case. This is confirmed in finite samples. In
particular, it is evident that IV2b exhibits a systematic bias, fluctuating around 0.01 across all
combinations of N and T . The bias of BC-QMLE is much larger, reaching values close to 0.03 for
ρ (Panel A), for large values of N and T . This outcome is accompanied by large size distortions
for both estimators. In contrast, for IVMGb and CCEMG the bias appears to behave in a similar
manner to the homogeneous case in Table 1. IVMGb continues to perform well in terms of size,
whereas the size properties for CCEMG improve substantially compared to the homogeneous case,
although they still deviate significantly from the nominal value at least for small values of N or T .
Similar conclusions apply to Panel B, with the main difference being that the size of the CCEMG
estimator is closer to its nominal level for all combinations of N and T , and the power of the
t-test appears to be smaller across all estimators.

Now let us turn our attention to the case where the factor loadings in x1it are correlated
with those in uit. The results for homogeneous slopes are reported in Table 3, while those for
heterogeneous slopes are shown in Table 4. The performances of IV2b and IVMGb are very
similar to those shown in Tables 1 and 2, which suggests that our approach is robust to such
correlations in factor loadings. In contrast, for β1, the performances of BC-QMLE and CCEMG
appear to deteriorate when the factor loadings are correlated. For example, for T = 100 and
N = 25, 50, 100, 200, the bias (×100) values for BC-QMLE are equal to −4.0, 2.1, −0.5 and 0.4
respectively, whereas the corresponding values in the uncorrelated loadings design (Table 1, Panel
B) are −1.6, −0.5, 0.2 and 0.4. Consequently, IV2b outperforms BC-QMLE in terms of RMSE
and the size of the test.

29These are available from the authors upon request.
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For the models with heterogeneous slopes, it is interesting to note that the bias of the CCEMG
estimator for β1 does not decrease as the sample size increases. For example, in the correlated
loadings design with heterogeneous slopes (Table 4, Panel B), the bias(×100) values of CCEMG
for β1 with T = N = 25, 50, 100, 200 are 0.7, −0.8, −1.3 and −1.5, whereas in the uncorrelated
loadings design (Table 2, Panel B) they are 2.2, 1.3, 0.1 and −0.3. As a consequence, IVMGb

mostly outperforms CCEMG by a substantial margin in terms of bias, RMSE and size.
Finally, we look at the finite sample behaviour for the overidentifying restrictions test based on

the IV2b estimator, which is summarised in Table 5. As was emphasised in Remark 7, we would
like the test to reject the null when the exogeneity assumption on xit is violated and/or when the
slope coefficients are cross-sectionally heterogeneous. Table 5 contains two column blocks: the
left one, entitled IV2a, shows results using 2k instruments, while the right block, entitled IV2b,
shows results using additional instruments that raise the total number of instruments to 3k. The
latter case provides for more degrees of freedom of the overidentifying restrictions test. As can
be seen, the size of the test is sufficiently close to its nominal level for both sets of instruments.
On the other hand, there appear to be substantial differences in terms of the power of the test
against slope heterogeneity. In particular, when 2k instruments are employed, such that the
degree of overidentification equals 1, the overidentifying restrictions test lacks power and has
rejection frequencies of 4.7% and 5.0% for N = T = 100 and N = T = 200. This outcome may
be related to the results of Newey (1985), which show that overidentifying restrictions tests can
lack power for some directions when the number of degrees of freedom is too small compared to
the dimension of the misspecification. Indeed, the power appears to increase dramatically when
we add two more instruments, such that it rises to 23.9% and 77.2% for N = T = 100 and
N = T = 200, respectively. Therefore, the overidentifying restrictions test statistics that are
associated with the optimal second-step IV estimator appear to have satisfactory power to reject
the null of slope homogeneity, unless the degrees of freedom of the test are very small. Finally,
the test has substantial power for both sets of instruments when the exogeneity of xit is violated;
specifically, εit is correlated with vit. For example, the power of the test with 2k instruments
is 45.2% and 95.9% for N = T = 100 and N = T = 200, respectively, whilst that with 3k
instruments is 36.7% and 91.4%.

In conclusion, we recommend the use of the (optimal) second-step IV estimator,
̂̂
θIV 2, defined

by Eq. (23), for slope homogeneous models, and the mean group IV estimator, θ̂IV MG, defined
by Eq. (31), for slope heterogeneous models with a moderate number of degrees of freedom. This

is because
̂̂
θIV 2 is more efficient than θ̂IV MG in models with homogeneous slopes, but becomes

unreliable for models with heterogeneous slopes. We also note that θ̂IV MG and the associated
t-test seem reliable for the models in our experiment with either heterogeneous or homogeneous
slope coefficients. Both estimators appear to be reasonably precise, and, notably, robust in cases
where factor loadings are mutually correlated. Typically, the size of the associated tests is far
more accurate than those of BC-QMLE and CCEMG, and they have sound power. The choice
between the two estimators depends on the assertion of heterogeneity in the slope coefficients. The
overidentifying restrictions test associated with the optimal second-step IV estimator has good
power to reject the null under slope heterogeneity with sufficient degrees of overidentification,
which could be used as a guide.

5 Concluding Remarks

This paper develops two instrumental variable estimators for the consistent estimation of homo-
geneous and heterogeneous dynamic panel data models with a multifactor error structure, when
both N and T are large. For models with homogeneous slope coefficients, we put forward a two-
step IV estimator that is

√
NT -consistent. The proposed estimator requires no bias correction,

unlike that of Moon and Weidner (2017). Similarly, for models with heterogeneous coefficients,
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we develop a mean group IV estimator that does not require any small-T bias correction, unlike
Chudik and Pesaran (2015a).

The finite sample evidence reported here suggests that the proposed estimators perform rea-
sonably well under all circumstances examined, and therefore form a good alternative method of
estimation to existing approaches. In particular, relative to the alternative methods examined,
both IV estimators appear to have little or negligible bias in most circumstances, and a correct size
of the t-test. Furthermore, the experimental results of the overidentifying restrictions test show
that it has high power when a key assumption of the model is violated, namely the exogeneity of
x.

Naturally, it is recommended that the optimal two-step IV estimator be employed for slope
homogeneous models and the mean group IV estimator be employed for slope heterogeneous mod-

els. This is because
̂̂
θIV 2 is more efficient than θ̂IV MG for homogeneous slope specification but

becomes unreliable in models with heterogeneous slopes. We also note that θ̂IV MG and the associ-
ated t-test seem reliable in our experiment for models with either heterogeneous or homogeneous
slope coefficients. The choice of the estimators depends on the assertion of heterogeneity in the
slope coefficients. The experimental results show that, in general, the overidentifying restriction
test associated with the optimal second-step IV estimator has good power to reject the null of
slope homogeneity, unless the degrees of freedom of the test are very small. Thus, the development
of a direct test for slope heterogeneity is of importance. We leave this as an avenue for future
research.

This paper has assumed that the covariates in the model are strongly exogenous with respect
to the idiosyncratic errors. This assumption may not be too restrictive for many applications,
but the possibility of relaxing it to weak exogeneity, such that xit = Γ0′

xif
0
x,t + κεi,t−1 + vit with

κ = (κ1, ..., κk)
′, may be of interest and it merits further investigation.

Finally, we note that our approach is quite general and can actually be applied to a large
class of linear panel data models. For example, our method is applicable to the model considered
by Pesaran (2006), Bai and Li (2014), and Westerlund and Urbain (2015), among others: yit =
x′
itβ + γ0′

yif
0
y,t + εit with xit = Γ0′

xif
0
x,t + vit. A comparison of our approach with the existing

approaches mentioned above may be an interesting research theme.
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Table 1: Bias, root mean squared error (RMSE) of IV2b, bias-corrected QMLE, IVMGb and CCEMG
estimates and size and power of the associated t-tests, for the panel ARDL(1,0) model with homogeneous
slopes with {ρ, β1, β2} = {0.5, 3, 1}, πu = 3/4, independent factor loadings in x1it & uit

PANEL A: Results for ρ, homogeneous slopes with {ρ, β1, β2} = {0.5, 3, 1} and πu = 3/4
IV2b QMLE IVMGb CCEMG

T,N 25 50 100 200 25 50 100 200 25 50 100 200 25 50 100 200
BIAS (×100)

25 0.0 0.0 0.0 0.0 -0.5 -0.6 -0.8 -1.0 -0.5 -0.7 -0.6 -0.7 -3.2 -3.4 -3.7 -3.9
50 -0.1 0.0 0.0 0.0 0.0 -0.3 -0.4 -0.5 -0.5 -0.4 -0.4 -0.4 -0.8 -1.0 -1.2 -1.5
100 0.0 0.0 0.0 0.0 0.1 -0.1 -0.2 -0.3 -0.2 -0.2 -0.2 -0.2 0.4 0.1 -0.1 -0.4
200 0.0 0.0 0.0 0.0 0.2 0.0 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 0.9 0.7 0.4 0.1

RMSE (×100)
25 3.2 2.2 1.7 1.1 1.5 1.2 1.2 1.2 3.3 2.4 1.8 1.4 4.1 4.0 4.0 4.1
50 2.1 1.4 1.0 0.7 1.0 0.8 0.6 0.6 2.3 1.6 1.2 0.9 1.8 1.5 1.5 1.6
100 1.4 1.0 0.7 0.4 0.7 0.5 0.4 0.3 1.4 1.1 0.7 0.5 1.1 0.9 0.6 0.6
200 1.0 0.7 0.4 0.3 0.5 0.4 0.3 0.2 1.0 0.7 0.5 0.4 1.2 0.9 0.7 0.4

SIZE: H0 : ρ = 0.5 against H1 : ρ ̸= 0.5, at the 5% level
25 9.5 7.4 6.9 4.8 18.3 22.7 37.4 59.1 5.5 6.1 7.5 10.7 28.2 51.1 81.3 97.7
50 10.2 6.0 6.0 5.7 13.5 15.1 22.8 45.0 6.5 6.4 6.9 9.2 13.8 22.7 49.8 81.8
100 8.4 6.4 6.3 5.2 13.5 14.8 17.4 27.0 5.6 5.8 6.4 7.3 12.4 14.4 18.4 39.0
200 9.8 6.6 5.7 5.6 16.8 11.6 12.2 17.2 6.2 4.9 4.7 7.3 32.8 36.1 34.5 24.7

POWER (size-adjusted) : H0 : ρ = 0.6 against H1 : ρ ̸= 0.6, at the 5% level
25 87.5 98.2 99.9 100.0 99.8 100.0 100.0 100.0 80.7 94.8 99.5 100.0 48.2 54.0 57.4 63.2
50 98.9 100.0 100.0 100.0 100.0 100.0 100.0 100.0 96.1 99.9 100.0 100.0 99.7 100.0 100.0 100.0
100 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 99.9 100.0 100.0 100.0 100.0 100.0 100.0 100.0
200 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
PANEL B: Results for β1, homogeneous slopes {ρ, β1, β2} = {0.5, 3, 1} and πu = 3/4

IV2b QMLE IVMGb CCEMG
T,N 25 50 100 200 25 50 100 200 25 50 100 200 25 50 100 200

BIAS (×100)
25 -0.2 -0.2 -0.1 0.0 -2.3 -1.1 -0.5 0.0 1.3 1.0 1.5 1.4 2.9 2.9 3.3 3.2
50 0.2 0.1 0.1 0.0 -1.8 -0.5 -0.1 0.4 0.9 0.7 0.8 0.7 1.1 1.4 1.9 2.0
100 -0.1 0.0 0.1 0.0 -1.6 -0.5 0.2 0.4 0.3 0.4 0.4 0.4 -0.6 -0.2 0.3 0.7
200 -0.2 0.0 0.0 0.0 -1.5 -0.3 0.1 0.2 0.0 0.2 0.1 0.2 -1.8 -1.2 -0.8 -0.2

RMSE (×100)
25 12.1 8.6 6.1 4.4 14.2 9.9 7.1 5.3 16.9 11.7 8.5 6.1 17.1 11.9 9.0 6.7
50 8.2 5.6 4.0 2.9 12.4 8.0 5.4 3.3 10.2 6.9 5.1 3.6 9.7 6.7 5.1 3.9
100 5.7 3.9 2.8 1.9 11.1 6.6 3.6 2.0 6.4 4.3 3.2 2.3 6.4 4.2 3.2 2.2
200 4.1 2.8 1.9 1.4 9.8 4.8 2.3 1.3 4.4 3.1 2.2 1.6 4.7 3.3 2.3 1.5

SIZE: H0 : β1 = 3 against H1 : β1 ̸= 3, at the 5% level
25 9.1 7.0 5.9 5.8 37.8 30.8 27.3 23.2 6.4 5.8 6.3 6.1 7.2 6.4 8.1 8.8
50 8.7 6.1 5.7 5.8 44.6 32.3 22.7 14.6 5.9 5.2 6.2 6.9 6.8 6.0 6.8 10.1
100 8.6 6.7 6.3 6.2 48.2 32.1 16.0 10.2 6.7 5.3 5.6 5.9 7.0 6.5 7.2 7.3
200 8.8 6.1 6.7 6.2 51.6 25.5 10.5 7.7 5.8 5.0 5.7 5.7 7.8 9.2 9.0 8.7

POWER (size-adjusted) : H0 : β1 = 3.1 against H1 : β1 ̸= 3.1, at the 5% level
25 17.6 25.4 43.2 66.8 6.9 12.4 19.6 40.4 11.1 18.2 30.7 49.4 12.5 21.9 32.4 54.0
50 27.0 47.4 72.2 92.6 8.1 15.6 38.5 88.2 22.3 38.6 59.5 85.0 21.9 41.4 70.1 89.8
100 47.8 73.6 94.0 100.0 8.4 24.8 83.4 99.8 36.3 65.8 90.0 99.5 34.7 62.9 89.8 99.7
200 71.3 95.0 99.8 100.0 9.4 49.0 99.0 100.0 62.7 90.7 99.2 100.0 45.3 76.4 97.5 100.0

Notes: The data generating process is yit = αi+ρiyit−1+
∑2

ℓ=1 βℓixℓit+uit, uit =
∑3

s=1 γ
0
sif

0
st+εit, xℓit = µℓi+

∑2
s=1 γ

0
ℓsif

0
st+vℓit

ℓ = 1, 2; i = 1, .., N ; t = −50, .., T and the first 50 observations are discarded; f0
st = ρfsf

0
st−1 + (1 − ρ2fs)

1/2ζst, ζst ∼ i.i.d.N(0, 1),

γ0
si = γs + γ∗

si, γ
∗
si ∼ i.i.d.N(0, 1) for s = 1, 2, 3, εit = ςεσit(ϵit − 1)/

√
2, ϵit ∼ i.i.d.χ2

1 with σ2
it = ηiφt, ηi ∼ i.i.d.χ2

2/2, and φt = t/T

for t = 0, 1, ..., T and unity otherwise; γ0
ℓsi = γℓs + γ0∗

ℓsi, γ
0∗
1si = ργ,1sγ0∗

3i + (1 − ρ2γ,1s)
1/2ξ1si, γ

0∗
2si = ργ,2sγ0∗

si + (1 − ρ2γ,2s)
1/2ξ2si,

ξℓsi ∼ i.i.d.N(0, 1), vℓit = ρυ,ℓvℓit−1 + (1− ρ2υ,ℓ)
1/2ϖℓit, ϖℓit ∼ i.i.d.N(0, ς2υσ

2
ϖℓ,i

), σ2
ϖℓ,i

∼ i.i.d.U [0.5, 1.5] for ℓ = 1, 2, s = 1, 2. We

set ρi = ρ, β1i = β1 and β2i = β2, ρfs = ργ,2s = ρυ,ℓ = 0.5 and ργ,1s = 0.0 for all ℓ, s. IV2b and IVMGb are given by (23), (31) with
(36), BC-QMLE and CCEMG by (37), (38). The rank condition for CCEMG is met.
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Table 2: Bias, root mean squared error (RMSE) of IV2b, bias-corrected QMLE, IVMGb and CCEMG
estimates and size and power of the associated t-tests, for the panel ARDL(1,0) model with heterogeneous
slopes with {ρ, β1, β2} = {0.5, 3, 1}, πu = 3/4, independent factor loadings in x1it & uit

PANEL A: Results for ρ, homogeneous slopes with {ρ, β1, β2} = {0.5, 3, 1} and πu = 3/4
IV2b QMLE IVMGb CCEMG

T,N 25 50 100 200 25 50 100 200 25 50 100 200 25 50 100 200
BIAS (×100)

25 0.7 0.8 0.9 0.8 1.1 0.8 0.5 0.3 -0.7 -0.7 -0.6 -0.7 -3.1 -3.3 -3.6 -3.8
50 1.1 1.1 1.1 1.1 2.0 1.9 1.8 1.8 -0.3 -0.3 -0.4 -0.4 -0.6 -0.9 -1.2 -1.5
100 1.0 1.2 1.2 1.2 2.5 2.5 2.3 2.3 -0.2 -0.2 -0.3 -0.2 0.4 0.3 -0.1 -0.3
200 1.1 1.2 1.3 1.3 2.7 2.6 2.6 2.6 -0.1 -0.1 -0.1 -0.1 1.0 0.8 0.5 0.2

RMSE (×100)
25 4.4 3.2 2.3 1.7 4.1 2.9 2.2 1.7 4.2 3.0 2.1 1.6 4.8 4.3 4.1 4.1
50 3.4 2.6 2.0 1.5 4.0 3.1 2.5 2.1 3.1 2.2 1.6 1.2 2.8 2.2 1.9 1.8
100 3.0 2.3 1.8 1.6 4.1 3.3 2.8 2.6 2.7 1.9 1.4 1.0 2.5 1.9 1.3 1.0
200 2.9 2.1 1.8 1.6 4.1 3.4 3.0 2.8 2.5 1.7 1.2 0.9 2.6 1.8 1.3 0.9

SIZE: H0 : ρ = 0.5 against H1 : ρ ̸= 0.5, at the 5% level
25 10.7 9.9 9.5 10.8 52.0 47.3 47.4 48.6 6.2 7.0 7.0 9.2 18.6 30.7 56.7 84.2
50 11.6 12.0 13.1 17.1 63.6 67.5 73.1 79.7 5.2 6.3 5.9 6.2 8.3 10.2 16.2 36.4
100 12.5 13.3 17.1 27.7 75.0 80.2 87.9 94.4 5.9 6.3 5.9 5.9 7.3 8.0 8.0 9.6
200 13.6 13.8 20.1 34.8 82.7 86.4 94.4 98.9 5.9 5.4 5.0 5.2 9.3 8.0 9.0 7.1

POWER (size-adjusted) : H0 : ρ = 0.6 against H1 : ρ ̸= 0.6, at the 5% level
25 72.2 91.8 99.9 100.0 69.8 92.7 98.0 99.7 65.1 85.9 99.1 100.0 31.0 40.6 46.9 51.8
50 89.7 98.6 100.0 100.0 82.4 97.6 99.9 100.0 84.5 98.3 99.9 100.0 89.2 98.6 100.0 100.0
100 95.9 100.0 100.0 100.0 82.9 99.2 100.0 100.0 93.1 99.8 100.0 100.0 98.1 100.0 100.0 100.0
200 97.7 100.0 100.0 100.0 88.6 99.6 100.0 100.0 96.4 100.0 100.0 100.0 99.2 100.0 100.0 100.0
PANEL B: Results for β1, homogeneous slopes {ρ, β1, β2} = {0.5, 3, 1} and πu = 3/4

IV2b QMLE IVMGb CCEMG
T,N 25 50 100 200 25 50 100 200 25 50 100 200 25 50 100 200

BIAS (×100)
25 -1.9 -1.1 -1.3 -1.3 -4.9 -4.1 -4.4 -3.7 1.1 1.7 1.5 1.6 2.2 3.3 2.9 3.2
50 -1.6 -1.3 -1.1 -1.3 -5.4 -4.0 -3.6 -3.7 0.5 0.7 0.9 0.4 0.8 1.3 1.8 1.9
100 -1.0 -1.2 -1.2 -1.2 -4.7 -4.0 -3.5 -3.4 0.5 0.2 0.3 0.3 -0.4 -0.4 0.1 0.6
200 -1.0 -1.1 -1.1 -1.2 -5.0 -4.0 -3.7 -3.6 0.2 0.1 0.1 0.2 -1.6 -1.4 -0.9 -0.3

RMSE (×100)
25 13.8 9.7 7.2 5.0 16.0 12.1 9.5 7.3 16.8 11.9 8.6 6.1 16.8 12.2 9.0 6.7
50 9.6 6.9 4.8 3.6 14.5 9.8 7.3 5.7 10.4 7.2 5.2 3.6 9.8 7.2 5.3 3.8
100 7.0 5.0 3.5 2.6 12.6 8.7 6.0 4.8 7.0 4.9 3.3 2.4 6.7 4.7 3.2 2.3
200 5.1 3.6 2.8 2.1 11.7 7.7 5.4 4.4 4.9 3.4 2.5 1.7 5.3 3.8 2.6 1.7

SIZE: H0 : β1 = 3 against H1 : β1 ̸= 3, at the 5% level
25 11.0 8.0 8.1 7.3 41.6 37.3 37.6 37.0 5.6 5.4 6.1 6.8 6.7 6.5 7.6 7.8
50 9.8 7.4 6.4 8.0 47.5 39.9 35.6 41.2 5.9 5.6 6.0 4.9 6.1 6.3 7.5 9.1
100 9.5 8.8 7.3 8.6 52.8 47.4 42.9 50.3 5.4 5.5 5.0 5.4 5.7 6.4 5.3 6.3
200 9.5 7.3 9.5 11.6 60.4 54.7 56.0 67.6 6.1 5.8 5.3 4.9 8.5 9.4 8.6 6.8

POWER (size-adjusted) : H0 : β1 = 3.1 against H1 : β1 ̸= 3.1, at the 5% level
25 10.5 15.2 24.2 40.5 4.1 5.5 4.5 7.4 12.1 19.4 29.7 47.6 12.8 19.7 30.9 53.4
50 14.7 28.5 46.5 70.1 3.3 5.6 7.5 13.0 19.9 33.6 56.4 83.5 19.8 38.1 62.6 89.9
100 28.1 46.7 73.7 94.5 4.4 6.4 12.7 22.4 36.1 57.9 86.6 99.1 33.4 51.3 87.7 99.5
200 45.3 68.2 92.4 99.8 4.5 6.4 13.7 27.5 52.2 81.2 97.9 100.0 34.6 64.0 94.4 99.9

Notes: The DGP is the same as that for Table 1 except that the slope coefficients are heterogeneous. Specifically,
ρi = ρ + ηρi; βℓi = βℓ + ηβℓi, ηρi ∼ i.i.d.U [−1/5,+1/5], and ηβℓi = [(2/5)

2
/12]1/2ρβξβℓi + (1 − ρ2β)

1/2ζβℓi, where

ξβℓi is the standardised squared idiosyncratic errors in xℓit, computed as ξβℓi = (v2ℓi−v2ℓ )/[N
−1
∑N

i=1(v
2
ℓi−v2ℓ )

2]1/2

with v2ℓi = T−1
∑T

t=1 v
2
ℓit, v

2
ℓ = N−1

∑N
i=1 v

2
ℓi, for ℓ = 1, 2, whereas ζβℓi ∼ i.i.d.U

(
−
√
3,
√
3
)
for ℓ = 1, 2.
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Table 3: Bias, root mean squared error (RMSE) of IV2b, bias-corrected QMLE, IVMGb and CCEMG
estimates and size and power of the associated t-tests, for the panel ARDL(1,0) model with homogeneous
slopes with {ρ, β1, β2} = {0.5, 3, 1}, πu = 3/4, correlated factor loadings in x1it & uit

PANEL A: Results for ρ, homogeneous slopes with {ρ, β1, β2} = {0.5, 3, 1} and πu = 3/4
IV2b QMLE IVMGb CCEMG

T,N 25 50 100 200 25 50 100 200 25 50 100 200 25 50 100 200
BIAS (×100)

25 0.1 0.0 0.0 0.0 -0.4 -0.7 -0.9 -1.0 -0.7 -0.7 -0.6 -0.7 -3.2 -3.5 -3.6 -3.8
50 0.0 0.0 0.0 0.0 0.0 -0.3 -0.5 -0.6 -0.5 -0.4 -0.4 -0.3 -0.9 -1.0 -1.2 -1.4
100 0.0 0.0 0.0 0.0 0.1 -0.1 -0.2 -0.3 -0.3 -0.2 -0.2 -0.2 0.3 0.2 -0.1 -0.4
200 0.0 0.0 0.0 0.0 0.2 0.0 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 0.9 0.7 0.4 0.1

RMSE (×100)
25 3.1 2.2 1.6 1.1 1.6 1.4 1.3 1.3 3.4 2.6 1.9 1.5 4.3 4.1 4.0 4.0
50 2.1 1.4 1.0 0.7 1.1 0.8 0.7 0.7 2.3 1.5 1.1 0.9 1.8 1.6 1.5 1.6
100 1.4 1.0 0.6 0.4 0.7 0.5 0.4 0.4 1.5 1.0 0.7 0.6 1.1 0.9 0.7 0.6
200 1.0 0.6 0.4 0.3 0.6 0.4 0.3 0.2 1.0 0.7 0.5 0.4 1.2 0.9 0.6 0.4

SIZE: H0 : ρ = 0.5 against H1 : ρ ̸= 0.5, at the 5% level
25 7.5 6.4 6.1 5.4 18.5 26.0 39.1 59.2 5.8 7.0 7.9 11.5 30.2 52.8 77.8 94.9
50 8.7 7.0 6.7 4.9 16.4 17.8 25.5 46.9 5.9 5.4 6.5 8.7 14.3 25.5 49.1 76.6
100 8.9 6.5 5.2 4.8 13.4 14.2 18.7 30.2 5.9 6.4 5.2 6.6 13.5 17.1 23.5 40.7
200 8.6 5.4 6.1 5.3 16.0 10.7 12.3 17.1 6.2 5.4 5.5 6.6 32.9 35.7 33.4 28.1

POWER (size-adjusted) : H0 : ρ = 0.6 against H1 : ρ ̸= 0.6, at the 5% level
25 89.0 98.0 100.0 100.0 99.8 100.0 100.0 100.0 78.9 93.7 99.0 99.9 45.3 48.1 55.7 60.7
50 99.1 100.0 100.0 100.0 100.0 100.0 100.0 100.0 96.5 99.6 100.0 100.0 99.5 100.0 100.0 100.0
100 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 99.8 100.0 100.0 100.0 100.0 100.0 100.0 100.0
200 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
PANEL B: Results for β1, homogeneous slopes {ρ, β1, β2} = {0.5, 3, 1} and πu = 3/4

IV2b QMLE IVMGb CCEMG
T,N 25 50 100 200 25 50 100 200 25 50 100 200 25 50 100 200

BIAS (×100)
25 -0.2 0.2 0.0 -0.1 -4.4 -3.2 -2.9 -1.6 1.3 1.7 1.4 1.5 0.6 1.2 1.3 1.9
50 0.0 0.0 0.0 -0.1 -4.8 -2.9 -1.1 -0.1 0.9 0.7 0.8 0.5 -0.9 -0.4 0.2 0.7
100 0.2 -0.1 0.0 0.0 -4.0 -2.1 -0.5 0.4 0.6 0.2 0.3 0.4 -2.6 -2.3 -1.4 -0.5
200 0.0 0.0 0.0 0.0 -3.6 -1.6 -0.1 0.3 0.2 0.2 0.2 0.2 -3.9 -3.3 -2.4 -1.4

RMSE (×100)
25 11.8 8.7 6.1 4.3 16.6 12.4 9.9 7.4 16.9 11.9 8.5 6.2 16.6 12.4 8.8 6.4
50 8.1 5.6 4.0 2.7 14.5 10.7 7.3 4.7 10.0 6.8 5.0 3.5 10.1 7.1 4.9 3.5
100 5.8 3.9 2.8 1.9 13.4 8.6 4.9 2.5 6.4 4.4 3.2 2.2 7.2 5.2 3.6 2.3
200 3.9 2.8 1.9 1.4 12.2 6.8 3.1 1.4 4.3 3.1 2.1 1.5 6.3 4.8 3.2 2.1

SIZE: H0 : β1 = 3 against H1 : β1 ̸= 3, at the 5% level
25 8.5 7.5 6.2 6.1 44.5 40.8 37.9 32.2 5.8 5.9 5.9 6.3 6.8 7.4 6.9 7.5
50 8.8 5.4 6.3 4.4 50.4 40.0 27.4 18.9 5.1 4.9 6.0 5.0 8.3 7.8 5.9 6.8
100 8.0 6.3 6.4 5.0 52.6 34.7 17.9 9.9 5.1 4.4 5.4 4.3 10.8 12.5 11.1 7.9
200 8.2 5.7 5.0 7.0 55.5 30.8 13.0 8.0 5.7 5.0 4.6 5.5 18.2 24.8 24.2 21.5

POWER (size-adjusted) : H0 : β1 = 3.1 against H1 : β1 ̸= 3.1, at the 5% level
25 19.6 26.2 41.4 66.3 5.4 4.8 6.0 9.0 13.0 20.3 29.9 50.2 10.2 16.4 26.2 48.3
50 31.8 47.7 73.1 95.4 3.6 4.4 9.7 67.4 22.3 37.6 60.8 86.3 15.5 25.5 57.9 87.0
100 50.4 75.8 94.4 99.9 4.9 5.5 58.6 99.2 43.2 66.0 89.7 99.6 17.1 29.8 67.6 98.8
200 73.5 94.8 99.7 100.0 3.8 8.6 98.0 100.0 65.9 91.2 99.2 100.0 14.9 27.9 73.8 99.7

Notes: The DGP is the same as that for Table 1 except that the factor loadings in x1it & uit are correlated:
ργ,1s = 0.5 in γ0∗

1si = ργ,1sγ
0∗
3i + (1− ρ2γ,1s)

1/2ξ1si.
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Table 4: Bias, root mean squared error (RMSE) of IV2b, bias-corrected QMLE, IVMGb and CCEMG
estimates and size and power of the associated t-tests, for the panel ARDL(1,0) model with heterogeneous
slopes with {ρ, β1, β2} = {0.5, 3, 1}, πu = 3/4, correlated factor loadings in x1it & uit

PANEL A: Results for ρ, homogeneous slopes with {ρ, β1, β2} = {0.5, 3, 1} and πu = 3/4
IV2b QMLE IVMGb CCEMG

T,N 25 50 100 200 25 50 100 200 25 50 100 200 25 50 100 200
BIAS (×100)

25 0.8 0.9 0.9 0.9 0.9 0.8 0.5 0.2 -0.7 -0.7 -0.7 -0.7 -3.1 -3.3 -3.5 -3.8
50 0.9 1.1 1.2 1.2 2.2 2.1 1.9 1.9 -0.4 -0.3 -0.3 -0.3 -0.7 -0.9 -1.1 -1.3
100 1.1 1.2 1.2 1.2 2.8 2.7 2.6 2.6 -0.2 -0.3 -0.2 -0.2 0.4 0.2 -0.1 -0.3
200 1.1 1.3 1.3 1.3 3.1 2.9 2.8 2.9 -0.1 -0.1 -0.1 -0.1 0.9 0.8 0.4 0.2

RMSE (×100)
25 4.4 3.1 2.3 1.7 4.3 3.2 2.5 2.0 4.1 3.0 2.2 1.7 4.8 4.3 4.1 4.1
50 3.5 2.6 2.0 1.6 4.2 3.3 2.6 2.3 3.2 2.2 1.6 1.2 2.9 2.3 1.9 1.8
100 3.0 2.3 1.8 1.6 4.4 3.5 3.0 2.8 2.7 2.0 1.4 1.0 2.6 1.9 1.4 1.1
200 2.8 2.2 1.8 1.6 4.5 3.7 3.2 3.1 2.5 1.8 1.3 0.9 2.6 1.9 1.4 1.0

SIZE: H0 : ρ = 0.5 against H1 : ρ ̸= 0.5, at the 5% level
25 11.7 9.2 9.3 10.5 53.2 50.6 51.5 53.7 6.3 6.6 7.4 8.9 17.3 30.0 54.9 81.9
50 12.7 11.5 12.9 19.8 66.2 67.6 72.3 81.5 6.2 5.1 6.8 6.8 9.0 11.6 17.3 35.3
100 11.6 13.1 15.9 26.3 77.5 82.0 87.6 95.8 5.9 5.6 5.5 6.2 8.6 8.2 8.3 13.0
200 12.3 14.1 21.9 33.3 84.4 89.3 93.7 99.0 5.5 5.3 4.9 5.4 9.4 10.1 10.9 9.6

POWER (size-adjusted) : H0 : ρ = 0.6 against H1 : ρ ̸= 0.6, at the 5% level
25 71.9 92.8 99.6 100.0 64.8 90.1 96.6 99.0 61.2 87.9 98.3 100.0 30.9 41.5 44.3 46.1
50 87.2 98.9 100.0 100.0 78.4 97.3 99.9 100.0 80.7 98.2 100.0 100.0 89.1 98.8 100.0 100.0
100 96.3 100.0 100.0 100.0 83.5 99.0 100.0 100.0 93.6 99.7 100.0 100.0 97.6 100.0 100.0 100.0
200 98.6 100.0 100.0 100.0 84.8 99.7 100.0 100.0 97.3 100.0 100.0 100.0 99.2 100.0 100.0 100.0
PANEL B: Results for β1, homogeneous slopes {ρ, β1, β2} = {0.5, 3, 1} and πu = 3/4

IV2b QMLE IVMGb CCEMG
T,N 25 50 100 200 25 50 100 200 25 50 100 200 25 50 100 200

BIAS (×100)
25 -1.2 -1.3 -1.4 -1.5 -7.6 -7.4 -6.5 -6.2 1.7 1.4 1.5 1.4 0.7 1.2 1.5 2.0
50 -1.0 -1.3 -1.2 -1.2 -8.5 -7.0 -5.9 -4.9 0.9 0.4 0.7 0.7 -0.8 -0.8 0.1 0.9
100 -1.2 -1.0 -1.1 -1.2 -8.0 -6.7 -5.2 -4.5 0.2 0.5 0.4 0.3 -2.7 -2.0 -1.3 -0.6
200 -1.3 -1.0 -1.1 -1.2 -7.9 -6.0 -4.9 -4.6 0.1 0.3 0.2 0.1 -3.9 -3.2 -2.3 -1.5

RMSE (×100)
25 13.4 9.8 6.8 5.1 18.9 15.2 12.1 10.3 16.9 11.9 8.5 6.1 17.0 12.3 9.0 6.4
50 9.6 6.9 4.8 3.5 17.5 13.5 10.0 7.6 10.2 7.1 5.2 3.7 10.2 7.4 5.1 3.8
100 6.9 5.1 3.5 2.6 15.9 11.4 8.1 6.0 6.7 4.8 3.4 2.3 7.7 5.5 3.8 2.6
200 5.3 3.8 2.7 2.1 15.1 9.7 6.7 5.5 5.0 3.6 2.5 1.7 6.9 5.0 3.5 2.4

SIZE: H0 : β1 = 3 against H1 : β1 ̸= 3, at the 5% level
25 9.6 7.5 6.5 6.6 48.1 47.6 46.3 51.7 6.3 5.8 6.2 6.7 7.6 6.8 7.0 8.0
50 8.8 7.5 6.3 7.7 54.7 50.7 50.2 49.8 6.2 4.8 5.7 5.7 8.2 7.2 6.7 8.4
100 9.0 9.0 7.3 8.2 59.4 54.9 51.3 59.1 5.5 5.5 5.3 4.8 10.7 11.3 10.6 8.9
200 10.8 8.6 8.6 12.0 67.7 58.4 62.0 76.4 6.2 6.5 6.0 4.6 16.9 20.5 20.0 18.9

POWER (size-adjusted) : H0 : β1 = 3.1 against H1 : β1 ̸= 3.1, at the 5% level
25 14.2 16.6 25.0 39.6 3.1 1.9 0.9 1.5 11.6 16.5 29.8 47.4 10.7 16.6 26.4 46.5
50 20.5 28.3 46.9 72.3 1.5 1.6 2.6 3.0 19.2 35.0 55.0 82.9 16.1 25.6 51.8 81.8
100 28.5 45.7 74.3 95.4 2.0 1.0 2.7 5.8 33.0 60.2 86.1 99.1 14.8 29.4 62.9 96.1
200 40.8 66.5 92.6 99.8 2.2 1.8 2.6 7.3 50.3 80.5 98.0 100.0 11.0 24.4 65.5 97.3

Notes: The DGP is the same as that for Table 2 except that the factor loadings in x1it & uit are correlated:
ργ,1s = 0.5 in γ0∗

1si = ργ,1sγ
0∗
3i + (1− ρ2γ,1s)

1/2ξ1si.
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Table 5: Size and power of the overidentifying restrictions test for the panel ARDL(1,0) model with
{ρ, β1, β2} = {0.5, 3, 1}, πu = 3/4, correlated factor loadings in x1it & uit

IV2a IV2b

T,N 25 50 100 200 25 50 100 200
Slope Homogeneity (Size)

25 7.2 6.9 5.7 6.4 6.8 6.0 5.7 5.5
50 7.7 6.6 6.5 4.8 7.3 6.0 5.5 4.4
100 6.7 7.3 5.9 4.8 7.4 6.2 5.9 5.1
200 7.7 6.6 6.5 5.6 7.0 5.9 6.1 4.7

Slope Heterogeneity (Power)
25 7.5 6.2 6.0 5.4 8.3 7.9 8.8 10.1
50 6.9 5.9 5.4 5.7 8.6 10.4 12.6 22.0
100 7.4 5.6 4.7 4.9 11.2 13.6 23.9 44.3
200 7.0 5.9 5.8 5.0 14.6 24.0 45.3 77.2

Endogeneous Idiosyncratic Error of X (Power)
25 10.1 10.4 14.6 18.8 10.4 11.0 14.8 18.9
50 12.3 16.1 23.5 37.8 11.9 15.9 20.0 31.4
100 17.2 27.6 45.2 70.3 14.4 20.7 36.7 60.2
200 28.2 46.4 73.2 95.9 22.5 37.6 62.8 91.4

Notes: The table reports the size and the power of overidentifying restrictions tests based on the IV2 estimator
using different set of instruments. IV2a uses (X̂i, X̂i,−1) and IV2b (X̂i, X̂i,−1, X̂i,−2), where X̂i = MFx

Xi and

X̂i,−j = MFx,−jXi,−j for j = 1, 2. The test statistic is defined by (24). The tests for IV2a and IV2b are referenced
to the 95% quantiles of χ2

1 and χ2
3 distributions, respectively. The DGP for Slope Homogeneity is of Table 3, for

Slope Heterogeneity is of Table 4, and for Endogeneous Idiosyncratic Error of X, the DGP of Table 3 is changed
such that vℓit = ρυ,ℓvℓit−1+(1−ρ2ℓ)

1/2ϖℓit, ϖℓit = τℓεit+(1−τ2ℓ )
1/2ϱℓit with ϱℓit ∼ i.i.d.N(0, 1), ℓ = 1, 2 (see notes

to Table 1). We set τ1 = 0.5 and τ2 = 0 so that the idiosyncratic error of x1it is contemporaneously correlated
with εit

Appendix A: Proofs of Main Results
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Lemma 7 Under Assumptions 1-5, as (N,T )
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By using the results of Lemmas 3, 4, 6 and 7, the first term in (A.20) is given by
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By making use of Lemma 8, the second term in (A.20) is given by
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So, by adding (A.21) and (A.22) together, rearranging the terms and using MF 0
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As for the second component of Ẑi, which is MF̂x,−1
Xi,−1, by following the same steps as before and using

again Lemmas 3, 4, 6, 7, 8, and using MF 0
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where the second and third equalities is due to Lemma 5 and 9, respectively.
As for the second component of Ẑi, which is MF̂x,−1
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By combining the results above, we obtain the required expression.
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Proof of Proposition 3. Consider T−1/2Ẑ′
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)
(A.31)

where the second equality is due to result in (A.28) stated in Lemma 10.
Next is the second component of MF̂x

Ẑi, which is MF̂x
MF̂x,−1

Xi,−1. Again, by adding and subtracting and
using Lemma 10, we get

T−1/2X′
i,−1MF̂x,−1

MF̂x
ui

= T−1/2X′
i,−1MF̂x,−1

MF 0
x
ui + T−1/2X′

iMF̂x,−1

(
MF̂x

−MF 0
x

)
ui

= T−1/2X′
i,−1MF̂x,−1

MF 0
x
ui +

√
TOp

(
δ−2
NT

)
= T−1/2X′

i,−1MF 0
x,−1

MF 0
x
ui + T−1/2X′

i,−1

(
MF̂x,−1

−MF 0
x,−1

)
MF 0

x
ui +

√
TOp

(
δ−2
NT

)
= T−1/2X′

i,−1MF 0
x,−1

MF 0
x
ui +

√
TOp

(
δ−2
NT

)
. (A.32)

Finally, by combining the results, we get

T−1/2Ẑ′
iMF̂x

ui = T−1/2Z′
iMF 0

x
ui +

√
TOp

(
δ−2
NT

)
, (A.33)

where Zi =
[
MF 0

x
Xi,MF 0

x,−1
Xi,−1

]
, which provides the expression given in Proposition 3.

Lemma 11 Under Assumptions 1-5, as (N,T )
j→ ∞ such that N/T → c with 0 < c < ∞, 1

NT

∑N
i=1 ξ̂F̂ iT ξ̂

′
F̂ iT =

1
NT

∑N
i=1 ξF̂ iT ξ

′
F̂ iT

+ op (1), where ξF̂ iT = Ẑ′
iMF̂y

ui and ξ̂F̂ iT = Ẑ′
iMF̂y

ûi.
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Lemma 12 Under Assumptions 1-5, as (N,T )
j→ ∞ such that N/T → c with 0 < c < ∞, 1

NT

∑N
i=1 ξF̂ iT ξ

′
F̂ iT

−
Ω = op (1), where Ω = plimN,T→∞

1
N

∑N
i=1 E

(
T−1Z′

iMF 0
y
εiε

′
iMF 0

y
Zi

)
.

Proposition 4 Under Assumptions 1-5, as (N,T )
j→ ∞ such that N/T → c with 0 < c < ∞,

1√
NT

N∑
i=1

ξF̂ iT

d→ N (0,Ω) .

Proof. Proposition 2 and Lemma 12, together with Lemma ??, yield the required result.

Lemma 13 Under Assumptions 1-5, as (N,T )
j→ ∞ such that N/T → c with 0 < c < ∞, ÂNT

p→ A, BNT
p→

B, where ÂNT = 1
N

∑N
i=1 T

−1Ẑ′
iMF̂y

Wi, B̂NT = 1
N

∑N
i=1 T

−1Ẑ′
iMF̂y

Ẑi and A = limN,T→∞
1
N

∑N
i=1 E (Ai,T ),

B = limN,T→∞
1
N

∑N
i=1 E (Bi,T ), Ai,T = T−1Z′

iMF 0
y
Wi, Bi,T = T−1Z′

iMF 0
y
Zi.

Lemma 14 (Lemma 2.2.10 of Van der Vaart and Wellner (1996)) Let x1, · · · , xN be arbitrary random vari-
ables that satisfy the tail bound:

P (|xi| > z) ≤ 2exp

(
−1

2
× z2

a+ bz

)
for all z (and all i) and fixed a, b > 0. Then,

E
∣∣∣ sup
1≤i≤N

xi

∣∣∣ ≤ ∆
(
b× ln(N + 1) +

√
a× ln(N + 1)

)
for some positive constant ∆.

Lemma 15 Under Assumptions 2 to 4, and Assumption 7, we have

(a) N−1T−1
N∑
i=1

∥X′
iMF̂x

ui −X′
iMF 0

x
ui∥ = Op(δ

−2
NT ) .

(b) N−1T−1
N∑
i=1

∥X′
i,−1MF̂x,−1

MF̂x
ui −X′

i,−1MF 0
x,−1

MF 0
x
ui∥ = Op(δ

−2
NT ) .

(c) sup
1≤i,j≤N

∥T−1X′
jMF̂x

Xi − T−1X′
jMF 0

x
Xi∥ = Op(N

1/2δ−2
NT ) .

(d) sup
1≤i,j≤N

∥T−1X′
j,−1MF̂x,−1

MF̂x
MF̂x,−1

Xi,−1 − T−1X′
j,−1MF 0

x,−1
MF 0

x
MF 0

x,−1
Xi,−1∥ = Op(N

1/2δ−2
NT ) .

(e) sup
1≤i,j≤N

∥T−1X′
j,−1MF̂x,−1

MF̂x
Xi − T−1X′

j,−1MF 0
x,−1

MF 0
x
Xi∥ = Op(N

1/2δ−2
NT ) .

Lemma 16 Under Assumptions 1 to 7, we have

(a) sup
1≤i,j≤N

∥T−1X′
iMF̂x

yi,−1 − T−1X′
iMF 0

x
yi,−1∥

= Op(N
1/2δ−2

NT ) +Op(N
3/4T−1/2δ−2

NT ) +Op(NT−1δ−2
NT ) +Op(N

1/4T−1/2) .

(b) sup
1≤i,j≤N

∥T−1X′
i,−1MF̂x,−1

MF̂x
yi,−1 − T−1X′

i,−1MF 0
x,−1

MF 0
x
yi,−1∥

= Op(N
1/2δ−2

NT ) +Op(N
3/4T−1/2δ−2

NT ) +Op(NT−1δ−2
NT ) +Op(N

1/4T−1/2) .
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Lemma 17 Under Assumptions 1 to 7, we have

(a) sup
1≤i≤N

∥T−1X′
iMF 0

x
Xi − T−1E(V′

iVi)∥ = Op(N
1/4T−1/2) +Op(N

1/2T−1) ,

(b) sup
1≤i≤N

∥T−1X′
i,−1MF 0

x,−1
MF 0

x
MF 0

x,−1
Xi,−1 − T−1E(V′

i,−1Vi,−1)∥ = Op(N
1/4T−1/2) +Op(N

1/2T−1) ,

(c) sup
1≤i≤N

∥T−1X′
i,−1MF 0

x,−1
MF 0

x
Xi − T−1E(V′

i,−1Vi)∥ = Op(N
1/4T−1/2) +Op(N

1/2T−1) ,

(d) sup
1≤i≤N

∥T−1X′
iMF 0

x
yi,−1 − T−1

∞∑
s=1

E(V′
iVi,−s)βiρ

s−1
i ∥ = Op(N

1/4T−1/2) +Op(N
1/2T−1) .

(e) sup
1≤i≤N

∥T−1X′
i,−1MF 0

x,−1
MF 0

x
yi,−1 − T−1

∞∑
s=1

E(V′
i,−1Vi,−s)βiρ

s−1
i ∥ = Op(N

1/4T−1/2) +Op(N
1/2T−1) .

Lemma 18 Define

Ai,T =

(
T−1

∑∞
s=1 ρ

s−1
i E(V′

iVi,−s)βi T−1E(V′
iVi)

T−1
∑∞

s=1 ρ
s−1
i E(V′

i,−1Vi,−s)βi T−1E(V′
i,−1Vi)

)
Bi,T =

(
T−1E(V′

iVi) T−1E(V′
iVi,−1)

T−1E(V′
i,−1Vi) T−1E(V′

i,−1Vi,−1)

)
under Assumptions 1 to 7, we have

(a) sup
1≤i≤N

∥( ˆ̃A
′
i,T

ˆ̃B
−1

i,T
ˆ̃Ai,T )

−1 ˆ̃A
′
i,T

ˆ̃B
−1

i,T − (Ã′
i,T B̃

−1
i,T Ãi,T )

−1Ã′
i,T B̃

−1
i,T ∥

= Op(N
1/4T−1/2lnN) +Op(N

1/2(lnN)5δ−2
NT ) ,

(b) sup
1≤i≤N

∥(Ã′
i,T B̃

−1
i,T Ãi,T )

−1Ã′
i,T B̃

−1
i,T ∥ = Op((lnN)2) ,

(c) sup
1≤i≤N

∥[(Ã′
i,T B̃

−1
i,T Ãi,T )

−1Ã′
i,T B̃

−1
i,T − (A′

i,TB
−1
i,TAi,T )

−1A′
i,TB

−1
i,T ]∥

= Op(N
1/4T−1/2(lnN)5) +Op(N

1/2T−1(lnN)5) .

Proof of Theorem 1. By using the expression in (16), the result of Proposition 1 from which 1√
NT

∑N
i=1 Ẑ

′
iui

tends to a multivatiate random variable and is therefore Op(1), and
√

T
N b1NT together with

√
N
T b2NT are Op(1)

as T/N tends to a finite positive constant c (0 < c < ∞) when N and T → ∞ jointly. And so,
√
NT

(
θ̂IV − θ

)
=

Op(1), which implies the required result.

Proof of Theorem 2. (i)
√
NT

(
ˆ̂θIV − θ

)
=

(
Â′

NT B̂
−1
NT ÂNT

)−1

Â′
NT B̂

−1
NT

(
1√
NT

∑N
i=1 ξF̂ iT

)
=
(
A′B−1A

)−1
A′B−1

(
1√
NT

∑N
i=1 ξFiT

)
+ op (1), by the results of Proposition 2 and Lemma 13. Next, by

the result of Proposition 4, we have
√
NT

(
ˆ̂θIV − θ

)
d→ N (0,Ψ), as required. (ii) Ψ̂ − Ψ = op (1) follows

immediately from Lemmas 11, 12 and 13.

Proof of Theorem 3. Under Assumptions 1-5, noting ˆ̂ui = ui−Wi

(
ˆ̂θIV 2 − θ

)
we have 1√

NT

∑N
i=1 Ẑ

′
iMF̂y

ˆ̂ui =

1√
NT

∑N
i=1 Ẑ

′
iMF̂y

ui−ÂNT

√
NT

(
ˆ̂
θIV 2 − θ

)
. Since

√
NT

(
ˆ̂
θIV 2 − θ

)
=
(
A′Ω−1A

)−1
A′Ω−1 1√

NT

∑N
i=1 Z

′
iMF 0

y
εi

+ op (1) by Corollary 1 and defining L = Ω−1/2A of rank(k + 1) we have Ω̂
−1/2

NT
1√
NT

∑N
i=1 Ẑ

′
iMF̂y

ûi =

MLΩ
−1/2 1√

NT

∑N
i=1 Z

′
iMF 0

y
εi + op (1) with ML = I2k − L (L′L)

−1
L′ whose rank is k − 1, which yields

1
NT

∑N
i=1

ˆ̂u
′
iMF̂y

ẐiΩ̂
−1

NT

∑N
i=1 Ẑ

′
iMF̂y

ˆ̂ui
d→ χ2

k−1 as required.

Proof of Theorem 4. By Proposition 3 T−1/2Ẑ′
iMF̂x

ui = T−1/2Z′
iMF 0

x
ui + op (1) as (N,T )

j→ ∞ as N/T → c

for 0 < c < ∞. It is immediate that, under Assumptions 1-8, for each i, T−1/2Z′
iui

d→ N (0,Σi). A similar line of

the argument in the proof of Lemma 7 ensures that
̂̃
Ai,T − Ãi,T

p→ 0 and
̂̃
Bi,T − B̃i,T

p→ 0 as T → ∞, and togther

with Assumption 8 we see that p limT→∞
̂̃
Ai,T = Ai and p limT→∞

̂̃
Bi,T = Bi, thus the required result follows.
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Proof of Theorem 5. Note that the instrumental variable (IV) or two-stage least squares estimator of θi is

θ̂IV,i = ( ˆ̃A
′
i,T

ˆ̃B
−1

i,T
ˆ̃Ai,T )

−1 ˆ̃A
′
i,T

ˆ̃B
−1

i,T ĝi,T , then we have

θ̂IVMG − θ = N−1
N∑
i=1

(θ̂IV,i − θ) = N−1
N∑
i=1

(θ̂IV,i − θi) +N−1
N∑
i=1

ηi

where the first term is

N−1
N∑
i=1

(θ̂IV,i − θi) = N−1
N∑
i=1

( ˆ̃A
′
i,T

ˆ̃B
−1

i,T
ˆ̃Ai,T )

−1 ˆ̃A
′
i,T

ˆ̃B
−1

i,T (T
−1Ẑ′

iMF̂x
ui)

=N−1
N∑
i=1

(Ã′
i,T B̃

−1
i,T Ãi,T )

−1Ã′
i,T B̃

−1
i,T (T

−1Z′
iMF 0

x
ui)

+N−1
N∑
i=1

[
( ˆ̃A

′
i,T

ˆ̃B
−1

i,T
ˆ̃Ai,T )

−1 ˆ̃A
′
i,T

ˆ̃B
−1

i,T − (Ã′
i,T B̃

−1
i,T Ãi,T )

−1Ã′
i,T B̃

−1
i,T

]
(T−1Z′

iMF 0
x
ui)

+N−1
N∑
i=1

[
( ˆ̃A

′
i,T

ˆ̃B
−1

i,T
ˆ̃Ai,T )

−1 ˆ̃A
′
i,T

ˆ̃B
−1

i,T − (Ã′
i,T B̃

−1
i,T Ãi,T )

−1Ã′
i,T B̃

−1
i,T

]
(T−1Ẑ′

iMF̂x
ui − T−1Z′

iMF 0
x
ui)

+N−1
N∑
i=1

(Ã′
i,T B̃

−1
i,T Ãi,T )

−1Ã′
i,T B̃

−1
i,T (T

−1Ẑ′
iMF̂x

ui − T−1Z′
iMF 0

x
ui)

=G1 +G2 +G3 +G4

We first consider the terms G2, G3, and G4. With Lemma 15 (a)-(b), we have

N−1T−1
N∑
i=1

∥T−1Ẑ′
iMF̂x

ui − T−1Z′
iMF 0

x
ui∥ = Op(δ

−2
NT ) (A.34)

With the above facts, G2 is bounded in norm by

N−1
N∑
i=1

∥T−1Z′
iMF 0

x
ui∥ · sup

1≤i≤N
∥( ˆ̃A

′
i,T

ˆ̃B
−1

i,T
ˆ̃Ai,T )

−1 ˆ̃A
′
i,T

ˆ̃B
−1

i,T − (Ã′
i,T B̃

−1
i,T Ãi,T )

−1Ã′
i,T B̃

−1
i,T ∥

=Op(N
1/4T−1lnN) +Op(N

1/2T−1/2(lnN)5δ−2
NT )

Analogously, with (A.34), we can show that G3 = Op(N
1/4T−1/2lnNδ−2

NT ) + Op(N
1/2(lnN)5δ−4

NT ) and G4 =
Op((lnN)2δ−2

NT ). Consider G1. Define

H1i =

(
V′

iFyγyi

V′
i,−1Fyγyi

)
,H2i =

(
−V′

iF
0
x(F

0′
x F

0
x)

−1F0′
x Fyγyi

−V′
i,−1F

0
x,−1(F

0′
x,−1F

0
x,−1)

−1F0′
x,−1Fyγyi

)
,

H3i =

(
V′

iεi
V′

i,−1εi

)
,H4i =

(
−V′

iF
0
x(F

0′
x F

0
x)

−1F0′
x εi

−V′
i,−1F

0
x,−1(F

0′
x,−1F

0
x,−1)

−1F0′
x,−1εi

)
,

H5i =

(
0

V′
i,−1PF0

x
Fyγyi

)
,H6i =

(
0

−V′
i,−1F

0
x,−1(F

0′
x,−1F

0
x,−1)

−1F0′
x,−1PF0

x
Fyγyi

)
,

H7i =

(
0

V′
i,−1PF0

x
εi

)
,H8i =

(
0

−V′
i,−1F

0
x,−1(F

0′
x,−1F

0
x,−1)

−1F0′
x,−1PF0

x
εi

)
,

with ui = Fyγyi + εi, we have

G1 =N−1
N∑
i=1

[
(
Ã′

i,T B̃
−1
i,T Ãi,T

)−1

Ã′
i,T B̃

−1
i,T −

(
A′

i,TB
−1
i,TAi,T

)−1

A′
i,TB

−1
i,T ](T

−1Z′
iMF 0

x
ui)

+

8∑
ℓ=1

N−1
N∑
i=1

(
A′

i,TB
−1
i,TAi,T

)−1

A′
i,TB

−1
i,TT

−1Hℓi.

With (18), we can show that the first term is Op(N
1/4(lnN)5T−1)+Op(N

1/2(lnN)5T−3/2). It’s easy to show that
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the fifth term, the eighth term and the ninth term both are Op((lnN)2T−1). For the second term, we have

E∥N−1
N∑
i=1

(
A′

i,TB
−1
i,TAi,T

)−1

A′
i,TB

−1
i,TT

−1H1i∥2

=tr
(
N−2T−2

∑
i ̸=j

E
[ (

A′
i,TB

−1
i,TAi,T

)−1

A′
i,T

]
B−1

i,TE
[
H1iH′

1j

]
B−1

j,TE
[
Aj,T

(
A′

j,TB
−1
j,TAj,T

)−1 ])

+ tr
(
N−2T−2

N∑
i=1

E
[ (

A′
i,TB

−1
i,TAi,T

)−1

A′
i,TB

−1
i,TE

[
H1iH′

1i

]
B−1

i,TAi,T

(
A′

i,TB
−1
i,TAi,T

)−1 ])
≤∆

∥∥∥N−2T−2
N∑
i=1

Evec
[ (

A′
i,TB

−1
i,TAi,T

)−1

A′
i,TB

−1
i,TE

[
H1iH′

1i

]
B−1

i,TAi,T

(
A′

i,TB
−1
i,TAi,T

)−1 ]∥∥∥
=∆

∥∥∥N−2T−2
N∑
i=1

E

([(
A′

i,TB
−1
i,TAi,T

)−1

A′
i,TB

−1
i,T

]
⊗
[ (

A′
i,TB

−1
i,TAi,T

)−1

A′
i,TB

−1
i,T

])
vec(E

[
H1iH′

1i

]
)
∥∥∥

≤∆N−2T−2
N∑
i=1

∥∥∥E([(A′
i,TB

−1
i,TAi,T

)−1

A′
i,TB

−1
i,T

]
⊗
[ (

A′
i,TB

−1
i,TAi,T

)−1

A′
i,TB

−1
i,T

])∥∥∥∥∥∥E(H1iH′
1i)
∥∥∥

≤∆N−2T−2
N∑
i=1

E∥(A′
i,TB

−1
i,TAi,T )

−1A′
i,T ∥2∥B−1

i,T ∥∥E(H1iH′
1i)∥ ≤ ∆N−2T−2

N∑
i=1

∥E(H1iH′
1i)∥

≤∆N−2T−2
N∑
i=1

T∑
s=1

T∑
t=1

(∥E(visv
′
it)∥+ 2∥E(visv

′
i,t−1)∥+ ∥E(vi,s−1v

′
i,t−1)∥) ≤ ∆N−1T−1

because

|E(fy,sγyiγ
′
yjf

′
y,t)| ≤

√
E∥fy,s∥4E∥γyi∥4 ≤ ∆

and

E(H1iH′
1j)

=

( ∑T
s=1

∑T
t=1 E(visv

′
jt)E(fy,sγyiγ

′
yjf

′
y,t)

∑T
s=1

∑T
t=1 E(visv

′
j,t−1)E(fy,sγyiγ

′
yjf

′
y,t)∑T

s=1

∑T
t=1 E(vi,s−1v

′
j,t)E(fy,sγyiγ

′
yjf

′
y,t)

∑T
s=1

∑T
t=1 E(vi,s−1v

′
j,t−1)E(fy,sγyiγ

′
yjf

′
y,t)

)
,

which indicates that E(H1iH′
1j) = 0 for i ̸= j, then the second term is Op(N

−1/2T−1/2). Consider the third term.
Note that

H2i = vec(H2i) =

(
γ′
yi ⊗ (V′

iF
0
x)vec

[
(F0′

x F
0
x)

−1F0′
x Fy

]
γ′
yi ⊗ (V′

i,−1F
0
x,−1)vec

[
(F0′

x,−1F
0
x,−1)

−1F0′
x,−1Fy

])
=

(
γ′
yi ⊗ (V′

iF
0
x) 0

0 γ′
yi ⊗ (V′

i,−1F
0
x,−1)

)(
vec
[
(F0′

x F
0
x)

−1F0′
x Fy

]
vec
[
(F0′

x,−1F
0
x,−1)

−1F0′
x,−1Fy

])
= H2ia ×H2ib.

It’s easy to prove that H2ib = Op(1). Following the argument in the proof of the second term, we can prove that

−N−1
N∑
i=1

(
A′

i,TB
−1
i,TAi,T

)−1

A′
i,TB

−1
i,TT

−1H2ia = Op(N
−1/2T−1/2).

Then the third term is Op(N
−1/2T−1/2). Analogously, the forth term, the sixth term and the seventh term can

be proved to be Op(N
−1/2T−1/2). Thus, G1 = Op(N

1/4(lnN)5T−1) +Op(N
1/2(lnN)5T−3/2) +Op(N

−1/2T−1/2).
Combining the above terms, we can show that

N−1
N∑
i=1

(θ̂IV,i − θi) = Op(N
1/4(lnN)5T−1) +Op(N

1/2(lnN)5T−3/2) +Op((lnN)2δ−2
NT ).

Note that N−1
∑N

i=1 ηi = Op(N
−1/2), if N3+δ/T 4 → 0 for any δ > 0, we have

√
N(θ̂IVMG − θ) = N−1/2

N∑
i=1

ηi + op(1)

and √
N(θ̂IVMG − θ)

d−→ N(0,Ση).
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Next, we consider the consistency of Σ̂η. By decomposition, we have

N∑
i=1

(θ̂IV,i − θ + θ − θ̂IVMG)(θ̂IV,i − θ + θ − θ̂IVMG)
′

=

N∑
i=1

ηiη
′
i +

N∑
i=1

(θ̂IV,i − θi)(θ̂IV,i − θi)
′ +

N∑
i=1

(θ̂IV,i − θi)η
′
i +

N∑
i=1

ηi(θ̂IV,i − θi)
′

−N(θ − θ̂IVMG)
′(θ − θ̂IVMG).

Then

Σ̂η −Ση

=
1

N − 1

N∑
i=1

(ηiη
′
i −Ση) +

1

N − 1

N∑
i=1

(
θ̂IV,i − θi

)(
θ̂IV,i − θi

)′
+

1

N − 1

N∑
i=1

(
θ̂IV,i − θi

)
η′
i

+
1

N − 1

N∑
i=1

ηi

(
θ̂IV,i − θi

)′
− N

N − 1
(θ − θ̂IVMG)

′(θ − θ̂IVMG)

=J1 + · · ·+ J5.

Easily, we can derive that J1 = Op(N
−1/2), J5 = Op(N

−1). Consider J3, which is

1

N − 1

N∑
i=1

(θ̂IV,i − θi)η
′
i

=
1

N − 1

N∑
i=1

(
Ã′

i,T B̃
−1
i,T Ãi,T

)−1

Ã′
i,T B̃

−1
i,T (T

−1Z′
iMF 0

x
ui)η

′
i

+
1

N − 1

N∑
i=1

[
( ˆ̃A

′
i,T

ˆ̃B
−1

i,T
ˆ̃Ai,T )

−1 ˆ̃A
′
i,T

ˆ̃B
−1

i,T − (Ã′
i,T B̃

−1
i,T Ãi,T )

−1Ã′
i,T B̃

−1
i,T

]
(T−1Z′

iMF 0
x
ui)η

′
i

+
1

N − 1

N∑
i=1

[
( ˆ̃A

′
i,T

ˆ̃B
−1

i,T
ˆ̃Ai,T )

−1 ˆ̃A
′
i,T

ˆ̃B
−1

i,T − (Ã′
i,T B̃

−1
i,T Ãi,T )

−1Ã′
i,T B̃

−1
i,T

]
(T−1Ẑ′

iMF̂x
ui − T−1Z′

iMF 0
x
ui)η

′
i

+
1

N − 1

N∑
i=1

(Ã′
i,T B̃

−1
i,T Ãi,T )

−1Ã′
i,T B̃

−1
i,T (T

−1Ẑ′
iMF̂x

ui − T−1Z′
iMF 0

x
ui)η

′
i.

With sup1≤i≤N ∥ηi∥ = Op(N
1/4), we can follow the argument in the proof of the terms G2 to G4, to prove that the

second term is Op(N
3/4(lnN)5T−1/2δ−2

NT ), the third term is Op(N
3/4(lnN)5δ−4

NT ), the forth is Op(N
1/4(lnN)2δ−2

NT ).
By Lemma 18 (b), the first term is bounded in norm by

(N − 1)−1
N∑
i=1

∥T−1Z′
iMF 0

x
ui∥ · sup

1≤i≤N
∥(Ã′

i,T B̃
−1
i,T Ãi,T )

−1Ã′
i,T B̃

−1
i,T ∥ · sup

1≤i≤N
∥ηi∥ = Op(N

1/4(lnN)2T−1/2).

Then J3 = Op(N
3/4(lnN)5T−1/2δ−2

NT ) + Op(N
3/4(lnN)5δ−4

NT ) + Op(N
1/4(lnN)2δ−2

NT ) + Op(N
1/4(lnN)2T−1/2). J4

is the same order of J3 since it is transpose of J3.
Consider J2, with (a+ b+ c+ d)2 ≤ 4(a2 + b2 + c2 + d2), it is bounded in norm by

1

N − 1

N∑
i=1

∥θ̂IV,i − θi∥2

≤ 4

N − 1

N∑
i=1

∥
(
Ã′

i,T B̃
−1
i,T Ãi,T

)−1

Ã′
i,T B̃

−1
i,T (T

−1Z′
iMF 0

x
ui)∥2

+
4

N − 1

N∑
i=1

∥∥∥[( ˆ̃A′
i,T

ˆ̃B
−1

i,T
ˆ̃Ai,T )

−1 ˆ̃A
′
i,T

ˆ̃B
−1

i,T − (Ã′
i,T B̃

−1
i,T Ãi,T )

−1Ã′
i,T B̃

−1
i,T

]
(T−1Z′

iMF 0
x
ui)
∥∥∥2

+
4

N − 1

N∑
i=1

∥∥∥[( ˆ̃A′
i,T

ˆ̃B
−1

i,T
ˆ̃Ai,T )

−1 ˆ̃A
′
i,T

ˆ̃B
−1

i,T − (Ã′
i,T B̃

−1
i,T Ãi,T )

−1Ã′
i,T B̃

−1
i,T

]
(T−1Ẑ′

iMF̂x
ui − T−1Z′

iMF 0
x
ui)
∥∥∥2

+
4

N − 1

N∑
i=1

∥(Ã′
i,T B̃

−1
i,T Ãi,T )

−1Ã′
i,T B̃

−1
i,T (T

−1Ẑ′
iMF̂x

ui − T−1Z′
iMF 0

x
ui)∥2.
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By Lemma 18 (b), the first term is bounded in norm by

4(N − 1)−1
N∑
i=1

∥T−1Z′
iMF 0

x
ui∥2 · ( sup

1≤i≤N
∥(Ã′

i,T B̃
−1
i,T Ãi,T )

−1Ã′
i,T B̃

−1
i,T ∥)

2 = Op((lnN)4T−1)

similarly, we can show that the second term is Op(N(lnN)10T−1δ−4
NT ). Following the argument in the proof of

Lemma 15 (a) and (b), we can show that N−1
∑N

i=1 ∥T−1Ẑ′
iMF̂x

ui − T−1Z′
iMF 0

x
ui∥2 = Op(δ

−4
NT ). Then similar

to the argument in the proof of the first term, we can prove that the third term is Op(N(lnN)10δ−8
NT ) and the forth

term is Op((lnN)4δ−4
NT ). Then J2 = Op((lnN)4T−1)+Op(N(lnN)10T−1δ−4

NT )+Op(N(lnN)10δ−8
NT )+Op((lnN)4δ−4

NT ).

Combining the terms J1 to J5, we can derive that Σ̂η −Ση = op(1). Thus, we complete the proof. ■
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