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Identification of Volatility Proxies as Expectations of Squared Financial Return∗

Genaro Sucarrat†

5th February 2021

Abstract

Volatility proxies like Realised Volatility (RV) are extensively used to assess the forecasts of
squared financial return produced by volatility models. But are volatility proxies identified
as expectations of the squared return? If not, then the results of these comparisons can be
misleading, even if the proxy is unbiased. Here, a tripartite distinction between strong,
semi-strong and weak identification of a volatility proxy as an expectation of squared
return is introduced. The definition implies that semi-strong and weak identification can
be studied and corrected for via a multiplicative transformation. Well-known tests can
be used to check for identification and bias, and Monte Carlo simulations show they are
well-sized and powerful – even in fairly small samples. As an illustration, twelve volatility
proxies used in three seminal studies are revisited. Half of the proxies do not satisfy
either semi-strong or weak identification, but their corrected transformations do. Next, it
is showed how correcting for identification can change the rankings of volatility forecasts.

Keywords: GARCH models, financial time-series econometrics, volatility forecasting, Realised
Volatility

1 Introduction

Let {r2t } denote a discrete time process of squared financial returns defined on the probability
space (Ω,F , P ). Often, r2t can be expressed as

r2t = σ2
t η

2
t , (1)

where σ2
t > 0 a.s. is a scale or volatility and η2t ≥ 0 a.s. is an innovation. The decomposition is

not unique, since many pairs {σ2
t } and {η2t } may satisfy (1). Clearly, for a comparison between

two different models σ2
1t and σ2

2t to be meaningful, they must be on the same scale. For example,
if the former corresponds to the conditional variance while the target of the latter is the double
of that, then one or the other must be adjusted before comparison. Another possibility is that
σ2
2t measures σ2

1t with error, say, σ2
2t = σ2

1tεt, where εt > 0 a.s. is the measurement error. Even
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if the properties of εt are such that the expectation of σ2
2t is equal to σ2

1t, the presence of the
measurement error εt may change the scale of σ2

2t. Again, if this is the case, then one or the
other must be adjusted before comparison.

The assumed or entertained scale σ2
t is unobserved, and this creates a challenge in ex post

forecast evaluation. One solution that has been put forward is to use high-frequency intraperiod
financial data to construct an observable volatility proxy

Vt > 0 a.s.

for σ2
t , and then to evaluate an estimate σ̂2

t against Vt. See, for example, Park and Linton
(2012), and Violante and Laurent (2012) for surveys of this approach. Realised Volatility (RV),
i.e. the sum of intraperiod squared returns, is the most commonly used volatility proxy, and two
popular metrics of forecast precision within this approach are the Mean Squared Error (MSE),
T−1

∑T
t=1(Vt− σ̂2

t )2, and the QLIKE, T−1
∑T

t=1 Vt/σ̂
2
t + ln σ̂2

t . Subject to suitable assumptions,
the volatility proxy Vt in question tends to a limit σ2

V t as the intraperiod sampling frequency
increases towards infinity. For RV, the limit σ2

V t is the Integrated Variance (IV), which may – or
may not – be equal to the assumed or entertained specification σ2

t . While σ2
V t may differ from

σ2
t even for simple specifications of σ2

t , e.g. the first order Generalised ARCH (GARCH), it is
particularly likely to happen in explanatory modelling of financial variability, where additional
covariates are considered as predictors and/or explanatory variables in the specification of
σ2
t , see Sucarrat (2009) for a discussion. Another complication is that, in empirical practice,

the sampling frequency is finite, and the observations used to compute the volatility proxy
Vt are often contaminated by market microstructure noise. So it is widely believed that Vt
measures σ2

V t with error, e.g. multiplicatively, Vt = σ2
V tεt, or additively, Vt = σ2

V t + εt. See e.g.
Andersen et al. (2005), Bandi and Russell (2008), Aı̈t-Sahalia and Mykland (2009), Bollerslev
et al. (2016), Yeh and Wang (2019), and the numerous references therein. In spite of the
measurement error εt and the possibility that σ2

V t may not equal the entertained specification
of σ2

t , there is a widespread belief that a suitably computed proxy Vt may provide an efficient –
but not necessarily unbiased – estimate of the entertained specification of σ2

t . This is why many
studies use a volatility proxy as a substitute for the assumed specification of σ2

t , and evaluate
volatility forecasts {σ̂2

t } against {Vt}.
Arguably, the most common specifications of σ2

t belong to the Autoregressive Conditional
Heteroscedasticity (ARCH) class of models proposed by Engle (1982). In that case, σ2

t corre-
sponds to the conditional expectation of r2t . A volatility model σ2

t is equal to the expectation
of r2t conditional on a σ-field Ft−1 ⊂ F if

σ2
t = E(r2t |Ft−1).

If this holds, then two main properties follow under stationarity:

Unbiasedness: E(r2t − σ2
t |Ft−1) = 0 and E(r2t − σ2

t ) = 0,

Identification: E(η2t |Ft−1) = 1 and E(η2t ) = 1 where η2t = r2t /σ
2
t .

It is the second of these properties that is the primary focus of this paper. Borrowing from the
terminology of Drost and Nijman (1993), a specification σ2

t is said to be strongly, semi-strongly
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or weakly1 identified as an expectation of r2t if:

Strong identification: η2t ∼ iid with E(η2t ) = 1 for all t, (2)

Semi-strong identification: E(η2t |Ft−1) = 1, Ft−1 ⊂ F , for all t, (3)

Weak identification: E(η2t ) = 1 for all t. (4)

Note that, in (3), identification is with respect to a σ-field Ft−1. Of course, (2) ⇒ (3) and (3)
⇒ (4), but their converses are not true. ARCH models are examples of σ2

t for which one or
more of these definitions usually hold, whereas Stochastic Volatility (SV) models are examples
for which one or more of the definitions usually do not hold. A model σ2

t for which weak
identification always hold is σ2

t = E(r2t ).
Suppose σ2

t is a model of r2t that is either strongly, semi-strongly or weakly identified as
an expectation of r2t . For a volatility proxy Vt to be a valid proxy for σ2

t , it should satisfy
identifiability criteria similar to (2)–(4). Otherwise, Vt is not at the same scale-level as σ2

t . For
SV models, by contrast, where σ2

t is not an expectation of r2t , the identifiability criteria above
would have to be adapted. Define

z2t := r2t /Vt.

The volatility proxy Vt is strongly, semi-strongly or weakly identified as an expectation of r2t if:

Strong identification: z2t ∼ iid with E(z2t ) = 1 for all t, (5)

Semi-strong identification: E(z2t |Ft−1) = 1, Ft−1 ⊂ F , for all t, (6)

Weak identification: E(z2t ) = 1 for all t. (7)

Again, semi-strong identification is with respect to a σ-field Ft−1, and again (5) ⇒ (6) and (6)
⇒ (7). Some useful properties follow directly from (5)–(7). First, if ht := E(z2t |Ft−1) exists for
all t, then a volatility proxy Vt can be transformed to satisfy semi-strong identification via a
multiplicative transformation:

htVt satisifies E
(
r2t /(htVt)|Ft−1

)
= 1 for all t. (8)

In particular, if h := E(z2t ) exists for all t, then a volatility proxy Vt can always be transformed
to satisfy weak identification:

hVt satisfies E
(
r2t /(hVt)

)
= 1 for all t. (9)

Practical procedures for identification are thus widely available in public software: The sample
average T−1

∑T
t=1 z

2
t provides a consistent estimate of h subject to fairly mild assumptions, and

Multiplicative Error Models (MEMs) naturally suggest themselves as models of ht, see Brown-
lees et al. (2012) for a survey of MEMs.2 These considerations suggest the following procedure
whenever an observed volatility proxy Vt is considered as a substitute for an expectation σ2

t of
r2t :

1While the terms “strong” and “semi-strong” are used in similar ways to Drost and Nijman (1993), the way
the term “weak” is used differs.

2MEMs are essentially GARCH-models of non-negative variables. This was first noted by Engle and Russell
(1998).
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1. Check whether the proxy Vt is identified as an expectation. That is, check whether it
satisfies one or more of the criteria in (5)–(7).

2. If Vt is not identified according to Step 1, choose a suitable specification ht to construct
an identification corrected proxy htVt. To this end, attention should be paid to how the
choice of ht affects the bias of htVt for r2t . Since unbiasedness and identification are not
equivalent, there might be a trade-off between the choice of ht and the magnitude of the
bias. Some choices of ht may reduce the bias, others may increase it.

3. Compare estimates {σ̂2
t } against the identification corrected proxy {ĥtVt} rather than

against Vt.

This procedure is illustrated in Section 5.
This paper makes five contributions. First, the tripartite distinction between strong, semi-

strong and weak identification of a volatility proxy as an expectation of squared return is
introduced. This was done above in (5)–(7). The multiplicative transformation involved in the
definition of identification implies that a volatility proxy can be corrected to satisfy identifi-
cation in a straightforward manner, recall (8) and (9), and leads to the three-step procedure
outlined above. Second, a set of well-known tests that can be used to check a volatility proxy
for semi-strong and weak identification is proposed and evaluated. Arguably, semi-strong and
weak identification are of greater interest than strong identification, since the independence and
identicality assumptions associated with strong identification will often not hold in practice.
The focus is on tests that are readily implemented in widely available software, and Monte Carlo
simulations show the tests are well-sized and powerful, even in fairly small samples. In a third
contribution the specification of ht is disucssed. While MEMs naturally suggest themselves, it
is shown that, under strict stationarity and ergodicity of {z2t }, the process admits a represen-
tation that is particularly useful. Specifically, it is shown that {z2t } admits a log-MEM(p,0)
representation – i.e. a MEM of the log-ARCH type – whose parameters can straightforwardly
be estimated consistently by means of a least squares procedure. The log-MEM specification
is of special interest, since the empirical illustration reveals z2t is often negatively autocorre-
lated (MEMs of the ARCH type are not compatible with negative autocorrelations). A fourth
contribution consists of shedding new light on tests for bias via regressions of the Mincer and
Zarnowitz (1969) (MZ) type. It is shown that, in general, the Standard MZ-test is flawed when
Vt measures σ2

t with error: The null of no bias is erroneously rejected with probability 1 as
T → ∞. However, straightforward modifications to the test rectifies the flaw. Monte Carlo
simulations show that the simplest of the modifications is particularly well-sized – even in small
samples, since the discrepancy between the empirical and nominal sizes is less than 1%-point
already for T = 500 in the simulations. In a fifth contribution, an empirical illustration, twelve
volatility proxies used in three seminal studies are revisited. Out of the twelve proxies, half of
them are found to either not satisfy weak or semi-strong identification, or both. Next, estimates
of ht are used to construct corrected proxies that satisfy either weak or semi-strong identifica-
tion, or both. Interestingly, z2t is usually negatively autocorrelated, which means MEMs of the
non-exponential ARCH type are not appropriate as models of ht for the investigated proxies.
Instead, a log-MEM(1,0) – i.e. a MEM of the log-ARCH(1) type – is found to be a suitable spec-
ification of ht in most of the cases. Identification correction does not always lead to a reduction
in bias, thus illustrating the trade-off between the chosen specification of ht and the resulting
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bias. Finally, a volatility forecast comparison with the corrected proxies is undertaken. The
comparison illustrates that rankings can change when proxies are corrected for identification.

The rest of the paper is organised as follows. The next section, Section 2, contains the
proposed tests for identification, together with Monte Carlo simulations of their size and power.
Section 3 discusses the specification of ht, and contains the result on the existence of a log-
MEM(p,0) representation of {z2t }. In Section 4 tests of the MZ-type for bias are revisited.
Section 5 contains the empirical illustration, whereas Section 6 concludes.

2 Tests for identification

The focus is on tests that are easy to implement, widely available and well-sized without the
need for size-correction. Four tests are proposed. The first two are based on the sample
average, and can be used to test whether h differs from 1, i.e. whether a volatility proxy is
weakly identified or not. The next two test for autocorrelation in z2t and ln z2t , respectively,
and can thus be used to test for departures from semi-strong identification. The section ends
by studying the finite sample size and power of the tests via Monte Carlo simulations.

2.1 Tests based on the sample average

Subject to fairly mild assumptions, the sample average ĥ = T−1
∑T

t=1 z
2
t provides a consistent

estimate of E(z2t ) = h. Strong, semi-strong and weak identification all require that h = 1.

Since ĥ is also the Least Squares (LS) estimate of h in the linear regression z2t = h+ut, we can
readily implement tests of h = 1 with widely available software when ut is heteroscedastic or
autocorrelated, or both. Specifically, if

√
T (ĥ− h) ∼ N(0,Σ) (10)

asymptotically and there exists a consistent estimator Σ̂ for Σ, then the test can be implemented
as

Test 1:
ĥ− 1

se(ĥ)
∼ t(T − 1), H0 : h = 1 vs. HA : h 6= 1, (11)

where se(ĥ) = (Σ̂/T )1/2 is the standard error of ĥ returned by the software. The option to
select either an ordinary, heteroscedasticity robust or Heteroscedasticity and Auto-Correlation
(HAC) robust standard error is widely available. Often, the latter two are those of White
(1980), Newey and West (1987), respectively. If strong identification holds, then ut is iid, and
so the ordinary standard error is suitable. Under semi-strong identification, however, the ut’s
can be heteroscedastic. If this is the case, then a heteroscedasticity robust standard error is
more suitable. Under weak identification, z2t can also be autocorrelated. If this is the case, then
a HAC robust standard error is more suitable. Below, in the simulations, the size and power
for the HAC robust standard error of Newey and West (1987) is investigated. As we will see,
the empirical size corresponds well to the nominal size.

The distribution of z2t will usually have an exponential-like shape, so tests based on the
average of ln z2t may be more efficient. The results in Sucarrat et al. (2016) can be used to build
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a regression-like test, where φ̂ = T−1
∑

t=1 ln z2t estimates φ in ln z2t = φ+ut in a first step, and
then the residuals are used in a second step to complete an estimate of lnh. Interestingly, this
two-step estimator is numerically identical to3

ln ĥ

when there are no zeros in {z2t }. In other words, if (10) holds, then the delta method straight-
forwardly leads to √

T (ln ĥ− lnh) ∼ N(0,Σ/h2),

where Σ is the same asymptotic variance as in (10). This means the asymptotic variance of

ln ĥ is smaller (greater) than that of ĥ when h > 1 (h < 1). Below, in the simulations, the test
is implemented as

Test 2:
ln ĥ

se(ĥ)/ĥ
∼ t(T − 1), H0 : lnh = 0 vs. HA : lnh 6= 0, (12)

where se(ĥ) = (Σ̂/T )1/2 is the standard error of Newey and West (1987). As we will see, the
test in (12) is indeed more (less) powerful than (11) in finite samples when h > 1 (h < 1).

2.2 Tests for autocorrelation

If semi-strong identification holds, then {z2t } is not autocorrelated. Tests for autocorrelation in
z2t can therefore be used to test whether semi-strong identification holds or not. Additionally,
tests for autocorrelation in z2t can also be used to shed light on whether ht is suitably modelled
as a MEM or log-MEM. Because if ht is a stationary MEM(p, q) of the GARCH type, then z2t
will have positive autocorrelations, see Francq and Zaköıan (2019, p. 47). In other words, if
negative autocorrelations are present, then ht is more suitably modelled as a log-MEM.

A well-known and widely available test for autocorrelation that suggests itself is the Port-
manteau test of Ljung and Box (1979). Its test statistic for autocorrelation up to and including
order p is given by

Test 3: T (T + 2)

p∑
i=1

ρ̂i(z
2
t )

(T − i)
∼ χ2(p), (13)

where ρ̂i(z
2
t ) is the sample correlation between z2t and z2t−i. Note that, asymptotically, this test

is in fact equivalent to an LM-test of ht being a MEM(p, 0) with p = 0 under the null, see
Francq and Zaköıan (2019, pp. 147-148). Below, in the simulations, the size and power of H0:
Corr(z2t , z

2
t−1) = 0 and HA: Corr(z2t , z

2
t−1) 6= 0, respectively, is studied.

Another possibility is that ln z2t is autocorrelated. This is the case, for example, if lnht
is a stationary log-MEM of the log-GARCH type. In this case ln z2t admits an ARMA(p, q)
representation,4 and so ln z2t will be autocorrelated under the usual ARMA-conditions, see

3When there are no zeros in {z2t }, the sample average φ̂ = T−1
∑T

t=1 ln z2t provides an estimate of φ in the

regression ln z2t = φ + ut. The second-step estimator implied by Sucarrat et al. (2016) is τ̂ = lnT−1
∑T

t=1 e
ût

with ût = ln z2t − φ̂. Combining them gives φ̂+ τ̂ = ln ĥ.
4The existence of the ARMA representation requires that the zero-probability is zero so that E| ln z2t | <∞.

This usually holds for return series of liquid stocks, for which volatility proxies based on intraday data are
usually considered.
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Sucarrat (2019). Also here the Portmanteau test of Ljung and Box (1979) is a natural candidate.
The test statistic in this case is

Test 4: T (T + 2)

p∑
i=1

ρ̂i(ln z
2
t )

(T − i)
∼ χ2(p), (14)

where ρ̂i(ln z
2
t ) is now the sample correlation between ln z2t and ln z2t−i. Below, in the simulations,

the size and power of H0: Corr(ln z
2
t , ln z

2
t−1) = 0 and HA: Corr(ln z2t , ln z

2
t−1) 6= 0, respectively,

is studied.

2.3 Monte Carlo simulations

In this subsection the size and power of four tests are studied:

H0 HA Test statistic

Test 1: h = 1 h 6= 1 (11)

Test 2: lnh = 0 lnh 6= 0 (12)

Test 3: Corr(z2t , z
2
t−1) = 0 Corr(z2t , z

2
t−1) 6= 0 (13) with p = 1

Test 4: Corr(ln z2t , ln z
2
t−1) = 0 Corr(ln z2t , ln z

2
t−1) 6= 0 (14) with p = 1

Three classes of Data Generating Processes (DGPs) are used in the experiments:

DGP 1: z2t = hη2t , ηt
iid∼ N(0, 1), t = 1, . . . , T,

h ∈ {0.9, 1, 1.1}, E(z2t ) = h, Corr(z2t , z
2
t−1) = 0,

DGP 2: z2t = htη
2
t , ηt

iid∼ N(0, 1), t = 1, . . . , T,

lnht = ω + α ln z2t−1, θ = (ω, α)′,

a) θ = (−0.16,−0.1)′, E(z2t ) = 1.00, Corr(z2t , z
2
t−1) = −0.09,

b) θ = (0,−0.1)′, E(z2t ) = 1.15, Corr(z2t , z
2
t−1) = −0.09,

c) θ = (0, 0.1)′, E(z2t ) = 0.89, Corr(z2t , z
2
t−1) = 0.10,

DGP 3: z2t = r2t /Vt, r2t = σ2
t η

2
t , ηt

iid∼ N(0, 1), t = 1, . . . , T,

σ2
t = 0.1 + 0.1r2t−1 + 0.8σ2

t−1,

Vt = σ2
t εt, εt = E(εt)

−1εt, εt = exp(axt), E(εt) = 1,

E(σ2
t ) = E(Vt),

a) a = 0.38, xt
iid∼ N(0, 1),

E(z2t ) = 1.15, Corr(z2t , z
2
t−1) = 0,

b) a = 0.38, xt = 0.9xt−1 + 0.43et, et
iid∼ N(0, 1),

E(z2t ) = 1.15, Corr(z2t , z
2
t−1) = 0.05,

In the first class, {z2t } is iid with E(z2t ) = h. So strong identification holds when h = 1, and all
three kinds of identification fail when h 6= 1. In the second class, the DGP is a log-MEM of the
log-ARCH(1) type. The choice of specification is informed by the empirical results in Section 5.
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In 2a), E(z2t ) = 1 and Corr(z2t , z
2
t−1) = −0.09, so weak identification holds but not semi-strong

identification. In 2b) and 2c), both semi-strong and weak identification fail. In the third class
of DGPs, the volatility proxy is unbiased in the sense that E(σ2

t ) = E(Vt), see the definition in
equation (25), but not identified since E(z2t ) 6= 1. Moreover, as is clear, correcting the proxy
for weak identification makes the corrected proxy biased in the sense that E(σ2

t ) 6= E(hVt),
where hVt is the corrected proxy, see Section 3.

Table 1 contains the simulation results of Tests 1 and 2. In these tests the null E(z2t ) = 1
holds in two experiments: DGP 1 with ht = 1 and DGP 2a). For these experiments, the
empirical rejection frequencies correspond well to their nominal levels (10%, 5% and 1%).
Indeed, the empirical levels are never more than 1.3 percentage-points away from their nominal
counterparts. Turning to the power of the tests, the alternative hypothesis E(z2t ) 6= 1 holds in
six experiments: DGP 1 with ht = 1.1, DGP 1 with ht = 0.9, DGP 2b), DGP 2c), DGP 3a)
and DGP 3b). The results show that the tests are very powerful in sample sizes of practical
relevance. For T = 5000, for example, which is fairly common in empirical work, the probability
of rejecting is greater than 98% in all six experiments when the nominal size is 10%. For smaller
sample sizes, the results show that the tests have notable power already at T = 250, which is
an unusually low sample size in empirical work. As for relative power, Test 1 is more powerful
than Test 2 when E(z2t ) = h < 1, and the opposite is the case when E(z2t ) = h > 1. This
is in line with the expression of the asymptotic variance of Test 2. The results show that the
difference in power is larger the smaller the sample size T .

Table 2 contains the simulation results of Tests 3 and 4. In these tests the null, Corr(z2t , z
2
t−1) =

0 or Corr(ln z2t , ln z
2
t−1) = 0, holds in the DGP 1 experiment where ht = 1 for all t, and in DGP

3a). Again, the empirical rejection frequencies correspond well to their nominal levels (10%, 5%
and 1%) under the null, since the empirical levels are rarely more than 1 percentage-point away
from their nominal counterparts. The only exception to this occurs when T = 250 and T = 500
in Test 3 under DGP 3a). The alternative hypotheses of Tests 3 and 4 hold in four experiments:
DGP 2a), DGP 2b), DGP 2c) and DGP 3b). In the first three the results show again that the
tests are very powerful in sample sizes of practical relevance. Already at T = 2000 the rejection
frequency is 93% or higher for a 1% significance level. For smaller sample sizes, the results
show that the tests have notable power already for T = 250, which is an unusually low sample
size in empirical work. The power under DGP 3b) is lower, but this is because the departure
from the null is smaller in comparison. Finally, comparing the power of Test 3 against that of
Test 4, the latter is usually more powerful DGP 2a), DGP 2b) and DGP 2c). In DGP 3b), by
contrast, it is Test 3 which is the most powerful.

3 Specification of ht

If z2t is ergodic stationary and E|z2t | < ∞, then h = E(z2t ) is consistently estimated by the
sample average. For time-varying specifications of ht, there is a wide range of alternatives
available. In particular, Multiplicative Error Models (MEMs) suggest themselves as models of
ht, see Brownlees et al. (2012) for a survey of MEMs.
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The MEM counterpart of the GARCH(p, q) model is

z2t = htut, E(ut|Ft−1) = 1 for all t, (15)

ht = ω +

p∑
i=1

αiz
2
t−i +

q∑
j=1

βjht−j, ω > 0, αi, βj ≥ 0. (16)

Unfortunately, this subclass of MEMs is not compatible with negative autocorrelations on z2t ,
see Proposition 2.2 in Francq and Zaköıan (2019, p. 47). And, as we will see in Section 5,
negative autocorrelations are common empirically. Log-MEMs, by contrast, are compatible
with negative autocorrelations on z2t . Define

yt =

{
ln z2t if z2t 6= 0
0 if z2t = 0

. (17)

The zero-augmented log-MEM(p, q) is given by (15) together with

lnht = ω +

p∑
i=1

αiyt−i +

q∑
j=1

βj lnht−j. (18)

Note that there are no non-negativity restrictions on the parameters. While z2t = 0 is unlikely
in returns for which high-frequency intraperiod data is available, there is no loss of generality
in allowing for zeros by defining yt as in (17). A variant of (18) was proposed by Hautsch et al.
(2013) for volume, and the extended log-GARCH of Francq and Zaköıan (2019, Section 4.3)
nests (18) as a special case.

A subclass of log-MEMs that is of special interest in the current context is the log-MEM(p, 0),
i.e. lnht = x′tb, where xt = (1, yt−1, . . . , yt−p)

′ and b = (ω, α1, . . . , αp)
′. The reason is that,

subject to fairly general and mild assumptions, z2t admits a weak log-MEM(p, 0) representation
regardless of whether the DGP is a log-MEM or not, see Proposition 1 below. The result relies
on assumptions that ensures the Ordinary Least Squares (OLS) estimator

b̂
∗
T =

(
1

T

T∑
t=1

xtx
′
t

)−1(
1

T

T∑
t=1

xtyt

)
converges to a limit b∗ = (ω∗, α1, . . . , αp)

′. Next, define

lnh∗t := ω∗ + α1yt−1 + · · ·+ αpyt−p, u∗t := z2t /h
∗
t , (19)

and
lnht := ω + α1yt−1 + · · ·+ αpyt−p, ω := ω∗ + lnE(u∗t ), ut := z2t /ht. (20)

By construction, this implies

z2t = h∗tu
∗
t = htut with E(ut) = E

(
u∗t/E(u∗t )

)
= 1, (21)

since ut = h∗tu
∗
t/ht and ht = h∗tE(u∗t ) due to the definitions in (19) and (20). This means ht is

a weak log-MEM(p, 0) representation of z2t . Subject to suitable but fairly mild assumptions,

Ê(u∗t ) =
1

T

T∑
t=1

û∗t , û∗t =
z2t

exp(x′tb̂
∗
T )
, (22)
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is consistent for E(u∗t ), and ω̂ = ω̂∗ + ln Ê(u∗t ) is consistent for ω. Note that (22) is simply the
smearing estimator of Duan (1983). If, in addition, E(ut|Ft−1) = 1 for all t, then it follows
straightforwardly that htVt also satisfies semi-strong identification. The following Proposition
contains a precise summary of this exposition.

Proposition 1 Suppose {z2t } and {yt} are ergodic stationary and measurable, E(xtx
′
t) is fi-

nite and nonsingular for all t, and E|u∗t | < ∞ and Ê(u∗t )
a.s.→ E(u∗t ). Then there exists a

representation

z2t = htut, lnht = ω +

p∑
i=1

αiyt−i, E(ut) = 1, (23)

with b̂T
a.s.→ b, where b̂T = (ω̂, α̂1, . . . , α̂p)

′ and b = (ω, α1, . . . , αp)
′. If, in addition, E(ut|Ft−1) =

1 for all t, then htVt satisfies semi-strong identification.

Proof: The ergodic stationarity and measurability of {z2t } and {yt} means each entry in xtx
′
t and

xtyt is ergodic stationary. Accordingly, by the ergodic theorem, the finiteness and nonsingularity
of E(xtx

′
t), and the continuous mapping theorem, the OLS estimator b∗T converges almost surely

to a limit b∗. Next, the assumption Ê(u∗t )
a.s.→ E(u∗t ) implies b̂T

a.s.→ b and E(ut) = 1 (recall
(19)–(21)). Finally, semi-strong identification follows directly if E(ut|Ft−1) = 1 for each t. �

The main implication and usefulness of the proposition is that, if its conditions hold, then there
always exists a weak log-MEM(p, 0) representation that can be used to transform a volatility
proxy so as to ensure weak identification. If, in addition, E(ut|Ft−1) = 1 for all t, then htVt
will also satisfy semi-strong identification.

A similar result can be derived for MEMs of the ARCH(p) type. However, that result is
less interesting, since it is not valid in the presence of negative autocorrelations on z2t (this is
common empirically, see Section Section 5), recall the reference to Proposition 2.2 in Francq
and Zaköıan (2019, p. 47) above. The existence of the weak log-MEM(p, 0) representation
relies on assumptions that are very mild. So existence is likely to hold in a vast range of
situations. By contrast, for a log-MEM(p, q) or a MEM(p, q) specifications with q > 0 to
ensure identification, more restrictive and specific assumptions on the DGP of z2t are required.
In comparison, the proposition above does not require exact assumptions on the DGP of z2t ,
only ergodic stationarity and mild moment assumptions. The assumption E(ut|Ft−1) = 1
for all t is less mild. If it does hold, then ut is not autocorrelated. In empirical practice,
therefore, checking whether the residuals ût’s are autocorrelated or not can be useful in the
search for a suitable order p. If z2t 6= 0 a.s., then b∗T equals the LS estimator of the AR(p)
representation ln z2t = lnh∗t + lnu∗t , where E(lnu∗t ) = 0, see Sucarrat et al. (2016). In other
words, in this case widely available software can be used to test whether one or more of the slope
coefficients α1, . . . , αp are different from zero or not. For example, if lnu∗t is heteroscedastic or
autocorrelated, or both, then robust coefficient-covariance is usually available in widely available
public software. Finally, note that the specification of lnht in (20) can straightforwardly be
augmented with stochastic conditioning covariates. Minor changes to Proposition 1 and its
proof are required.
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4 Tests for bias

It is possible for a proxy Vt to be identified but biased, and vise versa it is possible for a proxy
Vt to be unbiased but not identified. In empirical practice, therefore, unless Vt measures σ2

t

with no error (i.e. σ2
t = Vt a.s.), identification correction may either reduce or increase the

bias. This necessitates estimates and tests for bias. A volatility proxy Vt is conditionally or
unconditionally unbiased for σ2

t and E(σ2
t ), respectively, if

Conditional unbiasedness: E(Vt|Ft−1) = σ2
t a.s. for all t, (24)

Unconditional unbiasedness: E(Vt) = E(σ2
t ) for all t. (25)

Of course, the former implies the latter, but the latter does not imply the former. Here, in
this section, tests for unconditional bias are explored. Direct tests for conditional bias are not
feasible, since σ2

t is unobserved. However, an indirect test can be undertaken by combining Test
3 in Section 2.2 with a test for unconditional bias. The reason for this is that the null of Test
3, i.e. Corr(z2t , z

2
t−1) = 0, together with unconditional unbiasedness, are necessary conditions

for conditional unbiasedness.

4.1 Tests via Mincer-Zarnowitz regressions

Under ergodic stationarity of {r2t } and {Vt}, and if E(r2t ) = E(σ2
t ) as in the ARCH-class of mod-

els, the sample average T−1
∑T

t=1(r
2
t − Vt) provides a consistent estimate of the unconditional

bias E(σ2
t − Vt). This property is exploited in tests implemented via Mincer and Zarnowitz

(1969) regressions:
r2t = φ0 + φ1Vt + wt.

Usually, φ0 and φ1 are estimated by OLS, and the Standard MZ-test is implemented as

Standard MZ-test: H0 : φ0 = 0 ∩ φ1 = 1 vs. HA : φ0 6= 0 ∪ φ1 6= 1, W ∼ χ2(2), (26)

where W is the Wald-statistic. Below, in the simulations, the heteroscedasticity and auto-
correlation robust coefficient-covariance of Newey and West (1987) is used to compute the
Wald-statistic of this test.

If Vt measures σ2
t with error, then the Standard MZ-test above is flawed.5 The reason is

that, in general, the Standard MZ-test will reject H0 with probability 1 as T → ∞, even if
E(σ2

t ) = E(Vt). To see this, consider first the case where σ2
t = Vt a.s., i.e. the case where there

si no measurement error. The population values of φ1 and φ0 are then equal to those postulated
by the null hypothesis: φ1 = Cov(r2t , Vt)/V ar(Vt) = 1 and φ0 = E(r2t )− φ1E(Vt) = 0, since

E(r2t ) = E(Vt) and Cov(r2t , Vt) = Cov(σ2
t , Vt) = V ar(Vt).

If, instead, Vt measures σ2
t with error so that Vt is not equal to σ2

t a.s., then we will in general
have

Cov(r2t , Vt) 6= Cov(σ2
t , Vt) 6= V ar(Vt).

5This was noted by Andersen and Bollerslev (1998, p. 890), but seems to have gone largely unnoticed in the
literature.
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As a consequence, φ1 6= 1 and φ0 6= 0, in general. In fact, under strict stationarity and ergodicity
of {r2t } and {Vt}, and if E(r2t ) = E(Vt), we have

φ1 = Cov(r2t , Vt)/V ar(Vt), φ0 = (1− φ1)E(r2t ) ⇔ φ0 + φ1 = 1.

This leads to the Modified MZ-test:

Modified MZ-test: H0 : φ0 + φ1 = 1 vs. HA : φ0 + φ1 6= 1, W ∼ χ2(1), (27)

where W is the associated Wald-statistic. Below, in the simulations, the coefficient-covariance
of Newey and West (1987) is used to compute the statistic. As we will see, the simulations
confirm that the test rectifies the flaw of the Standard MZ-test in the presence of measurement
error. However, the simulations also reveal that the Modified MZ-test is poorly sized in small
and medium sized samples.

A restricted version of the MZ-test both rectifies the flaw of the Standard MZ-test, and is
well-sized across small, medium and large samples. Under the null of unconditional unbiased-
ness, we have

(r2t − Vt) = φ0 + wt with φ0 = 0.

This leads to the Restricted MZ-test:

Restricted MZ-test: H0 : φ0 = 0 v.s. HA : φ0 6= 0,
φ̂0

se(φ̂0)
∼ t(T − 1), (28)

where φ̂0 is the sample average of (r2t − Vt). Below, in the simulation, se(φ̂0) is the standard
error of Newey and West (1987).

4.2 Monte Carlo simulations

In this subsection the empirical size of the three tests are studied:

H0 HA Test statistic

Standard MZ-test: φ0 = 0 ∩ φ1 = 1 φ0 6= 0 ∪ φ1 6= 1 (26)

Modified MZ-test: φ0 + φ1 = 1 φ0 + φ1 6= 1 (27)

Restricted MZ-test: φ0 = 0 φ0 6= 0 (28)

In the simulations the true volatility process {σ2
t } is governed by the GARCH(1,1) model

r2t = σ2
t η

2
t , ηt

iid∼ N(0, 1), σ2
t = 0.2 + 0.1r2t−1 + 0.8σ2

t−1,

and the volatility proxy Vt is linked to σ2
t by

Vt = σ2
t εt, {σ2

t } ⊥ {ε2t}, εt = E(εt)
−1εt, εt = exp(axt), E(εt) = 1, (29)

where εt is the measurement error, a is a real-valued scalar and {xt} is a stochastic process. The
symbolism ⊥ means {σ2

t } and {ε2t} are independent processes. This, together with E(εt) = 1,
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implies that the volatility proxy is unbiased: E(Vt) = E(σ2
t ) for all t. In the experiments, two

classes of DGPs are studied:6

DGP 1: a ∈ {0, 0.2, 0.4}, xt
iid∼ N(0, 1), (30)

a = 0.0 : φ0 = 0.00, φ1 = 1.00,

a = 0.2 : φ0 = 0.28, φ1 = 0.72,

a = 0.4 : φ0 = 0.62, φ1 = 0.38,

DGP 2: a ∈ {0.2, 0.4}, xt = 0.9xt−1 + aet, et
iid∼ N(0, 1), (31)

a = 0.2 : φ0 = 0.07, φ1 = 0.93,

a = 0.4 : φ0 = 0.58, φ1 = 0.42.

In the first class of DGPs, εt is iid, and so E(Vt|Ft−1) = σ2
t for all t. In the specific case where

a = 0, there is no measurement error and so σ2
t = Vt a.s.. When Vt measures σ2

t with error
(i.e. a > 0), the null of the Standard MZ-test does not hold, since φ0 6= 0 and φ1 6= 1. In
the second class of DGPs, εt is dependent and governed by a persistent AR(1) process in the
exponent. Accordingly, while E(Vt) = E(σ2

t ) by construction, conditional unbiasedness does
not hold: E(Vt|Ft−1) 6= σ2

t .
The results of the simulations are contained in Table 3. When a = 0, then Vt measures σ2

t

with no error. Both the Standard and Modified MZ-tests are notably oversized in this case, in
particular in small samples where the discrepancy between the empirical and nominal sizes can
be as large as 14%-points. For the Standard MZ-test, closer inspection of the simulation results
reveals that the poor size is due to a finite sample bias in the estimates of φ0 and φ1. The
Modified MZ-test is less affected by the finite sample bias, since the biases cancel each other out
when computing their sum. Nevertheless, the best performance is exhibited by the Restricted
MZ-test, since it is well-sized across the sample sizes studied. Indeed, already at T = 500
the discrepancy between the empirical and nominal size is less than 1%-point. Increasing the
measurement error to a = 0.2 and a = 0.4 in DGP 1 confirms that the Standard MZ-test is
flawed: As T increases, the probability of rejecting H0 tends to 1. The size properties of the
Modified and Restricted MZ-test, by contrast, improve as the sample size T increases. The
improvement for the former is somewhat slow, since the discrepancy between the empirical and
nominal sizes range from about 3 to 8 percentage points for T = 1000. For the Restricted
MZ-test, by contrast, the discrepancy between the empirical and nominal size is again small
and about 1%-point already when T = 500.

The results of the DGP 2 simulations are similar: The Standard MZ-test is flawed in the
presence of measurement error, the Modified and Restricted MZ-tests rectify the flaw, and
the Restricted MZ-test has better empirical size across sample sizes when compared with the
Modified MZ-test. One notable difference compared with DGP 1, however, occurs when the
measurement error becomes large, i.e. when a = 0.4. In this case, the Restricted MZ-test is
generally undersized, and the discrepancy is increasing in T . A possible explanation is that
increasing a in DGP 2 also strengthens the serial dependence of the measurement error εt. This
may not be appropriately reflected in how the Newey and West (1987) coefficient-covariance is
computed.

6The values of φ0 and φ1 when a 6= 0 are obtained by simulation.
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5 An illustration

To illustrate the ideas, tests and results of this paper, twelve volatility proxies used in three
seminal studies are revisited. The three studies are: Andersen and Bollerslev (1998), Hansen
and Lunde (2005), and Patton (2011). The data are freely available on the internet, and they
all rely on a connection between their underlying notion of volatility and the expectation of
squared return. Table 4 lists the volatility proxies and their samples. Note that the DM/USD
proxy in Hansen and Lunde (2005) is the same as in Andersen and Bollerslev (1998) but divided
by 0.8418, see Hansen and Lunde (2005, p. 881). First the proxies are tested and – if needed –
corrected for identification in Section 5.1, then the question of whether identification correction
alters forecast rankings is explored in Section 5.2.

5.1 Identification

Table 5 contains the results of Tests 1–4 for identification, and an estimate of and test for bias
(i.e. the Restricted MZ-test from Section 4). The p-values of Tests 1 and 2 suggest four out
of twelve volatility proxies are not weakly identified at the 10% significance level: DM/USD1,

IBM1, IBM65min and IBM5min. Their estimates of ĥ vary from 0.810 (DM/USD1) to 1.141
(IBM1). Tests 3 and 4 are implemented as tests for 1st. order autocorrelation in z2t and ln z2t ,
respectively. One or both p-values are less than 10% for five proxies: DM/USD1, DM/USD2,
IBM65min, IBM15min and IBM5min. Interestingly, each of these five proxies exhibit a negative
first order autocorrelation in z2t . While it is not always significant at 10%, it does suggest a log-
MEM is more suitable as a model of ht than a MEM of the GARCH-type, since the latter is not
compatible with a negative first order autocorrelation in z2t . According to the Restricted MZ-
test for bias, three of the proxies are biased for E(σ2

t ) at the 10% level: DM/USD1, IBM65min
and IBM5min.

As a general rule, a volatility proxy should satisfy weak identification if it is to be used as
a substitute for an expectation of squared return. Table 6 contains the results of Tests 1–4
applied to the weakly corrected versions of DM/USD1, IBM1, IBM65min and IBM5min:

DM/USD1: V̂t = ĥVt, ĥ = 0.810,

IBM1: V̂t = ĥVt, ĥ = 1.141,

IBM65min: V̂t = ĥVt, ĥ = 1.037,

IBM5min: V̂t = ĥVt, ĥ = 0.902.

Unsurprisingly, the corrected proxies satisfy weak identification at all significance levels. Inter-
estingly, three of the four corrected proxies are also less biased. The exception is IBM1, whose
bias is larger after the correction.

A total of five proxies do not satisfy semi-strong identification. To correct them for semi-
strong identification, a log-MEM(1,0) specification of ht is fitted to z2t for each of them. The
reasons a log-MEM(1,0) is chosen are two. First, according to Proposition 1 there exists a
log-MEM(1,0) representation under general and mild assumptions. Second, the log-MEM(1,0)
provides a better fit than a log-MEM(1,1) according to both the Schwarz (1978) and Akaike
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(1974) information criteria. This leads to the following five corrected proxies:

DM/USD1: V̂t = ĥtVt, ln ĥt = 0.3508− 0.1030
(0.0618)

ln z2t−1 (32)

DM/USD2: V̂t = ĥtVt, ln ĥt = −0.1609− 0.1030
(0.0618)

ln z2t−1 (33)

IBM65min: V̂t = ĥtVt, ln ĥt = 0.7498 + 0.0597
(0.0190)

ln z2t−1 (34)

IBM15min: V̂t = ĥtVt, ln ĥt = 0.7220 + 0.0613
(0.0190)

ln z2t−1 (35)

IBM5min: V̂t = ĥtVt, ln ĥt = 0.7156 + 0.0667
(0.0190)

ln z2t−1 (36)

Next, Tests 1 – 4 are applied to ẑ2t = r2t /V̂t, together with the Restricted MZ-test for bias. Table
7 contains the results. The corrected proxies satisfy both weak and semi-strong identification
at the 10% significance level, since all the p-values are larger than 0.22. Interestingly, however,
the bias is not always reduced. Indeed, only for DM/USD1 is it reduced, and for IBM65min,
IBM15min and IBM5min it increases notably. This provides an example of the trade-off between
the kind of identification that is sought, and the extent of the resulting bias.

A total of six proxies did not satisfy either weak or semi-strong identification, or both. All-
in-all, we may conclude that four of these (DM/USD1, DM/USD2, IBM65min and IBM5min)
should be corrected, the conclusion is not clear-cut for one proxy (IBM1), and one proxy
should not be corrected (IBM15min). DM/USD1 should be corrected to satisfy semi-strong
identification, since this provides the best improvement according to both identification and
bias. Correcting the DM/USD2 proxy so that it satisfies semi-strong identification improves

ĥ from 0.962 to 1.000, but worsens the bias from 0.000 to 0.015. The deterioration in bias is
marginal, and the resulting bias is insignificantly different from zero at common significance
levels. So the overall conclusion is that it should be corrected for semi-strong identification. The
results suggest IBM65min and IBM5min should be corrected to satisfy weak identification, since
this also reduces the bias. They should not be corrected to satisfy semi-strong identification,
since this induces a substantial bias. It is not clear-cut that the IBM1 proxy should be corrected
to satisfy weak identification. While the correction improves ĥ substantially from 1.141 to
1.000, the bias is worsened notably from 0.000 to −0.844. Finally, the IBM15min proxy, which
is already weakly identified, should not be corrected for semi-strong identification, since this
induces a notable bias.

5.2 Do rankings change?

To explore whether correcting a volatility proxy for identification changes the ranking of volatil-
ity forecasts in empirical practice, the four proxies that were identification corrected above are
revisited: DM/USD1, DM/USD2, IBM65min and IBM5min. The first two were corrected to
satisfy semi-strong identification, whereas the latter two were corrected to satisfy weak identi-
fication. It will be shown that the ranking changes in three of the four cases for one of the loss
functions used. In the comparison, an uncorrected and a corrected version of two well-known
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loss functions are used (recall that V̂t = ĥtVt):

Uncorrected Mean Squared Error: uMSE =
1

T

T∑
t=1

(Vt − σ̂2
t )2, (37)

Uncorrected QLIKE: uQLIKE =
1

T

T∑
t=1

Vt/σ̂
2
t + ln σ̂2

t , (38)

Corrected Mean Squared Error: cMSE =
1

n

n∑
t=1

(V̂t − σ̂2
t )2, (39)

Corrected QLIKE: cQLIKE =
1

T

T∑
t=1

V̂t/σ̂
2
t + ln σ̂2

t . (40)

The first two are the usual MSE and QLIKE loss functions, so the volatility proxy is uncorrected
and therefore not identified. In the latter two the volatility proxy is corrected for identification
as described in Section 5.1 above.

DM/USD1 is from Andersen and Bollerslev (1998). While no forecast ranking comparison
is undertaken in that study, it contains information that can be used to compare the volatility
forecasts of three specifications within the ARCH-class of models:

Ê(r2t ) : σ̂2
t = 0.6471

GARCH : σ̂2
t = 0.022 + 0.068r2t−1 + 0.898σ̂2

t−1

RiskMetrics : σ̂2
t = 0.06r2t−1 + 0.94σ̂2

t−1,

The estimates of the GARCH(1,1) parameters, ω̂ = 0.022, α̂ = 0.068 and β̂ = 0.898, are
from Table 1 on p. 889 in Andersen and Bollerslev (1998).7 The inclusion of the unconditional

variance Ê(r2t ) in the comparison is meaningful, since there is no guarantee that time-varying
forecasts perform better when compared against a volatility proxy. If {rt} is governed by a

stationary GARCH(1,1), then E(r2t ) = E(σ2
t ) = ω/(1− α+ β). So Ê(r2t ) = 0.022/(1− 0.068−

0.898) = 0.6471. The upper part of Table 8 contains the results of the volatility forecast
comparison. For all four loss functions the ranking is the same. Accordingly, correcting the
proxy for identification does not alter the volatility forecast ranking in this case.

DM/USD2 is from Hansen and Lunde (2005). There, the forecasts of 255 specifications
within the ARCH-class of models are compared. Here, for the sake of brevity, only three
specifications are compared:

Ê(r2t ) : σ̂2
t =

1

T

T∑
t=1

r2t

GARCH : σ̂2
t = ω̂ + α̂r2t−1 + β̂σ̂2

t−1

IGARCH : σ̂2
t = (1− β̂)r2t−1 + β̂σ̂2

t−1, β̂ ∈ (0, 1).

7To initialise the recursion of the GARCH(1,1) forecasts {σ̂2
t }, the value σ̂2

0 = 1.75 is used, see Figure 1 on
p. 893 in Andersen and Bollerslev (1998).
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Hansen and Lunde (2005) do not report the parameter estimates of the models, but they make
the forecasts {σ̂2

t } available. The second part of Table 8 contains the results of the volatility
forecast comparison. They show that the ranking changes for the MSE, but not for QLIKE.
In other words, here identification matters when MSE is used as loss function, since it changes
the forecast volatility ranking.

IBM65min and IBM5min are from Patton (2011). There, the forecasts of two specifications
are compared: The RiskMetrics specification and the 60-day rolling window forecast. Here,
the forecast of the unconditional variance is added to the comparison, so that a total of three
specifications are compared:

Ê(r2t ) : σ̂2
t =

1

T

T∑
t=1

r2t

RiskMetrics : σ̂2
t = 0.06r2t−1 + 0.94σ̂2

t−1,

60day : σ̂2
t =

1

60

60∑
j=1

r2t−j.

The lower half of Table 8 contains the results of the volatility forecast comparisons. For both
IBM65min and IBM5min the rankings change when MSE is used as loss function, but not for
QLIKE.

A pattern that emerges from the comparison is that QLIKE appears to be more robust to
non-identification than MSE. Of course, the evidence is anecdotal, not comprehensive. Nev-
ertheless, the findings do seem to merit the conjecture that QLIKE is more robust to non-
identification than the MSE. More studies are needed to verify whether this is the case or
not.

6 Conclusions

A tripartite distinction between strong, semi-strong and weak identification of a volatility proxy
as an expectation of squared returns is introduced. Strong identification implies semi-strong
identification, and semi-strong identification implies weak identification. However, their con-
verses are not true. The notions of identification and unbiasedness differ. The former is
multiplicative, whereas the latter is additive. This means a biased proxy can be identified, and
an unbiased proxy can fail to be identified.

For meaningful use of a volatility proxy as a substitute for an expectation of squared return
in volatility forecast evaluation, the proxy should – as a minimum – be weakly identified as an
expectation. Otherwise, the proxy is not on a comparable scale. The multiplicative transforma-
tion at the base of the definition implies that well-known tests and procedures can be used to
check and correct for identification. Monte Carlo simulations verify that the tests are well-sized
and powerful in finite samples. Specifications of ht for identification correction is discussed. It
is shown that, subject to mild and general assumptions, there exists a log-MEM(p,0) represen-
tation that can be estimated by a least squared procedure. This means a general but flexible
and straightforward procedure for correction is, in general, available. Next, it is shown that
the standard Mincer and Zarnowitz (1969) test for bias is, in general, flawed when the proxy
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measures σ2
t with error. Straightforward modifications that rectifies the flaw are derived, and

Monte Carlo simulations show that the simplest of them is particularly well-sized. Finally, in
an empirical illustration, twelve volatility proxies from three seminal studies are revisited. Half
of them are found to not satisfy either semi-strong or weak identification, but their corrected
counterparts do. However, identification correction does not always lead to a reduction in bias,
thus illustrating the trade-off between the chosen specification of ht and the resulting bias. In
conclusion, four of the proxies are corrected, and it is illustrated how rankings in volatility
forecast comparisons can change as a consequence. In three out four cases the ranking changes
when Mean Square Error (MSE) is used as loss function. By contrast, when QLIKE is used as
loss function, then the rankings do not change. While the evidence is anecdotal, it does suggest
the QLIKE loss function may be more robust to non-identification. More research is needed to
shed further light on this.

Two ideas for further research are worth mentioning. First, while the main focus of this
article is the ARCH-class of models, the ideas and results can be extended to other classes by
suitable adaption. This is worth considering. Second, it may be worthwhile to undertake a more
systematic review of previous studies that have employed volatility proxies to rank volatility
forecasts. If correcting the proxies for identification change the rankings and conclusions in
substantive ways, then the findings and interpretations in these studies may need to be revisited.
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Francq, C. and J.-M. Zaköıan (2019). GARCH Models. New York: Wiley. 2nd. Edition.

Hansen, P. R. and A. Lunde (2005). A forecast comparison of volatility models: does anything
beat a GARCH(1,1)? Journal of Applied Econometrics 20, 873–889.

Hautsch, N., P. Malec, and M. Schienle (2013). Capturing the zero: a new class of zero-
augmented distributions and multiplicative error processes. Journal of Financial Economet-
rics 12, 89–121.

Ljung, G. and G. Box (1979). On a Measure of Lack of Fit in Time Series Models. Biometrika 66,
265–270.

Mincer, J. and V. Zarnowitz (1969). The Evaluation of Economic Forecasts. In J. Zarnowitz
(Ed.), Economic Forecasts and Expectations, pp. 3–46. New York: National Bureau of Eco-
nomic Research.

Newey, W. and K. West (1987). A Simple Positive Semi-Definite, Heteroskedasticity and
Autocorrelation Consistent Covariance Matrix. Econometrica 55, 703–708.

Park, S. and O. Linton (2012). Realized Volatility: Theory and Applications. In L. Bauwens,
C. Hafner, and S. Laurent (Eds.), Handbook of Volatility Models and Their Applications, pp.
319–345. New Jersey: Wiley.

Patton, A. J. (2011). Volatility Forecast Evaluation and Comparison Using Imperfect Volatility
Proxies. Journal of Econometrics 160, 246–256. Code and data: http://econ.duke.edu/

~ap172/Patton_robust_loss_apr06.zip.

R Core Team (2020). R: A Language and Environment for Statistical Computing. Vienna,
Austria: R Foundation for Statistical Computing.

Schwarz, G. (1978). Estimating the Dimension of a Model. The Annals of Statistics 6, 461–464.

Sucarrat, G. (2009). Forecast Evaluation of Explanatory Models of Financial Variabil-
ity. Economics – The Open-Access, Open-Assessment E-Journal 3. http://www.

economics-ejournal.org/economics/journalarticles/2009-8.

19

http://econ.duke.edu/~ap172/Patton_robust_loss_apr06.zip
http://econ.duke.edu/~ap172/Patton_robust_loss_apr06.zip
http://www.economics-ejournal.org/economics/journalarticles/2009-8
http://www.economics-ejournal.org/economics/journalarticles/2009-8


Sucarrat, G. (2019). The Log-GARCH Model via ARMA Representations. In J. Chevallier, S.
Goutte, D. Guerreiro, S. Saglio and B. Sanhadji (eds.): Financial Mathematics, Volatility and
Covariance Modelling, Volume 2. Working Paper version: https://mpra.ub.uni-muenchen.
de/id/eprint/100386.
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Table 1: Rejection frequencies (in %) of Tests 1 and 2 in Section 2.3
Test 1 Test 2

ID DGP T 10% 5% 1% 10% 5% 1%
1 ht = 1.00: 250 11.29 6.18 1.68 10.76 5.67 1.36

500 10.75 5.62 1.51 10.50 5.52 1.26
1000 10.31 5.25 1.29 10.48 5.28 1.28
2000 9.67 4.55 1.14 10.56 5.28 1.19
5000 10.18 4.90 1.12 10.00 5.17 1.06

ht = 0.90: 250 38.39 28.54 15.00 33.57 23.44 9.68
500 55.92 44.68 25.19 52.29 40.02 19.49

1000 78.08 68.37 47.87 76.56 65.92 42.27
2000 96.00 92.64 80.71 95.52 91.75 78.61
5000 99.99 99.98 99.68 99.98 99.96 99.61

ht = 1.10: 250 25.27 14.88 3.85 29.15 19.06 7.01
500 40.55 28.41 10.18 44.19 31.93 14.04

1000 66.29 53.62 27.33 68.34 56.75 33.00
2000 90.25 83.31 62.44 91.12 85.45 67.03
5000 99.87 99.73 98.32 99.87 99.74 98.16

2a) θ = (−0.16,−0.1)′ : 250 10.95 5.86 1.92 11.01 5.23 1.16
500 10.73 5.79 1.44 10.64 5.40 1.14

1000 10.42 5.32 1.32 10.23 4.95 1.09
2000 9.90 4.91 1.14 9.32 4.60 0.98
5000 10.15 5.15 1.04 9.32 4.56 0.82

2b) θ = (0,−0.1)′ : 250 44.49 30.41 9.86 49.02 36.69 16.72
500 71.42 58.69 31.18 75.47 64.71 39.50

1000 94.54 89.60 71.92 95.22 90.87 76.44
2000 99.85 99.56 97.58 99.94 99.76 98.29
5000 100.00 100.00 100.00 100.00 100.00 100.00

2c) θ = (0, 0.1)′ : 250 40.81 31.71 17.76 36.00 25.93 11.86
500 56.43 45.41 27.46 53.53 41.53 20.78

1000 80.20 71.26 49.84 77.76 67.29 43.67
2000 96.08 92.91 81.94 95.42 91.91 78.01
5000 99.98 99.94 99.74 99.97 99.96 99.54

3a) E(z2t ) = 1.15 : 250 35.98 22.70 6.42 43.55 31.25 12.83
500 62.52 47.60 21.04 66.22 53.73 29.90

1000 88.92 80.61 55.47 90.04 83.32 63.61
2000 99.31 98.35 92.89 99.46 98.69 94.45
5000 100.00 100.00 100.00 100.00 100.00 99.99

3b) E(z2t ) = 1.15 : 250 28.17 15.76 2.83 35.17 23.60 8.31
500 51.97 36.32 11.16 57.71 43.77 19.94

1000 81.60 69.33 37.86 83.09 73.21 46.83
2000 97.83 95.08 81.43 98.22 96.35 85.95
5000 100.00 100.00 99.98 100.00 100.00 99.94

Rejection frequencies for significance levels 10%, 5% and 1%. 10 000 simulations. Simulations in

R (R Core Team, 2020).
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Table 2: Rejection frequencies (in %) of Tests 3 and 4 in Section 2.3
Test 3 Test 4

ID DGP T 10% 5% 1% 10% 5% 1%
1 ht = 1.00: 250 9.27 4.55 0.99 9.82 4.78 1.11

500 9.56 4.99 1.09 9.83 4.81 0.90
1000 9.78 4.85 1.13 10.45 5.10 1.16
2000 9.52 4.78 0.96 10.03 5.12 1.11
5000 9.94 4.73 0.95 9.64 4.86 0.92

2a) θ = (−0.16,−0.1)′ : 250 44.85 28.17 6.28 50.13 37.83 17.62
500 73.73 58.54 26.44 73.96 63.11 38.98

1000 95.06 89.63 69.39 93.48 88.38 72.76
2000 99.91 99.63 97.51 99.80 99.38 97.23
5000 100.00 100.00 100.00 100.00 100.00 100.00

2b) θ = (0,−0.1)′ : 250 44.36 27.60 6.52 51.17 37.90 17.02
500 73.42 58.55 26.54 73.89 63.58 39.51

1000 95.17 90.18 69.60 93.60 88.93 73.34
2000 99.85 99.60 97.49 99.68 99.27 97.31
5000 100.00 100.00 99.99 100.00 100.00 100.00

2c) θ = (0, 0.1)′ : 250 40.26 30.45 15.46 43.00 31.40 13.82
500 63.52 52.51 31.85 70.85 58.83 34.55

1000 88.39 81.32 63.03 93.36 87.86 70.30
2000 99.34 98.55 93.75 99.76 99.38 96.84
5000 100.00 100.00 99.99 100.00 100.00 100.00

3a) Corr(z2t , z
2
t−1) = 0.00 : 250 8.21 3.95 1.08 9.95 4.86 0.84

500 8.73 4.18 1.11 10.36 5.03 0.95
1000 9.31 4.59 1.19 9.86 5.16 1.01
2000 9.59 4.46 1.03 10.15 5.25 1.13
5000 9.45 4.54 0.99 9.75 4.96 0.91

3b) Corr(z2t , z
2
t−1) = 0.05 : 250 21.62 15.33 7.22 12.78 6.85 1.92

500 31.17 23.24 12.28 15.13 8.68 2.56
1000 47.66 38.56 22.28 19.76 12.25 3.97
2000 70.86 61.55 42.49 29.56 19.75 7.25
5000 96.14 93.29 84.01 54.11 41.90 21.38

Rejection frequencies for significance levels 10%, 5% and 1%. 10 000 simulations. Simulations in R

(R Core Team, 2020).
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Table 3: Rejection frequencies (in %) of the tests for bias in Section 4

Standard MZ-test Modified MZ-test Restricted MZ-test

DGP T 10% 5% 1% 10% 5% 1% 10% 5% 1%
1 a = 0.0: 250 23.89 16.94 8.30 17.14 11.07 5.09 11.95 7.03 2.55

500 20.49 13.93 6.40 14.23 8.71 3.10 10.87 5.88 1.84
1000 17.49 11.23 4.52 12.57 7.20 2.10 9.92 5.51 1.50
2000 16.18 10.03 4.08 11.73 6.26 1.59 9.95 5.07 1.25
5000 14.01 8.13 2.77 10.86 5.44 1.40 9.84 5.05 0.97

a = 0.2: 250 53.28 43.94 28.95 22.33 15.31 7.36 12.30 7.29 2.59
500 56.72 47.67 32.45 20.17 13.22 5.51 11.01 6.11 1.87

1000 65.06 56.27 40.75 17.96 11.40 4.28 10.83 5.39 1.47
2000 75.01 67.60 52.80 17.14 10.41 3.68 10.62 5.71 1.25
5000 87.70 83.25 73.25 16.04 9.54 2.96 10.37 5.39 1.27

a = 0.4: 250 90.46 86.16 76.55 28.22 20.48 10.34 11.85 6.44 2.27
500 94.90 92.93 87.09 25.74 17.90 8.31 11.11 5.96 1.72

1000 98.12 97.03 93.94 23.67 16.22 7.21 10.44 5.45 1.58
2000 99.24 98.82 97.83 22.24 14.53 5.99 10.50 5.28 1.34
5000 99.81 99.66 99.40 21.53 14.18 5.56 9.94 5.21 1.30

2 a = 0.2: 250 32.66 24.24 13.17 19.78 13.41 6.23 11.74 6.74 2.28
500 30.29 22.65 11.33 16.19 10.37 3.96 11.47 6.45 2.14

1000 29.11 21.28 10.55 14.31 8.85 3.02 10.76 5.84 1.68
2000 29.10 21.36 10.72 13.01 7.19 2.11 10.27 5.26 1.36
5000 32.62 24.12 12.71 11.81 6.11 1.70 10.25 5.01 1.01

a = 0.4: 250 86.88 82.31 71.87 28.38 20.71 11.06 8.20 3.97 1.08
500 93.18 90.45 82.66 25.35 17.41 8.42 7.22 3.59 0.76

1000 96.53 95.20 91.28 23.07 15.62 6.74 6.29 2.92 0.48
2000 98.74 98.17 96.51 21.43 14.22 5.55 5.76 2.37 0.29
5000 99.56 99.34 98.80 20.04 13.00 4.74 5.63 2.37 0.34

Rejection frequencies for significance levels 10%, 5% and 1%. 10 000 replications. Simulations
in R (R Core Team, 2020).
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Table 4: List of studies (see Section 5)
Study Proxy(/ies) Period T
Andersen and Bollerslev (1998): DM/USD 1/10/1992 – 29/9/1993 260

Hansen and Lunde (2005): DM/USD 1/10/1992 – 29/9/1993 260
IBM 1/6/1999 – 31/5/2000 254

Patton (2011): IBM 4/1/1993 – 31/12/2003 2772

Table 5: Identification tests of volatility proxies (see Section 5)
Proxy Test 1 Test 2 Test 3 Test 4

ĥ
[p−val]

ln ĥ
[p−val]

ρ̂1(z
2
t )

[p−val]
ρ̂1(ln z

2
t )

[p−val]
Bias
[p−val]

Andersen and Bollerslev (1998): DM/USD1 0.810
[0.000]

−0.211
[0.001]

−0.151
[0.014]

−0.103
[0.095]

−0.101
[0.010]

Hansen and Lunde (2005): DM/USD2 0.962
[0.523]

−0.038
[0.531]

−0.151
[0.014]

−0.103
[0.095]

0.000
[1.000]

IBM1 1.141
[0.099]

0.132
[0.078]

0.016
[0.803]

0.014
[0.817]

0.000
[1.000]

IBM2 1.047
[0.557]

0.046
[0.548]

0.045
[0.476]

0.011
[0.864]

0.000
[1.000]

IBM3 1.041
[0.603]

0.040
[0.595]

0.033
[0.600]

0.009
[0.882]

0.000
[1.000]

IBM4 1.082
[0.329]

0.079
[0.310]

0.030
[0.630]

0.017
[0.790]

0.000
[1.000]

IBM5 1.083
[0.324]

0.080
[0.305]

0.022
[0.722]

0.016
[0.792]

0.000
[1.000]

IBM6 1.008
[0.916]

0.008
[0.915]

0.026
[0.678]

0.015
[0.813]

0.000
[1.000]

IBM7 1.006
[0.938]

0.006
[0.938]

0.021
[0.738]

0.012
[0.847]

0.000
[1.000]

Patton (2011): IBM
65min

1.037
[0.049]

0.036
[0.045]

−0.042
[0.027]

0.060
[0.002]

0.314
[0.005]

IBM
15min

1.017
[0.456]

0.017
[0.453]

−0.026
[0.179]

0.061
[0.001]

0.118
[0.381]

IBM
5min

0.902
[0.000]

−0.103
[0.000]

−0.029
[0.123]

0.067
[0.000]

−0.291
[0.028]

ĥ, sample average of z2t . ln ĥ, natural log of ĥ. ρ̂1(z
2
t ), first order sample autocorrelation of z2t .

ρ̂1(ln z
2
t ), first order sample autocorrelation of ln z2t . p− val, p-value of test. Test 1, H0 : h = 1

vs. HA : h 6= 1, see (11). Test 2, H0 : lnh = 0 vs. HA : lnh 6= 0, see (12). Test 3, Ljung and
Box (1979) test for first order autocorrelation in z2t , see (13). Test 4, Ljung and Box (1979)
test for first order autocorrelation in ln z2t , see (14). Bias, Restricted MZ-test, see (28), where
the estimated bias is computed as T−1

∑T
t=1(r

2
t − Vt). All computations in R (R Core Team,

2020).
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Table 6: Weak identification of volatility proxies (see Section 5)
Proxy Test 1 Test 2 Test 3 Test 4

ĥ
[p−val]

ln ĥ
[p−val]

ρ̂1(ẑ
2
t )

[p−val]
ρ̂1(ln ẑ

2
t )

[p−val]
Bias
[p−val]

Andersen and Bollerslev (1998): DM/USD1 1.000
[1.000]

0.000
[1.000]

−0.151
[0.014]

−0.103
[0.095]

0.020
[0.596]

Hansen and Lunde (2005): IBM1 1.000
[1.000]

0.000
[1.000]

0.016
[0.803]

0.014
[0.817]

−0.844
[0.109]

Patton (2011): IBM
65min

1.000
[1.000]

0.000
[1.000]

−0.042
[0.027]

0.060
[0.002]

0.156
[0.162]

IBM
5min

1.000
[1.000]

0.000
[1.000]

−0.029
[0.123]

0.067
[0.000]

0.189
[0.156]

Tests 1–4 are of ẑ2t = r2t /V̂t, where V̂t = ĥtVt is the identification corrected proxy. ĥ, sample
average of ẑ2t . ρ̂1(ẑ

2
t ), first order sample autocorrelation of ẑ2t . ρ̂1(ln ẑ

2
t ), first order sample

autocorrelation of ln ẑ2t . p − val, p-value of test. Test 1, H0 : h = 1 vs. HA : h 6= 1, see
(11). Test 2, H0 : lnh = 0 vs. HA : lnh 6= 0, see (12). Test 3, Ljung and Box (1979) test for
first order autocorrelation in z2t , see (13). Test 4, Ljung and Box (1979) test for first order
autocorrelation in ln z2t , see (14). Bias, Restricted MZ-test, see (28), where the estimated bias

is computed as T−1
∑T

t=1(r
2
t − V̂t). All computations in R (R Core Team, 2020).

Table 7: Semi-strong identification of volatility proxies (see Section 5)
Proxy Test 1 Test 2 Test 3 Test 4

ĥ
[p−val]

ln ĥ
[p−val]

ρ̂1(ẑ
2
t )

[p−val]
ρ̂1(ln ẑ

2
t )

[p−val]
Bias
[p−val]

Andersen and Bollerslev (1998): DM/USD1 1.000
[1.000]

0.000
[1.000]

−0.075
[0.222]

−0.014
[0.818]

0.015
[0.719]

Hansen and Lunde (2005): DM/USD2 1.000
[1.000]

0.000
[1.000]

−0.075
[0.222]

−0.014
[0.818]

0.015
[0.719]

Patton (2011): IBM
65min

1.000
[1.000]

0.000
[1.000]

−0.023
[0.228]

−0.001
[0.948]

−4.086
[0.000]

IBM
15min

1.000
[1.000]

0.000
[1.000]

−0.020
[0.281]

−0.002
[0.933]

−4.142
[0.000]

IBM
5min

1.000
[1.000]

0.000
[1.000]

−0.017
[0.375]

−0.002
[0.919]

−4.737
[0.000]

The tests are of ẑ2t = r2t /V̂t, where V̂t = ĥtVt is the identification corrected proxy. ĥ, sample
average of ẑ2t . ρ̂1(ẑ

2
t ), first order sample autocorrelation of ẑ2t . ρ̂1(ln ẑ

2
t ), first order sample

autocorrelation of ln ẑ2t . p − val, p-value of test. Test 1, H0 : h = 1 vs. HA : h 6= 1, see
(11). Test 2, H0 : lnh = 0 vs. HA : lnh 6= 0, see (12). Test 3, Ljung and Box (1979) test for
first order autocorrelation in z2t , see (13). Test 4, Ljung and Box (1979) test for first order
autocorrelation in ln z2t , see (14). All computations in R (R Core Team, 2020).
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Table 8: Volatility forecast comparison using uncorrected and corrected volatility prox-
ies (see Section 5.2)

Uncorrected Corrected
uMSE Rank uQLIKE Rank cMSE Rank cQLIKE Rank

DM/USD1:

Ê(r2t ) 0.187 3 0.552 3 0.155 3 0.373 3
GARCH 0.107 1 0.491 1 0.107 1 0.313 1
RiskMetrics 0.118 2 0.505 2 0.126 2 0.316 2

DM/USD2:

Ê(r2t ) 0.132 3 0.380 3 0.140 2 0.352 3
GARCH 0.081 1 0.328 1 0.106 1 0.312 1
IGARCH 0.122 2 0.346 2 0.155 3 0.332 2

IBM65min:

Ê(r2t ) 142.71 2 2.464 3 153.29 3 2.498 3
60day 139.21 1 2.316 1 149.43 1 2.351 1
RiskMetrics 143.07 3 2.362 2 153.21 2 2.400 2

IBM5min:

Ê(r2t ) 163.21 3 2.595 3 132.86 2 2.491 3
60day 159.22 1 2.483 1 130.04 1 2.374 1
RiskMetrics 162.98 2 2.533 2 133.87 3 2.414 2

uMSE, uQLIKE, cMSE and cQLIKE are defined in (37) – (40). For the details of

Ê(r2t ), GARCH, RiskMetrics, IGARCH and 60day, see Section 5.2. All computations
in R (R Core Team, 2020).
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