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Abstract

Financial returns are frequently nonstationary due to the nonstationary distri-
bution of zeros. In daily stock returns, for example, the nonstationarity can be
due to an upwards trend in liquidity over time, which may lead to a downwards
trend in the zero-probability. In intraday returns, the zero-probability may be
periodic: It is lower in periods where the opening hours of the main financial
centres overlap, and higher otherwise. A nonstationary zero-process invalidates
standard estimators of volatility models, since they rely on the assumption that
returns are strictly stationary. We propose a GARCH model that accommod-
ates a nonstationary zero-process, derive a 0-adjusted QMLE for the parameters
of the model, and prove its consistency and asymptotic normality under mild
assumptions. The volatility specification in our model can contain higher order
ARCH and GARCH terms, and past zero-indicators as covariates. Simulations
verify the asymptotic properties in finite samples, and show that the standard
estimator is biased. An empirical study of daily and intradaily returns illustrate
our results. They show how a nonstationary zero-process induces time-varying
parameters in the conditional variance representation, and that the distribution
of zero returns can have a strong impact on volatility predictions.
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1 Introduction

Financial returns are frequently zero. This can be due to liquidity issues (e.g. low
trading volume), price discreteness or rounding error, data issues (e.g. imputation
due to missing values), market closures, and other market-specific characteristics and
developments.

A number of approaches accommodate the occurrence of zeros. In continuous time
approaches, for example, zeros occur when the assumed underlying price process is
not observed. Lesmond et al. (1999) used this idea to construct a popular measure
of liquidity based on observed zeros. More recently, the role of zeros has been re-
positioned in a continuous time framework by, amongst others, Bandi et al. (2017),
and Bandi et al. (2020). Building on these developments, Buccheri et al. (2020) de-
rive a bias-correction for Realised Volatility (RV), and Buccheri et al. (2020) propose
a way to improve portfolio management in the presence of zeros. Supplemental ap-
pendix D outlines the connection between continuous time approaches to zeros and
the model proposed here. In a second body of literature, zeros naturally occur due to
the discreteness of price changes. Hausman et al. (1992) proposed an ordered probit
model for discrete price changes. Russell and Engle (2005) proposed an Autoregress-
ive Conditional Multinomial (ACM) model in combination with their Autoregressive
Conditional Duration (ACD) model from Engle and Russell (1998). Liesenfeld et al.
(2006) critised this approach, and proposed instead a dynamic integer count model.
This was extended to the multivariate case in Bien et al. (2011). Rydberg and Sheph-
ard (2003) propose a model where the price increment is decomposed multiplicatively
into three components: Activity, direction and integer magnitude. Catania et al.
(2020) propose a discrete mixture approach to discrete price changes. In a third
body of literature, price changes are continuous except at zero. Hautsch et al. (2013)
propose a zero-inflated model for volume. Kiimm and Kiisters (2015) propose a zero-

inflated model, where zeros occur either because there is no information available or



because of rounding. In Harvey and Ito (2020), zeros occur due to censoring of an
underlying continuous variable. Finally, the Generalised Autoregressive Conditional
Heteroscedasticity (GARCH) class of models provides a fourth body of literature,
since it accommodates zero-returns as long as the innovation can be zero, see the
discussion in Sucarrat and Grgnneberg (2020). In particular, if the standardised in-
novation is stationary, the parameters of a GARCH specification can be consistently
estimated by the Standard Quasi Maximum Likelihood Estimator (QMLE) even when
the conditional zero-probability is time-varying, see e.g. Escanciano (2009).

While the aforementioned contributions accommodate zeros in one or another way;,
very few of them pay attention to the fact that the zero-process can be nonstation-
ary. This is striking, since the zero-process is frequently nonstationary. In daily stock
returns, for example, a downwards (upwards) trend in the zero-probability can be
due to an upwards (downwards) trend in liquidity over time, or an upwards (down-
wards) trend in the price level of the stock. Sucarrat and Grgnneberg (2020) found
widespread evidence of a trend in the zero-probability of daily stock returns at the
New York Stock Exchange (NYSE). (We revisit a selection of their stocks in Section
5.1.) In intraday returns, the zero-probability is often nonstationary periodic: It is
lower in periods with low liquidity (e.g. when the opening hours of the main financial
centres do not overlap), and higher in periods with high liquidity (e.g. in hours where
the main financial centres are open at the same time). An example is Kolokolov
et al. (2020), who find clear evidence of a periodic zero-probability in intraday stock
returns.

Here, in this paper, we propose volatility models that accommodate nonstationary
zeros, where the zero-probability can be trend-like or periodic in nature, or both. To
this end, volatility is specified as a generic scale (i.e. the conditional variance is a
special case). We derive a modified QMLE, which we label the 0-adjusted QMLE,

and prove its consistency and asymptotic normality. We start with the standard



GARCH(1,1) model for which the regularity conditions are more explicit, then we ex-
tend the results to more general models which allow for higher order lags, asymmetries
and also indicators of lagged zero returns. In the stationary case, our regularity con-
ditions coincide with the sharpest assumptions given in the literature for CAN of the
QMLE. Our asymptotic results mainly rely on the ergodic theorem for nonstationary
processes introduced in Francq and Gautier (2004). Variations of it have also been
used in Azrak and Mélard (2006), Phillips and Xu (2006) and Regnard and Zakoian
(2010). Section 2 is devoted to the simple GARCH(1,1) model. In Section 3 we
extend our results to more general specifications. In particular, we consider a model
where lags of zero-indicators are added as covariates. This specification is of special
interest, since empirical evidence suggests jumps may follow zeros, see Kolokolov and
Reno (2019). Supplemental appendix A collects the proofs of our theorems, propos-
itions and lemmas. Section 4 contains finite sample simulations of our estimator.
They show that the Standard QMLE is biased in our experiments, and verify our
asymptotic results. In particular, the empirical standard errors correspond well to
the asymptotic ones in finite samples. Section 5 contains an empirical application
of our results. They show how a nonstationary zero-process induces time-varying
parameters in the conditional variance representation. Accordingly, the distribution
of zero returns can have a strong impact on volatility predictions. Finally, Section 6

concludes and suggests lines for further research.

2 Structure and estimation of the GARCH(1,1) spe-
cification

Let (I;) a bitstream sequence, i.e. a sequence valued in {0, 1}. This bitstream sequence
is said to be well fed in zeros (resp. ones) if, for all ¢, there exists u < ¢ such that

I, =0 (resp. I, = 1). The value I; = 0 indicates a zero return and I; = 1 indicates



a nonzero return at time ¢. Conditionally on (I;), we will consider time series (€;)
such that ¢, = 0 if I, = 0 and ¢, follows a non degenerated GARCH-type model when

I; = 1. First consider a simple zero-inflated GARCH(1,1) model of the form
& = ounelt, Utz = wo + aOE?—l + 50%2—17 (2.1)

with a sequence (7;) of non-degenerated real random variables, and nonnegative para-
meters wy, ap and [y. Note that, for the moment, we do not make any precise as-
sumption on the model. In particular, the sequence (I;) can be the realization of a
nonstationary sequence. Therefore, the model (2.1) can be considered as being semi-
parametric. Moreover, if a solution of (2.1) exists, in general it is nonstationary. The

following proposition gives a condition for the existence of such a solution.

Proposition 2.1. Given sequences (n;) and (1), and parameters wy > 0, ag > 0 and

Bo > 0, there exists a (unique) (non anticipative) finite solution to (2.1) if

k—o00

k
1
v := lim sup E Z log(aont{i[t,i -+ BO) <0 a.s. Vt. (2.2)
i=1

This condition s satisfied if for all t there exists s > 0 such that
lim supy,_, ., % Zle ‘Oé[)?]?_ift_i + 50|s < 1 a.s. There exists no finite solution if v > 0

for some t.

In the previous proposition, a non anticipative solution means that o; is measur-
able with respect to the sigma-field F;_; generated by {n,, I,;u < t}, and a finite
solution means that o; < oo a.s. for all ¢, and (0;) is bounded in probability, in the
sense that Ve > 0, 3M > 0 and n > 0 such that P(o, > M) < e V|t| > n.

Recall that the necessary and sufficient strict stationarity condition of the standard

GARCH(1,1) model is

A1l v := Elog(agn? + 5o) < 0.



Note that, when (7;) is supposed to be a stationary and ergodic sequence, Al im-
plies (2.2) (simply because log(aon?I; + 5o) < log(aoni + Bo)). The condition is not
necessary, however, because when fy = 0 and ([;) is well fed in zeros, it is easy
to see that (2.2) is satisfied without any restriction on ag, in particular even when
v = Elog(agn?) > 0. Note also that we cannot conclude when ~; = 0 because we do
not make assumptions of the distributions of the zeros in (I;).

For stationary GARCH models with iid innovations, it is known that the strict
stationarity condition v < 0 entails the existence of a marginal moment (see Lemma
2.3 in Berkes, Horvath, and Kokoszka, 2003b). The following proposition is a direct

extension of that result.

Proposition 2.2. If (n;) is wid, E|mp|” < oo for r > 0 and A1 holds, then the finite

solution to (2.1) is such that sup, Fc?* < oo and sup, E|e;|** < oo for some s > 0.

Assume that
Under this assumption, I, = 0 if and only if ¢, = 0, and the sequence (I;) is then

observable whenever (¢;) is observed. Given observations €, . .., €,, it is then possible

to estimate the parameter 6y = (wo, g, Bp) € © C (0, 00)% x [0, 00) by

~

_ 7 7 _ 1 ~ 700\ — € ~2
O = argminl, (6), l"(e)_ﬁt%;l&(@)’ ét(ﬁ)—lt{gg—w)%—logat(ﬁ)}, (2.3)

where 79 > 1 is a fixed integer and 62(0) = w + ae? | + o7 (), with a fixed initial
value 52(6). To show the consistency of this modified version of the QMLE, we need
additional assumptions. We would like to deal with situations where the occurrence
of the zeros may be random or/and periodic of period T" € N* (T' = 1 meaning no
periodicity). To this aim, we assume that I; is determined by a realization of a T-
dimensional stationary process, at least for large ¢t. Each date t = (N — 1)T 4+ v

corresponds to a cycle N = N; € Z and a season v = v, € {1,...,T}. More precisely,
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we have N = [t/T], where [-]| denotes the ceiling function.

A3 Let (m4)1ez and (S n)nez be two independent stationary and ergodic processes
defined on some probability space (€2, A, P), respectively valued in R and S := {0, 1}7.
Let Sy = (S(v—1)7+1,-- -, Sv—1yr4r)’. Assume that there exists an almost surely

finite random time ¢y such that, with probability one, I, = S; for all ¢t > t,.

For daily returns there is usually no seasonality in the zero-process, and Figure 1
shows that the frequency of zeros stabilizes after a certain point for the stocks studied
in Section 5.1. For these series, it therefore seems reasonable to assume A3 with 7' =1
and to(w) corresponding to a certain date.

It is important to emphasize that in model (2.1), the sequence I; is given. There-
fore, even when [; is the realization of a stationary process, 7.e. in A3 T = 1 and
I; = Sy(w) for all ¢, conditionally on (I;), the sequence (¢;) is not stationary. Indeed,
it is clear that ¢, and €;,1 can not have the same distribution when I; # I;,1. We will
work with random variables of the form f (I, I;_1,...;n,m_1,...) which, condition-
ally on (1), are not stationary. The following lemma shows that a kind of law of large
numbers can however be applied to such nonstationary sequences under A3. Similar
results appear in Azrak and Mélard (2006), Francq and Gautier (2004), Phillips and

Xu (2006) and Regnard and Zakoian (2010).

Lemma 2.1. Let f(+;-) : {0,1}N x RN — R be a measurable function. Assume
that for t = 1,...,T we have Ef* (Sy,St_1,...;0,M—1,...) < 0o. Then, given any

sequence (1) satisfying A3, we have

- T
! 1
ﬁ;f(fuft—h...;77t777t—1,...)—> T;Ef(St,St_l,...;nt,r]t_l,...) € [~00,0)

almost surely. If the condition Ef* (S, Se_1,...;0M—1,...) < oo is replaced by

Ef=(St,St—1, ;M Mi—1, - - . ) < 00 then the limit belongs to (—oo, o).

Example 2.1 (Trivial application of Lemma 2.1). Let (1) be an independent sequence
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of N(0,1)-distributed random variables, 0 < o(0) < (1), T = 2, and m; = P(S; =
1) =1—P(S =0) and mp = P(S2 = 1) = 1 — P(S, = 0). Given a sequence (1)
satisfying A3, defined the process Xy = o(1;)n,. Reasoning conditionally to (1), the
sequence (X;) is not stationary because the distribution of X; is either N'(0,5%(0)) or

N(0,02(1)). We have however the almost sure convergence

l - 2 1 2 _ 2 1 2 . 2

=D Xi = o {ma () + (1 =m)a*(0)) + 5 {mo(1) + (1 = m)o*(0)} asn — oo.
=1

For proper definition of gn and identifiability of the GARCH parameters, assume
the following assumptions, which are also required for consistency of the QMLE of

stationary GARCH models.
A4 0y = (wy, ap, By) € O C (0,00)? x [0,1) and O is compact.
A5 g < 1foralldeO.
A6 Conditionally on (I;), the sequence (1) is iid, En? =1 and P(n? = 1) # 1.

Remark 2.1 (Interpretation of o;). To facilitate interpretation, suppose that En, =
0, as is generally the case for GARCH processes. Under A6 and (2.2), we have
o2 = Var(e | Fi_1,1; = 1). Thus oy corresponds to the volatility of ¢, when this
return is non-zero. When I; = 0, the variable o; does not have such an interpretation.
Given the observations €y, ..., €,, one can thus interpret o, as the volatility of the
future return €,,; under the scenario that the latter is nonzero. Since I; is taken

as exogenous variable, our model is not sufficient to predict €?. Indeed we have

E (e | Fio1) = 0?P(I; = 1| Fi—1), see Section 5.

Obviously, to be able to estimate the parameter of the volatility process (oy), it
is also necessary to assume that (I;) is well fed in 1s. We even have to assume that
if I, = 1 then I, ; is not always equal to zero, otherwise, in the ARCH(1) case,

L,%(0) = I;(w + ac? n? ;1;_1) would not depend on a. In A3, we thus assume that
AT for some jo € {1,...,T}, P(Sj, =0) # 1 and P(Sj,—1 =0) # 1.
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In general S; is not independent of ffj}, where .ES’" denotes the sigma-field generated
by {Su, nu;u < t}. We however assume that the conditional distribution of S; given

Ff_’} is not degenerated in the following sense.

A8 for jj defined in A7 and a constant 7 > 0, we have E(S;, | .7-"]%21) > T a.s.

Theorem 2.1. Let (I;) be a given bitstream sequence, and (&) a zero-inflated
GARCH(1,1) model satisfying (2.1). Under A1-A8, the estimator defined by (2.3)

satisfies 79\” — By almost surely.

For the asymptotic normality of the QMLE;, it is necessary to assume the following.
A9 6, € é, where (2) denotes the interior of ©.
A10 k= En} < c.
Assumptions A9 and A10 are also required to show the asymptotic normality of the
QMLE of standard stationary GARCH models (see e.g. Theorem 7.2 in Francq and
Zakoian, 2019). Under A5, let 07(0) = > i, B'(w + aef_,_;). Let £,() and 1,,(9) be
defined by substituting o,(6) for 5,(6) in £,(6) and 1,,(6). Note that

RIACII

éé L b0 1 Ty )
020, (0 ..
WQZE(Q;It;[tl)"‘;T]UTh1"")

for some measurable functions £ : © x {0,1}N x RN — R3 and /: © x {0,1}N x RN —

R3 x R3. Let

T
1 ) )
I'=7 :ti:l E(00; St St—1, - -+ 1My Me—1, - - ) (003 Sty Semry 31 M1+ - ),

T
1 .
J :T ZEg(QO; St’St—l, ey ey Me—1,5 - - - )

t=1

Theorem 2.2. Let (I;) be a given bitstream sequence, and (&) a zero-inflated

GARCH(1,1) model satisfying (2.1). Under A1-A10, the estimator defined by (2.3)
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satisfies

—~ .1 - 1 80'2((90>
\/ﬁ@n —90) =J 1%;It (77152 - 1) U_t2 t@@ +op(1)

AEN0O,Y), Y=(k-1)JN (2.4)

~

The matriz X can be consistently estimated by S = (R —1)J71, where

/K\) — Z:L:nro-i-l It%’ j\: l i It~ 1/\ 8&}2(9,1) 85?(?”)7 7/7\1& — — Ef\ .
Zt:ro—l—l Iy n t=ro+1 Uf(en) 00 00 Ut(en)

The derivatives involved in J can be computed recursively by

1 1
053 (6,) ) 953, (0,) . 073(0,)
— fort =2, ... h
06 R e 06
571(0n) 0

in the case 5%(0) = w.

3 Extension to general volatility models and model
checking tests

We now extend Model (2.1) by considering the general zero-inflated volatility model
e =omly, or=0i(0y) = o(e—1, €—2,...;6p), (3.1)

where p € © C R% and o : R® x © — (0,00). Note that this general formula-
tion includes all GARCH(p, ¢) models, as well as numerous volatility models with
asymmetries, such as the Asymmetric Power ARCH model (APARCH) of Ding et al.

(1993). Given observations €y, ...,€, and arbitrary initial values ¢ for ¢t < 0, for
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0 € O let

8}(9) = O'(Etfl, €Et—92,... 61,20,,6\;1, ceey 8)

Define 6, by (2.3) and assume the following.

B1:

B2:

B3:

B4:

B5:

B6:

There exists a finite solution to Model (3.1), which is of the form ¢ =
e(0o; Iy, Iy, .. .;Mey 1, ...) for some function ¢ : R*® — R. Moreover
sup, Fo?* < oo and sup, E¢?*(0) < oo for some s > 0 and all § € O, where

gt(e) - O-(et—la €t—2, .- 9) with ¢ = 2(90; St7 St—h e M =15 - - )

For any real sequence (x;), the function 6 — o(x1,xs,...;6) is continuous on ©
and belongs to (w,oo] for all # € © and for some w > 0. Moreover S;(s?(0) —

2(0)) =0fort =1,...,T iff 0 = 6.

There exist a random variable K measurable with respect to {€,,u < 0} and a

constant p € (0, 1) such that supyeg |0:(0) — 3:(0)] < Kp'.

There exist no non-zero A € R% such that St)\’% =0as. fort=1,...,T.
The function 6 — o(xq, 2, ... ;) has continuous second-order derivatives, and
do (0 0G,(0
sup ou(6) _ o )H < Kpt
9evioo) || 00 a0

where K and p are as in B3 and V/(6) is some neighbourhood of 6.

There exists a neighborhood V' (6y) of 6y such that, for ¢t = 1,..., T, the following

variables have finite expectation:

4

,  sup
eV (6o)

2

,  sup
eV (6o)

1 0g(0) !

Gt(e) o

1 82§t<9)
(0) 9000

Ct(eo)
§t(9)

sup
0eV (6o)

For Model (2.1), we have seen that B1 is satisfied under A1, and the first part of

B2 is satisfied under A4 and A6. The identifiability condition in B2 and B4 are
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entailed by A7-A8. Assumption A5 entails B3 and B5, as well as the existence of
0:(0) and its derivatives for all § € ©. Relations (A.8) and (A.10) of the proof of

Theorem 2.2 show that B6 also holds true under the assumptions of Theorem 2.2.

Theorem 3.1. Let (1) be a given bitstream sequence, and (€;) a zero-inflated volatility
model satisfying (3.1). Under B1-B3, A2, A3 and A6, we have ﬁn — 0y a.s. Assume

in addition B4-B6 and A9-A10, then the convergence in distribution (2.4) holds true.

A model of the form (3.1) of particular interest is

€& = Utﬁt[t, 0,52 = wp + Z Tioﬂet,izo + 0406371 + 5003717 (3-2)
i=1

with Y7, 70 > —wp and the same constraints and notations as for (2.1). If 7o > 0
then zero returns tend to increase the volatility, as could be expected when zero
returns reflect liquidity issues, but we do not impose this sign constraint a priori. It
is clear that, for identifiability of the 7; coefficients, it is necessary to assume that (1)
is well fed in zeros and ones. There exist less trivial reasons for non-identifiability of
the parameters. For example, if P (¢, =1 |1 =0)=1land P(,=0|¢_1=1)=1
then all the pairs (791, 792) such that 71 + 792 is fixed are equivalent. We thus reinforce

A7 and A8 by assuming that

A8 for jo € {1,...,T} and 7 > 0, we have E(Sj,_; | ]-"Jil_l) €[r,1—r7]as. for
1=0,1,...,7V 1.
Note that, by convention, Model (3.2) with » = 0 corresponds to (2.1). In this case,
A8* reduces to the conditions E(S, | F>",) € (0,1) and E(S;,_, | F>",) € (0,1)

Jo—1 Jjo—2

a.s., which is an alternative to A7-AS8.

Corollary 3.1. Let é\n be the O0-adjusted QMLE of the parameter 6, =
(wo, @0, Bo, T10s - - - Tro) of Model (3.2). Under A1-A6, A8*, with obvious changes

in A4, in particular assuming
0D {(w,a,8,71,...,7) ER?F":w>0,a>0,6€0,1),>_, 7 +w>0},
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we have é\n — 0y a.s. Assume in addition A9-A10, then the convergence in distribu-

tion (2.4) holds true.

It is common to assess the adequacy of a time series model by testing the whiteness
of the residuals, plotting their empirical (partial) autocorrelations of using formal
portmanteau tests, see the monograph by Li (2004). To test the goodness-of-fit
of volatility models, Li and Mak (1994) proposed portmanteau tests based on the
autocovariances of the squares of the residuals. The asymptotic distribution of these
tests has been studied in particular by Berkes et al. (2003a) for the standard GARCH
models, Carbon and Francq (2011) for APARCH models, Francq et al. (2018) for
Log-GARCH and EGARCH models.

First note that 7; = 0 when I, = 0, so that 73; should only be a good proxy of
when I, = 1. Let ny = Z?:ro o1 Iy and ty, ... t,, the increasing subsequence of the

times ¢t € {ro+ 1,...,n} such that I, = 1. For fixed integers h < n; and m < nq, let

~ ~9 ~ ~ ~ N/
= — g St:5t, s 5, =1, — 1, T = (T, ) .
i=h+1

We will determine the asymptotic distribution of the vector 7,, of autocovariances of

the squares residuals under the null hypothesis
Hyj : the process (€;) satisfies (3.1).

Define the m x dy matrix whose h-th row is

~ - dlog 52 (0,
K,, Z 51, h%. (3.3)
i=h+1

A random variable of the form An? , + 1/ log o?(60)/960 is F,_i-measurable, but in
general it is not F;_;_j-measurable. In particular, it is shown in appendix that the

following assumption is satisfied under the assumptions of Corollary 3.1.
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B7: If A7, + 1/0logc?(6y)/00 =0 a.s. for i > 1 and t > 1 then A = 0.

Let I,, the identity matrix of size m and p; = T! Zthl P(S; = 1) the asymptotic

proportion of 1’s in the bitstream sequence, which can be estimated by p; = n;/n.

Theorem 3.2. Under Hy, the assumptions of Theorem 3.1 and BT we have

N1~ d

T, :=m7r, D77, = X2

~

where D = (& — 1)2L,, — 2(7 — VP K J 'K + (7 — D)pi K, J K.

It can be seen that an alternative consistent estimator of D is the empirical vari-

ance of Ty,..., Ty, , where

The portmanteau test of Li and Mak (1994) consists in rejecting Hy at the asymptotic
level o € (0,1) if {T;, > x2,(1 — a)}, where x2,(a) is the a-quantile of the 2,

distribution.

4 Simulations

To study the finite sample properties of the 0-adjusted QMLE, we undertake a set of

Monte Carlo simulations. In the simulations the GARCH specifications are nested in

€ = O-tntlta e ~ Zld(O, 1)7 t= 17 2, o, N, (41)
o7 = wo+ ey + Booiy + Tolie, =0}, (4.2)
(WO,QQ,BQ,T()) = (02,01,08,10), (43)

where equation (4.2) is a particular case of model (3.2) for which the 0-adjusted QMLE

is studied in Corollary 3.1. The parameter values correspond (approximately) to the
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median values of the estimates in Table 3. The zero-probability mo; = Pr(I; = 0) is

governed by one of the following DGPs:

DGP 1: mor = 0 for all ¢.

0.5—(t—1)-0.49/(n-0.7) ift<n-0.7
DGP 2: Tor =
0.05 ift>n-07

DGP 3: mor = 0.1 if ¢ is odd and my; = 0.4 if ¢ is pair.

This means {/;} is stationary in DGP 1, but not in DGPs 2 and 3. In DGP 2 the
zero-probability 7y, is downwards trending in a way that is characteristic among the
daily returns of Section 5.1, see Figure 1. For ¢ = 1 the probability is mo; = 0.5,
and then it declines until ¢ = n - 0.7, i.e. at 70% of the sample, where mp; = 0.05.
Thereafter, my; remains constant and equal to 0.05. This is in line with A3. In DGP
3 the zero-probability is periodic — as is common in intraday financial data, and varies
between my; = 0.1 and 7y, = 0.4 as in our illustration in Section 5.2.

The results for the GARCH(1,1) model are contained in the upper part of Table
1. For comparison, we include the results of the Standard QMLE in addition to
the 0-adjusted QMLE. Note that in DGP 1 the two QMLEs — and therefore also
their results — are identical. When n = 10000, the average finite sample error is
0.004 or less in absolute value for the 0-adjusted QMLE. For the Standard QMLE,
by contrast, the finite sample error ranges from 0.02 to 0.13 (in absolute value) in
DGP 2, and from 0.01 to 0.056 (in absolute value) in DGP 3. This can be substantial
in empirical applications. The asymptotic standard errors of the 0-adjusted QMLE
are contained in the columns labelled ase(.), see the supplemental appendix for their
computation. The values correspond well to their empirical counterparts — contained
in the columns labelled se(.), since they differ a maximum of 0.001 (in absolute value)
across the DGPs. When n = 3000, the 0-adjusted QMLE also produces substantially

less biased estimates than the ordinary QMLE, and the empirical standard errors
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correspond reasonably well to their asymptotic counterparts. The only exception is
B in DGP 3, where the Standard QMLE is slightly less biased.

The results for the GARCH(1,1) model with the lagged zero-indicator as covariate
are contained in the lower part of Table 1. Note that simulations under DGP 1 is
not possible due to exact colinearity. Qualitatively, the simulation results are similar
to those of the plain GARCH(1,1). When n = 10000, the average finite sample bias
is low in absolute value for the 0-adjusted QMLE (0.006 or less), whereas it is high
for the Standard QMLE (0.010 to about 0.504 in absolute value). The largest bias
is for 79 in DGP 2. The empirical standard errors of the 0-adjusted QMLE again
correspond quite well to the asymptotic ones, since the bias is always 0.002 or less
in absolute value. When n = 3000, the average finite sample bias is 0.016 or lower
in absolute value for the 0-adjusted QMLE, and the associated discrepancy between
the empirical standard errors and the asymptotic ones are never larger than 0.009
in absolute value. In other words, in these experiments the finite sample properties
of the 0-adjusted QMLE are also quite good. Similarly, the biases of the Standard
QMLE are again quite large, since they range from 0.011 to about 0.495 in absolute

value. Also here is the largest bias for 7.

5 Empirical illustrations

Standard estimators of volatility, e.g. the Standard QMLE, provide estimates of the
conditional variance. The volatility o2 in our model, by contrast, is not at the same
scale-level. To facilitate comparison, the conditional variance representation of our

model is therefore obtained as

E(]|Fio1) = o E(Ln} | Fir) = o7, (5.1)
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where m; = Pr(l; = 1|F;—1), recall Remark 2.1. In other words, the conditional
variance representation can be written as a GARCH with time-varying parameters.
In particular, in the case of a GARCH(1,1) with the lagged 0-indicator as covariate,

the conditional variance representation is

2 _ 2 2
O 0adj = Wot + Qor€;_1 + 50t0t—1,0adj + Totl{e, =0}, (5.2)

where

Ut

2 2
Otoad = T1t0;,  Wor = Tuwo, Qor = T, Por = Bo, 7ot = m1e7o-  (5.3)

T1,t—1

A higher value on the zero-probability mo; = 1 — m1; thus implies a lower “volatility-
level” wy, a lower “sensitivity” ag; to non-zero price increments in the previous period,
a lower impact fy; from the conditional variance (i.e. Jf_LOadj) in the previous period,
and a lower impact 7 from a zero-return in the previous period. Note also that,

when the change in 7y, from ¢ — 1 to ¢ is sufficiently small, then Sy, ~ .

5.1 Daily returns at the NYSE

We revisit a subset of the NYSE stocks studied in Sucarrat and Grgnneberg (2020).
The subset of stocks, 24 in total, together with descriptive statistics of their daily
returns, are contained in Table 2. The daily returns are computed as ¢ = 100 -
(InS; —InS;_1), where S; is the closing price of the stock in question at day t. The
datasource is Bloomberg. To be included in the subset, the NYSE stock must satisfy
four criteria. First, at least n = 1000 daily price observations must be available
over the period 3 January 2007 — 4 February 2019. Second, the proportion of zero
returns must be greater than 10% over the available sample. Third, a moving average
(n = 500) estimate of the zero-probability should clearly indicate that the zero-process

is nonstationary. Graphs of the moving averages are contained in Figure 1. One of
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our anonymous reviewers suggested that a trend-like evolution in the zero-probability
may be due to a corresponding trend-like evolution in the price level: The higher
(lower) the nominal price, the lower (higher) the zero-probability due to discrete
price changes. Plots of the prices (see the supplemental appendix) suggest such an
effect may indeed be present in several of the stocks. Finally, the fourth criterion is
that the graphs suggest assumption A3 holds.

GARCH estimates of the daily returns obtained with the 0-adjusted QMLE are
contained in Table 3. As noted above, the estimates are not directly comparable to
standard GARCH estimates — recall (5.1) and (5.2), and must therefore be adjusted
before comparison. As an example, suppose the estimate on the ARCH coefficient «
is 0.375 (as for the CPS stock) and that the zero-probability at t is mo; = 0.3. Then
the estimate of the time-varying ARCH-coefficient «; in the conditional variance
representation is obtained as a; = ma@ = (1 — mp)a = 0.263. In periods where
the zero-probability is 0, the estimates can be interpreted as those of the conditional
variance representation. Figure 2 contains estimates of coefficients in the conditional
variance representation for different values on the zero-probability my,. The vertical
lines in the plots are 95% Confidence Intervals (Cls) of the estimates. When my; = 0,
nine of the estimates of oy lie in the 0.1 to 0.4 range. This is markedly higher than the
typical estimate of a stationary and liquid index or stock, whose estimate is typically
below 0.1. This suggests the volatility of this type of stocks can be much more
sensitive to price changes at t — 1 (when 7y, is zero or close to zero). But more studies
are needed before firm conclusions of general nature can be made. As 7y increases
to 0.6, almost all estimates go below 0.1. The estimates of ; are obtained under the
assumption that my, = mp¢—1. This is why they do not change with 7, in the plots.
Four estimates are lower than 0.7. For liquid indices and stocks, they are typically
above 0.8. All-in-all, therefore, the plots do not suggest the estimates of /; tend to

be very different from those of liquid indices and stocks. The estimates of 7; provide
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an indication of whether a zero in the previous period tends to increase (7 > 0) or
decrease (7 < 0) volatility in the next period. In 9 out of 24 stocks the 95% ClIs do
not contain the value 0 (see also Table 3), so the hypothesis of an effect is supported
in these cases (at 5%). For one of these stocks the effect is estimated to be negative,
whereas for the other 8 it is estimated to be positive. Finally, the portmanteau test
in the final column suggest there is room for improvement (at the 10% significance
level) in two of the stocks.

Let 04044 denote the estimated conditional standard deviation of our 0-adjusted
QMLE, and let o; denote the estimated conditional standard deviation of the Stand-
ard QMLE. To investigate the properties of their discrepancy, we study the distance
Ty = Ot0adj — O¢- L0 obtain an estimate of oy o445, an estimate of 7y, is needed. To this
end, we device a nonstationary smoothing filter based on the first order Autoregress-
ive Conditional Logit (ACL) of Russell and Engle (2005). Specifically, the smoothing
filter is specified as

1 Iy — 7y

= h: W+_ +h_’ wy = ; :001, 54
1+exp(—ht) ¢ ¢ - -t ! 7T1t(1_7rlt) ¢ ( )

T1¢

where ¢ > 0 controls the smoothness: The closer to 0, the smoother. Instead of
fixing ¢ to 0.01 (as we do), one could instead consider estimating it by, say, maximum
likelihood. However, this leads to considerably more erratic paths of 71, for our stocks.
Plots of (5.4) against the moving averages from Figure 1, and GARCH estimates of
the Standard QMLE, are both contained in the supplemental appendix. Table 4
reports the properties of x;. The first column contains the results of a test of whether
E(x;) # 0. The test is implemented via the regression z; = p + u; with Newey and
West (1987) standard errors, Hy : p = 0 and Hy : p # 0. In all but four cases
is the null rejected at 5%. So the results provide comprehensive support in favour
of the alternative hypothesis that the volatility paths differ significantly. In all of

the significant cases, the average of x; is negative. So the Standard QMLE tends to
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provide volatility estimates that are too high, on average, for the stocks we consider.
The next two columns contain the maximum and minimum values of x;, respectively.
These provide an indication of how the conditional volatilities differ on a day-to-day
basis. As is clear, they show that the discrepancy can be huge, since they range from
—20.9 (the lowest minimum) to 4.3 (the highest maximum). This can have important

implications for risk and hedging purposes.

5.2 Intraday 5-minute USD/EUR returns

Intraday financial returns are frequently characterised by a periodic nonstationary
zero-process, see e.g. Kolokolov et al. (2020). An example is the intraday 5-minute
USD/EUR exchange rate return. Let S; denote the exchange rate at the end of a
5-minute interval, and let r; denote the log-return in basis points from the end of
one interval to the end of the next: ¢ = 1002 - (In.S; — InS;_;). The left graph in
Figure 3 contains the returns from 2 January 2017 to 31 December 2018, a total of
n = 147 347 returns. The source of the data is Forexite. Only trading days are
included in the sample, and a typical trading day contains 24 x 12 = 288 returns.
The first return of a trading day covers the interval from 00:00 CET to 00:05 CET,
whereas the last covers 23:55 CET to 00:00 CET. The upper part of Table 5 contains
descriptive statistics of the returns. As usual, the returns are characterised by excess
kurtosis relative to the normal distribution, and 1st. order autocorrelation in €?. The
proportion of zero-returns over the sample is 20.3%, and the right graph of Figure 3
depicts how the zero-proportion varies intradaily across the 24-hour trading day. In
the beginning of the day, only the Asian markets are active, so the zero-probability
is higher. As European markets open, activity increases and so the zero-probability
falls. The zero-probability remains low until the close of the European markets, and
then gradually increases again as only the American markets remain active. The

zero-probability reaches its peak at the close of the American markets.
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The middle part of Table 5 contains the GARCH estimates. In both the Standard
and 0-adjusted cases, 7 is estimated to be negative, and the 95% CIs for 7 do not
contain the value 0. In other words, the results suggest a zero-return in the previous
period tends to reduce volatility in the next period at the 5-minute frequency for
this exchange rate during the sample period of the data at the trading platform in
question. To obtain estimates of m; and my, we use a centred moving average of
length 12 — i.e. one hour of trading — made up of the intradaily zero-proportions of
the 5-minute intervals. The zero-proportions over the trading day, together with the
estimate 7o, are both depicted in the right graph of Figure 3. Note that the periodic
cycle is 288. Figure 4 contains the estimates of the time-varying parameters implied
by (5.2) together with the estimates of the Standard QMLE. As is clear, the Standard
estimate of w is biased downwards throughout the day, and it is also outside the 95%
CI throughout the day. The Standard estimate of « is biased upwards throughout
the day, and most of the time outside the 95% CI. The intraday evolution of the
0-adjusted estimate a; is similar to that of &;: It is at its highest in the middle of the
day when trading is at its highest, and at its lowest in the beginning and end of the
day when trading is at its thinnest. The 0-adjusted estimate of 3; oscillates about the
Standard estimate of 0.857, and only in a couple of instances is the Standard estimate
outside the 95% CI. The estimates of 7 are both negative. The Standard estimate is
biased upwards, but it is always within the 95% CI of the zero-adjusted estimate. So
they are not significantly different from each other at 5%.

One of our anonymous reviewers asked us to compare the estimates of the 0-
adjusted GARCH, which is of observed return, with those of a GARCH model of the
efficient return process as defined in Bandi et al. (2020). There, zeros occur when the
efficient return process is unobserved. To this end, we derive a modified version of the
moment-based estimator of Kristensen and Linton (2006), see supplemental appendix

D for the details. The estimates are also contained in the middle part of Table 5.
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Note that an estimate of 7 is not available for this estimator. Compared with the
0-adjusted estimates depicted in Figure 4, the w and «a estimates are lower, whereas
the estimate of [ is higher. The o and [ estimates of 0.019 and 0.958, respectively,
are particularly different, since they are always substantially outside the 95% Cls of
the 0-adjusted estimates.

To investigate to what extent the Standard and 0-adjusted QMLEs produce dif-
ferent volatility estimates, we study the distance x; = 04 gqqj — 0¢, just as in Section
5.1 above. The lower part of Table 5 reports the properties of z;. Again the test of
whether F(z;) = 0 or not is implemented via the regression x; = p + u; with Newey
and West (1987) standard errors. The average of x; is —0.037, and a two-sided test
with 0 as null is rejected at all the usual significance levels. Accordingly, the results
suggests the Standard QMLE produces conditional volatilities that are too high, on
average. Unconditionally, the value of —0.037 is not large. Conditionally, the range
between the maximum and minimum values of x; suggests the discrepancy can be
large on a day-to-day basis. Figure 5 contains the graph of x;. Most of the time z;
lies between 0.3 and —1.0. Recalling that the 5-minute returns are expressed in basis

points, these differences do not appear to be large in economic terms.

6 Conclusions

Financial time series are frequently nonstationary due to a nonstationary zero-process.
In these situations, standard estimators are not consistent. We propose a GARCH
model that accommodates a nonstationary zero-process, and derive a 0-adjusted
QMLE. The nonstationary zero-process can either be trend-like in nature, as is com-
mon in daily data, or periodic, as is common in intraday data, or both. The volatility
specification in our model can contain higher order ARCH and GARCH terms, asym-
metry terms (“leverage”) and past zero-indicators as covariates. The latter is of special

interest in the current context, since it enables us to study the effect of a zero return
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on volatility in the subsequent period. Consistency and asymptotic normality of the
0-adjusted QMLE is proved under mild assumptions. Moreover, under stationarity of
the zero-process the estimator will still be CAN, so there is no harm in applying our
estimator under stationarity. Finite sample simulations verify that the estimator has
good finite sample properties, and confirm that the Standard QMLE is biased when
the zero-process is nonstationary. Two empirical studies illustrate our results. One
is on 24 daily stock returns at NYSE, and one is on intraday 5-minute USD/EUR
exchange rate returns. In both studies we find that the time-varying zero-probability
affects the dynamics in substantial ways, that the fitted volatilities can differ signi-
ficantly, and that a zero-return in the previous day can have a substantial effect on
volatility in the subsequent day. Interestingly, however, we do not always find that
the effect is positive.

While a nonstationary zero-process is frequent in financial time-series, only re-
cently have researchers directed their attention towards this characteristic. Several
lines of future research suggest themselves. First, the extension to more general volat-
ility models outlined in Section 3 accommodates models with asymmetry (“leverage”).
An interesting line of further research is to study how the evolution of the zero-
probability impacts on the effect of asymmetry. Second, it is well-known that finan-
cial time series — both daily and intradaily — can be nonstationary due to changes
in the level of the unconditional volatility. How frequent are such changes due to
a nonstationary zero-process? To the best of our knowledge, this has not been in-
vestigated before. Third, to obtain the conditional variance representation of our
model, estimates of the time-varying probabilities of a nonstationary zero-process is
required. This is challenging. More research is needed to ascertain what the most
suitable approach is, and under which assumptions. Fourth, as noted by by one of our
anonymous reviewers, the zero-process may not be the only source of nonstationarity.

In addition, the volatility intercept (w), and the ARCH and GARCH parameters, may
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also be time-varying. To the best of our knowledge, nobody has developed methods
for situations where both types of nonstationarities are present. Finally, knowledge
about the relation between observed zeros and the underlying efficient return process

is limited, so more research on this is needed.
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Table 1: Simulations of the Standard and 0-adjusted QMLEs (Section 4)

n  QMLE DGP m(®) se(@) ase(®) m(a) se(@) ase(a) m(B) se(B) ase(B) m(T) se(T) ase(T)

GARCH(1,1):

10000 Stand. 1 0.204 0.027 0.027 0.100 0.009 0.009 0.798 0.019 0.019

10000 Stand. 2 0.070 0.019 - 0.080 0.012 - 0.870 0.024 -

10000 Stand. 3 0.144 0.024 -~ 0.070 0.009 — 0.810 0.026 —

10000 0O-adj. 1 0.204 0.027 0.027 0.100 0.009 0.009 0.798 0.019 0.019

10000 0O-adj. 2 0.201 0.028 0.029 0.100 0.010 0.011 0.799 0.022 0.023

10000 0O-adj. 3 0.203 0.035 0.034 0.100 0.012 0.012 0.798 0.027 0.027

3000 Stand. 1 0.209 0.052 0.049 0.100 0.016 0.016 0.795 0.036 0.035

3000 Stand. 2 0.074 0.038 - 0.080 0.021 - 0.868 0.045 -

3000 Stand. 3 0.151 0.061 - 0.069 0.016 —  0.805 0.063 —

3000 O-adj. 1 0.209 0.052 0.049 0.100 0.016 0.016 0.795 0.036 0.035

3000 O-adj. 2 0.214 0.060 0.053 0.101 0.019 0.020 0.791 0.046 0.042

3000 O-adj. 3 0.218 0.077 0.061 0.102 0.022 0.022 0.787 0.059 0.049

GARCH(1,1) w/covariate:

10000 Stand. 2 0.296 0.046 - 0.090 0.009 - 0.751 0.027 - 0.496 0.081 -
10000 Stand. 3 0.163 0.046 - 0.077 0.009 - 0.783 0.026 — 0.868 0.086 —
10000 0-adj. 2 0.205 0.029 0.030 0.100 0.010 0.010 0.798 0.018 0.018 1.006 0.097 0.098
10000 0-adj. 3 0.205 0.053 0.051 0.100 0.011 0.011 0.799 0.022 0.022 1.004 0.099 0.097
3000 Stand. 2 0.308 0.087 - 0.089 0.017 - 0.747 0.051 - 0.505 0.150 -
3000 Stand. 3 0.182 0.111 - 0.077 0.016 — 0.774 0.058 — 0.879 0.163 —
3000 O-adj. 2 0.209 0.056 0.054 0.099 0.018 0.018 0.798 0.033 0.033 1.005 0.178 0.179

3000 0-adj. 3 0.216 0.101 0.092 0.100 0.020 0.020 0.795 0.041 0.039 1.010 0.186 0.178

m(.), average of estimate. se(.), empirical standard error (computed as the sample standard devi-
ation of estimates). ase(.), asymptotic standard error. 1000 replications with sample size n in each

replication.
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Table 2: Descriptive statistics of NYSE stock returns (Section 5.1)

Ticker Sample period n 52 s? ARCH P-value Os To

ARR 2007-12-03 to 2019-02-04 2812 1.93 17.54  70.35 0.00 352 0.13
BKT 2007-01-03 to 2019-02-04 3043 0.47  25.09  53.91 0.00 439 0.14
CO 2007-01-25 to 2019-02-04 3028 9.21  159.37 119.91 0.00 756 0.25
CPS 2010-05-25 to 2019-02-04 2189 3.35  31.33 2.65 0.10 298 0.14
CUBI 2012-02-21 to 2019-02-04 1750 4.51  29.59 0.01 0.92 223 0.13
DOOR  2009-07-24 to 2019-02-04 2399 5.03  84.62 0.06 0.80 831 0.35
EROS  2009-12-18 to 2019-02-04 2296 12.32 32.05 8.44 0.00 999 0.44
ESTE  2007-01-03 to 2019-02-04 3043 15.76  9.98 66.93 0.00 318 0.10
EVF 2007-01-03 to 2019-02-04 3043 1.30  24.12  79.96 0.00 310 0.10
FF 2008-07-14 to 2019-02-04 2659 6.34  13.97  80.44 0.00 481 0.18
FSB 2013-10-04 to 2019-02-04 1342 430 31.21 3.58 0.06 379  0.28
FTS 2007-01-05 to 2019-02-04 3041 1.79  22.08 0.29 0.59 1345 0.44
GNK 2014-07-15 to 2019-02-04 1148 23.28 16.00  30.78 0.00 126 0.11
GPRK  2007-08-29 to 2019-02-04 2878 9.70  44.94 2.08 0.15 1516 0.53
GTT 2007-01-03 to 2019-02-04 3043 22.96 33.03  18.22 0.00 965 0.32
ICL 2007-01-03 to 2019-02-04 3043 7.08  18.28 9.55 0.00 717 0.24
NOMD 2014-09-09 to 2019-02-04 1109 5.22  15.64 223.04 0.00 202 0.18
NVGS  2007-01-09 to 2019-02-04 3039 9.65 595.44  0.00 0.99 1629 0.54
0SB 2007-01-03 to 2019-02-04 3043 15.12 157.31 751.14 0.00 474 0.16
PARR  2012-09-05 to 2019-02-04 1613 17.90 168.14 338.76 0.00 184  0.11
TARO  2007-01-03 to 2019-02-04 3043 3.95 18.47  12.20 0.00 340 0.11
TIER 2014-02-27 to 2019-02-04 1243 6.57 155.46  0.04 0.84 343 0.28
TU 2007-01-16 to 2019-02-04 3035 1.76  28.33 0.25 0.62 1263 0.42
WCN 2007-01-04 to 2019-02-04 3042 3.34  24.29 7.93 0.00 368 0.12

n, the number of observations before lagging and differencing. s2, sample variance of return. s

4

)

sample kurtosis of return. ARCH, Ljung and Box (1979) test statistic for first-order autocorrela-

tion in €7, with P-value denoting the associated p-value. Os, the number of zero returns. 7o, the

proportion of zero returns.
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Table 3: GARCH estimates (0-adjusted QMLE) of the daily NYSE returns
(Section 5.1)

Ticker w a B T 95% CI for 7 x2(2)
(s.e.) (s.e.) (s.e.) (s-e.) Lower Upper (p—wal)

ARR 0.099 0.274 0.777 —0.099 -0.099 -0.045 3.784
(0.0273) (0.0848) (0.0366) (0.0274) (0.1508)

BKT 0.009 0.105 0.881 0.016 -0.009 0.043 1.240
(0.0057) (0.0285) (0.0359) (0.0134) (0.5379)

CcO 3.127 0.259 0.473 —0.885 -3.127 1.609 1.936
(1.2138) (0.1240) (0.1648) (1.2726) (0.3798)

CPS 1.871 0.375 0.217 1.702 -1.034 4.439 0.054
(0.9568) (0.1646) (0.2945) (1.3963) (0.9735)

CUBI 0.278 0.038 0.872 2.813 -0.278 6.948 0.403
(0.2201) (0.0289) (0.0816) (2.1100) (0.8174)

DOOR 0.518 0.059 0.746 10.000 0.036 19.964 1.093
(0.3027) (0.0566) (0.1132) (5.0839) (0.5790)

EROS 0.308 0.089 0.880 9.306 4.057 14.556 1.452
(0.1425) (0.0229) (0.0251) (2.6782) (0.4838)

ESTE 0.250 0.064 0.928 0.449 -0.250 1.421 4.388
(0.1766) (0.0319) (0.0353) (0.4955) (0.1115)

EVF 0.022 0.166 0.843 —0.013 -0.022 0.057 0.444
(0.0101) (0.0343) (0.0287) (0.0354) (0.8009)

FF 1.017 0.206 0.673 2.954 -0.009 5.917 0.450
(0.4266) (0.0815) (0.1034) (1.5116) (0.7986)

FSB 0.166 0.056 0.903 1.390 -0.166 2.999 0.002
(0.1410) (0.0266) (0.0499) (0.8207) (0.9988)

FTS 0.015 0.123 0.862 0.663 0.298 1.027 0.556
(0.0151) (0.0287) (0.0322) (0.1858) (0.7574)

GNK 0.047 0.042 0.960 0.190 -0.047 0.597 9.899
(0.0711) (0.0136) (0.0111) (0.2076) (0.0071)

GPRK 1.066 0.088 0.799 10.000 1.119 18.881 2.980
(0.6481) (0.0442) (0.0945) (4.5313) (0.2254)

GTT 0.025 0.057 0.940 3.648 1.125 6.171 1.570
(0.0513) (0.0165) (0.0179) (1.2871) (0.4561)

ICL 0.000 0.042 0.957 0.453 0.091 0.816 0.975
(0.0172) (0.0110) (0.0121) (0.1849) (0.6142)

NOMD 0.126 0.065 0.897 1.971 -0.126 4.077 6.256
(0.1259) (0.0364) (0.0591) (1.0741) (0.0438)

NVGS 0.696 0.048 0.849 10.000 -0.696 27.517 1.830
(0.9002) (0.0450) (0.1334) (8.9374) (0.4005)

OSB 0.019 0.055 0.948 0.445 0.067 0.823 1.791
(0.0280) (0.0114) (0.0113) (0.1929) (0.4084)

PARR 0.068 0.027 0.963 0.085 -0.068 0.567 0.060
(0.0429) (0.0100) (0.0135) (0.2461) (0.9705)

TARO 1.123 0.360 0.400 5.048 1.778 8.317 0.808
(0.3247) (0.0916) (0.1146) (1.6681) (0.6676)

TIER 0.014 0.041 0.947 1.515 0.035 2.994 1.354
(0.0362) (0.0170) (0.0208) (0.7548) (0.5082)

TU 0.122 0.122 0.764 2.593 0.379 4.808 0.256
(0.0715) (0.0373) (0.0909) (1.1298) (0.8798)

WCN 0.012 0.031 0.963 0.295 -0.012 0.602 0.217
(0.0112) (0.0122) (0.0135) (0.1564) (0.8973)

0-adjusted QMLEs of 0?7 = w + ae?_ | + Bo? , + Tl{e,_,—0}- s-.e., standard error of
estimate. Upper bound of 95% CI for 7 computed as 7+ s.e.(T) - 1.96, where s.e.(7) is the
standard error of 7. Lower bound computed as max{—o, L}, where L = 7 — s.e.(7) - 1.96.
To avoid explosive volatility-paths, the upper bound 7 < 10 is imposed during estimation.
x%(2), the results from the portmanteau test of Section 3 of autocorrelation up to and

including order 2 of n? (p-value in parentheses).
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Table 4: Properties of z; = 0 pqq; — 04 for NYSE returns (Section 5.1)

Ticker Avg P-value Max x; Min x4
ARR 0.005 0.434 0.394 -1.492
BKT -0.001 0.220 0.025 -0.085
CcO -0.199 0.000 0.675 -20.862
CPS -0.058 0.000 0.584 -1.193
CUBI -0.266 0.000 0.552 -2.773
DOOR -0.171 0.000 1.818 -3.792
EROS -0.865 0.000 4.273 -19.983
ESTE -0.064 0.000 0.434 -1.493
EVF 0.000 0.567 0.031 -0.065
FF -0.132 0.000 1.262 -3.774
FSB -0.582 0.000 0.560 -6.146
FTS -0.149 0.000 0.445 -1.218
GNK -0.302 0.000 0.023 -1.612
GPRK -0.474 0.000 3.518 -16.605
GTT -0.261 0.000 0.864 -6.134
ICL -0.150 0.000 0.730 -1.497
NOMD -0.390 0.000 0.837 -7.627
NVGS -0.633 0.000 2.660 -20.711
OSB -0.030 0.051 2.103 -3.251
PARR -0.153 0.021 2.758 -13.040
TARO -0.012 0.022 0.571 -1.106
TIER -0.638 0.000 0.490 -5.629
TU -0.065 0.000 0.918 -1.562
WCN -0.103 0.000 0.234 -1.462

Avg x;, average of x;. P-value, the p-value of a two sided test with E(x;) = 0 as null.

The test is implemented via the regression x; = p + u; with Newey and West (1987)
standard errors, Hp : p =0 and Hy4 : p # 0.
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Table 5: Intraday 5-minute USD /EUR returns (Section 5.2)

Descriptive statistics:

~

Sample s ?RCI;]I 0Os o
p—va
2017-01-02 to 2018-12-31 147 347 7.84 89.1 [101(?0.01] 29886 0.203
GARCH estimates:
Estimator W a ] T 95% CI for T x2(2)
(s.e.) (s.e.) (s.e.) (s.e.) Lower Upper [p—val]
Standard 0.201 0.142 0.857 —0.161 —0.201 —0.078
(0.027) (0.008) (0.007) (0.042)
0-adjusted 0.429 0.143 0.855 —0.305 —0.429 —0.158 4.102
(0.047) (0.010) (0.008) (0.075) [0.129]
Moment 0.231 0.019 0.958
Properties of x¢ = 0¢ gaqj — 0+
Avg x4 P-value Max zy Min z;
—0.034 0.000 0.333 —10.143

n, number of returns. s2

and Box (1979) test statistic for first-order autocorrelation in €? (p-value in square brackets). 0s,
number of zeros. Ty, proportion of zeros. s.e., standard error of estimate. 95% Cls computed as
7+ s.e.(7) - 1.96, where s.e.(7) is the standard error of 7. Lower bound computed as max{—o, L},
where L = 7 —s.e.(7) - 1.96. x2(2), the result of the portmanteau test of Section 3 of autocorrelation
up to and including order 2 of n? (p-value in square brackets). Moment, the modified moment-based
estimator of Kristensen and Linton (2006), see the supplemental appendix. Avg z;, average of x;.

P-value, the p-value of a two sided test with E(x;) = 0 as null (implemented via the regression

, sample variance of return. s

xt = pt + uy with Newey and West (1987) standard errors).
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Figure 1: Moving Average (MA) estimates of the daily zero-probability my, for a
subset of NYSE stocks (see Section 5). The moving average is computed as 7p; =
5007109 (1 — 1), t = 250,...,n — 250. Datasource: Bloomberg
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Figure 2: Estimates of the time-varying GARCH coefficients oy, 8; and 7, for different
values of the O-probability my, together with 95% Confidence Intervals (CIs) (see
Section 5.1). Datasource: Bloomberg
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2 January 2017 - 31 December 2018:

0-proportions of intraday 5-minute USD/EUR returns
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Figure 3: Intraday 5-minute USD /EUR log-returns in basis points (left graph) from 2
January 2017 to 31 December 2018 (n = 147 347), and the proportion of zero-returns
in each intraday 5-minute interval (right graph). The smoother is a centred moving
average of length 12 (see Section 5.2). Datasource: Forexite
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Figure 4: The time-varying intraday evolution of the GARCH coefficients in the
conditional variance representation of USD/EUR 5-minute returns (see Section 5.2).

Datasource: Forexite
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Figure 5: The difference ;0,45 — 0y for intraday USD/EUR 5-minute returns (see

Section 5.2). Datasource: Forexite
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