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Abstract

We explain how to use the composite likelihood function to ameliorate estimation,
computational, and inferential problems in dynamic stochastic general equilibrium mod-
els. We combine the information present in different models or data sets to estimate
the parameters common across models. We provide intuition for why the methodology
works and alternative interpretations of the estimators we construct and of the statistics
we employ. We present a number of situations where the methodology has the poten-
tial to resolve well-known problems and to provide a justification for existing practices
that pool different estimates. In each case, we provide an example to illustrate how the
approach works and its properties in practice.
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1 Introduction

In macroeconomics it is standard to construct dynamic stochastic general equilibrium

(DSGE) models and use them for policy purposes. Until a decade ago, most analyses

were performed using parameters formally or informally calibrated. Nowadays, it is more

common to conduct inference using parameters estimated with classical or Bayesian full

information likelihood methods.1

Estimation of DSGE models, however, is difficult. There are population and sample

identification problems, see e.g., Canova and Sala (2009), Komunjer and Ng (2011), Qu

and Tkachenko (2013); singularity problems (the number of shocks is generally smaller

than number of endogenous variables), see e.g., Guerron Quintana (2010), Canova et

al. (2014), Qu (2018); and informational deficiencies (models are constructed to explain

only a portion of the data), see Boivin and Giannoni (2006), Canova (2014), or Pagan

(2016), that restrict the class of models for which the likelihood can be computed. Com-

putational complications due the presence of latent variables and numerical difficulties

are also well-known. Both problems become particularly acute when the model is of

large scale or the data is short or of poor quality.

Inference in estimated DSGE models is also troublesome. Standard frequentist

asymptotic theory needs regularity conditions, which are often violated in practice.

Bayesian methods help when the sample size is short, but it is tricky to specify priors

for large parameter vectors. As indicated by Del Negro and Schorfheide (2008), assum-

ing prior independence among the components of the parameter vector produces a joint

prior that does not reflect researchers’ beliefs. Perhaps more importantly, likelihood-

based inference is conditional on the estimated model being correctly specified.

Policymakers are keenly aware of these problems and tend to informally pool esti-

mates obtained from different models when choosing policy actions. Furthermore, they

find it attractive to use more than one model to robustify counterfactual exercises and

to improve medium term forecasting performance, see e.g., Aiolfi et al. (2010).

This paper is concerned with the estimation, computational and inferential problems

applied DSGE researchers face. We propose a method that can deal with the challenges

mentioned in this introduction. The approach employs the composite likelihood, a limited

1Andreasen et al. (2018) is an exception, as they focus on Generalized Methods of Moments (GMM)
estimation of nonlinear DSGE models.
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information objective function, well-known in the statistical literature but sparsely used

in macroeconomics, see e.g. Engle et al. (2008), Qu (2018), and Chan et al. (2018).

To give some perspective on what we do, it is useful to state how the existing sta-

tistical literature has used composite likelihood methods and how our approach differs.

To be specific, we let L(x, y|θ, ε) be the likelihood of the known process generating data

(DGP), where the shocks ε produce fluctuations in the endogenous variables x, y, given

parameter vector θ. In the original work of Besag (1974) and Lindsay (1980), L(x, y|θ, ε)
is analytically intractable, for example, because below a threshold x is not observable,

or challenging to compute numerically, because high-dimensional integration is needed.

Thus, to estimate θ they suggest to use an alternative objective function that is easier to

work with. Their insight is that, in many relevant cases, L(x|y, θ, ε) and L(y|x, θ, ε) (the

conditional likelihoods) are easy to obtain by, for example, splitting the model in blocks

and calculating the likelihood of each block separately. In other situations, L(x|θ, ε) and

L(y|θ, ε) (the marginal likelihoods) could be calculated. For instance, if x = [x1, . . . , xt]

and y = [xt+1, . . . , xT ], this involves computing the likelihood of each subsample. The

objective function they employ for estimation is the composite likelihood, which geo-

metric combines conditional (marginal) likelihoods of submodels (subsamples), where

ωj is an arbitrary weight a researcher assign to the conditional (marginal) likelihood j.

Clearly, the composite likelihood is a limited information object, since it neglects, e.g.,

the fact that the two blocks are part of a unique model, or that x, y may be be correlated,

but has nice statistical properties, as it produces consistent and asymptotically normal

estimators, and sound inference, see e.g., Varin et al. (2011). For this reason, a compos-

ite likelihood approach has been used to solve a number of analytical and computational

problems in fields as diverse as spatial statistics, multivariate extremes, psycometrics,

and genetics.

This paper demonstrates that a version of the composite likelihood approach is also

useful to address many computational, numerical, and inferential problems that plague

the empirical DSGE literature. In particular, we show how the framework allows to ad-

dress population and sample identification and singularity problems. We also highlight

how it helps to estimate large scale models, without compromising their general equilib-

rium nature. Furthermore, we exemplify how the approach helps to robustify estimates

and inference. Finally, we illustrate how it rationalizes existing ”pooling” practices used

in the literature. We provide various intuitive interpretations for the composite esti-
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mators and for the composite statistics we construct, and compare our approach with

other combination devices present in the policy arena. In general, we are the first to

show that composite techniques can be useful in a number of applied macroeconomic

applications and provide a toolkit that can be employed in a variety of practical and

relevant situations.

The composite setup we employ in this paper differs from the traditional approach

in several aspects. First, the DGP and thus the likelihood associated with it are treated

as unknown. Second, our composite likelihood combines distinct structural or statistical

models, which are not necessarily marginal or conditional partitions of the DGP. Third,

models entering the composite likelihood need not be compatible, in the sense that the

maximum likelihood estimator of the subset of parameters appearing in all models need

not to converge to the same value. Fourth, we employ the methodology to estimate the

subset of the structural parameters which are common across models.

To give a specific example, suppose the mechanism generating inflation in the data is

unknown and an applied researcher has available, say, two models that explain inflation

dynamics, both of which are statistically sufficiently well specified to be potentially

usable for estimation. Suppose that a model explains inflation dynamics focusing on

macro-financial interactions, while the other exploits the trade-off between firms’ market

share and pricing frictions. We treat both models as approximation to the true DGP,

because each setup generally highlights just one feature that may be present in the

data and leaves out other potentially interesting aspects that may account for the data.

Because the two models are misspecified in different ways, estimates of the parameters

which are common to the two models, say, the elasticity of labor supply, may differ even

asymptotically. Thus, policymakers are faced with a difficult situation if, for example,

the effectiveness of a fiscal expansion depends on the estimate of elasticity of labor

supply. How do we proceed? We compute the likelihood of each model, combine the

two likelihoods into a composite likelihood and estimate the parameters common across

models jointly using the restrictions the two models provide.

Because of the four differences highlighted above, standard asymptotic results do

not apply to our composite estimators. Still, when the weights assigned to the models

are fixed, our estimators have desirable properties and may improve over the likelihood

estimator of each model as measured by the mean square error (MSE) or by the Kullback-

Leibner (KL) divergence. When the weights are random, quasi-Bayesian methods can
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be employed to jointly estimate the common parameters and the weights. In this case,

the posterior of the weights allows us to rank the quality of the models entering the

composite pool, see Canova and Matthes (2018).

We show in a simple example that our methodology exploits the cross equation re-

strictions appearing in all the models and this helps with identification and singularity,

produces robust estimates of structural parameters which are common across models,

and provides a way to reduce the dimensionality of a model without drastically affect-

ing estimation. Intuitively, the procedure works because idiosyncratic peculiarities and

biases obtained estimating each model separately will wash out as long as the models

are sufficiently different in the way they put structure on the data.

It is important to stress that the approach does not force a parameter to have the

same value in all models. If models are so different in their structure that a parameter

has different interpretations or different features, a researcher may choose not to restrict

it to be common across models, even if it has the same name. In that case, composite

estimators reduce to likelihood (posterior) estimators, model by model. Perhaps equally

important, the approach does not produce mean estimates when parameters have differ-

ent population values in different models or when different and possibly heterogeneous

sources of information are fused in estimation. Instead, it provides estimates for the

parameters appearing in a ”normalized” unit.

The rest of the paper is organized as follows. The next section introduces the idea,

highlights differences with the traditional setting, and gives an interpretation of compos-

ite estimators when the weights are fixed quantities. Section 3 presents four examples

showing how the methodology can reduce sample and population identification prob-

lems, resolve singularity issues, and provide a convenient way to estimate the param-

eters of a large scale model. Section 4 allows the weights to be random and discusses

quasi-Bayesian estimation; it also provides an interpretation of quasi-posterior estima-

tors, and explains how to construct composite posterior statistics. Section 5 has two

additional examples. One highlights how to make estimation and inference robust; the

other shows how to merge multiple sources of information for the estimation of a crucial

structural parameter. Section 6 concludes. Five on-line appendices provide technical

details, the equations of the models used in the examples, the results of a small Monte

Carlo exercise, and some sensitivity analysis for the first example of section 5.
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2 The composite likelihood

The original composite likelihood formulation has been suggested to deal with situations

where the likelihood of a model is either difficult to construct because of latent variables,

or hard to manipulate because the covariance matrix of the observables is nearly singular.

In some applications, see Engle et al., (2008), the likelihood is conceptually tractable

and straightforward to compute, but the dimensionality of the parameter space makes

full likelihood computations unappealing. In these situations, it might be preferable to

use an objective function with smaller informational content than the full likelihood but

that is easier to work with. One such function, originally proposed by Besag (1974)

and Linsday (1980), is a weighted average of marginal or conditional distributions of

submodels (’events’ in the terminology used by this literature). Formally, suppose a

known DGP produces a parametric density F (yt|ψ) for an m× 1 vector of observables

yt, where ψ is a q × 1 vector of parameters. Partition ψ = [θ, η] where, by convention,

θ is the vector of parameters estimated with composite methods, and η is a vector of

nuisance parameters. Let {Ai, i = 1, ...K} be a finite set of marginal or conditional

events of yt, and let f(yit ∈ Ai, θ, ηi) be the subdensities of F (yt|ψ) corresponding to

these events 2. Each Ai defines a submodel, with implications for a subvector yit of

length Ti, and is associated with the vector ψi = [θ, ηi]
′ , where ηi are (nuisance) event

specific parameters. Let φ = (θ, η1, . . . ηK) and ỹt = (y1t, . . . , yKt). Given a vector of

weights 0 < ωi ≤ 1,
∑

i ωi = 1, the composite likelihood is

CL(ỹt, φ) = ΠK
i=1 f(yit ∈ Ai, θ, ηi)ωi . (1)

Clearly, (1) is a misspecified representation of the density of yt: it ignores the potential

dependence across Ai, i.e. that submodels may feature common equations; and the fact

that yit may not be mutually exclusive, i.e. the same variable may appear in the vector

of observables for different i. Still, the estimator of θ obtained maximizing (1) for a given

ω is consistent and asymptotic normal (see e.g. Varin et al., 2011). Intuitively, consis-

tency obtains because each element in (1) is an unbiased limited information object, in

the sense that it does not distort the features of the DGP; and geometrically averaging

these objective functions will not change this feature. Asymptotic normality holds be-

cause the sampling distribution of the maximum likelihood estimator of each submodel

2Marginal or conditional distributions integrate out all elements of yt not in yit or condition on some yjt
that are not in yit. For ease of reading, the integrals and conditioning sets are left implicit.
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can be approximated quadratically around the same mode. Since each model has the

same central tendency but (potentially) different spreads, composite estimators have a

quadratic asymptotic distribution around the common mode and spread reflecting the

relative precision of the information contained in different submodels.

2.1 A composite DSGE setup

The setup we consider differs from the standard one in several respects. First, we

treat the DGP as unknown for many reasons. For example, we may not have enough

information to construct F (yt|ψ); we could write a VAR representation for yt but not the

structural model that generated it; or we do not have an analytic expression for F (yt|ψ),

but only the first few terms of its Taylor expansion. Another reason for treating F (yt|ψ)

as unknown is that the dimension of yt may be large and a researcher may have an idea

of how portions of yt could have been generated but does not know yet how to link them

in a coherent way.

Second, f(yit ∈ Ai, θ, ηi) are neither marginal nor conditional representations of the

DGP. Instead, they are the densities produced by different models a researcher may wish

to entertain to study an issue of interest. We assume that all models are relevant, in

the sense that they have insights about the phenomena of interest, effectively making K

finite and small, but only approximate the DGP, in the sense that for each (θ, ηi) the

Kullback-Leibler divergence of f(yit ∈ Ai, θ, ηi) from F (y|ψ) is strictly positive.

To be concrete, in one leading example we have in mind, Ai are different structural

macroeconomic models, e.g., a RBC model with financial frictions, a New Keynesian

model with sticky prices, a New Keynesian model with labor market frictions, etc.; yit

is the data generated by these models, and f(yit ∈ Ai, θ, ηi) are the associated densities.

Here θ is a vector of structural parameters common to across models, e.g. the risk-

aversion coefficient, or the Frisch elasticity, while ηi are either model specific structural

parameters, e.g. a loan-to-value ratio, a Calvo parameter; or reduced-form mongrels

used to approximate features of the DGP, e.g., the consumption habit parameter. In

another leading example, we have in mind F (yt|ψ) is the density of a large-scale DGP,

for example, a multi-country model of trade interdependencies or a multi-country asset

pricing model, and f(yit ∈ Ai, θ, ηi) are structural models describing bilateral blocks or

country-specific portfolios. In a third case of interest, f(yit ∈ Ai, θ, ηi) are the densities

generated by different approximate (perturbed or projected) solutions or by different
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order of (perturbed) approximations; or the densities of linear solutions, where the m-th

component of parameter vector is time varying, see e.g. Canova et al. (2020). Here yit =

yt and Ai represents the approximation method or the approximation order employed,

or an indicator function describing which parameter is allowed to change.

We treat the K models as approximations of F (yt|ψ) because they disregard aspects

of the DGP; they take short cuts to modeling the complexities of the DGP; or condition

on features which may be present or absent from the DGP. For each of these models,

we assume a researcher can form the likelihood function, using the optimal decision

rules and Kalman, particle, or other standard filters 3. We geometrically average these

likelihoods for estimation and inference, just as the composite likelihood literature has

averaged marginal or conditionals likelihoods of a known DGP.

A final case of interest is one where f(yit ∈ Ai, θ, ηi) represents different statistical

models. We term models ’statistical’ if they are obtained from the same structural

model but feature different observables. For instance, a standard three-equation New-

Keynesian model could be estimated using inflation, the nominal interest rate, and a

measure of output, or inflation, the nominal interest rate, and a measure of consumption

- in the model, consumption and output are equal. By extension, F (yt|ψ) could be the

density of an aggregate DGP and f(yit ∈ Ai, θ, ηi) the densities obtained when i) data

from cross sectional unit i is used; ii) data at a particular aggregation level (e.g. firm,

industry, regional, etc.) is employed. It could also be the density obtained using the full

sample of data and f(yit ∈ Ai, θ, ηi) the densities constructed using different subsamples

(say, pre-WWI, interwar, post-WWII, etc.). In all these cases, the researcher has one

structural model, but different yit measures are available. As it will be clear later, the

K measurements can be treated as different ”models” and the likelihood obtained with

each yit averaged in a composite objective function. Also in this situation, ”models” are

treated as approximations since, for example, they may neglect the presence of common

shocks across i or omit features across time.

A third important difference with the traditional setup is that the models we consider

need not be compatible with each other. Compatibility insures that asymptotically, θi,ML

converges to the same θ for each i and clearly holds when f(yit ∈ Ai; θ, ηi) are marginals

or conditionals. Because of this potential incompatibility, composite estimators need

3Alternatively, one could assume that moment conditions are available and use these to form an approximate
likelihood for each i, along the lines of Chernozukov and Hong (2003).
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not enjoy the standard properties. Nevertheless, following earlier work by White (1982),

one can show that the composite likelihood estimator in our setup is consistent for a

pseudo value θ0, which minimizes the distance between CL(ỹt, φ) and F (yt, ψ) and is

asymptotically normal around it. Details are in appendix A.

Researchers working with DSGE models are generally free to choose what goes in

θ and in ηi. In particular, even though some parameter might appear in all models,

researchers might prefer not to estimate a common value because, for instance, it may

have a different interpretation in different models. For example, consider the persistence

of the income process ρy. When a partial equilibrium perspective is adopted, this param-

eter is well defined since income is exogenous. When a general equilibrium perspective

is employed the persistence of the income process is endogenous and regulated by the

persistence of Total factor productivity (TFP) and the dynamics of capital and labor.

If partial and general equilibrium models are jointly used in the composite likelihood,

imposing one value for ρy may be unappealing and a researcher may decide to make ρy

model specific 4. A researcher may also leave a parameter model specific, even if it ap-

pears in all i, when models have orthogonal structural features. For example, if models i

and j have different product market structures, it could be unwise to force commonality

in estimation for, say, a markup parameter.

When θ 6= ∅, composite estimates of (θ, ηi) are restricted by the information contained

in the K models. To see why this is the case note that, for each i, likelihood estimators

of (θ, ηi) solve the score conditions s1
i (θ, ηi) = ∂L(θ,ηi)

∂θ = 0, s2
i (θ, ηi) = ∂L(θ,ηi)

∂ηi
= 0, and

that, for each i, dim(si(θ, ηi)) = dim(θ, ηi), si = [s1
i , s

2
i ]. The score conditions that

the composite likelihood estimator of θ solves are
∑

i ωi
∂L(θ,ηi)
∂θ = 0. Thus, a composite

estimator mimics an over-identified GMM estimator where ωi are the weights the or-

thogonality conditions of model i receive in the composite objective function. When ωi

is fixed, mean square (MSE) gains can be obtained as long as the models entering the

composite likelihood are sufficiently idiosyncratic in the way they approximate the DGP.

Thus, nested models or models which are similar in all respects but represent, say, prod-

uct market frictions differently (e.g. Calvo or Rotemberg pricing) will not provide the

variety needed for improvements to materialize. Notice that when composite estimation

is used and (θ, η1, . . . , ηK) are jointly estimated ∂CL(θ,ηi)
∂ηi

differs from ∂L(θ,ηi)
∂ηi

, leading to

4Even in this case, one can assume the same prior distribution for ρy across models, thus guaranteeing
some a-priori model compatibility without imposing that the parameter speaks to similar economic concepts.
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different ηi estimators.

When θ = ∅, φi = ηi and composite estimation replicates likelihood estimates of ηi,

separately for each i. Thus, the composite likelihood does not impose restrictions other

than those of likelihood of each model, when there is no common parameter.

At times ”models” may feature common parameters, but their population values may

be different. For example, an elasticity of substitution may appear in a model which is

used to explain the dynamics in a set of countries, but the population value it assumes

in each country may be different. As discussed in section 5, the procedure we employ

is applicable also in this case, as long as one model is used for normalization and the

others appropriately reparametrized.

3 Addressing estimation and computational prob-

lems

This section shows how the composite likelihood may help with standard problems en-

countered in the estimation of DSGE models. While the improvements we discuss are

specific to the models and the parameterization used, the insights apply generally.

The first example discusses how small sample identification problems can be resolved

using the composite likelihood constructed using different structural models. The intu-

ition applies also to situations when different statistical models are used or when there

is a single model and the composite likelihood is constructed with different samples of

data. The second example demonstrates how the approach can ameliorate population

identification problems; the third example deals with singularity issues; the fourth ex-

ample shows how to estimate the parameters of a large-scale structural model. In all the

examples, we treat ωi as fixed; there is at least one parameter common across models;

and theory tells us that it has the same interpretation and the same value across models.

3.1 Reducing sample identification problems

In macroeconomics it is common to work with relatively small samples of time series.

Long data is generally unavailable and, when it exists, definitional changes or structural

breaks make it unwise to use the full sample for estimation purposes. In addition, the

phenomena of interest (say, the effects of the zero lower bound on interest rates) may
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be present only in the most recent portion of the sample. We show how the composite

likelihood could reduce the severity of small sample problems.

Consider two structural models (say, A and B), with parameters ψA = (θ, ηA), ψB =

(θ, ηB), generating implications for (yAt, yBt), which could be two different subvectors of

the observable yt. Assume that yAt and ytB are produced by the decision rules:

yAt = ρAyAt−1 + σAet (2)

yBt = ρByBt−1 + σBut (3)

where et and ut are both iid (0,I). While (2)-(3) are chosen for the sake of exposition, it is

worth emphasizing that the linear solution of a DSGE model has the same format, where

yt includes the states and the controls and ψi = ψ(γi) are functions of the structural

parameters γi. Thus, the conclusions we derive are applicable to a large class of models.

Suppose that ρB = δρA, σB = γσA, where (δ 6= 0, γ 6= 0); let yAt and yBt be scalars;

assume we have TA(TB) observations on yAt (yBt) with TA small, and that we care about

θ = (ρA, σA). The (normal) log-likelihood functions of each model are:

logLi ∝ −Ti log σi −
1

2σ2
i

Ti∑
t=1

(yit − ρiyit−1)2 i = A,B (4)

For 0 < ω < 1, the log composite likelihood is

logCL = ω logLA + (1− ω) logLB (5)

We assume the DGP has ρA = 0.7, σA = 1.0, δ = 1.2, γ = 0.8 (so that ρB =

0.84, σB = 0.8) and choose TA = 20, TB = 20. In the composite likelihood we set ω = 0.7.

Figure 1 plots the univariate contours of (4) and (5) in the (ρA, σA) dimensions. Note

that the composite likelihood has more curvature then the likelihood constructed using

yAt only and that its mode is closer to the true vector. Moreover, when TB increases

(TB = 60), the composite likelihood becomes more bell-shaped around the true value

and almost symmetric in shape.

As shown in section 5, differences in the estimates obtained with (4) and (5) have to do

with three quantities ζ1 = 1−ω
ω

δ
γ2
, ζ2 = 1−ω

ω
δ2

γ2
≡ ζ1δ, and ξ−1 = (TA+TB

1−ω
ωγ2

). ζ1 and ζ2

control the shape of the composite likelihood, while ξ−1, the effective sample size, controls

both the height and the shape of the composite likelihood. In turn, these quantities

depend on (ω, γ, δ). Thus, these parameters regulate the amount of information that
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Figure 1: Likelihood and composite likelihood, small T.

yBt provides for (ρA, σA). For example, with the parameterization used, the effective

sample size is TA + 0.67TB, making (5) higher than (4). Other things being equal,

increasing γ makes yBt less informative - model B provides noisy information for (ρA, σA)

- and decreasing δ, reduces the informational content of yBt because it becomes less

persistent. Thus, the composite likelihood cares about yBt if it is generated by a model

with higher persistence and lower standard deviation than the model for yAt. Such a

scheme is reasonable: the higher the serial correlation, the more important low frequency

information is; and the lower the standard deviation, the lower the noise in yBt is.

This discussion highlights an interesting trade-off that the composite likelihood ex-

ploits: yBt may give information for the parameters of interest, but may also twist the

composite shape away from the true values. Thus, identification improvements are not

guaranteed. In this example, better local identification could be attained when (yAt, yBt)

are jointly used in estimation if ω, γ, and TB are such that ξ−1 > TA and ζ1, ζ2 are dif-

ferent from zero. If γ is small, that is, if yBt is less volatile than yAt, or if ω is not too

large, that is, if the degree of trust a researcher has in model B is not negligible, (5) will

be more peaked around the mode than (4).

The same argument applies when, rather than structural models, A and B are two

statistical models, or when there is a single structural model, but yAt and yBt represent
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the same yt in different samples. When A and B are statistical models, information com-

ing from different time series may make the composite likelihood more peaked around

the true value than each likelihood, much in the same spirit as a data-rich approach

to estimation may provide more precise information about structural parameters than

a standard approach (see e.g. Boivin and Giannoni, 2006). When yAt, yBt are differ-

ent samples for the same variable say, post-break and pre-break data, the composite

likelihood may be more informative about θ than the likelihood of the post-break sam-

ple as long as the weights are appropriately chosen. Intuitively, rather than dropped,

pre-break information is weighted to trade-off sharpness and distortions in the objective

function. Thus, yBt plays the role of a ” training” sample and composite estimates

combine likelihood estimates produced by yAt with objective prior estimates obtained

with YBt. Baumeister and Hamilton (2019) suggested a procedure, altering the informa-

tion contained in earlier subsamples relatively to the current one, that closely mimics a

composite likelihood setup when ω 6= 1− ω.

Note that TA and TB may be not only of different lengths but also recorded at

different frequencies (e.g. coming from a quarterly and an annual model). When two

such models are combined, the effective sample size ξ−1 will generally increase, making

the composite likelihood more peaked and more concentrated that the likelihood of, say,

the quarterly model. For this to happen, it is sufficient to have ω, δ, γ such that ζ1 and

ζ2 are different from zero.

To conclude there are many ways to reduce small sample (local) identification prob-

lems with the composite likelihood: one could use different structural models, different

data, or the same data in different samples or at different frequencies. In all these sit-

uations, if the additional data is informative and the weights appropriately chosen, the

composite likelihood has better properties than the likelihood for the θ vector.

3.2 Ameliorating population identification problems

This subsection presents an example where estimation is difficult because some param-

eters are underidentified and others weakly identified in population and shows that a

composite approach can remedy these problems.
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Consider a canonical three-equation New Keynesian model (call it model A)

RAt = τEtπAt+1 + e1t (6)

yAt = δEtyAt+1 − σ(RAt − EtπAt+1) + e2t (7)

πAt = βEtπAt+1 + γyAt + e3t (8)

where RAt is the nominal interest rate, yAt the output gap, and πAt the inflation

rate;(e1t, e2t, e3t) are mutually uncorrelated disturbances, (τ, δ, σ, β, γ) are structural pa-

rameters, and Et is the conditional expectations operator. The determinate solution of

(6)-(8) is  RAt
yAt
πAt

 =

 1 0 0
σ 1 0
σγ σ 1

 e1t

e2t

e3t

 ≡ Aet. (9)

Clearly, β is not identified, as it disappears from (9); and the slope of the Phillips curve γ

may be hard to identify from the likelihood of (RAt, yAt, πAt). In fact, if σ is sufficiently

small, large variations in γ may induce small variations in the decision rules (9), making

the likelihood flat in the γ dimension.

Population non-identification of β implies, for example, that when (6)-(8) generate

the data, applied investigators can not distinguish if the Philips curve is forward looking

or not, nor can they measure the degree of forward lookingness, even when T → ∞.

Weak population identification of γ implies that it is hard to pin down the effects of

output gap changes on inflation, regardless of the magnitude of the ’true’ Phillips curve

slope. Problems of this type are common in DSGE models (see Canova and Sala, 2009).

Suppose we have another model available (call it, B) that is usable for inference. For

example, consider a single-equation Phillips curve with exogenous output gap:

πBt = βEtπBt+1 + γyBt + u2t (10)

yBt = ρyBt−1 + u1t (11)

where ρ > 0 measures the persistence of the output gap process. (10) has the same

format as (8), so that β and γ have the same economic interpretation, but the process

generating yt is different. Suppose that model A is considered more trustworthy and an

applied investigator acknowledges this by setting ω >> 1−ω. By repeatedly substituting

forward and letting ` be the lag operator, the solution to (10)-(11) is[
(1− ρ`)yBt
(1− ρ`)πBt

]
=

[
1 0
γ

1−βρ 1− ρ`

] [
u1t

u2t

]
. (12)
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Clearly, unless ρ = 0, the log-likelihood of model B has information for β. Thus, one

would be able to identify (and estimate) β from the composite likelihood but not from

the likelihood of model A, avoiding observational equivalence problems. In addition, in

model B the curvature of the likelihood in the γ dimension depends on 1
1−βρ which, in

general, is greater than one for ρ 6= 0. Hence, small variations γ may lead to sufficiently

large variations in the decision rule (12) and thus in the composite likelihood. Note that

both improvements occur even when 1− ω is small.
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Figure 2: Likelihood and composite likelihood, weak identification.

We illustrate the argument in Figure 2. We plot the likelihood of model A and the

composite likelihood as function of γ, when σ = 0.5 or σ = 0.1. The DGP has γ = 0.4,

β = 0.99, ρ = 0.8, and, when we use the composite likelihood, we set ω = 0.85. As

expected, the likelihood of model A is flat around the true value of γ when σ is small,

and adding information from model B helps to improve the identification of γ. A similar

situation arises when σ = 0.5 as the likelihood constructed from yAt is not quadratic in

γ. Adding model B information makes the composite likelihood close to quadratic.

The point we make here is independent of the effective sample size ξ−1. Since the

identification problems we discuss occur in population, having a large or a small ξ−1

is irrelevant. It should also be emphasized that we have implicitly assumed that the

variances of (e2t, e3t) and of (u1t, u2t) are of the same order of magnitude (in Figure 2,
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they are all equal to 1). When this is not the case, two distinct forces are at play: the

relative information present in the decision rules is weighted against the relative noise

contained in the two models. When noise in model B is large, the composite curvature

approaches the likelihood curvature.

It should be obvious that a random selection of model B is unlikely to provide pop-

ulation identification gains. In particular, adding models with Phillips curves that are

non-comparable to those of model A will not work. This would be the case, e.g., if

γ is generated by a different mechanism (for example, via the market share model of

Gilchrist et al., 2017), effectively making it a different parameter; or if the biases in-

troduced with model B are large relative to the improved curvature. Hence, population

identification improvements can be obtained only after carefully examining the structure

and the likelihood shape of the additional model(s) one may want to consider.

In sum, a shrewd use of the composite likelihood may improve parameter identifica-

tion when the sample is short or when parameters are weakly identified in population.

For this to happen, the additional models (the additional data) must add information to

the likelihood of model A for the parameters of interest. This additional information is

easily measurable in practice: it will be reflected in the height and the curvature of the

composite likelihood, which will be more bell shaped and symmetric than the likelihood

of the baseline model. We recommend that applied investigators plot the likelihoods and

composite likelihood, as we have done in Figures 1 and 2, as a routine practice. It will

help to understand which models may help to regularize the objective function.

3.3 Solving singularity problems

DSGE models are typically singular. That is, since they generally feature more variables

than shocks, the theoretical covariance matrix of the endogenous variables is of reduced

rank and the likelihood function can not be constructed and optimized. There are many

approaches to get around this problem. One could select a subvector of the endogenous

variables as observables matching the dimension of the shock vector informally (see

Guerron Quintana, 2010) or formally (see Canova et al., 2014) and use the log-likelihood

of this subvector for estimation. Alternatively, one could add measurement errors so

as to make the number of shocks (structural and measurement) larger or equal to the

number observables (see Ireland, 2004). One could also artificially increase the number of

shocks, for example, by transforming parameters into disturbances (the discount factor
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becomes a preference shock, etc.) until shocks and endogenous variables match.

An alternative way to deal with the singularity problem is to construct a composite

likelihood weighting non-singular submodels, see also Qu (2018). To illustrate the ap-

proach, we use a stylized asset pricing example. Suppose that the dividend process is

dt = et − αet−1, where et ∼ iid(0, σ2), α < 1, and that stock prices are the discounted

sum of future dividends. The solution for the stock prices is pt = (1 − βα)et − αet−1,

where β < 1 is the discount factor of the investor. Since et drives both dividends and

stock prices, the covariance matrix of (dt, pt) has rank one. Thus, either dt or pt must

be used to construct the likelihood and to estimate θ = (α, σ2).

In this example, adding measurement error is difficult to justify since neither div-

idends nor stock prices are subject to revisions, and making β a random variable is

unappealing, because the density of stock prices becomes non-normal, complicating es-

timation. When the composite likelihood is employed, the joint information present in

(dt, pt) can be used to identify and estimate θ (and β, if it is of interest). Optimization

makes stock prices contain different information than dividends. Choosing one particular

variable for estimation, throws away valuable information. By combining all equations,

the composite likelihood provides sharper estimates of θ.

Following Hamilton (1994, p. 129), the likelihood functions of dt and pt are

logL(α, σ2|d̃t) = −0.5T log(2π)−
T∑
t=1

log ςt − 0.5
T∑
t=1

d̃2
t

ς2
t

(13)

where d̃t = dt − α1+α2+α4+...+α2(t−2)

1+α2+α4+...+α2(t−1) d̃t−1, ς2
t = σ2 1+α2+α4+...+α2t

1+α2+α4+...+α2(t−1) and

logL(β, α, σ2|p̃t) = −0.5T log(2π)−
T∑
t=1

log υt − 0.5
T∑
t=1

p̃2
t

υ2
t

(14)

where p̃t = p∗t − γ 1+γ2+γ4+...+γ2(t−2)

1+γ2+γ4+...+γ2(t−1) p̃t−1, υ2
t = σ2 1+γ2+γ4+...+γ2t

1+γ2+γ4+...+γ2(t−1) and γ = α
(1−βα)

and p∗t = pt
1−βα . For illustration, we set σ2 = 1, β = 0.99, and focus attention on the

maximum and composite likelihood estimation of α. While there are no closed form

expressions for maximum likelihood or maximum composite likelihood estimators, we

can still infer what (13) and (14) employ to estimate α using artificial data.

Figure 3 plots the likelihood contour in the α dimension, when (13), (14), or the

composite likelihood are used, and the true α is either 0.7 or 0.1. When α = 0.1

(13) and (14) are similar. Thus, when dividends and stock prices are almost serially
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Figure 3: Likelihood and composite likelihood, singularity.

uncorrelated, they have similar information and the shape of the likelihood functions

primarily reflects the volatility of et. When α = 0.7, the likelihood function of stock

prices is bell shaped around the true value, while the likelihood function of dividends is

not. Thus, the likelihood of stock prices contains information about the persistence of

the generating process which is absent from the likelihood of dividends.

The composite likelihood, constructed using ω = 0.5, captures both the serial cor-

relation and the variability properties of the DGP, it is more bell shaped than each

likelihood, and centered around the true value when α = 0.7. In fact, when T=500,

αML = 0.4 (standard deviation 0.1) and αCL = 0.65 (standard deviation 0.06). Clearly,

the value of ω regulates whether the serial correlation, the variance properties of (dt, pt),

or both matter for estimation. When α = 0.1, (13) and (14) have similar information.

Thus, neither the shape nor the location improves when the composite likelihood is used.

In general, when the equations of a singular model provide separate information

about the parameters of interest, it is a-priori difficult to choose which ones to use in

estimation. The composite likelihood eliminates the dilemma, weighting the information

contained in all equations in a meaningful way.
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3.4 Estimating large scale structural models

While in academics models are kept small to enhance intuition, large scale models are

common in policy institutions. Large models are more detailed and realistic, but esti-

mating their parameters is computationally a daunting task and estimates obtained are

often unreasonable. Thus, the models used in the policy process are often informally

calibrated, apart for the parameters of the shock processes, which are estimated by like-

lihood methods. We show how the composite likelihood can make the estimation of the

structural parameters of a large scale model possible and manageable.

Suppose the decision rules of a model are yt = A(θ)yt−1+et, where et iid N(0,Σ(θ)), θ

is a vector of structural parameters, yt is of large dimension, and, to keep the presentation

simple, we let dim (yt) = dim (et). The likelihood function is

L(θ|yt) = (2π)−T/2|Σ(θ)|T/2 exp{(yt −A(θ)yt−1)Σ(θ)−1(yt −A(θ)yt−1)′} (15)

If dim(yt) is large, computation of Σ(θ)−1 may be demanding. Furthermore, if some of

the elements of yt are nearly collinear or if there are near singularities due, for example,

to the presence of an expectational link between long and short term interest rates,

numerical difficulties may emerge. (15) is also difficult to compute when there are latent

endogenous variables. If yt = (y1t, y2t), and y2t is non-observable, the likelihood of y1t is

L(θ|y1t) =

∫
L(θ|y1t, y2t)dy2 (16)

which may be intractable when y2t is of large dimension.

Rather than using (15) or (16) for estimation, one can take a limited information

point of view and estimate the parameters using objects that are simpler to construct

(see also Pakel et al., 2011). Suppose we partition yt = (y1t, y2t, . . . yKt), where yit and

yjt are not necessarily independent. Then two such objects are:

CL1(θ|yit) =

K∑
i=1

ωi logL(θ|yit) (17)

CL2(θ|yit) =
K∑
i=1

ωi logL(θ|yit, ȳ−it) (18)

where y−it indicates any combination of the vector yt, excluding the i-th combination,

and bars indicate a given value. The first expression averages marginal likelihoods (in-

tegrating out all variables but yit), whereas the second averages conditional likelihoods.
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CL1 is obtained by neglecting the correlation structure among yit. Thus, blocks

of equations are treated as if they provide independent information for θ, even though

this is generally false. For example, in a multi-country model, yit could correspond

to the observables of country i; in a closed economy model, it could correspond to

different sectors of the economy. CL2 is obtained by conditionally blocking groups of

variables. In the multi-country example, one would construct the likelihood of each

country’s variables yit, given the vector of the variables of all other countries y−it, and

weight them for estimation purposes. Which composite likelihood one uses depends on

the problem and the tractability of conditional vs. marginal likelihoods.

To compare how the composite likelihood relates to the full likelihood of a particular

model, we consider a simple consumption-saving problem where there are many coun-

tries, indexed by i, consumers receive income from different countries but are forced to

save domestically. The solution, when preferences are quadratic, β(1 + r) = 1, and the

income processes are transitory is

cit =
r

r + 1
ait +

r

1− ρ+ r
Yit (19)

ait+1 = (1 + r)(ait + Yit − cit) (20)

yit = ρyit−1 + σieit (21)

Yit =

K∑
j=1

ζijyjt (22)

where 0 < ζij < 1 and
∑

i ζij = 1,
∑

j ζij = 1, yit is domestic income, Yit is total income,

cit, is consumption, ait is asset holdings, and eit iid (0, 1), i = 1, 2, . . . ,K.

Suppose that rather than constructing the likelihood using (19)-(22) jointly for the K

countries, one constructs the likelihood of the model of each country (i.e. neglecting (22)

and using yit in place of Yit in the first two equations) and sets ωi = 1/K to construct

a composite likelihood. Three types of distortions are present: consumption and asset

holdings are functions of domestic income, rather than total income; the volatility of

domestic income is higher than the volatility of total income; ω should be a function of

ζij rather than constant. Clearly if ζij = ζi = 1, ∀j, and the volatility of yit is the same

in all i, the information loss is minimal.

Figure 4 plots the shape of the full likelihood and the composite likelihood in the ρ

dimension using consumption data only when T=1000, K = 3, β = 0.99, ρ = 0.6, σi =
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Figure 4: Likelihood and composite likelihood, large scale model.

[0.1, 0.2, 0.3], r = 1/β − 1, β = 0.99, ζ =

 0.5 0.25 0.25
0.25 0.5 0.25
0.25 0.25 0.5

. The likelihood function

is not quadratic in ρ since the marginal propensity to consume out of transitory income

increases as ρ moves from -1 to 1, and the composite likelihood inherits this property.

However, although the scale is different, the two functions have similar shapes making

the information loss from using the composite likelihood small. In fact, in the setup we

use ρML = 0.71 and ρCL = 0.75, both with a standard deviation equal to 0.02.

4 Quasi-Bayesian estimation

The improvements in the shape of the objective function and computation gains de-

scribed in section 3 can be obtained even when ω is fixed and the prior for the parame-

ters play no role. However, it is unusual in the applied literature to estimate structural

DSGE parameters with frequentist methods because the likelihood is poorly behaved

(multiple modes and sharp cliffs are common) and samples are sufficiently short to make

asymptotic approximations not very credible. Furthermore, some justification for the

selected ω vector is needed and, at the minimum, one needs to show how the conclusions

are affected by the choice of ω.

Rather than using a frequentist approach, conditional on a given ω, we use a quasi-
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Bayesian approach to construct the joint posterior distributions of (θ, ηi, ωi, i = 1, . . . ,K).

Such an approach may be preferable, even if the priors for the extended parameter vector

are loose, for a number of reasons. As discussed in section 4.1, quasi-Bayesian estimators

have a simple and intuitive interpretation. Furthermore, as explained in section 4.3, the

composite statistics we construct are pooling devices with desirable statistical features.

Perhaps more importantly, when ωi is random, the quasi-posterior mode of ωi can be

used to rank the quality of the models entering (1), much in the same spirit as a Bayesian

model averaging (BMA) weight. As highlighted in section 4.2, the quasi-posterior mode

of ω can be employed in situations when BMA can not be computed and a measure of

uncertainty can attached to the rankings.

Intuitively, the posterior mode of ωi can serve as a ranking device because the sample

information relevant for calculating the mode reflects the relative one-step mean square

forecast error of different models. Thus, when yit = yt for all i, the posterior of ω assigns

higher weights to models closer to the DGP in a Kullback-Leibner sense, see Canova and

Matthes (2018) for the details. When yit 6= yjt, i 6= j, the weights and the parameters

will be jointly selected so that the composite model approximate as best as possible the

DGP, again in a Kullback-Leibner sense, see section 4.3.

We specify the prior for the parameters of model i as:

p(θ, ηi) = p(θ)p(ηi|θ, yi0). (23)

where, in the spirit of Del Negro and Schorfheide (2008), we allow the prior for ηi to

depend on θ and some training sample data yi0. If p(ω) ≡ p(ω1, . . . ωK) is the prior for

ω, the composite posterior kernel is:

p̌(θ, η1, ....ηK , ω1, . . . , ωK |Y1,t1 , . . . , Yk,Tk) =

p(θ)p(ω)ΠiL(θ, ηi|Yi,Ti)ωip(ηi|θ)ωi , (24)

which can be used to obtain quasi-posteriors for (φ, ω), as in Kim (2002) or Chernozukov

and Hong (2003). Thus, even though the composite likelihood is not a likelihood func-

tion, (24) permits credible prior updating. Bissiri et al. (2016) demonstrated that

a valid update of prior beliefs to a posterior can be made for parameters which are

connected to observations through a general loss function. Our composite likelihood is

precisely one of these loss functions.Seen through this lens, our Bayesian composite setup

is also similar to the framework used in the Bayesian misspecification literature, see e.g.
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Walker (2012), and standard results regarding the asymptotic negligibility of the prior,

the consistency of the posterior mode for the KL minimizer, and asymptotic normality

of quasi-posteriors apply under regularity conditions, see e.g. Fernandez Villaverde and

Rubio Ramirez (2004); Klein and Van der Vaart (2012); Clydec and Iversen (2013).

Since there is no closed form solution for the posteriors of the parameters, we use a

multiple-block Metropolis-within Gibbs algorithm to compute posterior sequences. The

algorithm is summarized in appendix B, together with the adjustments one may want to

implement to make sure that MCMC and frequentist percentiles asymptotically match

(see also Ribatet et al. 2012, Mueller, 2013, Qu 2018).

4.1 Interpreting quasi-posterior estimates

While it is standard to combine models for forecasting, it is less common to use them

jointly for estimation and inference. Thus, it is worth mentioning that the composite

posterior kernel (24) and the quasi-Bayesian estimators for θ one obtains have a sim-

ple sequential, adaptive learning interpretation which should make them attractive to

applied macroeconomists.

For the sake of illustration, let ωi be fixed, and K=2. Then

p̌(θ, η2, η1|Y1,T2 , Y2,T1) =

L(Y2,T2 |θ, η2)ω2p(η2|θ)ω2{[p(θ|Y1,T1)ML(Y1,T1)]ω1p(θ)ω2}p(η1|Y1,T1θ)
ω1 (25)

where ML(Y1,T1) =
∫
L(Y1,T1 |ψ1)p(ψ1)dψ1 is the marginal likelihood of model 1 and

ψ1 = (θ, ηi).

As (25) makes clear, the posterior kernel can be obtained in two stages. In the first

stage, the prior for ψ1 and the likelihood of model 1 are used to construct p(θ|Y1,T1)

and p(η1|Y1,T1). The conditional posterior of θ, weighted by the marginal likelihood of

the model 1, is geometrically combined with p(θ) to form a new prior for θ for the next

estimation stage. Suppose that ML(Y1,T1) is high. Then model 1 fits Y1,T1 well. If

ω1 = ω2, the prior for θ in stage 2 will reflect more heavily p(θ|Y1,T1) than p(θ). On the

other hand, if ML(Y1,T1) is low, p(θ|Y1,T1) has low weight relative to p(θ) when setting

up the prior for the second stage. In general, at each stage of the learning process, the

prior for θ depends on the relative weights assigned to the current and to all previous

models and on their relative fit for θ. Thus, a composite quasi-posterior approach can be
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interpreted as an adaptive sequential learning process where the information contained

in models whose density poorly relates to the observables is appropriately downweighted.

Contrary to standard learning algorithms, the prior for stage 2 is not the posterior

for stage 1 but rather a weighted average of the initial prior and of the posterior of stage

1, where the latter is discounted by its fit. This is why the approach is adaptive. Note

that with a composite setup a model is automatically discounted if does not fit the data

well, even when ω is fixed. Del Negro et al. (2016) have shown that finite mixtures have

this property only if ω is random. Finally, even though only Y1,T1 contains information

for η1, its posterior may be updated when using Y2,T2 since the posterior of θ sequentially

changes. Since Y1,T1 does not contain information for η2, p(η2|θ) will be unchanged after

estimation at stage 1.

When ω is not treated as fixed, the expressions in (25) are cumbersome to derive,

since one needs to take the prior for ω into account, but the same intuition applies.

4.2 Discussion

Our quasi-Bayesian composite estimates differ from Bayesian model average (BMA) es-

timates in several respects. In BMA, each model is estimated separately and estimates

of the parameters combined using posterior weights; in our setup, parameters which are

common and have the same meaning in all models are estimated with the information

provided by all models, while idiosyncratic parameters are estimated with the informa-

tion contained in the model where they appear. Furthermore, to apply BMA techniques

we need to assume y1t = . . . = yKt, and that the frequency of the data is the same, while

this is not required in our setup. Finally, one can not give BMA estimates a sequential

learning interpretation. When Ti = T and yit = yt for all t, BMA and ω weights have

a similar meaning and reflect the relative information each model has for yt. In this

case, differences in the statistics produced by the two pooling devices are due to the dif-

ferent information sets used to estimate the parameters. Our quasi-Bayesian composite

estimates also differ from naive ex-post combinations which assign equal weights to the

estimates of all models, or other ex-post combination devices. Section 5.1 provides some

evidence on the properties of different pooling devices.

What happens to quasi-posterior estimators when an ’irrelevant’ or a ’nested’ model

enters the composite likelihood? As we have seen irrelevant models are downweighted

since they poorly fit yit and the same will be true of models which are nested in another
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and poorly fit the data. A composite estimator tries to identify regions of the parameters

space that are consistent with the data and all available models and, as we explain in

the next subsection, trades off various models’ information to achieve the best possible

fit. If a model with poor or no information for θ enters the composite likelihood, it will

not contribute to the estimation of θ. Thus, while our approach is motivated by the fact

that researchers often have a number of theoretical relevant models usable to estimate

the parameters of interest, all of which have roughly comparable fits, it is robust to the

inclusion of irrelevant models.

While it does not happen in any of the examples we study, it may be the case that

in some applications the posterior weight for some model goes to zero, implying that

the nuisance parameters of that model become under-identified when the composite

likelihood is used for estimation. When this occurs, a two-step approach can be used,

where the prior for the nuisance parameters is made data-based using the posterior

for each model estimated on a training sample. This trick effectively avoids under-

identification and makes the priors for the nuisance parameters endogenous.

4.3 Inference

Once composite estimates of (θ, η, ω) are available, one can pick the model with the

highest ω mode for inference or produce statistics which combine the the information

contained in various models.

Let mit = h(yit, θCL, ηi,CL) be a statistic computable from model i, where h is a

continuous differentiable function, and θCL, ηi,CL composite estimates of the parameters.

mit could be a future value of yit, a counterfactual path of yit, or the response of yit

to a structural shock. Rather than choosing the mit produced by the ”best” model,

one could robustify inference by computing M̃t =
∏K
i=1 m̃

ω̄i
it , where ω̄i is, for example,

the posterior mode of ωi. M̃t weights the outcomes of each model by their relative

posterior probabilities and may be superior to using one m̃it in situations of instabilities

or structural breaks. 5

5Alternatively, h could be the model specific density of the object of interest (such as an impulse response)
and one could integrate the geometric average of this density with respect to the composite posterior (see
Canova and Matthes, 2018). We use this latter approach in section 5.1, as it naturally delivers an estimate
of the entire distribution of the object of interest. The general approach we describe, on the other hand, is
particularly useful in situations where the model implied density is costly to compute (as, e.g., in non-linear
models).
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One may wonder what is the meaning of M̃t and how it relates to the true statistic

mt. M̃t has two simple and natural interpretations. The first comes from noticing that

since m̃it is the Bayesian prediction made by model (agent) i, given the information in

yit and the composite estimates, M̃t is an ”opinion” pool where the predictions made

by each model (agent) are combined by a Bayesian planner assigning to each prediction

weights that reflect the relative ability of each model to explain yit. The problem of com-

bining disparate pieces of probabilistic information is well studied in the literature and,

as shown by Genest and Zidek (1986), the logarithmic pooling we employ preserves ex-

ternal Bayesianity (the property that updating and pooling are interchangeable) without

imposing independence among agents’ opinions.

M̃t can also be thought as an approximation to the true mt constructed using the

”messages” that each model sends about the latent variable mt. Different models send

m̃it messages using potentially different data. These messages are aggregated assuming

that the statistical dependences between them is unknown. As shown by Roche (2019),

the aggregation scheme we employ happens to be optimal in an information-theoretical

sense, i.e. the log-linear pool minimizes the average Kullback-Leibler divergence to the

probabilistic opinions. Thus, the composite statistics we construct are the best consensus

mechanism according to a natural criterion among differing agents.

Note that what we are proposing differs from ex-post averaging models’ predictions

computed with likelihood (posterior) estimates of the parameters M †t =
∏K
i=1m

†
it

ωi
=∏K

i=1 h(yit, θML, ηi,ML)ωi , where ωi could be arbitrary, forecast, or posterior-based weights.

M̃t and M †t differ because ψML 6= ψCL and the weights will differ.

5 Addressing inferential problems

This section demonstrates how the quasi-Bayesian methodology developed in section

4 helps in inferential exercises. In the first subsection we show how to robustify the

estimation of structural parameters and how to produce statistics which formally com-

bine the information contained in models with potentially different observables. The

second subsection shows how the methodology may be used to partially pool the in-

formation contained in panels of data with potentially heterogeneous dynamic features.

The final subsection discusses additional applications where the methodology could help

researchers to resolve well known conundrums.
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5.1 Robustifying parameter estimates and efficiently com-
bining predictions

Likelihood-based estimates of structural parameters are rarely used directly in policy ex-

ercises but instead twisted to reflect a-priori information not included in the estimation

(”your boss’ prior”), or informally averaged, taking a number of models into account, be-

fore historical decompositions or counterfactual exercises are computed. Such a practice

is consistent with the idea that available models are approximations, that information

not used in estimation (”judgment”) could be important when evaluating the appeal of

certain policy choices, and that averaging may reduce misspecification biases.

In practice, when a number of models are available to answer a specific question,

two approaches are used in the literature. One either estimates the models separately,

conducts policy experiments in each model, and then averages the outcomes using user-

selected weights; or constructs one counterfactual exercise using informally averaged

estimates of the structural parameters in the ”most-likely”model, for example, the one

with the largest marginal likelihood. Clearly, the two approaches need not produce the

same answer. Furthermore, in neither case, the information present in different models

is used to estimate common structural parameters.

This section shows that a composite posterior approach robustifies estimates of the

common parameters, by formally combining the information about them present in all

models. These estimates have superior statistical properties if the models are carefully

chosen and can be used in each model for decompositions or counterfactuals. As men-

tioned in the section 4, a researcher can then decide to either pick the outcomes obtained

with the most likely model or geometrically average the outcomes to robustify inference.

To see why composite estimators of the common parameters robustify inference,

suppose K=2, and assume that the decision rules they generate are given by (2) and (3).

Maximization of (5) with respect to θ leads to:

ρA = (

TA∑
t=1

y2
At−1 + ζ2

TB∑
t=1

y2
Bt−1)−1(

TA∑
t=1

yAtyAt−1 + ζ1

TB∑
t=1

yBtyBt−1) (26)

where ζ1 = 1−ω
ω

δ
γ2
, ζ2 = 1−ω

ω
δ2

γ2
= ζ1δ and

σ2
A =

1

ξ
(

TA∑
t=1

(yAt − ρAyAt−1)2 +
1− ω
ωγ2

TB∑
t=1

(yBt − δρAyBt−1)2) (27)
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where ξ = (TA + TB
1−ω
ωγ2

)−1. The estimators of ρA and of σ2
A obtained using just model

A or model B log-likelihoods are

ρAA = (

TA∑
t=1

y2
At−1)−1(

TA∑
t=1

yAtyAt−1); ρAB = δ−1(

TB∑
t=1

y2
Bt−1)−1(

TB∑
t=1

yBtyBt−1) (28)

and

σ2
AA =

1

TA

TA∑
t=1

(yAt − ρAAyAt−1)2; σ2
AB =

1

TB

TB∑
t=1

(yBt − δρAByBt−1)2 (29)

As (26)-(27) clearly show, θCL combines the information present in yAt and yBt, with

model B playing the role of a prior for model A. The formulas in (26) and (27) are similar

to those i) obtained in least square problems with uncertain linear restrictions (Canova,

2007, Ch.10), ii) derived using a prior-likelihood approach, see e.g. Lee and Griffith,

1979, or Edwards, 1969) and iii) implicitly produced by a DSGE-VAR setup (see Del

Negro and Schorfheide, 2004), where TB is the number of additional observations added

to the original TA data points.

If model B is irrelevant (δ = 0), yBt will not be used in the estimation of ρA; and it will

affect the estimate of σA only through the effective sample size ξ−1. Thus, as discussed in

section 4.1, the approach automatically discounts models providing poor information in

the dimensions assumed to be common. Moreover, when (γ, δ) are unknown and jointly

estimated with ρA, σ
2
A using composite methods they reflect only the information in yBt.

Asymptotically, the composite estimate of ρ is a linear combination of the true values

of ρA and ρB. However, under in certain situations, the combination weight on ρA may

be greater than one (and thus the weight on ρB less than zero). While a negative weight

on ρB may be optimal if, for example, yAt, yBt are positively correlated and σ2
B >> σ2

A,

it should be made clear that one should not employ composite methods to estimate an

average of ρA and ρB. The method is clearly applicable when ρA = ρB = ρ. It can also

be applied when ρA 6= ρB if one reparametrizes the models, setting ρA = ρ and ρB = ρδ

and estimate ρ using the information contained in yAt and yBt, precisely as we have

done in the above example. When the weights are fixed and chosen to be a function of

δ, the composite estimator of ρ will be consistent for ρA. With an arbitrary ω, there is

no guarantee that the approach will deliver consistent estimates. Still, asymptotic MSE

gains may materialize because of the shrinkage property of composite estimators.

A potential concern is that our framework leads to nonsensical results when ρA 6= ρB
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and one computes a common ρ value using composite methods 6. Thus, care is needed

and ρB must be appropriately reparametrized to make estimation estimation meaningful.

When K models are available, θCL will be constrained by the structure of all models.

For example, equation (26) becomes

ρA = (

TA∑
t=1

y2
At−1 +

K−1∑
i=1

ζi2

Ti∑
t=1

y2
it−1)−1(

TA∑
t=1

yAtyAt−1 +
K−1∑
i=1

ζi1

Ti∑
t=1

yityit−1) (30)

where ζi1 = ωi
ωA

δi
γ2i
, ζi2 = ζi1δi. (30) has the format of a shrinkage estimator: it combines

model specific and average information contained in the remaining cross section of mod-

els. Hence, a composite approach robustifies inference, by requiring estimates of θ to be

consistent with the data generated by all available models. (30) works because model

specific biases and noise will be averaged out.

Suppose we are interested in the responses of xt+h, h = 1, 2, . . . to a shock in et,

where xt+h is a subvector of yt common to the two models. Clearly, such a response

is xAt+h =
∑h

j=0(ρA)j(σAē) in model A and xBt+h =
∑h

j=0(ρAδ)
j(σAγē) in model B. If

one uses composite estimates of ρA, σA, γ, δ, one can choose the predictions of model

A or model B depending on their fit. Alternatively, one can combine them and use

xt+h = (xAt+h)ω(xBt+h)1−ω.

To illustrate the ideas we discussed, consider the problem of estimating the slope of

the Phillips curve. The conventional wisdom is that the slope of the New Keynesian

Phillips curve is historically small (see Smets and Wouters, 2007, or Altig et al., 2011).

Thus, large changes in firms’ marginal costs have small pass-though to the aggregate

inflation rate. However, Schorfheide (2008), surveying estimates obtained in DSGE

models, documents large cross-study variations and associates the differences with i)

the model specification, ii) the observability of marginal costs, and iii) the number and

type of variables used in estimation. Here we examine how the composite posterior

distribution of the slope of the Phillips curve looks relative to the posterior distribution

obtained with i) single models and ii) ex-post averaging of the posteriors of different

models. We then compare the responses of the ex-ante real rate to monetary shocks

obtained with the various approaches.

We consider five models: a small scale New Keynesian model with sticky prices but

non-observable marginal costs, where the variables used in estimation are detrended

6Thanks to an anonymous referee for pointing this out
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output Y, demeaned inflation π, and demeaned nominal rate R, as in Rubio and Ra-

banal (2005); a small scale New Keynesian model with sticky prices and sticky wages,

and observable marginal costs, where the variables used in estimation are detrended

Y, demeaned π, demeaned R and detrended nominal wage W, again as in Rubio and

Rabanal (2005); a medium scale New Keynesian model with sticky prices, sticky wages,

habit in consumption and investment adjustment costs, where the variables used in esti-

mation are detrended Y, detrended consumption, detrendend investment, demeaned π,

demeaned R, detrended hours, and detrended W, as in Justiniano et al. (2010); a New

Keynesian model with search and matching labor market frictions, where the variables

used in estimation are detrended Y, demeaned π, demeaned R and detrended real wage

w, as in Christoffel and Kuester (2008); and a version of the Bernanke, Gertler, and

Gilchrist (1999) model, estimated with detrended Y, demeaned π, and demeaned R. In

this last model, part of the parameters governing the financial frictions are calibrated,

as in Cogley et al (2011), to sidestep the issue of which data series should be used to

match the model-implied spread. In all cases, the estimation sample is 1960:1-2005:4

and a quadratic trend is used to detrend the data. Using alternative detrending does not

change the conclusions we reach, see appendix D. The series used are from the Smets

and Wouters (2007) database; the equations of each model and the specifications for

the priors are in appendix D. Because the observables are different in different models,

Bayesian model averaging of the estimates is not possible.

Table 1 displays some posterior percentiles of the slope of the Phillips curve obtained

using each model likelihood or the composite likelihood. For the first three models the

median value is low and having non-observable marginal costs increases the location of

the posterior distribution. For the other two models, the posterior median is higher and,

for the model with search and matching friction, the posterior spread is also larger. The

posteriors of these latter two models hardly overlap with those of the first three models.

Thus, in agreement with Schorfheide, estimation results depend on the model employed,

the nuisance features it includes, the observability of marginal costs, and the variables

used in the estimation. The composite posterior obtained with random weights has a

median value of 0.26 and a credible 90 percentile ranging from 0.18 to 0.40, which is

smaller than the range obtained with a number of individual models.

Figure 5 plots the prior and the posterior ω for each model. The posterior location

of ω for the models with financial and labor market friction is the least affected by
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Table 1: Percentiles of the posterior distribution of the slope of the Phillips curve

5% 50% 95%
Prior 0.01 0.80 1.40
Basic NK 0.06 0.18 0.49
Basic NK with nominal wages 0.05 0.06 0.07
SW with capital and adj.costs 0.04 0.05 0.07
Search 0.44 0.62 0.86
BGG 0.13 0.21 0.35
CL 0.18 0.26 0.40
CL (corrected) 0.18 0.28 0.44

The table reports posterior percentiles of the slope of the Phillips curve for the prior, for a three variable New

Keynesian model (Basic NK); for a four variable New Keynesian model (Basic NK with nominal

wage); for a medium scale New Keynesian model with seven observables (SW with capital and

adj. costs), for the four variable search and matching model (Search) and the three variable financial

friction model (BGG). The rows with CL report composite posterior percentiles obtained with MCMC

draws unadjusted or adjusted. The estimation sample is 1960:1-2005:4.

the estimation process. On the other hand, for the small NK model with observable

marginal costs and the medium scale NK model the posterior median is lower than the

prior median, and the opposite is true for the basic NK model. Because posterior spreads

are tighter than the prior spread, the data is informative about the weights (see Mueller,

2012). Overall, composite posterior estimates of the Phillips curve reflect, to a large

extent, the information present in the small scale New Keynesian model and, to a lesser

extent, in the BGG and the search and matching model.

Some readers may be surprised that the medium scale New Keynesian model, which

is the workhorse used in many policy institutions, has the lowest posterior probability.

Recall that the posterior for ω reflects the information of each model for the slope of the

Phillips curve. Thus, figure 5 indicates that the medium scale NK model does not have

independent information for this parameter relative to the other models.

Figure 6 presents the composite posterior distribution for the slope of the Phillips

curve together with two naive posterior combinations: one that equally weights the

posteriors in the five models; and one which weights the posteriors in the five models by

the mode of ω. Combining ex-post posterior estimates generate distributions with lower

location. In addition, ex-post combinations produce multimodal posteriors: there is a

sharp peak at 0.05, and a secondary, less pronounced, peak at 0.15.
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Figure 5: Prior and posterior densities of ω

Figure 7 reports the responses of the ex-ante real rate to a 25 annualized basis

points monetary policy shock. We compute responses using composite estimates in the

model with the largest modal value of ω (the small NK model); using the two ex-post

combinations previously discussed; and using our composite approach.

The mean impact effect is estimated to be 45-50 basis points, and the composite

response is intermediate among the values we present. Uncertainty is substantial: while

the composite responses are a-posteriori different from zero, the 68% credible set includes

the point estimates of all models. At larger horizons, the composite posterior for the

real rate responses becomes tighter and the naive equally weighted responses fall outside

credible composite posterior intervals. Note also that composite real rate responses are

less persistent than other alternatives and, after four quarters, they are basically zero.
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Figure 6: Composite posterior and two naive posterior mixtures
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Figure 7: Real rate responses to a monetary shock

5.2 Exploiting cross sectional information

Researchers often have hard time drawing conclusions about an economic phenomena

because the results obtained, say, across countries, contradict each other, or because
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single unit data is not very informative about the issue of interest.

A composite approach is well suited to deal with the situation where there is a single

structural model, but data may come from different units (for example, consumers or

countries); different levels of aggregation (firms, industries, sectors, or regions); or it is

collected at different frequencies (say, weekly or monthly). In this case, we treat time

series for different units (levels of aggregation, frequencies) as different ”models”and

combine their information to estimate common structural parameters. Chamberlain

(1984, p.1272) proposed an estimator for the parameters of a reduced form model, when

a panel is available but the cross-section is not necessarily homogeneous, that has the

same features as our composite estimator.

Let ŷ1t, ŷ2t, ...ŷKt represent a common subset of the vector of observables of unit

(level of aggregation, frequency) i=1,2...K. The composite log-likelihood is

CL(θ|ŷ1t...ŷKt, η1, . . . ηk) =

K∑
i=1

ωi logL(θ|ŷit, ηi) (31)

(31) neglects the correlation structure ŷit, in particular, the presence of common shocks

that may simultaneously affect all K units, but uses the information present in all units

to estimate common parameters. Thus, it defines an objective function that is inter-

mediate between the one obtained with complete pooling of cross model information

CL(θ, η|ŷ1t...ŷKt) =
K∑
i=1

ωi logL(θ, η|ŷit) and with complete heterogeneity CL(θ1, . . . θk, η|ŷ1t...ŷKt) =

K∑
i=1

ωi logL(θi, ηi|ŷit). (31) is similar, in spirit, to the objective function employed in the

cross sectional Bayesian literature (e.g., Zellner and Hong, 1989). In this literature, all

parameters are restricted; here only θ is restricted across i.

Suppose we have available decision rules like (3) for unit i where now (δi, γi) are

unit specific, δ1 = γ1 = 1, while ρA, σA are common. As we have seen, for fixed ω, the

composite likelihood estimator for ρA is

ρA = (

T1∑
t=1

y2
1t−1 +

K∑
i=2

ζi2

Ti∑
t=1

y2
it−1)−1(

T1∑
t=1

y1ty1t−1 +
K∑
i=2

ζi1

Ti∑
t=1

yityit−1) (32)

where ζi1 = ωi
ω1

δi
γ2i
, ζi2 = ζi1δi. Clearly, ρA pools information from different sources if

ζij = 1, ∀i, j, and mimics the ML estimator obtained with ŷ1t if ζij = 0, (δi = 0)∀i, j.
Note that cross model information is not exactly pooled and the degree of cross-model

shrinkage of unit specific information depends on the precision of various sources of
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Figure 8: Prior and Posterior distributions for σ

information. Thus, when dealing with panels of data, the composite approach uses at

least as much information as the likelihood of a model; stochastically exploits cross-

sectional information; and may lead to improved estimates of the common parameters

when different units feature dynamic similarities. The partial pooling approach the

composite likelihood delivers is advantageous when ŷ1t is short; when the heterogeneities

in the DGP for θ are unsystematic (if they are systematic, the partial pooling device

could be applied to units whose variations are unsystematic); and when the volatility of

the endogenous variables across i has similar magnitude.

Note that when ωi = 1/K, ζij reflects the degree of heterogeneity in the panel and

has important information for the user. On the other hand, when ω is random, one can

use its posterior to evaluate the unit, the level of aggregation or the frequency with most

information about the parameters of interest.

To illustrate the use of a composite approach in this situation, we build on the exercise

of Karabarbounis and Neiman (2014). They notice that the labor share has dramatically

fallen in many countries over the last twenty years and argue that shocks to the relative

price of investment, which also declines over time, may be responsible for this fall. Their

argument hinges on the elasticity of substitution between labor and capital in production,

σ, being greater than one. Using their model specification (the optimality conditions
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Figure 9: Labor share responses to shocks to the relative price of investment

and the priors are in appendix E) and their dataset, we first estimate σ using US, UK,

Canada, Germany, and France data separately. We then use composite methods and

data for the five countries to estimate σ, allowing all other structural parameters to be

country specific, using the US as the normalized unit 7.

Figure 8 has the common prior for σ (first row), the single country posteriors (second

row) and the composite posterior obtained with cross sectional data when fixed equal

weights or random weights are used (third row). The data is informative and, except

for the UK, the posterior distribution about σ is entirely above one. The two composite

posterior distributions are also all above one and tight, despite the fact that UK data

receives a non-negligible weight (modal posterior value of ω is 0.07). US data appears

to be most informative and the posterior of ω has mode equal to 0.45.

Figure 9 shows the responses of the labor share, in log deviation from the steady state,

to a positive shock in the relative price of investment (with mean equal to half of the

estimated US standard deviation) in each of the five countries and with the panel when

random weights are used. Indeed, we find a positive dynamic conditional correlation

between shocks to the relative price of investment and the labor share whenever the

7Although we assume that shocks to the price of investment are stationary, none of the results we present
are overturned when the price of investment is allowed to have a unit root.
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posterior of σ is above one. For the UK, shocks to the relative price of investment have

instead negligible dynamic effects on the labor share.

In sum, our analysis confirms Karabarbounis and Neiman’s two main conclusions: i)

the elasticity of substitution between capital and labor is greater than one, ii) shocks

to the relative price of investment can potentially explain the fall in the labor share

observed in many countries. The conclusions we obtain are more general because we

allow for stochastic heterogeneity across countries, and use composite estimators that

exploit the information present in the optimality conditions the theory provides.

5.3 Other applications

There are at least three other situations where the methodology may help researchers

to improve inference. One is when different methods are used to solve a model. For

example, it is standard to use the first order perturbed solution of a DSGE model to

construct the likelihood, but additional information for the parameters of interest is also

present in, say, the second order perturbed solution. Rather than choosing an order of

approximation and thus a likelihood for estimation, one could combine the likelihoods

obtained with different approximation orders into a composite likelihood and robustify

estimation and inference. Alternatively, one could use the posterior of ω to decide which

order of approximation provides the most relevant information for parameter estimation.

The second application is to use the approach to combine different approximations

of the likelihood function for a given solution method 8. For example, when second

order perturbation solutions are computed, the likelihood approximated with a particle

filter or other fully non-linear devices is sensitive to the tuning parameters and the

details of the filtering exercise. If different likelihood approximations (say, computed

with variants of the Kalman filter) are available, one could combine them and use the

composite likelihood to estimate structural parameters. One should expect improved

estimates if different approximations err in different directions, since the averaging of

information that the composite likelihood produces de-emphasizes idiosyncratic errors.

In addition, poorly approximated likelihoods will receive low posterior weights if they

provide inferior information for the parameters treated as common.

The approach can also be used to estimate models subject to certain constraints.

8We thank an anonymous referee for suggesting this possibility
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For example, Acharya et al. (2020) have estimated the parameters of a Heterogeneous

Agent New Keynesian (HANK) model, subject to the constraint that the aggregate

outcomes the model generates must be consistent with some features of the income

distribution. Here the composite likelihood has two pieces: the likelihood of the HANK

model; and quasi-likelihood obtained from the income distribution constraints. The

weight then represents the relative importance the two types of information have for

parameter estimation.

6 Conclusions

This paper describes a procedure to ameliorate identification, estimation and inferential

problems in DSGE models. The method helps in a number of situations and automati-

cally provides estimates of the parameters that formally combine the information present

in different models or data sets using a shrinkage-like approach. The procedure helps

to robustify estimates of the structural parameters in a variety of interesting economic

problems and it is applicable to many empirical situations of interest.

The approach is based on the composite likelihood, a limited-information objective

function, well known in the statistical literature but very sparsely used in economics.

In our setup, the composite likelihood combines the likelihoods of distinct structural or

statistical models, none of which is necessarily a marginal or conditional partition of the

DGP. Thus, standard composite likelihood properties do not necessarily apply. Still, the

approach we propose has desirable statistical properties, it is easy to use, in its quasi-

Bayesian version it has an appealing sequential learning interpretation, and provides a

way to rank the quality of the available models.

We present examples indicating that using the information present in distinct models

helps 1) to ameliorate population and sample identification problems, 2) to solve singu-

larity problems, 3) to produce stable estimates of the parameters of large-scale structural

models. It also helps 4) to robustly estimate the parameters appearing in multiple mod-

els and to rank models with different observables, 5) to combine information coming

from different sources and levels of aggregation for structural estimation.

We believe the methodology has potential in DSGE settings, and the toolkit we

provide makes the used of composite methods easy. Furthermore, the examples we have

provided highlight ways in which the flexibility of the approach can be exploited in a
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number of applications.
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