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A B S T R A C T

This paper addresses a tactical joint inventory and transportation planning problem for multiple items with
deterministic and time-varying demand, considering different transportation modes and item fragmentation.
The latter corresponds to the splitting of the same item ordered quantity between several trucks or containers.
On the one hand, fragmenting the items potentially reduces the number of containers used. On the other
hand, loading the item lot fragments on several containers may negatively impact the handling and shipping
operations. This new problem is proposed as a way to tackle such conflict. Several Mixed Integer Linear
Programming models are proposed for the problem, which rely on two multi-item lot-sizing models with
mode selection and two bin-packing models with item fragmentation. A relax-and-fix heuristic is also proposed.
Using realistic instances, computational experiments are first conducted to identify the most efficient model
in terms of computational time, to study the impact of key parameters on the computational complexity
and to analyze the efficiency of the heuristic. Then, managerial insights are derived through additional
computational experiments, in particular, to identify contexts requiring joint optimization of lot-sizing and
bin-packing decisions, as well as the impact of item fragmentation constraints. Directions for future research
are finally proposed.
1. Introduction

Inventory management models support decisions on how to pro-
cure or produce goods and in what quantity, in anticipation of future
demand, by balancing the inventory holding and fixed setup costs on
the planning horizon. According to Mosca et al. (2019), the decision-
making practices in industry shift from isolated, unilateral department
decisions to multiparty supply chain planning, and integrated mod-
eling techniques have risen in popularity. Recent research stresses
the economic benefits and needs to integrate inventory management
decisions with other supply chain decisions, such as transportation
planning, although the organizational and computational complexity of
those compared to sequential solutions of simpler hierarchical problems
might increase (Hrabec et al., 2022). For example, increased logistics
costs can arise when simplifying transportation costs and ignoring
the availability of multiple transportation modes (Engebrethsen and
Dauzère-Pérès, 2022). In practice, long-term and short-term supply
chain decisions may be interrelated and impact the overall performance
of the supply chains (Jalal et al., 2022). In this paper, we integrate in-
ventory and transportation mode selection decisions together with item
fragmentation, i.e. the splitting of the same item between several trucks
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or containers. Improving the loading configuration may help to better
satisfy practical constraints and policies for loading and transportation
operations of multiple products and to reduce logistics costs.

As in Grunewald et al. (2018), the focus of our paper is on direct
links connecting a single source, which could be a supplier or a central
warehouse, with a single sink (a production site, distribution center,
or sales outlet). Such links represent, for example, vendor-managed
inventory systems, store deliveries, or buyer-driven inbound logistics.
The downstream supply chain member makes replenishment decisions
for multiple items with dynamic, i.e. deterministic and time-varying,
demand over a finite planning horizon. The logistics costs include the
inventory holding and ordering costs for each item, along with the
transportation cost for shipping the items from the vendor using various
transportation modes. The objective of the problem is to minimize the
total cost while fully satisfying the customer demand. When explicitly
considering transportation capacities for various modes, one of the
possible extensions of the inventory models highlighted in Engebreth-
sen and Dauzère-Pérès (2019) is the integration of more operational
decisions related to the container loading configurations. Such ex-
tension is common for other supply chain related decisions, such as
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Fig. 1. Best truck loading given the fragmentation-acceptance policy.
vehicle routing problems or when dealing with several products having
different configurations and container utilization rates (Mosca et al.,
2019). In this work, we assume that the items are palletized in standard
euro-pallets without any geometrical or weight differences. The only
attributes of the items determining the loading configuration are the
lot sizes expressed as the number of items/pallets.

In general, the ordering, transportation, and receiving costs grow
with the variety of products (Chopra and Meindl, 2007). Reducing
the number of products loaded in a container may have a positive
impact on handling and shipping costs. In practice, companies may
have different preferences related to fragmentation for an order with
multiple items, i.e., if the product can be split among various containers
or trucks or not. Heßler et al. (2021) describe some policies used in
the retail industry. For some companies, avoiding item fragmentation
may lead to less labor- or equipment-intensive handling operations.
For example, if products are handled separately for every truck, then
the processing effort may depend on the number of different items.
This assumption may be related to additional quality control and
inspections, load securing, labeling, space reservation and customs
clearance activities (typically per truck or container) required at the
origin or the destination. In such cases, it is cost-efficient to minimize
the overall number of splits, i.e., it is preferable to pack the transported
quantity of an item in two trucks than in three trucks, or even to forbid
item fragmentation for some or all items. However, a loading policy
that allows item fragmentation may better utilize the transportation
capacity and decrease its costs.

It is therefore important to investigate how the tactical lot-sizing de-
cisions can be optimized to lessen such conflict between the efficiency
of transportation and handling operations. In this work, we investigate
such a question by considering a policy where the buyer sets a limit
on the allowed number of fragmentations per period. Note that neither
pallets nor packages on the pallets are split. Only the order can be split
so that the pallets of one product are transported using more than one
truck. The problem studied in this paper extends the classical dynamic
multi-item lot sizing problem, by considering multiple items, multiple
transportation modes (as in Engebrethsen and Dauzère-Pérès (2022)),
and operational considerations related to item fragmentation (as in the
bin-packing problem of Heßler et al. (2021)). The main contributions
of this paper include the following:

• We propose four Mixed Integer Linear Programming (MILP) for-
mulations for the problem.

• Using realistic instances of different sizes, we compare the for-
mulations in terms of computational efficiency and identify the
problem parameters impacting the problem complexity. The per-
formance of a relax-and-fix heuristic is also investigated when
applied to this new problem.

• Using the results of several computational experiments, we iden-
tify the contexts in which it is cost beneficial to solve the proposed
problem in an integrated manner, and we investigate the cost
impact of fragmentation constraints.
2

The paper is organized as follows. Section 2 exemplifies and mo-
tivates the integration of fragmentation decisions in a multi-item dy-
namic lot sizing problem. We review the relevant literature in Section 3.
The MILP model of the investigated problem is presented in Section 4.
Due to the complexity of the problem, four formulations are proposed
using reformulations of the lot sizing and bin packing problems in
Section 5. The relax-and-fix heuristic is presented in 6. Section 7
describes the computational results of the different formulations and
the heuristic, analyzing their performance and the impact of specific
problem parameters on computational complexity. In Section 8, we
investigate the cases where the proposed integrated model may lead
to significant cost savings and analyze how imposing stricter item
fragmentation policies may increase the total costs. Finally, we sum-
marize the conclusions and present managerial implications and future
research suggestions in Section 9.

2. Problem motivations

Let us consider one supplier and one customer that use a direct ship-
ment transportation policy, and assume that a sequence of operations is
triggered each time a shipment is dispatched and received. A realistic
setting arising in the food and beverage industry that motivates this
work is described in Heßler et al. (2021), where multiple products are
shipped directly from a factory to individual warehouses using Full-
truckload (FTL) trucks. While minimizing the number of trucks that can
transport the ordered quantities, the proposed bin-packaging problem
should decide on the assignment of the different products’ lots to the
truck by taking into account different policies of the warehouses mo-
tivated by ensuring the efficiency of their operations per truck. Under
the fragmentation-forbidden policy, a warehouse forces the supplier to
load each product lot on the same truck, and therefore forbids any
fragmentation. Under the fragmentation-allowed policy, the warehouse
does not forbid fragmentation, but the supplier has to minimize their
number. The main motivation of our work is the argument that taking
both transportation and handling operations into account in lot-sizing
models can tackle the conflict highlighted above. Let us consider the
following illustrative example.

Example. Let us consider a supplier shipping three products, each with
an order of 20 pallets. The transportation is ensured by trucks with a
maximum capacity of 30 pallets. Fig. 1 shows the best loading under
the two policies. Two trucks are used when fragmentation is allowed,
and there is necessarily one fragmented item. When fragmentation is
forbidden, the supplier must load each item in a separate truck resulting
in three trucks instead of two.

To illustrate the fact that lot sizes play a critical role in the use of
transportation resources and the benefit of item fragmentation, let us
consider a lot-sizing problem with three items and a planning horizon
of two periods. Table 1 presents the demand for the three items and
two feasible replenishment plans. Assuming the availability of one FTL
mode with a capacity of 30 pallets, the quantities ordered in the second



International Journal of Production Economics 265 (2023) 109001K. Tamssaouet et al.

s
d
e
(
t
d
(
s
p
i
i
b
a

Table 1
Illustrative example data.

Item Demand Plan I Plan II

𝑡 = 1 𝑡 = 2 𝑡 = 1 𝑡 = 2 𝑡 = 1 𝑡 = 2

1 20 20 20 20 20 20
2 15 15 20 10 30 0
3 10 10 20 0 10 10

period fit in one container for both plans. The quantities ordered in the
first period of Plan I correspond to the figures used in the bin packing
problem illustrated in Fig. 1. As shown above, the ordered quantities
induce either a single fragmentation or require one additional container
depending on the fragmentation-acceptance policy. However, the quan-
tities ordered in the first period in Plan II can fit in two containers
without any fragmentation: the ordered quantity of the second item
fills a container, and the quantities of the two remaining items can be
loaded in another container.

As shown in the example of Fig. 1, there is a conflict between the
efficiency of transportation operations and the efficiency of handling
operations under the prism of item fragmentation. On the one hand,
fragmenting the items potentially reduces the number of containers
used, motivating, for example, the study of the vehicle routing prob-
lem where split delivery is allowed (Archetti et al., 2014a). On the
other hand, loading the item lot fragments on several containers may
negatively impact the handling and shipping operations.

The illustrative example shows that the right choice of the lot
sizes can help to balance between the efficient usage of transportation
resources and the handling operations. Therefore, optimization models
supporting the supplier’s packing decisions for a specific fragmentation
policy can also benefit the buyer by integrating such decisions with
transportation and inventory planning. Note that fragmentation is only
relevant when several items are jointly replenished. As it is difficult
to accurately estimate the actual cost related to additional activities
imposed by fragmentation, we implement a hard constraint on the
maximum allowed number of possible fragmentations for all items in
each period.

All these reasons described in this section motivate our choice of
studying a multi-item dynamic lot-sizing problem that explicitly models
transportation capacities and indirectly takes into account the effi-
ciency of handling operations through the notion of fragmentation. To
the best of our knowledge, no integrated dynamic inventory lot-sizing
model with transportation mode selection considers the fragmentation
policies.

3. Literature review

This section briefly reviews the relevant literature. First, relevant
lot-sizing problems focusing on integrating transportation decisions are
reviewed. Next, the literature dealing with the bin backing problem and
its extensions considering fragmentation is briefly summarized.

Lot sizing literature. Dynamic inventory lot-sizing models have been
tudied by researchers for many decades. For a literature review on
ynamic lot-sizing models, we refer the reader to for example Brahimi
t al. (2017) for single item lot-sizing problems, or Robinson et al.
2009) for multi-item lot-sizing problems. Inventory lot-sizing problems
hat are coordinated with the planning of transportation operations
id not receive much attentions according to Büyükkaramikli et al.
2014). A review of integrated inventory-transportation models, that
imultaneously address transportation operations (routing, mode and
olicy selection, etc.) and various inventory decisions, can be found
n Mosca et al. (2019). The authors stress the need to consider multiple
tems and transportation modes to propose more realistic models that
etter reflect the industry needs. For example, Ertogral (2008) proposes
Lagrangian relaxation procedure to solve a multi-item uncapacitated
3

dynamic lot-sizing problem with piecewise linear LTL transportation
costs. Venkatachalam and Narayanan (2016) propose efficient for-
mulations and heuristics for the multi-item lot-sizing problem with
transportation costs.

Engebrethsen and Dauzère-Pérès (2019) provide a detailed review
of transportation mode selection decisions in inventory lot-sizing re-
search and the industrial practices. The authors pinpoint the main
shortcomings of the existing models, such as the consideration of a
single mode and the simplification of the transportation cost functions,
not reflecting realistic piece-wise linear price schedules such as Full-
Truckload (FTL) and Less-than-Truckload (LTL), or mode capacities.
Only few papers consider dynamic deterministic demands for multiple
items and mode selection decision assuming simplified transportation
costs or restricted mode usage. Rizk et al. (2006a) and Rizk et al.
(2006b) consider multiple items and transportation cost with discounts
as a part of the purchasing cost, so-called unit replenishment cost, for
a dynamic deterministic demand. These models apply a pre-processing
approach for replenishment cost modeling, where general cost func-
tions with the lowest unit cost among all modes for each quantity have
been generated, and different modes could not be combined for the
same shipment.

Jaruphongsa et al. (2007) and Palak et al. (2018) model two modes
with an FTL-like multiple set-up structure, assuming that the capacities
of the two modes are integers of each other and allowing the two
modes to be combined for the same order. Ekşioğlu (2009) proposes
an extended model with more than two FTL-like modes. Kopanos et al.
(2012) model decisions on the procurement of additional FTLs from
an external transportation company in addition to an internal fleet
charging unit transportation costs every period. Hammami et al. (2012)
and Mogale et al. (2017) assume constant unit costs for transportation
when modeling multiple transportation modes. Absi et al. (2016) pro-
pose a dynamic inventory model with multiple replenishment modes,
each having a fixed cost and a unit cost and carbon emission parameter
for both transportation and production. In this model the modes can be
combined, but transportation capacity limits are not considered. Cheng
and Li (2021) extend the previous model by considering multiple prod-
ucts, heterogeneous truck fleet and proposing a simulated annealing
algorithm, constraining the transportation mode usage to a single truck
type per period, and analyzing mode usage for various carbon cap
constraints. Hwang and Kang (2016) propose a two-phase algorithm
for a lot-sizing problem with backlogging and stepwise transportation
cost without speculative motives, considering a single FTL model and a
single LTL mode with linear unit cost available, assuming that carriers
could vary over periods. Akbalik and Rapine (2018) study a single-item
uncapacitated inventory problem with FTL-like multiple replenishment
modes and batch deliveries incurring fixed cost per batch. The authors
show that this problem is NP-hard even for a single period, and pro-
pose dynamic programming algorithms and heuristics. Engebrethsen
and Dauzère-Pérès (2022) propose a single-item lot-sizing problem
with more than two FTLs, LTLs and realistic transportation costs and
capacities, allowing various modes to be combined.

Bin Packing literature. The Bin Packing Problem is a well-studied com-
binatorial optimization problem in the literature. For a review of
solution methods for this problem and its variants, we refer the reader
to Coffman et al. (2013). In its basic variant, item fragmentation
(splitting an item into two or more parts and packing each part into
different bins) is not allowed. However, in some applications, this
assumption is too restrictive, see for example Archetti et al. (2014b)
for vehicle routing where split delivery is allowed. Fragmenting items
has the potential to reduce the number of bins or containers used. This
variant is called the Bin Packing Problem with Item Fragmentation,
which is a trivial problem if there are no restrictions on the number
of fragmentations (Ekici, 2021). Several variants of the bin pack-
ing problem with item fragmentation are discussed in the literature.

Concerning the objective function, two variants have been proposed.
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In the first variant called bin-minimization, an upper bound on the
number of fragmentations is given, and the number of bins is mini-
mized. For given purchased quantities, a subproblem of the problem
explored in this work is the variable cost and size bin packing prob-
lem with item fragmentation corresponding to the bin-minimization
variant. As demonstrated by the numerical experiments in Section 7,
the adaptation of the chain formulation proposed in Casazza (2019)
improves the efficiency of the overall optimization model. More de-
tails about the chain formulations are provided in Section 5.2. In
the second variant of bin packing problems with fragmentation called
fragmentation-minimization, a maximum number of bins is given, and
the number of fragmentations is minimized. This variant is used in
Section 8.2 when exploring the impact of the tightness of the frag-
mentation constraints on the total cost. Heßler et al. (2021) solve a
practical bin-packing problem and optimize several objective functions
in lexicographic order, including the minimization of fragmentations.
In the bin-packing sub-problem of our model, it is possible to use
and combine heterogeneous FTL modes or containers of different sizes
and costs. Heßler et al. (2021) consider a homogeneous truck fleet
in terms of size but different in terms of the presence or absence of
a cooling system defining the ability to transport standard, cooled or
frozen products.

Integrated lot sizing and bin-packing literature. Molina et al. (2016)
propose to integrate production lot-sizing decisions with pallet loading
decisions, under constraints of limited weight, volume or load value
in pallets. The authors consider a capacity reservation type of trans-
portation contract, proposed by van Norden and van de Velde (2005),
and pre-process the so-called Manufacturer’s Pallet Loading Problem
for loading the items onto pallets without mixing them, providing
the input into lot sizing problem. However, no item fragmentation
policy or any information on which item is being loaded onto what
truck is considered. Despite the increasing interest for integrated bin
packing and lot-sizing problems among researchers (see Melega et al.,
2018), transportation planning is never considered. To our knowledge,
no authors have previously integrated fragmentation policies into a
lot-sizing model.

4. Problem modeling

We assume that the buyer has to satisfy the demand of 𝐼 items
without shortage in a planning horizon of 𝑇 periods, with the possibility
of using up to 𝑀 different FTL modes. There are no constraints on the
quantity ordered in each period and backlogging is not allowed. Each
item 𝑖 is associated with a demand 𝑑𝑖𝑡 in period 𝑡, an inventory holding
cost ℎ𝑖 and a fixed ordering cost 𝑠𝑖. Each FTL mode 𝑚 has a capacity
𝑐𝑚 (e.g., number of pallets, tonnes) per container and a freight rate
per container 𝑓𝑚. Each item has a weight 𝑤𝑖, that corresponds to the
proportion of a container capacity unit occupied by one unit of item 𝑖.
For example, if the container capacity is expressed in terms of number
of pallets, 𝑤𝑖 is the proportion of one pallet occupied by one unit of
item 𝑖. In the computational experiments of Sections 7 and 8, we use
𝑤𝑖 = 1 for all the items as the demand is large enough to be expressed
in terms of number of pallets.

In addition to the lot sizing problem with transportation mode
selection, the problem modeling aims at proposing a container loading
that can facilitate handling operations. As the lot sizing and container
loading decisions are not at the same level, the model aims more
specifically at ensuring that it is possible to find container loading
patterns that ensure the efficiency of the handling operations given
the produced optimal lot sizing decisions. To do so, we assume that
loading the shipped quantity of one item in different containers neg-
atively impacts the efficiency of handling operations. In this work,
fragmentation accounts for the situation where a shipped quantity of
an item is dispersed in different containers while it can be packed in
one container. We consider a hard constraint on the number of possible
4

fragmentations for all items, denoted 𝐹 . This additional constraint
requires the detailed modeling of the item assignment to containers.
In the following, 𝑘 is used as an index of the container of a given FTL
mode 𝑚.

To explain the model in greater detail, we present below two
distinct sub-problems: The uncapacitated multi-item lot-sizing problem
in Section 4.1 and the variable cost and size bin packing problem with
item fragmentation in Section 4.2. First, we present in (1) the objec-
tive function that minimizes the ordering costs (𝑂𝐶), the inventory
holding costs (𝐼𝐶), and the transportation costs (𝑇𝐶) over the finite
horizon. As different formulations of the subproblems are proposed, the
terms of this generic objective function are calculated through equality
constraints using the appropriate decision variables and parameters of
the associated formulation. More precisely, 𝑂𝐶 and 𝐼𝐶 are detailed in
Sections 4.1 and 5.1 respectively, and 𝑇𝐶 is detailed in Sections 4.2
and 5.2 respectively.

min 𝑂𝐶 + 𝐼𝐶 + 𝑇𝐶 (1)

4.1. Lot-sizing problem

This section presents the constraints of the lot sizing problem. The
resulting formulation is quite intuitive and is often referred to in the
literature as the aggregate formulation (AGG). In this formulation, for
each period 𝑡, 𝑂𝑖𝑡 is a binary variable that models whether item 𝑖 is
ordered in period 𝑡, 𝑄𝑖𝑡 is the quantity of item 𝑖 ordered in period 𝑡, and
𝐼𝑖𝑡 is the inventory level of item 𝑖 at the end of period 𝑡. We assume,
without loss of generality, that the inventory levels at the beginning
(𝐼0 = 0) and at the end of the planning horizon are zero.

𝑂𝐶 =
𝐼
∑

𝑖=1
𝑠𝑖

𝑇
∑

𝑡=1
𝑂𝑖𝑡 𝑡 = 1,… , 𝑇 , 𝑖 = 1,… , 𝐼 (2)

𝐼𝐶 =
𝐼
∑

𝑖=1
ℎ𝑖

𝑇
∑

𝑡=1
𝐼𝑖𝑡 𝑡 = 1,… , 𝑇 , 𝑖 = 1,… , 𝐼 (3)

𝐼𝑖𝑡 = 𝐼𝑖(𝑡−1) +𝑄𝑖𝑡 − 𝑑𝑖𝑡 𝑡 = 1,… , 𝑇 , 𝑖 = 1,… , 𝐼 (4)

𝑄𝑖𝑡 ≤ (
𝑇
∑

𝑡′=𝑡
𝑑𝑖𝑡′ )𝑂𝑖𝑡 𝑡 = 1,… , 𝑇 , 𝑖 = 1,… , 𝐼 (5)

𝑂𝑖𝑡 ∈ {0, 1} 𝑡 = 1,… , 𝑇 , 𝑖 = 1,… , 𝐼 (6)

𝑄𝑖𝑡, 𝐼𝑖𝑡 ≥ 0, 𝑡 = 1,… , 𝑇 , 𝑖 = 1,… , 𝐼 (7)

Constraints (2) and (3) compute, respectively, the total ordering cost
and the total inventory cost in the objective function (1). Constraints
(4) are the classical inventory balance equations, expressing that the
inventory 𝐼𝑖(𝑡−1) of item 𝑖 at the end of period 𝑡−1 added to the shipment
𝑄𝑖𝑡 received in period 𝑡 are used to satisfy demand 𝑑𝑖𝑡 of item 𝑖 at
period 𝑡. What remains is kept in stock at the end of the period (𝐼𝑖𝑡).
Constraints (5) ensure that the fixed ordering cost of item 𝑖 is incurred
each time there is a positive quantity of 𝑖 ordered in period 𝑡. ∑𝑇

𝑡′=𝑡 𝑑𝑖𝑡′ is
the value of the big-M parameter and represents the maximum quantity
that can be optimally ordered. Constraints (6) define 𝑂𝑖𝑡 as binary and
Constraints (7) define 𝑄𝑖𝑡 and 𝐼𝑖𝑡 as non-negative decision variables.

4.2. Variable cost and size bin packing problem with fragmentation

Let us first introduce the decision variables to model the different
constraints related to this problem. 𝐴𝑚𝑡 denotes the number of con-
tainers of FTL mode 𝑚 used in period 𝑡. By introducing the constraints
on the number of allowed fragmentation, one must explicitly model
the assignment of the item shipped quantities to the containers of the
different modes. Therefore, for each period 𝑡, the necessary variables for
such explicit modeling of the assignment of item shipped quantities to
FTL containers are the quantity of item 𝑖 loaded on container 𝑘 of mode
𝑚 denoted by 𝑋 , the binary variable modeling if item 𝑖 is loaded in
𝑖𝑡𝑘𝑚
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𝑋

container 𝑘 of FTL mode 𝑚 denoted by 𝐿𝑖𝑡𝑘𝑚 and the binary variable
𝑈𝑡𝑘𝑚 modeling if container 𝑘 of mode 𝑚 is used in period 𝑡.

If the shipped quantity of an item cannot fit in the container with
the largest capacity, forbidding fragmentations leads to the infeasibility
of the model. For example, if 70 pallets of an item have to be shipped
in one period while the largest container has a capacity of 30 pallets,
at least 3 containers must be used to transport the ordered quantity.
To ensure the model always has feasible solutions, the constraints on
the number of fragmentations do not consider what can be called
mandatory fragmentations. Therefore, we introduce the additional in-
teger variable 𝐹𝑖𝑡 modeling the number of mandatory fragmentations
of item 𝑖 in period 𝑡. Considering the previous example, there are two
mandatory fragmentations. Using the defined notations, the constraints
of the variable cost and size bin packing problem are defined below.

𝑇𝐶 =
𝑀
∑

𝑚=1

𝑇
∑

𝑡=1
𝑓𝑚𝐴𝑚𝑡 𝑡 = 1,… , 𝑇 , 𝑚 = 1,… ,𝑀 (8)

𝑤𝑖𝑄𝑖𝑡 =
𝑀
∑

𝑚=1

𝐾
∑

𝑘=1
𝑋𝑖𝑡𝑘𝑚 𝑡 = 1,… , 𝑇 , 𝑖 = 1,… , 𝐼 (9)

𝐿𝑖𝑡𝑘𝑚 ≤ 𝑂𝑖𝑡 𝑡 = 1,… , 𝑇 , 𝑖 = 1,… , 𝐼, 𝑚 = 1,… ,𝑀,

𝑘 = 1,… , 𝐾 (10)

𝑖𝑡𝑘𝑚 ≤ min{𝑐𝑚, 𝑤𝑖

𝑇
∑

𝑡′=𝑡
𝑑𝑖𝑡′}𝐿𝑖𝑡𝑘𝑚 𝑡 = 1,… , 𝑇 , 𝑖 = 1,… , 𝐼, 𝑚 = 1,… ,𝑀,

𝑘 = 1,… , 𝐾 (11)
𝐿𝑖𝑡𝑘𝑚 ≤ 𝑈𝑡𝑘𝑚 𝑡 = 1,… , 𝑇 , 𝑖 = 1,… , 𝐼, 𝑚 = 1,… ,𝑀,

𝑘 = 1,… , 𝐾 (12)
𝐼
∑

𝑖=1
𝑋𝑖𝑡𝑘𝑚 ≤ min{𝑐𝑚,

𝐼
∑

𝑖=1
𝑤𝑖

𝑇
∑

𝑡′=𝑡
𝑑𝑖𝑡′}𝑈𝑡𝑘𝑚 𝑡 = 1,… , 𝑇 , 𝑚 = 1,… ,𝑀, 𝑘 = 1,… , 𝐾

(13)

𝐴𝑚𝑡 =
𝐾
∑

𝑘=1
𝑈𝑡𝑘𝑚 𝑡 = 1,… , 𝑇 , 𝑚 = 1,… ,𝑀 (14)

𝐹𝑖𝑡 ≤
𝑤𝑖𝑄𝑖𝑡

max𝑀𝑚=1 𝑐𝑚
𝑡 = 1,… , 𝑇 , 𝑖 = 1,… , 𝐼 (15)

𝐹𝑖𝑡 ≥
𝑤𝑖𝑄𝑖𝑡

max𝑀𝑚=1 𝑐𝑚
− 1 + 𝜖 𝑡 = 1,… , 𝑇 , 𝑖 = 1,… , 𝐼 (16)

𝐼
∑

𝑖=1
(
𝑀
∑

𝑚=1

𝐾
∑

𝑘=1
𝐿𝑖𝑡𝑘𝑚 − 𝑂𝑖𝑡)

−
𝐼
∑

𝑖=1
𝐹𝑖𝑡 ≤ 𝐹 𝑡 = 1,… , 𝑇 (17)

𝜖𝑂𝑖𝑡 ≤ 𝑄𝑖𝑡 𝑡 = 1,… , 𝑇 , 𝑖 = 1,… , 𝐼 (18)
𝑈𝑡(𝑘+1)𝑚 ≤ 𝑈𝑡𝑘𝑚 𝑡 = 1,… , 𝑇 , 𝑚 = 1,… ,𝑀,

𝑘 = 1,… , 𝐾 − 1 (19)
𝐴𝑚𝑡, 𝐹𝑖𝑡 ∈ 𝐍 𝑡 = 1,… , 𝑇 , 𝑖 = 1,… , 𝐼, 𝑚 = 1,… ,𝑀,

(20)
𝐿𝑖𝑡𝑘𝑚, 𝑈𝑡𝑘𝑚 ∈ {0, 1} 𝑡 = 1,… , 𝑇 , 𝑖 = 1,… , 𝐼, 𝑚 = 1,… ,𝑀,

𝑘 = 1,… , 𝐾 (21)
𝑋𝑖𝑡𝑘𝑚 ≥ 0 𝑡 = 1,… , 𝑇 , 𝑖 = 1,… , 𝐼, 𝑚 = 1,… ,𝑀,

𝑘 = 1,… , 𝐾 (22)

In addition to the ordering and inventory costs, the objective func-
tion (1) includes a term related to the transportation costs 𝑇𝐶 com-
puted by Constraint (8). Constraints (9) convert the ordered quantity
𝑄𝑖𝑡 to the consumption of the transportation capacity and enforce
the acquisition of such required capacity. Constraints (10) avoid the
loading decisions of item 𝑖 in period 𝑡 to be considered for an item
that is not ordered. Constraints (11) ensure that the binary variable
modeling the use of an FTL mode container by an item is equal to 1
as soon as there is at least one item shipped quantity that is loaded
5

in the container. Constraints (12) state that an FTL mode container
is used as soon as an item requires it. Constraints (13) state that
if an FTL mode container is used, the total shipped quantity of all
items should not exceed its maximum capacity. Constraints (14) count
the number of containers of an FTL mode 𝑚 used in each period.
Constraints (15) and (16) compute for each item 𝑖 and each period
𝑡 the number of mandatory fragmentations where 𝜖 is a very small
number. The number of mandatory fragmentations is computed using
the floor function on the ratio between the required capacity of the total
quantity to be shipped in 𝑡 and the capacity of the largest container.
Constraints (17) impose a limit on the total number of fragmentations.
For each ordered item (i.e., 𝑂𝑖𝑡 = 1), the number of fragmentations
is computed as the sum of the number of used FTL mode containers,
from which the minimum number of required containers (number of
mandatory fragmentations plus 1) is subtracted. To avoid incurring an
ordering cost without ordering any quantity, Constraints (18) ensure
that ‘‘𝑂𝑖𝑡 = 1 ⟹ 𝑄𝑖𝑡 > 0’’ (the converse of the implication
modeled by Constraints (5)). Constraints (19) are used to eliminate
symmetries and reduce the search space. Constraints (20), (21) and (22)
define the integer, binary, and non-negative variables respectively. This
formulation of the bin packing subproblem is called in the remainder
of the paper straightforward formulation and denoted S.

5. Problem reformulation

The model studied in this work and defined in Section 4 comprises
two NP-hard problems: The dynamic multi-item lot sizing problem and
the variable cost and size bin packing problem with item fragmen-
tation in each planning period. This section proposes reformulating
the studied problem using known reformulations for the two subprob-
lems. Therefore, instead of the aggregate formulation for the lot sizing
problem of Section 4.1, Section 5.1 presents a known disaggregate
formulation. Section 5.2 adapts the formulation proposed in Casazza
(2019) to model the problem of transportation mode selection and
container loading in each period. In total, given the formulation used
for each subproblem, four formulations are compared in Section 7. As
the different cost components are computed through constraints, the
objective function in (1) is valid regardless of how the sub-problems
are formulated.

5.1. Lot-sizing problem reformulation

This section focuses on the multi-item lot-sizing sub-problem. There
are very few reformulations for such a complex problem, so it is
common to use reformulations for uncapacitated single-item lot sizing
problems. The formulation presented in Section 4.1 is called aggregate
in contrast with disaggregate formulations such as the facility location
problem-based formulation (Krarup and Bilde, 1977) and the shortest
path problem-based formulation (Evans, 1985). These two disaggregate
formulations are considered as tight formulations because their LP re-
laxations have optimal solutions in which the binary ordering variables
𝑂𝑖𝑡 are integer. We present below the facility location problem-based
formulation. New variables are defined along additional parameters to
provide the facility-location formulation, denoted FAL. Let 𝑄𝑖𝑡′𝑡 denote
the number of units shipped in period 𝑡′ to satisfy the demand of
period 𝑡. To facilitate the computation of the inventory costs in this
new formulation, let us denote the holding cost for supplying one
unit for an item 𝑖 in period 𝑡 from replenishment period 𝑡′: ℎ𝑖𝑡′𝑡 =
ℎ𝑖(𝑡− 𝑡′). For modularity, variables 𝑄𝑖𝑡 from the aggregate formulation,
i.e., the quantity of item 𝑖 ordered in period 𝑡, are used again. Indeed,
variables 𝑄𝑖𝑡 are required by both formulations of the bin packing
problem. Instead of considering the constraints in Section 4.1, the FAL
formulation includes the constraints below.

𝑂𝐶 =
𝐼
∑

𝑠𝑖
𝑇
∑

𝑂𝑖𝑡 𝑡 = 1,… , 𝑇 , 𝑖 = 1,… , 𝐼 (23)

𝑖=1 𝑡=1
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𝐼𝐶 =
𝐼
∑

𝑖=1

𝑇
∑

𝑡′=1

𝑇
∑

𝑡=𝑡′
ℎ𝑖𝑡′𝑡𝑄𝑖𝑡′𝑡 𝑡 = 1,… , 𝑇 , 𝑖 = 1,… , 𝐼 (24)

𝑡
∑

𝑡′=1
𝑄𝑖𝑡′𝑡 = 𝑑𝑖𝑡 𝑡 = 1,… , 𝑇 , 𝑖 = 1,… , 𝐼 (25)

𝑄𝑖𝑡′𝑡 ≤ 𝑑𝑖𝑡𝑂𝑖𝑡′ 𝑖 = 1,… , 𝐼, 𝑡′ = 1,… , 𝑇 , 𝑡 = 𝑡′,… , 𝑇 (26)

𝑄𝑖𝑡′ =
𝑇
∑

𝑡=𝑡′
𝑄𝑖𝑡′𝑡 𝑖 = 1,… , 𝐼, 𝑡′ = 1,… , 𝑇 (27)

𝑂𝑖𝑡 ∈ {0, 1} 𝑖 = 1,… , 𝐼, 𝑡 = 1,… , 𝑇 (28)

𝑄𝑖𝑡′𝑡, 𝑄𝑖𝑡′ ≥ 0 𝑖 = 1,… , 𝐼, 𝑡′ = 1,… , 𝑇 , 𝑡 = 𝑡′,… , 𝑇 (29)

Constraints (23) and (24) compute the total ordering cost and the
total inventory cost, respectively, in objective function (1). Constraints
(25) are the new inventory balance constraints, expressing that the
demand at period 𝑡 must be satisfied by the total quantities shipped
in the previous or current period. Constraints (26) ensure that the
fixed ordering cost of item 𝑖 is incurred each time there is a positive
quantity of item 𝑖 ordered in period 𝑡′. These constraints also define
an upper bound on the optimal total shipped quantity 𝑄𝑖𝑡′𝑡. Constraints
(28) and (29) define the binary and continuous non-negative variables,
respectively.

5.2. Bin-packing problem reformulation

The transportation mode selection sub-problem described in Sec-
tion 4.2 can be qualified as the variable cost and size (depending on
the mode) bin (container) packing problem with item fragmentation
(VCSBF). Contrary to the classical bin packing problem, items can
be fragmented and fractionally assigned to different bins. The second
difference lies in the fact that the bins might be heterogeneous (dif-
ferent cost and capacity). The straightforward formulation provided in
6

Section 4.2, despite being easier to understand, is not the most efficient
one, as shown in the numerical results, due to its large number of binary
variables and constraints. For example, binary variables are introduced
for each possible assignment of an item to the available number of
containers of each mode. Instead of the straightforward formulation,
this section adapts a recent reformulation of VCSBF to model the
problem of transportation mode selection and container loading in each
period. This formulation, called chain formulation and referred to by C,
is proposed by Casazza (2019).

The chain formulation reduces the problem of packing items into
a minimum-cost set of chains instead of a minimum-cost set of bins,
where each chain corresponds to a subset of the bins. To illustrate
this, Fig. 2 compares the straightforward and chain representations of
a feasible packing solution. In Fig. 2(a), five items are packed in four
bins, three with the largest capacity and a smaller one. Items 2 and
3 are fragmented as their quantities exceed the largest capacity. In
the chain representation (Fig. 2(b)), the same solution is represented
by two chains. The first chain is basically the first three bins that
are stacked, while the second chain corresponds to the last bin. The
three first bins are stacked, or chained, as the two first bins share
item 2, while item 3 is fragmented between the second and third
bins. So, instead of assigning items to bins, the chain formulation
assigns items to chains, each with a capacity and a cost that are,
respectively, equal to the sum of the capacities and costs of its bins. By
doing so, the chain formulation involves significantly fewer variables
than the straightforward formulation. For more details regarding the
chain formulation, the reader is referred to Casazza and Ceselli (2014),
Casazza (2019). Beyond its impact on the computational complexity
of the studied model, the chain formulation perfectly fits the buyer’s
perspective considered in this work. By integrating the fragmentation
constraints in the lot-sizing model, the buyer only ensures that the
supplier can ship the ordered quantity with the lowest transportation
costs and comply with the preferred fragmentation-acceptance policy.
Knowing in which container each item is loaded is irrelevant to the

buyer, at least in the planning stage.
Fig. 2. Example of a feasible packing solution.
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Table 2
List of the problem formulations.
Formulation Lot sizing problem Bin packing problem

Aggregate (AGG)
Section 4.1

Facility location (FAL)
Section 5.1

Straightforward (S)
Section 4.2

Chain (C)
Section 5.2

AGG-S ✓ ✓

AGG-C ✓ ✓

FAL-S ✓ ✓

FAL-C ✓ ✓
To use the chain formulation to model the problem of transportation
ode selection and container loading in each period, let 𝐾 be a

ufficient number of containers. This number can also be considered
s the maximum number of chains since each chain corresponds to
set of at least one container, and therefore no solution using more

han 𝐾 chains is feasible. However, using a number of chains as small
s possible shows a significant improvement in the efficiency of the
athematical model. As the chain formulation constrains each item to

e assigned to at most one chain, the number of chains is also bounded
y the number of items. Let us consider 𝐶 = min{𝐾, 𝐼} as the maximum
umber of chains, and let 𝑐 be the chain index. Besides 𝐶 and 𝑐, several

variables must be redefined or introduced. The number of containers of
a FTL mode 𝑚 in a chain 𝑐 in period 𝑡 is denoted by 𝐴𝑚𝑡𝑐 . Other binary
variables required by this new formulation are the variables that take
value 1 when item 𝑖 is assigned to chain 𝑐 in period 𝑡 denoted 𝐿𝑖𝑡𝑐 and
the variable modeling the use of a chain 𝑐 in a period 𝑡 denoted by 𝑈𝑡𝑐 .
Finally, 𝑋𝑖𝑡𝑐 is the quantity of item 𝑖 ordered in period 𝑡 and loaded in
chain 𝑐. The formulation is presented below.

𝑇𝐶 =
𝑀
∑

𝑚=1

𝑇
∑

𝑡=1

𝐶
∑

𝑐=1
𝑓𝑚𝐴𝑚𝑡𝑐 𝑡 = 1,… , 𝑇 , 𝑚 = 1,… ,𝑀 (30)

𝑤𝑖𝑄𝑖𝑡 =
𝐶
∑

𝑐=1
𝑋𝑖𝑡𝑐 𝑡 = 1,… , 𝑇 , 𝑖 = 1,… , 𝐼 (31)

𝐿𝑖𝑡𝑐 ≤ 𝑂𝑖𝑡 𝑡 = 1,… , 𝑇 , 𝑖 = 1,… , 𝐼, 𝑐 = 1,… , 𝐶 (32)

𝐿𝑖𝑡𝑐 ≤ 𝑈𝑡𝑐 𝑡 = 1,… , 𝑇 , 𝑖 = 1,… , 𝐼, 𝑐 = 1,… , 𝐶 (33)

𝑋𝑖𝑡𝑐 ≤ (
𝑇
∑

𝑡′=𝑡
𝑤𝑖𝑑𝑖𝑡′ )𝐿𝑖𝑡𝑐 𝑡 = 1,… , 𝑇 , 𝑖 = 1,… , 𝐼, 𝑐 = 1,… , 𝐶 (34)

𝐶
∑

𝑐=1
𝐿𝑖𝑡𝑐 ≤ 1 𝑡 = 1,… , 𝑇 , 𝑖 = 1,… , 𝐼 (35)

𝐼
∑

𝑖=1
𝑋𝑖𝑡𝑐 ≤

𝑀
∑

𝑚=1
𝑐𝑚𝐴𝑚𝑡𝑐 𝑡 = 1,… , 𝑇 , 𝑐 = 1,… , 𝐶 (36)

𝑈𝑡𝑐 ≤
𝑀
∑

𝑚=1
𝐴𝑚𝑡𝑐 𝑡 = 1,… , 𝑇 , 𝑐 = 1,… , 𝐶 (37)

𝐹𝑖𝑡 ≤
𝑤𝑖𝑄𝑖𝑡

max𝑀𝑚=1 𝑐𝑚
𝑡 = 1,… , 𝑇 , 𝑖 = 1,… , 𝐼 (38)

𝐹𝑖𝑡 ≥
𝑤𝑖𝑄𝑖𝑡

max𝑀𝑚=1 𝑐𝑚
− 1 + 𝜖 𝑡 = 1,… , 𝑇 , 𝑖 = 1,… , 𝐼 (39)

𝐶
∑

𝑐=1
(
𝑀
∑

𝑚=1
𝐴𝑚𝑡𝑐 − 𝑈𝑡𝑐 )

−
𝐼
∑

𝑖=1
𝐹𝑖𝑡 ≤ 𝐹 𝑡 = 1,… , 𝑇 (40)

𝑈𝑡(𝑐+1) ≤ 𝑈𝑡𝑐 𝑡 = 1,… , 𝑇 , 𝑐 = 1,… , 𝐶 − 1 (41)

𝑖𝑡𝑐 , 𝑈𝑡𝑐 ∈ {0, 1} 𝑡 = 1,… , 𝑇 , 𝑚 = 1,… ,𝑀, 𝑐 = 1,… , 𝐶 (42)

𝑚𝑡𝑐 , 𝐹𝑖𝑡 ∈ 𝐍 𝑡 = 1,… , 𝑇 , 𝑖 = 1,… , 𝐼, 𝑚 = 1,… ,𝑀, 𝑐 = 1,… , 𝐶
(43)

𝑋𝑖𝑡𝑐 ≥ 0 𝑡 = 1,… , 𝑇 , 𝑖 = 1,… , 𝐼, 𝑚 = 1,… ,𝑀, 𝑐 = 1,… , 𝐶
(44)

Constraints (30) compute the transportation costs (𝑇𝐶) in the ob-
jective function (1). Constraints (31) convert the quantity 𝑄𝑖𝑡 of item 𝑖
ordered in period 𝑡 to the consumption of the transportation capacity
7

and enforce the acquisition of such required capacity. Constraints (32)
avoid considering loading decisions of an item that is not ordered,
while Constraints (33) forbid an item to be loaded on an unused
chain 𝑐. Constraints (34) ensure that the binary variable modeling the
use of chain 𝑐 by item 𝑖 is equal to 1 as soon as there is a strictly
positive quantity loaded on chain 𝑐. Constraints (35) state that an
item is loaded in at most one chain. Constraints (36) make sure that
each chain 𝑐 is allocated enough FTL capacity to transport the total
quantity to ship in period 𝑡. Constraints (37) ensure that each selected
chain has at least one FTL mode container. Constraints (38) and (39)
compute for each item 𝑖 and each period the number of mandatory
fragmentations by using the floor function on the results of dividing the
required capacity of the total quantity to be shipped in that period by
the capacity of the largest container capacity. Constraints (40) impose
a limit on the total number of fragmentations. For each chain, the
number of fragmentations is computed as the sum of the number of
used FTL mode containers minus the number of used chains. The upper
bound is increased by the number of mandatory fragmentations. Con-
straints (41) are used to eliminate symmetries and reduce the search
space. Constraints (42), (43) and (44) define the binary, integer, and
non-negative variables, respectively.

In summary, four formulations of the problem studied in this paper
are obtained by choosing one of the two formulations for each of its
two subproblems. Table 2 provides the section number for each of the
four formulations. The first part of each formulation name indicates
the formulation for the lot-sizing problem: AGG stands for aggregate
formulation while FAL stands for facility location formulation. The
second part of the name of each formulation indicates the formulation
for the variable cost and size bin packing problem: ‘‘S’’ stands for
‘‘straightforward’’ formulation, whereas ‘‘C’’ stands for the adaptation
of the chain formulation. Note again that, independently of the selected
formulation, the objective function (1) remains the same. Using realistic
instances, the four formulations are compared in Section 7.2.

6. A relax-and-fix heuristic

The problem defined in this work combines two NP-hard problems:
A multi-item lot-sizing problem and a variable cost and size bin packing
problem with item fragmentation. Even with the modern fast computers
and state-of-the-art optimization solvers, it is very unlikely that real-life
instances of such a problem can be solved using exact methods. There-
fore, this section introduces the relax-and-fix heuristic, denoted RF, to
study its performance for this problem. The relax-and-fix heuristic is
a commonly used heuristic to solve lot-sizing problems (Pochet and
Wolsey, 2006 and Toledo et al., 2015) and mixed-integer linear pro-
grams in general (Joncour et al., 2023). A relax-and-fix heuristic builds
an initial solution by sequentially solving several relaxed sub-problems
and fixing integer variables. Before iterating over the sub-problems,
this heuristic requires the partitioning of the integer variables into
distinct subsets and the definition of the processing sequence. In multi-
period optimization problems, time-based partitioning and a processing
sequence from the first period to the last are natural choices. At each
iteration, except for the current subset of integer variables and the
integer variables already fixed in the previous iterations, the integrality
constraints are relaxed for all the other integer variables. In the AGG-

C formulation, the integer decision variables are: 𝑂𝑖𝑡 (whether item 𝑖
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is ordered in period 𝑡), 𝑈𝑡𝑘 (whether chain 𝑘 is used in period 𝑡), 𝐿𝑖𝑡𝑘
(whether item 𝑖 is loaded in chain 𝑘 in period 𝑡), 𝐴𝑚𝑡𝑘 (number of
containers in FTL mode 𝑚 used by chain 𝑘 in period 𝑡) and 𝐹𝑖𝑡 (number
of mandatory fragmentations of item 𝑖 in period 𝑡).

With time-based partitioning, it is common to name window the
sequence of periods for which the related integer decision variables
are the only variables on which the integrality constraints apply. The
window size, denoted 𝑤𝑠, corresponds to the number of periods in the
window. After solving the relaxed sub-problem, it is possible to fix all
the optimized integer variables, but also to only fix a subset and re-
optimize the remaining variables in the next iterations. The overlap
parameter, denoted 𝑜𝑣, specifies the number of periods at the end of the
window for which the decision variables are re-optimized in the next
iterations. Contrary to the integer decision variables, the continuous
variables are re-optimized in every iteration and only fixed in the last
iteration of the heuristic. Finally, as sub-problems might be too time-
consuming to solve, it is common to set up a time limit for the MILP
solver in each iteration. In the implemented heuristic, the time limit
for each iteration is determined by the window size (i.e., the number
of periods) and the allocated computation time per period, denoted 𝑡𝑙.
n addition to the time limit, the solver is terminated when the solution
s within the relative MILP optimality gap specified by a parameter
enoted 𝑔𝑎𝑝. In conclusion, the proposed relax-and-fix heuristic has
our parameters: Window size (𝑤𝑠), overlap (𝑜𝑣), time limit per period
𝑡𝑙) and relative MILP gap (𝑔𝑎𝑝). The performance of this heuristic is
valuated in Section 7.4.

. Computational analysis

This section aims at numerically exploring the computational com-
lexity of the problem defined in this work. First, Section 7.1 describes
he procedure used to generate the problem instances based on real
ata from a Scandinavian distribution company for fast-moving con-
umer goods. This section identifies the main parameters to be varied
o analyze their impact on the problem resolution. Section 7.2 compares
he four proposed problem formulations and Section 7.3 studies the
mpact of the parameters. Finally, Section 7.4 reports the impact of
he size of the instances on the performance of the exact and heuristic
pproaches.

.1. Design of experiments

To conduct the experiments, new instances are created to explore
he efficiency of the formulations and characterize the impact of some
f the problem attributes on the problem computational complexity
nd of the fragmentation constraints on the total cost. The input data
elated to decisions regarding the lot sizing and transportation mode
election are based on realistic data of a Scandinavian distribution
ompany for fast-moving consumer goods. The other parameters that
re closely related to fragmentation constraints are generated following
procedure inspired by Crainic et al. (2011) and Casazza (2019). The
roblem attributes are as follows (costs are expressed in NOK):

1. Combinations of the number of items and periods: (𝐼, 𝑇 ) ∈
{(10, 10), (20, 10), (40, 20)}.

2. Number of available transportation modes 𝑀 ∈ {2, 4}. The
capacity and cost of the FTL modes are taken from the two lists
(33, 30, 25, 11) and (4917, 4560, 4000, 2123), respectively. When
𝑀 = 2, the characteristics of the available FTL modes correspond
to the first elements of the two lists. The capacity is expressed
in terms of the number of Euro-pallets that can fit in typical
container sizes (Engebrethsen and Dauzère-Pérès, 2019).

3. Based on historical data from a Scandinavian company that
distributes fast-moving consumer products, the data related to
8

the items are generated as follows:
• Given that the products from the practical setting belong to
the same family, it is assumed that all items have a weight
of 𝑤𝑖 = 1.

• The annual holding cost is equal to 20% of the product
price.

• Each item ordering cost is randomly generated according
to a (discrete) uniform distribution in the set {1, 2,… , 100}.
This corresponds to a low time between orders (TBO)
characterizing the practical setting.

• The parameters of the normal distributions used to ran-
domly generate the demand of the items are estimated
based on the historical demand for 30 products. The de-
mand is expressed in terms of the number of Euro-pallets.
In the actual setting studied in this work, as highlighted
by Heßler et al. (2021), the quantities are large enough
so that pallets are not mixed, i.e., each pallet contains
only one product. Based on the average weekly demand,
the items are grouped into three categories: Small-sized
items 𝑆1 with an average demand in the interval [1, 7];
Medium-sized items 𝑆2 with an average demand in the
interval [11, 21]; and Big-sized items 𝑆3 with an average
demand in the interval [26, 33]. The relative size of the
items is determined based on the capacity of the largest
FTL container, i.e., 33 pallets.

4. After grouping the items according to the proportion of the av-
erage demand relative to the largest FTL capacity, the item types
are mixed in order to generate different demand configurations
similarly to Crainic et al. (2011). Six demand configurations are
generated:

• Configuration 𝐶1 where 100% of items are in 𝑆1,
• Configuration 𝐶2 where 100% of items are in 𝑆2,
• Configuration 𝐶3 where 100% of items are in 𝑆3,
• Configuration 𝐶4 where 50% of items are in 𝑆1 and 50%

of items are in 𝑆2,
• Configuration 𝐶5 where 50% of items are in 𝑆1 and 50%

of items are in 𝑆3,
• Configuration 𝐶6 where 10% of items are in 𝑆1, 70% of

items are in 𝑆2 and 20% of items are in 𝑆3.

5. The allowed number of fragmentations for each configuration is
𝐹 = ⌊𝑓𝐼⌋, where 𝑓 is a parameter in the set {0%, 10%, 20%, 100%}
and 𝐼 is the number of items.

In general, the instances in this section and in Section 8 are charac-
erized by the following elements: Number of items, number of periods,
emand configuration, number and characteristics of the available
TL modes, and allowed number of fragmentations. The relax-and-fix
euristic is implemented in C++. The experiments have been conducted
sing Cplex 22.11 with default values for all parameters on a PC
quipped with an Intel(R) Core(TM) i9-12900H CPU at 2.50 GHz with
2 GB of memory.

.2. Comparison of the formulations

This section compares the four formulations: AGG-S, AGG-C, FAL-
and FAL-C using 240 instances with 𝐼 = 10 and 𝑇 = 10, generated

ollowing the procedure described in Section 7.1. Three maximum
omputational times are used: 60, 300, and 3600 seconds. Due to the
ifficulty of the problem instances, the optimality gap of each formu-
ation on each instance is calculated with regards to the best lower
ound denoted 𝐿𝐵3600. Furthermore, to tighten the lower bound, the
ame instances are solved after dropping all considerations related
o fragmentation. Hence, the maximums of these bounds obtained
fter 3600 seconds are used for the values of 𝐿𝐵3600. Therefore, the
ptimality gap is calculated as 𝑜𝑝𝑡. 𝑔𝑎𝑝 = 𝑈𝐵−𝐿𝐵3600 , where 𝑈𝐵 is the
𝐿𝐵3600
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Table 3
Summary of experimental results for each of the four formulations over all instances.

60 s 300 s 3600 s

nFS nRS nOSF opt. gap (%) nRS nOSF opt. gap (%) nOSF opt. gap (%)

avg max avg max avg max

AGG-C 240 230 83 0.9 8.8 237 118 0.9 7.4 138 0.7 5.2
AGG-S 234 209 20 12.9 70.6 235 36 7.1 66.3 139 0.8 7.8
FAL-C 240 230 89 0.8 7.3 237 126 0.9 6.5 143 0.7 6.7
FAL-S 236 190 21 12.8 99.6 234 38 7.1 64.8 140 0.8 7.8
s
a
o
a
e

upper bound given by the solver in the allocated computational time.
Table 3 reports the average and maximum optimality gaps for each
formulation and for each maximum computation time.

It might be difficult to find a feasible solution or a feasible solution
with a ‘‘reasonable’’ optimality gap when allowing short computational
times. As this is relevant only when allowing a computational time of
60 seconds, Table 3 reports in Column nFS the number of instances
for which the formulation found a feasible solution. The ‘‘reason-
able’’ optimality gap filters out outliers when computing the average
and maximum optimality gaps. The results regarding the number of
instances for which a ‘‘reasonable’’ feasible solution was found are
reported in Columns nRS using a threshold of 100%. As highlighted
bove, Table 3 also reports the average and maximum optimality gaps.
owever, to conduct a fair comparison, these statistics are computed
nly over the instances for which all the formulations found ‘‘reason-
ble’’ feasible solutions in the allocated computational time. Over 240

instances, the number of instances to compute the statistics related
to the optimality gap is 190 when allowing 60 seconds, 234 with 300
seconds, and 240 with 3600 seconds. Finally, Table 3 also reports in
Columns nOSF the number of instances for which each formulation
determined an optimal solution in the allocated computational time.
Note that, because 𝐿𝐵3600 is used instead of the lower bound obtained
by executing the solver, a solution does not need to be proven optimal
to be considered as such and taken into account when calculating nOSF.

Table 3 shows that, when allowing a maximum computational
time of 60 seconds, FAL-C significantly outperforms the other formu-
lations. The role of the chain formulation for the variable cost and
size bin packing problem in improving the solution efficiency seems to
be significant, considering that AGG-C is the second-best performing
model. This ranking also holds when analyzing the results obtained
after 300 seconds. The impact of the choice of formulation for the
lot-sizing problem is less clear. FAL-C outperforms AGG-C when the
computational time is 60 or 300 seconds, but the ranking of AGG-S
and FAL-S depends on the performance indicator. When comparing the
maximum optimality gap between the results found after 60 and 300
seconds, it is important to remember that the number of instances used
to compute these statistics is different (83 and 208, respectively).

The results obtained when allowing a computational time of 3600
seconds show that the difference between the four formulations is less
significant, especially regarding the average optimality gap. The impact
of the chain formulation is most significant when analyzing the worst-
case performance (max) as AGG-C and FAL-C outperform the two other
formulations. The analysis of the results in Columns nOS highlights the
difficulty of reaching optimal solutions in reasonable computational
times. To further analyze these results, Table 4 reports the deviation
of the lower bounds obtained by each formulation to the best lower
bounds 𝐿𝐵3600, i.e., 𝐿𝐵 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 = 𝐿𝐵3600−𝐿𝐵

𝐿𝐵3600
where 𝐿𝐵 denotes the

ower bound obtained in the allocated computational time.
Table 4 provides the average (avg) and the maximum (max) devia-

tions over all instances with 300 and 3600 seconds. The table includes
two additional columns with the number of optimal solutions: nOSP
nd nOSF. Column nOSP reports the number of instances for which
he solver proves the optimality of the solution. Similarly to Table 3,
olumn nOSF reports the number of instances for which the solver

ound a solution proven to be optimal, either by using the lower bound
9

Table 4
Quality of the lower bounds of the four formulations over all instances.

300 s 3600 s

nOSP nOSF LB dev. (%) nOSP nOSF LB dev. (%)

avg max avg max

AGG-C 67 120 0.7 2.6 84 138 0.6 2.2
AGG-S 22 36 2.6 17.3 108 139 0.6 4.4
FAL-C 63 130 0.8 3.1 77 143 0.7 2.7
FAL-S 18 38 2.8 14.9 108 140 0.7 4.8

provided by the solver or by using 𝐿𝐵3600. The results obtained when
allowing 300s show that the chain formulation helps to tighten the
lower bounds quickly. Except for nOSP, the chain formulation also
helps to get slightly better lower bounds when allowing 3600s. Despite
the best performance in terms of the quality of solutions ( Table 3)
and lower bounds ( Table 4), AGG-C and FAL-C struggle to prove the
optimality as they have significantly a lower number of proven optimal
solutions (nOSP) compared to AGG-S and FAL-S. Comparing the results
obtained after 300s and 3600s, the quality of the lower bounds seems
to stagnate for AGG-C and FAL-C.

In conclusion, this section illustrates the difficulty of solving even
small-sized instances of the problem studied in this work (𝐼 = 10,
𝑇 = 10). By comparing the four formulations, the computational results
show a significant contribution of the chain formulation to finding
high-quality solutions quickly. On the contrary, the contribution of the
facility location formulation for the lot-sizing problem is not consistent
over the different performance indicators and computational times.
Except for the number of proven optimal solutions, AGG-C and FAL-
C outperform AGG-S and FAL-C on all other performance indicators.
Choosing between AGG-C and FAL-C is possible only by favoring one
of the performance indicators. For the remainder of this article, we
use AGG-C considering that it significantly outperforms all the other
formulations regarding the worst performance in terms of the quality
of solutions (max in Table 3) and lower bounds (max in Table 4) when
allowing 3600s.

7.3. Impact of problem parameters on computational complexity

The solution quality depends not only on the problem formulation
but also on the problem characteristics. To illustrate this, Fig. 3 shows
the average optimality gap for each problem type and each number of
allowed fragmentations per period. The bar chart is plotted using the
results obtained by the AGG-C formulations when solving the 240 in-
tances for 3600 seconds. When analyzing Fig. 3, all the parameters that
re varied to generate the instances seem to determine the complexity
f the problem instances: The demand configuration, the number of
vailable FTL modes, and the number of allowed fragmentations in
ach period.

• Demand configuration. The results show that the problem com-
plexity measured through the optimality gap is negatively cor-
related with the proportion of small and positively correlated
with the proportion of big items. All the instances with demand
configuration 𝐶1 (i.e., 100% of the items are small-sized) are
solved optimally. The second easier subset of instances to solve
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Fig. 3. Optimality gap (%) by problem type and number of allowed fragmentations per period.
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are those with demand configuration 𝐶4 (i.e., half of the items are
small-sized and the other half are medium-sized). The instances
with the largest average optimality gap are those with demand
configuration 𝐶3 (i.e., 100% of the items are big-sized). These
results are in line with the findings of Heßler et al. (2021),
showing that more difficult instances are obtained by increasing
the proportion of the size of the items to pack in the containers.
In addition to instances with demand configuration 𝐶3, such
difficulty can be observed by the large optimality gap when
solving instances with demand configuration 𝐶6 mixing 20% of
big-sized items and 70% of medium-sized items.

• Number of allowed fragmentations. Overall, Fig. 3 shows that
tightening the fragmentation constraints increases the complex-
ity of the problem, especially when only two FTL modes are
available.

• Number of available FTL modes. Increasing the number of FTL
modes from 𝑀 = 2 to 𝑀 = 4 makes the problem more challenging
due to the significant increase in the number of integer decision
variables. The instances with demand configuration 𝐶3 are the
only ones that deviate from this general pattern. With tight limits
on the number of allowed fragmentation, the optimality gaps are
lower when using 𝑀 = 4 than 𝑀 = 2. As highlighted above,
the bin packing problem is the most difficult when all items are
big-sized. It is possible that increasing the number of FTL modes,
despite leading to a significant increase in the number of integer
decision variables, provides more options to pack the big items,
especially in the presence of tight fragmentation constraints.

7.4. Performance of exact and heuristic approaches on larger instances

In the previous sections, only instances with 𝐼 = 10 and 𝑇 =
10 are used in the computational experiments. This section aims to
computationally evaluate the difficulty of the problem when solving
larger instances. To do so, we report results on the optimality gap
when solving instances with (𝐼, 𝑇 ) ∈ {(10, 10), (20, 10), (40, 20)}. The
instances are restricted to the most realistic demand configuration 𝐶6.
Three limits on the maximum number of fragmentations are considered
when considering 𝑓 ∈ {0%, 10%, 20%}. Five instances are generated
for each instance size (𝐼, 𝑇 ) and maximum number of fragmentations
𝐹 = 𝑓𝐼 . In total, 45 instances are used in this section. Note that
instances with (10, 10) are a subset of the instances used in the previous
sections included here to study the impact of the problem size increase
on its difficulty. All the considered instances are solved using AGG-C
formulation. This section also aims at analyzing the performance of the
relax-and-fix heuristic. To tune its parameters, preliminary experiments
on (10, 10) instances are conducted to select the best combination
among the ones initially studied. The results reported below are ob-
tained using the following parameters: Window size (𝑤𝑠 = 2), overlap
(𝑜𝑣 = 1), time limit per period (𝑡𝑙 = 90𝑠), and relative MILP gap
10

(𝑔𝑎𝑝 = 0.2%). m
Table 5
Results of AGG-C and the relax-and-fix heuristic (RF) heuristic on three instance sizes.

Instance size Gap(%) Computational time (s)

Average Max Average Max

AGG-C RF AGG-C RF AGG-C RF AGG-C RF

(I = 10, T = 10) 1.9 2.0 5.5 5.2 3651 866 3723 1702
(I = 20, T = 20) 5.7 4.0 11.0 6.3 3633 3171 3658 3666
(I = 40, T = 20) 9.2 8.9 14.7 14.4 3662 5171 3687 5319

All 5.6 5.0 14.7 14.4 3648 3069 3723 5319

Table 5 reports the average and maximum optimality gaps and
omputational times. The optimality gap is based on the lower bounds
btained by the AGG-C formulation. Focusing only on AGG-C, the
esults, either on average or considering the worst case, show that the
ptimality gap increases significantly when solving larger instances.
or example, the average gap goes from 1.9% when solving (10.10)
nstances to 9.2% for (40.20) instances. We can observe the same trend
hen analyzing the results of the relax-and-fix heuristic. Considering

he overall performance across all instances, the relax-and-fix heuristic
rovides slightly better average and maximum optimality gaps in a
horter computational time than AGG-C. However, the conclusions
f the comparison between the two approaches vary depending on
he size of the instance. Both approaches have similar optimality gap
ndicators on (10, 10) instances, but RF has shorter computation times.
n (20.20) instances, RF outperforms AGG-C on the optimality gap
nd computation time indicators. Both approaches again have similar
ptimality gap indicators on (40.20) instances, but RF, this time, has
onger computation times. All the results of this section confirm the
roblem’s difficulty, already highlighted in the previous sections, and
uggest the need to develop tailored exact or heuristic approaches to
olve real-life instances.

. Model exploitation for managerial insights

This section further investigates the proposed optimization model to
erive some managerial insights. Section 8.1 compares the formulated
ntegrated model with the sequential approach where the decisions
elated to transportation are taken in a second stage using the lot sizes
etermined in the first stage, ignoring the transportation costs and
apacities. Such an approach is often used in practice. The comparison
elps to identify the cases where using the integrated model may lead to
ignificant cost savings for companies. Also, the analysis in Section 8.2
uggests that the potential cost savings from using the integrated model
an cover the increase in the total cost induced by reasonable limits
n the allowed number of fragmentations. Section 8.2 also reports the
esults allowing to measure the impact of the fragmentation constraint
ightness on the total cost. Finally, Section 8.3 explores the interplay
etween decision integration and flexibility of FTL modes and their
arginal effect on the total cost.
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Table 6
Cost saving (%) by using the integrated model compared to sequential approach.

Demand configuration avg max
1 2 3 4 5 6

# FTL modes
1 13.7 4.2 2.5 5.0 5.0 4.2 5.8 22.7
2 10.9 1.5 0.3 2.9 2.0 1.6 3.2 17.8
4 1.8 0.2 0.1 0.3 0.3 0.2 0.5 4.0

avg 8.8 2.0 1.0 2.7 2.5 2.0 3.2
max 22.7 9.0 4.7 11.4 10.5 9.0 22.7

8.1. Benefits of integrating decisions on transportation modes in lot-sizing
model

This section explores the benefits of explicitly modeling the trans-
portation modes in a lot-sizing model. To do so, the integrated model
is compared to the practical approach, where the decisions are taken
sequentially:

1. Optimize the lot-sizing decisions considering only the traditional
inventory and ordering costs,

2. Select the optimal transportation modes to transport the opti-
mized quantities in each period.

The comparison uses the optimal solutions for both models on
360 instances. To evaluate the benefits of using the integrated model,
the constraints on the number of fragmentations are relaxed in this
section. To ensure reasonable computational times, all the instances
are characterized by a number of items 𝐼 = 10 and a number of
periods 𝑇 = 10. The demand of items in each instance is generated
according to one of the six demand configurations described in Sec-
tion 7.1. For each demand configuration, 20 instances are generated.
The other characteristics of items are the same as in Section 7.1. Each
of the 120 instances results in three complete instances by choosing
the number of available FTL modes, chosen to be one of the three
alternatives 𝑀 ∈ {1, 2, 4}. Similarly to Section 7.1, the capacity and
cost of the FTL modes are taken from the two lists (33, 30, 25, 11) and
(4917, 4560, 4000, 2123), respectively. The characteristics of the available
FTL modes correspond to the first 𝑀 elements of the two lists. By
dropping fragmentation considerations, it is no longer necessary to
explicitly model the assignment of the orders of items to the containers.
It is only required to ensure enough aggregated capacity to transport
all the shipments in the period. By doing so, either with the integrated
approach or the sequential approach, it takes, on average, a few seconds
to optimally solve each of the 360 instances.
11
Table 6 reports the cost saving as a percentage achieved by using the
integrated model when compared to the sequential approach. The over-
all saving is about 3.2% across 360 problems, with maximum savings up
to 22.7% of the total costs for some cases. When analyzing the saving
based on the demand configuration, note that the saving is positively
correlated with the proportion of small-sized items and negatively
correlated with the proportion of big-sized items. The savings are the
largest for the instances where 100% of the items are small-sized (𝐶1),
and the savings are the lowest for instances where 100% are big-sized
(𝐶3). The demand configuration presenting the second-largest average
savings is 𝐶4, where half of the items are small-sized and the other
half medium-sized. To facilitate the interpretation of the results, Fig. 4
plots the average savings according to the demand configuration and
the number of available FTL modes. The error bars show the savings
between the first and third quartiles.

To understand these results, it is essential to remember that the
classification of the items based on their size uses the capacity of
the largest container as a reference. Also, when analyzing the optimal
solutions, the results show that those produced by the first stage of the
sequential approach follow the lot-for-lot policy, which is consistent
with the context studied with low time between orders (high inventory
costs and low ordering costs). Therefore, the integrated model does
not have much room for improvements for instances with mainly big-
sized items as their lots in each period found in the first stage of the
sequential approach already utilize most of the container capacities.
Conversely, for instances with mainly small-sized items, the sequen-
tial approach results in underutilized transportation capacity, which
is better used when using the integrated model by consolidating the
demand of the products with the lowest inventory holding cost over
several periods. However, the large saving for instances with all the
items being small-sized should be carefully considered. The results
show significant savings for all demand configurations, especially when
there are few FTL modes. However, the large savings when all the
items are small-sized are primarily due to the poor selection of the FTL
modes.

If the results in Table 6 are to be analyzed in light of the number of
available transportation modes, there is a decrease in the savings when
there are more FTL modes. On average, the savings decrease from 5.8%
when only one FTL mode is available to 0.5% when 4 FTL modes are
used instead. Intuitively, the additional flexibility makes it possible for
the second stage in the sequential approach to correct the uninformed
lot-sizing decisions taken in the first stage, especially when a high
proportion of items are small-sized. However, not every additional
flexibility can make the sequential approach relevant in practice, given
that the potential for improvement of a more complex integrated model
Fig. 4. Cost saving (%) by using the integrated model compared to sequential approach.
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is low. Two additional characteristics of the instances used to conduct
the experiments should be considered to explain these results. First,
the scenarios with 4 FTL modes include two additional modes with
ower capacities (11 and 25) than the two others (30 and 33) used
n all the scenarios. Also, the difference between unit transportation
osts for each fully utilized mode is relatively small: Cost per pallet
er mode (11, 193), (25, 160), (30, 152), (33, 149). The additional flexibility
ould have less impact on potential savings when using the integrated
odel instead of the sequential approach if transport unit costs were
igher or the difference between capacities was lower.

To conclude this section, the experimental results using the in-
tances defined in 7.1 show the benefits in terms of cost savings
hen explicitly modeling the transportation capacities and costs in
lot-sizing model. Such integration is more critical when the actual

lexibility in the transportation modes to use is limited, the actual flex-
bility being the situation with several types of transportation modes
ith a large range of capacity and low range of unit costs. Using the

equential approach might be relevant in the presence of high actual
lexibility. However, in a situation where only one transportation mode
s available, it is highly improbable that the lot-sizing decisions taken
t the first stage will result in high utilization of the transportation
apacities for the different demand configurations. This is good news
rom a computational cost perspective, as the integrated model can be
seful in practice when its complexity is the lowest. Considering the
ealistic instances with demand configuration 𝐶6, the managers should
e aware that the total costs might be reduced by up to 9% with the
ntegrated model compared to the sequential approach, particularly for
ontexts with few alternative transportation modes and low flexibility
f the modes.

.2. Impact of item fragmentation on total cost

This section aims at evaluating the impact of the fragmentation
onstraint tightness on the total cost, which is a challenge given the
ifficulty of generic solvers in finding optimal solutions, as illustrated
n Section 7. 180 new instances with 𝐼 = 5 and 𝑇 = 5 are gener-
ted to make sure that optimal solutions are obtained in reasonable
omputational times. 20 instances are first obtained by generating the
emand of items for each instance by only considering 𝐶6 as demand
onfiguration mixing 20% of big-sized items, 70% of medium-sized
tems and 10% of small-sized items. Each of the twenty instances is
llowed to use one of the three alternatives 𝑀 ∈ {1, 2, 4}. Similarly
o Section 7.1, the capacity and cost of the FTL modes are taken from
he two lists (33, 30, 25, 11) and (4917, 4560, 4000, 2123), respectively. The
haracteristics of the available FTL modes correspond to the first 𝑀
lements of the two lists.

To fully define the 180 instances starting from the 60 generated
nstances, as explained above, different values for the number of frag-
entations per period should be selected. The sequential approach

s first used to find the threshold beyond which the fragmentation
onstraints are ignored for all the instances. As the periods are inde-
endent of each other after fixing the replenishment quantities and
he FTL mode selection decisions, minimizing the total number of
ragmentations also minimizes the number of fragmentations in each
eriod. Several valuable pieces of information can be extracted from
he analysis of the results of this sequential approach:

• The total cost of the replenishment plans obtained by the first
phase is the lowest cost independent of the fragmentation con-
straints. Therefore, this cost can be used as a reference to measure
the impact of the fragmentation constraints.

• The sequential approach reproduces the practice where fragmen-
tation is dealt with only when solving the operational problem
of loading the containers in each period as illustrated by Heßler
12

et al. (2021).
• As mentioned above, the sequential approach results help to iden-
tify the different tightness levels of the fragmentation constraints.

Table 7 provides the results of the comparison between the se-
uential model and the integrated model. Columns Max and Sum are

related to the sequential approach and refer to the maximum number of
fragmentations and the total number of fragmentations in the planning
horizon, respectively. As the maximum number of fragmentations, inde-
pendently of the number of FTL modes, is at most 2, the fragmentation
constraint might increase the cost only for limits strictly below 2.
Therefore, 180 instances are solved by the integrated model using
three values of the allowed number of fragmentations in each period:
𝐹 ∈ {2, 1, 0}. After solving these instances to optimality, the relative
deviations of the total costs compared to the costs obtained by the first
phase of the sequential approach are computed and reported in Table 7
under Total cost increase (%). Note that there is no need to report the
results when 𝐹 = 2 as the fragmentation constraints have no impact on
the cost in this case.

Table 7 shows that forbidding fragmentation (𝐹 = 0) leads to a
significant increase in the total cost, around 3% on average. In the
absence of a clear approach to evaluating the impact of fragmentation
on the handling operations, forbidding fragmentation in the whole
planning horizon might be a radical approach. Setting reasonable limits
on the number of fragmentations, such as 𝐹 = 1 in the case of the
used instances, might be beneficial for handling operations without a
significant increase in the total cost (≤ 0.2%, on average). Table 6,
reporting the cost saving by integrating the transportation modes in
the lot-sizing models, shows that the savings are on average 2% when
solving the instances with 𝐶6 as demand configuration. Making the
reasonable assumption that the same saving estimation holds in the
case of the smaller instances solved in this section, the integrated
model proposed in this work both allows saving in the total cost and
ensures more efficient handling operations. If the results in Table 7
are to be analyzed based on the number of available transportation
modes, the solution quality indicators (Sum and Max for the sequential
approach, and Total cost increase (%) for the integrated approach)
deteriorate when there are more FTL modes. This can be explained by
the trade-off between the efficiency of transportation operations and
the efficiency of handling operations under the prism of fragmentation.
The main advantage of increasing the diversity of the FTL modes is to
minimize the proportion of unused transportation capacity. However,
such unused capacity is a buffer that lessens the effect of the constraints
on the number of fragmentations. A more detailed analysis of these
results is provided in the next section.

8.3. Decision integration vs. Mode flexibility

In the previous two sections, the different analyzes involve the
comparison of optimal solutions obtained by the sequential and in-
tegrated approaches. When comparing these approaches, the same
problem instance (demand and costs of items, available FTL modes,
and maximum allowed number of fragmentation) is used to compute
the cost saving or increase. The purpose of this section is to explore
the interaction between the integration of the decisions and the flex-
ibility of FTL modes and their effect on the total cost. To do so, a
problem instance is characterized by the demand and costs of items,
and the maximum allowed number of fragmentation. Each instance
is solved after choosing the number of FTL modes (𝑀 ∈ {1, 2, 4})
and the solution approach (integrated or sequential). Each instance
has, therefore, 6 possible outcomes. To study the interaction between
decision integration and mode flexibility, a baseline situation should be
chosen relative to which the cost saving or increase is computed. We
made a choice to consider a baseline approach that we believe is the
most commonly applied in the industry: The sequential approach with
one FTL mode. In the baseline approach, lot-sizing decisions are taken

in the first stage without considering the transportation requirements.
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Table 7
Cost increase for various fragmentation constraints for instances with demand configuration 𝐶6 and two FTL modes.
Instance M = 1 M = 2 M = 4

Sum Max Cost increase (%) Sum Max Cost increase (%) Sum Max Cost increase (%)

𝐹 = 0 𝐹 = 1 𝐹 = 0 𝐹 = 1 𝐹 = 0 𝐹 = 1

1 3 1 1.6 0 4 2 1.2 0.3 6 2 3.8 0.3
2 4 2 9.6 0.8 6 2 11.4 0.8 6 2 7.7 0.8
3 1 1 0.3 0 0 0 0 0 2 1 2.3 0
4 0 0 0 0 1 1 0.7 0 4 1 3.2 0
5 3 1 1.2 0 4 2 1.7 0.5 6 2 1.2 0.5
6 1 1 0.9 0 1 1 1 0 2 1 1 0
7 1 1 0.1 0 0 0 0 0 0 0 0 0
8 3 2 3.3 0.3 5 2 3.7 0.4 6 2 5.9 0.4
9 3 2 1.3 0.1 4 1 1.7 0 7 2 4.2 1.9
10 0 0 0 0 0 0 0 0 1 1 2.1 0
11 2 1 7.2 0 1 1 6 0 2 1 3.9 0
12 0 0 0 0 2 1 1.7 0 3 1 1.9 0
13 2 1 4.1 0 2 1 3.1 0 3 1 0.9 0
14 0 0 0 0 0 0 0 0 1 1 3.1 0
15 2 1 4.4 0 3 1 4.5 0 3 1 3.4 0
16 3 2 3.6 1.1 4 2 4.2 1.1 4 2 2.8 0.5
17 2 1 1.2 0 2 1 1.2 0 4 2 1.6 0.2
18 1 1 4 0 1 1 4.2 0 2 1 6.2 0
19 2 1 9.1 0 2 1 7.4 0 3 1 4.2 0
20 3 1 3.3 0 3 1 4.4 0 4 1 4 0

avg 1.8 1 2.8 0.1 2.3 1.1 2.9 0.2 3.5 1.3 3.2 0.2
med 2 1 1.5 0 2 1 1.7 0 3 1 3.2 0
max 4 2 9.6 1.1 6 2 11.4 1.1 7 2 7.7 1.9
Fig. 5. Decision integration vs. Mode flexibility: Without fragmentation constraints.
In the second stage, the optimal loading of the quantities determined
in the first stage is defined using only one transportation mode. To
conduct this study, the instances in Sections 8.1 and 8.2 are used.

Starting with the situation where fragmentation considerations are
ignored, Fig. 5 reports the average savings by using more FTL modes
and/or integrated approaches compared to the baseline approach de-
scribed above. Focusing on the results where the sequential approach
is used but the diversity of FTL modes is increased, the results show
that the cost saving increases as the diversity of FTL modes increases.
It is important to keep in mind that the diversity of FTL modes is
increased by adding additional modes with larger unit transportation
costs. Despite the increase in the unit transportation cost, the addi-
tional flexibility allows significant savings compared to the situation
where only one mode is used. Focusing now on the situation where
only one FTL mode is used, as shown in the previous sections, the
integrated model leads to significant cost savings. The most interesting
insight from these results comes from the comparison of the sequential
approach and the integrated approach for each fixed number of FTL
modes. The difference between the savings when using the integrated
model compared to using the sequential model represents the marginal
contribution of integrating decisions. The results show diminishing
returns of the marginal contribution of integrating decisions when in-
creasing the diversity of the FTL modes. In other words, more diversity
13
in the available transportation modes reduces the necessity of solving
increasingly complex integrated models. As highlighted earlier, any
increase in the FTL mode diversity is not necessarily beneficial. The
diversity increase should reflect the additional flexibility in the choice
of transportation modes: a large range of mode capacities and a low
range of unit transportation costs.

The results of Section 8.2 on the impact of fragmentation on the
total cost show that the cost increase is more severe when there
are more FTL modes. One has to be careful not to conclude that
fragmentation constraints are less costly with low diversity in trans-
portation modes. To show the opposite, an analysis, similar to the
one above, is performed while considering item fragmentation. To
analyze the interaction between decision integration, mode flexibil-
ity and tightness of the fragmentation constraints, we use the same
instances than in Section 8.2. We also consider the same baseline
approach as above: Sequential approach, one FTL mode, and relaxed
fragmentation constraints. Fig. 6 reports the average savings, relative
to the baseline approach, obtained by varying the tightness of the
fragmentation constraints (𝐹 ∈ {0, 1}) and the number of FTL modes
(𝑀 ∈ {1, 2, 4}) and by choosing either the sequential model or the
integrated model. Fig. 6(a) shows that the cost increase resulting from
forbidding fragmentation is completely compensated by the savings
obtained by solving the integrated model or by increasing the diversity
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Fig. 6. Decision integration vs. Mode flexibility: With fragmentation constraints.
of the transportation modes. Either with 𝐹 = 0 or 𝐹 = 1, note
that the same pattern as in Fig. 5 on the diminishing returns of the
marginal contribution of integrating decisions when increasing the
diversity of the FTL modes. However, such a decrease is slower when
the constraints on fragmentation are tighter. This shows the benefit of
solving the integrated model when there are tight limits on the allowed
number of fragmentations, even when there is high mode flexibility.

9. Conclusion

In this paper, we proposed and analyzed a multi-item joint inventory
and transportation planning problem with dynamic deterministic de-
mand and multiple transportation modes, considering operational load-
ing constraints in terms of fragmentation policies. We have proposed
and tested several Mixed Integer Linear Programming formulations for
the problem, which combines a multi-item lot-sizing problem and a
variable cost and size bin packing problem with fragmentation. Based
on real data from a Scandinavian distribution company for fast-moving
consumer goods, we generated problem instances and identified the
most efficient mathematical formulations in terms of computational
time and number of solved instances using a standard solver. The
chain-based models (AGG-C and FAL-C) outperform the other models,
yielding a smaller duality gap. However, regardless of the formula-
tion used, the experimental results show that it is unlikely to find
high-quality solutions for practical problems relying only on standard
solvers. The unsatisfactory performance of the relax-and-fix heuristic
also illustrates the difficulty of the problem. These results are in line
with the results of Casazza and Ceselli (2016), Casazza (2019), demon-
strating the hardness of bin-packing problems with item fragmentation
for generic solvers. The computational results are also analyzed to
confirm the relevance of the parameters selected to be varied when
generating the problem instances. In particular, the problem complexity
measured through the optimality gap is positively correlated with the
proportion of big items in the total demand, the tightness of the
fragmentation constraints, and the number of FTL modes.

Given the novelty of the problem, we were also interested in draw-
ing out some managerial insights that can help identify contexts where
solving such a problem can be beneficial. Ignoring fragmentation con-
siderations and solving the integrated model could result in 3.2%
lower costs on average and up to 23% in some cases compared to
the sequential planning approach where decisions related to transport
are taken at the second stage after the lot sizes have been determined
during the first stage. More importantly, the computational results
emphasize that the integrated model is more relevant in the presence of
the common setting where one or few FTL modes are used. Increasing
the number of FTL modes leads to less cost savings due to decision
integration. However, the increase in the number of FTL modes should
reflect real flexibility by offering a wide range of capacity without
significant differences in unit transportation costs among the modes.
When integrating fragmentation considerations, the computational re-
14

sults show that forbidding fragmentation may lead to a significant
increase in costs. However, with reasonable limits on the number
of allowed fragmentations, the results show that the cost increase is
significantly lower than the savings obtained through the decision
integration. In other words, it is possible to contribute to more efficient
handling operations by limiting the number of fragmentations without
a significant impact on the total inventory, ordering and transportation
costs.

The computational results show, at the same time, the hardness
and relevance of investigating the proposed problem. However, it is
important to consider the different insights carefully. First of all, it
should be remembered that all instances of the problem are character-
ized by low TBO. Furthermore, given the difficulty of the problem, all
conclusions are drawn from the analysis of optimal solutions for small
instances. It is, therefore, interesting in the future to study the impact
of increasing TBO and instance sizes on the various conclusions drawn
in this work. To do this, and in general, to realize the benefits of solving
the proposed problem, it is necessary to design efficient approaches
capable of producing high-quality solutions for real instances. Several
other directions for future research and model extension are worth
exploring: .

• The proposed models can easily be modified to model the situa-
tion where the buyer imposes a limit on the number of fragmen-
tations on the horizon instead of in each period. In general, it is
also worth studying the relevance and impact of integrating other
ways fragmentation impacts handling operations. For example,
it may not be important whether the pallets of a fragmented
item are dispersed over two or several containers. This modeling
corresponds to a context described in Heßler et al. (2021), where
the main effort of the buyer is due to the necessity of reserving an
area where all the fragments of a product lot would be collected
before starting the put-away operation. Instead of the number of
fragmentations, it is more relevant in such a context to minimize
or set up constraints on the number of fragmented items.

• We believe that relevant managerial insights can be drawn when
allowing backlogging or transportation modes with other price
schedules, such as parcels or LTL. One might consider other
loading constraints in lot-sizing problems, in particular when
dealing with other supply chain configurations. For example, with
a single supplier and multiple customers, one might consider
grouping constraints when solving the integrated model to make
sure that the set of items to be unloaded at a given customer is
not unnecessarily dispersed in several containers.

Data availability
Data will be made available on request.



International Journal of Production Economics 265 (2023) 109001K. Tamssaouet et al.
Acknowledgments

The authors express their sincere gratitude to the anonymous ref-
erees for their detailed comments and valuable suggestions, which
improved the content and exposition of this paper.

References

Absi, N., Dauzère-Pérès, S., Kedad-Sidhoum, S., Penz, B., Rapine, C., 2016. The single-
item green lot-sizing problem with fixed carbon emissions. European J. Oper. Res.
248 (3), 849–855.

Akbalik, A., Rapine, C., 2018. Lot sizing problem with multi-mode replenishment and
batch delivery. Omega 81, 123–133.

Archetti, C., Bertazzi, L., Grazia Speranza, M., 2014a. Polynomial cases of the economic
lot sizing problem with cost discounts. European J. Oper. Res. 237 (2), 519–527.

Archetti, C., Bianchessi, N., Speranza, M.G., 2014b. Branch-and-cut algorithms for the
split delivery vehicle routing problem. European J. Oper. Res. 238 (3), 685–698.

Brahimi, N., Absi, N., Dauzère-Pérès, S., Nordli, A., 2017. Single-item dynamic lot-sizing
problems: An updated survey. European J. Oper. Res. 263 (3), 838–863.

Büyükkaramikli, N.C., Gürler, Ü., Alp, O., 2014. Coordinated logistics: Joint replenish-
ment with capacitated transportation for a supply chain. Prod. Oper. Manage. 23
(1), 110–126.

Casazza, M., 2019. New formulations for variable cost and size bin packing problems
with item fragmentation. Optim. Lett. 13 (2), 379–398.

Casazza, M., Ceselli, A., 2014. Mathematical programming algorithms for bin packing
problems with item fragmentation. Comput. Oper. Res. 46, 1–11.

Casazza, M., Ceselli, A., 2016. Exactly solving packing problems with fragmentation.
Comput. Oper. Res. 75, 202–213.

Cheng, Y., Li, Y., 2021. Integrated optimization of multiproduct multiperiod transporta-
tion and inventory under a carbon cap constraint for online retailers. Transp. Saf.
Environ. 3 (3).

Chopra, S., Meindl, P., 2007. Supply chain management. Strategy, planning & operation.
In: Das Summa Summarum Des Management. Springer, pp. 265–275.

Coffman, E.G., Csirik, J., Galambos, G., Martello, S., Vigo, D., 2013. Bin packing
approximation algorithms: Survey and classification. In: Handbook of Combinatorial
Optimization. pp. 455–531.

Crainic, T.G., Perboli, G., Rei, W., Tadei, R., 2011. Efficient lower bounds and heuristics
for the variable cost and size bin packing problem. Comput. Oper. Res. 38 (11),
1474–1482.

Ekici, A., 2021. Bin packing problem with conflicts and item fragmentation. Comput.
Oper. Res. 126, 105113.

Ekşioğlu, S.D., 2009. A primal–dual algorithm for the economic lot-sizing problem with
multi-mode replenishment. European J. Oper. Res. 197 (1), 93–101.

Engebrethsen, E., Dauzère-Pérès, S., 2019. Transportation mode selection in inventory
models: A literature review. European J. Oper. Res. 279 (1), 1–25.

Engebrethsen, E., Dauzère-Pérès, S., 2022. Transportation strategies for dynamic lot
sizing: single or multiple modes? Int. J. Prod. Res. 1–21.

Ertogral, K., 2008. Multi-item single source ordering problem with transportation cost
: A Lagrangian decomposition approach. European J. Oper. Res. 191, 156–165.

Evans, J.R., 1985. An efficient implementation of the Wagner-Whitin algorithm for
dynamic lot-sizing. J. Oper. Manage. 5 (2), 229–235.

Grunewald, M., Volling, T., Müller, C., Spengler, T.S., 2018. Multi-item single-source
ordering with detailed consideration of transportation capacities. J. Bus. Econ. 88
(7), 971–1007.

Hammami, R., Frein, Y., Hadj-Alouane, A.B., 2012. An international supplier selection
model with inventory and transportation management decisions. Flex. Serv. Manuf.
J. 24 (1), 4–27.
15
Heßler, K., Irnich, S., Kreiter, T., Pferschy, U., 2021. Bin packing with lexicographic
objectives for loading weight-and volume-constrained trucks in a direct-shipping
system. OR Spectrum 44, 375–417.

Hrabec, D., Hvattum, L.M., Hoff, A., 2022. The value of integrated planning for pro-
duction, inventory, and routing decisions: A systematic review and meta-analysis.
Int. J. Prod. Econ. 248, 108468.

Hwang, H.-C., Kang, J., 2016. Two-phase algorithm for the lot-sizing problem with
backlogging for stepwise transportation cost without speculative motives. Omega
59, 238–250.

Jalal, A.M., Toso, E.A.V., Morabito, R., 2022. Integrated approaches for logistics
network planning: a systematic literature review. Int. J. Prod. Res. 60 (18),
5697–5725.

Jaruphongsa, W., Çetinkaya, S., Lee, C.-Y., 2007. Outbound shipment mode considera-
tions for integrated inventory and delivery lot-sizing decisions. Oper. Res. Lett. 35
(6), 813–822.

Joncour, C., Kritter, J., Michel, S., Schepler, X., 2023. Generalized Relax-and-Fix
heuristic. Comput. Oper. Res. 149, 106038.

Kopanos, G.M., Puigjaner, L., Georgiadis, M.C., 2012. Simultaneous production and
logistics operations planning in semicontinuous food industries. Omega 40 (5),
634–650.

Krarup, J., Bilde, O., 1977. Plant location, set covering and economic lot size: An
0 (mn)-algorithm for structured problems. In: Numerische Methoden bei Opti-
mierungsaufgaben Band 3: Optimierung bei graphentheoretischen und ganzzahligen
Problemen. Springer, pp. 155–180.

Melega, G.M., de Araujo, S.A., Jans, R., 2018. Classification and literature review of
integrated lot-sizing and cutting stock problems. European J. Oper. Res. 271 (1),
1–19.

Mogale, D., Dolgui, A., Kandhway, R., Kumar, S.K., Tiwari, M.K., 2017. A multi-period
inventory transportation model for tactical planning of food grain supply chain.
Comput. Ind. Eng. 110, 379–394.

Molina, F., Morabito, R., De Araujo, S.A., 2016. MIP models for production lot sizing
problems with distribution costs and Cargo arrangement. J. Oper. Res. Soc. 67 (11),
1395–1407.

Mosca, A., Vidyarthi, N., Satir, A., 2019. Integrated transportation – inventory models:
A review. Oper. Res. Perspect. 6, 100101.

Palak, G., Ekşioğlu, S.D., Geunes, J., 2018. Heuristic algorithms for inventory replen-
ishment with perishable products and multiple transportation modes. IISE Trans.
50 (4), 345–365.

Pochet, Y., Wolsey, L.A., 2006. Production Planning By Mixed Integer Programming.
Vol. 149. No. 2. Springer.

Rizk, N., Martel, A., D’Amours, S., 2006a. Multi-item dynamic production-distribution
planning in process industries with divergent finishing stages. Comput. Oper. Res.
33 (12), 3600–3623.

Rizk, N., Martel, A., Ramudhin, A., 2006b. A Lagrangean relaxation algorithm for multi-
item lot-sizing problems with joint piecewise linear resource costs $. Int. J. Prod.
Econ. 102, 344–357.

Robinson, P., Narayanan, A., Sahin, F., 2009. Coordinated deterministic dynamic
demand lot-sizing problem: A review of models and algorithms. Omega 37 (1),
3–15.

Toledo, C.F.M., da Silva Arantes, M., Hossomi, M.Y.B., França, P.M., Akartunalı, K.,
2015. A relax-and-fix with fix-and-optimize heuristic applied to multi-level
lot-sizing problems. J. Heurist. 21, 687–717.

van Norden, L., van de Velde, S., 2005. Multi-product lot-sizing with a transportation
capacity reservation contract. European J. Oper. Res. 165 (1), 127–138.

Venkatachalam, S., Narayanan, A., 2016. Efficient formulation and heuristics for multi-
item single source ordering problem with transportation cost. Int. J. Prod. Res. 54
(14), 4087–4103.

http://refhub.elsevier.com/S0925-5273(23)00233-5/sb1
http://refhub.elsevier.com/S0925-5273(23)00233-5/sb1
http://refhub.elsevier.com/S0925-5273(23)00233-5/sb1
http://refhub.elsevier.com/S0925-5273(23)00233-5/sb1
http://refhub.elsevier.com/S0925-5273(23)00233-5/sb1
http://refhub.elsevier.com/S0925-5273(23)00233-5/sb2
http://refhub.elsevier.com/S0925-5273(23)00233-5/sb2
http://refhub.elsevier.com/S0925-5273(23)00233-5/sb2
http://refhub.elsevier.com/S0925-5273(23)00233-5/sb3
http://refhub.elsevier.com/S0925-5273(23)00233-5/sb3
http://refhub.elsevier.com/S0925-5273(23)00233-5/sb3
http://refhub.elsevier.com/S0925-5273(23)00233-5/sb4
http://refhub.elsevier.com/S0925-5273(23)00233-5/sb4
http://refhub.elsevier.com/S0925-5273(23)00233-5/sb4
http://refhub.elsevier.com/S0925-5273(23)00233-5/sb5
http://refhub.elsevier.com/S0925-5273(23)00233-5/sb5
http://refhub.elsevier.com/S0925-5273(23)00233-5/sb5
http://refhub.elsevier.com/S0925-5273(23)00233-5/sb6
http://refhub.elsevier.com/S0925-5273(23)00233-5/sb6
http://refhub.elsevier.com/S0925-5273(23)00233-5/sb6
http://refhub.elsevier.com/S0925-5273(23)00233-5/sb6
http://refhub.elsevier.com/S0925-5273(23)00233-5/sb6
http://refhub.elsevier.com/S0925-5273(23)00233-5/sb7
http://refhub.elsevier.com/S0925-5273(23)00233-5/sb7
http://refhub.elsevier.com/S0925-5273(23)00233-5/sb7
http://refhub.elsevier.com/S0925-5273(23)00233-5/sb8
http://refhub.elsevier.com/S0925-5273(23)00233-5/sb8
http://refhub.elsevier.com/S0925-5273(23)00233-5/sb8
http://refhub.elsevier.com/S0925-5273(23)00233-5/sb9
http://refhub.elsevier.com/S0925-5273(23)00233-5/sb9
http://refhub.elsevier.com/S0925-5273(23)00233-5/sb9
http://refhub.elsevier.com/S0925-5273(23)00233-5/sb10
http://refhub.elsevier.com/S0925-5273(23)00233-5/sb10
http://refhub.elsevier.com/S0925-5273(23)00233-5/sb10
http://refhub.elsevier.com/S0925-5273(23)00233-5/sb10
http://refhub.elsevier.com/S0925-5273(23)00233-5/sb10
http://refhub.elsevier.com/S0925-5273(23)00233-5/sb11
http://refhub.elsevier.com/S0925-5273(23)00233-5/sb11
http://refhub.elsevier.com/S0925-5273(23)00233-5/sb11
http://refhub.elsevier.com/S0925-5273(23)00233-5/sb12
http://refhub.elsevier.com/S0925-5273(23)00233-5/sb12
http://refhub.elsevier.com/S0925-5273(23)00233-5/sb12
http://refhub.elsevier.com/S0925-5273(23)00233-5/sb12
http://refhub.elsevier.com/S0925-5273(23)00233-5/sb12
http://refhub.elsevier.com/S0925-5273(23)00233-5/sb13
http://refhub.elsevier.com/S0925-5273(23)00233-5/sb13
http://refhub.elsevier.com/S0925-5273(23)00233-5/sb13
http://refhub.elsevier.com/S0925-5273(23)00233-5/sb13
http://refhub.elsevier.com/S0925-5273(23)00233-5/sb13
http://refhub.elsevier.com/S0925-5273(23)00233-5/sb14
http://refhub.elsevier.com/S0925-5273(23)00233-5/sb14
http://refhub.elsevier.com/S0925-5273(23)00233-5/sb14
http://refhub.elsevier.com/S0925-5273(23)00233-5/sb15
http://refhub.elsevier.com/S0925-5273(23)00233-5/sb15
http://refhub.elsevier.com/S0925-5273(23)00233-5/sb15
http://refhub.elsevier.com/S0925-5273(23)00233-5/sb16
http://refhub.elsevier.com/S0925-5273(23)00233-5/sb16
http://refhub.elsevier.com/S0925-5273(23)00233-5/sb16
http://refhub.elsevier.com/S0925-5273(23)00233-5/sb17
http://refhub.elsevier.com/S0925-5273(23)00233-5/sb17
http://refhub.elsevier.com/S0925-5273(23)00233-5/sb17
http://refhub.elsevier.com/S0925-5273(23)00233-5/sb18
http://refhub.elsevier.com/S0925-5273(23)00233-5/sb18
http://refhub.elsevier.com/S0925-5273(23)00233-5/sb18
http://refhub.elsevier.com/S0925-5273(23)00233-5/sb19
http://refhub.elsevier.com/S0925-5273(23)00233-5/sb19
http://refhub.elsevier.com/S0925-5273(23)00233-5/sb19
http://refhub.elsevier.com/S0925-5273(23)00233-5/sb20
http://refhub.elsevier.com/S0925-5273(23)00233-5/sb20
http://refhub.elsevier.com/S0925-5273(23)00233-5/sb20
http://refhub.elsevier.com/S0925-5273(23)00233-5/sb20
http://refhub.elsevier.com/S0925-5273(23)00233-5/sb20
http://refhub.elsevier.com/S0925-5273(23)00233-5/sb21
http://refhub.elsevier.com/S0925-5273(23)00233-5/sb21
http://refhub.elsevier.com/S0925-5273(23)00233-5/sb21
http://refhub.elsevier.com/S0925-5273(23)00233-5/sb21
http://refhub.elsevier.com/S0925-5273(23)00233-5/sb21
http://refhub.elsevier.com/S0925-5273(23)00233-5/sb22
http://refhub.elsevier.com/S0925-5273(23)00233-5/sb22
http://refhub.elsevier.com/S0925-5273(23)00233-5/sb22
http://refhub.elsevier.com/S0925-5273(23)00233-5/sb22
http://refhub.elsevier.com/S0925-5273(23)00233-5/sb22
http://refhub.elsevier.com/S0925-5273(23)00233-5/sb23
http://refhub.elsevier.com/S0925-5273(23)00233-5/sb23
http://refhub.elsevier.com/S0925-5273(23)00233-5/sb23
http://refhub.elsevier.com/S0925-5273(23)00233-5/sb23
http://refhub.elsevier.com/S0925-5273(23)00233-5/sb23
http://refhub.elsevier.com/S0925-5273(23)00233-5/sb24
http://refhub.elsevier.com/S0925-5273(23)00233-5/sb24
http://refhub.elsevier.com/S0925-5273(23)00233-5/sb24
http://refhub.elsevier.com/S0925-5273(23)00233-5/sb24
http://refhub.elsevier.com/S0925-5273(23)00233-5/sb24
http://refhub.elsevier.com/S0925-5273(23)00233-5/sb25
http://refhub.elsevier.com/S0925-5273(23)00233-5/sb25
http://refhub.elsevier.com/S0925-5273(23)00233-5/sb25
http://refhub.elsevier.com/S0925-5273(23)00233-5/sb25
http://refhub.elsevier.com/S0925-5273(23)00233-5/sb25
http://refhub.elsevier.com/S0925-5273(23)00233-5/sb26
http://refhub.elsevier.com/S0925-5273(23)00233-5/sb26
http://refhub.elsevier.com/S0925-5273(23)00233-5/sb26
http://refhub.elsevier.com/S0925-5273(23)00233-5/sb26
http://refhub.elsevier.com/S0925-5273(23)00233-5/sb26
http://refhub.elsevier.com/S0925-5273(23)00233-5/sb27
http://refhub.elsevier.com/S0925-5273(23)00233-5/sb27
http://refhub.elsevier.com/S0925-5273(23)00233-5/sb27
http://refhub.elsevier.com/S0925-5273(23)00233-5/sb28
http://refhub.elsevier.com/S0925-5273(23)00233-5/sb28
http://refhub.elsevier.com/S0925-5273(23)00233-5/sb28
http://refhub.elsevier.com/S0925-5273(23)00233-5/sb28
http://refhub.elsevier.com/S0925-5273(23)00233-5/sb28
http://refhub.elsevier.com/S0925-5273(23)00233-5/sb29
http://refhub.elsevier.com/S0925-5273(23)00233-5/sb29
http://refhub.elsevier.com/S0925-5273(23)00233-5/sb29
http://refhub.elsevier.com/S0925-5273(23)00233-5/sb29
http://refhub.elsevier.com/S0925-5273(23)00233-5/sb29
http://refhub.elsevier.com/S0925-5273(23)00233-5/sb29
http://refhub.elsevier.com/S0925-5273(23)00233-5/sb29
http://refhub.elsevier.com/S0925-5273(23)00233-5/sb30
http://refhub.elsevier.com/S0925-5273(23)00233-5/sb30
http://refhub.elsevier.com/S0925-5273(23)00233-5/sb30
http://refhub.elsevier.com/S0925-5273(23)00233-5/sb30
http://refhub.elsevier.com/S0925-5273(23)00233-5/sb30
http://refhub.elsevier.com/S0925-5273(23)00233-5/sb31
http://refhub.elsevier.com/S0925-5273(23)00233-5/sb31
http://refhub.elsevier.com/S0925-5273(23)00233-5/sb31
http://refhub.elsevier.com/S0925-5273(23)00233-5/sb31
http://refhub.elsevier.com/S0925-5273(23)00233-5/sb31
http://refhub.elsevier.com/S0925-5273(23)00233-5/sb32
http://refhub.elsevier.com/S0925-5273(23)00233-5/sb32
http://refhub.elsevier.com/S0925-5273(23)00233-5/sb32
http://refhub.elsevier.com/S0925-5273(23)00233-5/sb32
http://refhub.elsevier.com/S0925-5273(23)00233-5/sb32
http://refhub.elsevier.com/S0925-5273(23)00233-5/sb33
http://refhub.elsevier.com/S0925-5273(23)00233-5/sb33
http://refhub.elsevier.com/S0925-5273(23)00233-5/sb33
http://refhub.elsevier.com/S0925-5273(23)00233-5/sb34
http://refhub.elsevier.com/S0925-5273(23)00233-5/sb34
http://refhub.elsevier.com/S0925-5273(23)00233-5/sb34
http://refhub.elsevier.com/S0925-5273(23)00233-5/sb34
http://refhub.elsevier.com/S0925-5273(23)00233-5/sb34
http://refhub.elsevier.com/S0925-5273(23)00233-5/sb35
http://refhub.elsevier.com/S0925-5273(23)00233-5/sb35
http://refhub.elsevier.com/S0925-5273(23)00233-5/sb35
http://refhub.elsevier.com/S0925-5273(23)00233-5/sb36
http://refhub.elsevier.com/S0925-5273(23)00233-5/sb36
http://refhub.elsevier.com/S0925-5273(23)00233-5/sb36
http://refhub.elsevier.com/S0925-5273(23)00233-5/sb36
http://refhub.elsevier.com/S0925-5273(23)00233-5/sb36
http://refhub.elsevier.com/S0925-5273(23)00233-5/sb37
http://refhub.elsevier.com/S0925-5273(23)00233-5/sb37
http://refhub.elsevier.com/S0925-5273(23)00233-5/sb37
http://refhub.elsevier.com/S0925-5273(23)00233-5/sb37
http://refhub.elsevier.com/S0925-5273(23)00233-5/sb37
http://refhub.elsevier.com/S0925-5273(23)00233-5/sb38
http://refhub.elsevier.com/S0925-5273(23)00233-5/sb38
http://refhub.elsevier.com/S0925-5273(23)00233-5/sb38
http://refhub.elsevier.com/S0925-5273(23)00233-5/sb38
http://refhub.elsevier.com/S0925-5273(23)00233-5/sb38
http://refhub.elsevier.com/S0925-5273(23)00233-5/sb39
http://refhub.elsevier.com/S0925-5273(23)00233-5/sb39
http://refhub.elsevier.com/S0925-5273(23)00233-5/sb39
http://refhub.elsevier.com/S0925-5273(23)00233-5/sb39
http://refhub.elsevier.com/S0925-5273(23)00233-5/sb39
http://refhub.elsevier.com/S0925-5273(23)00233-5/sb40
http://refhub.elsevier.com/S0925-5273(23)00233-5/sb40
http://refhub.elsevier.com/S0925-5273(23)00233-5/sb40
http://refhub.elsevier.com/S0925-5273(23)00233-5/sb41
http://refhub.elsevier.com/S0925-5273(23)00233-5/sb41
http://refhub.elsevier.com/S0925-5273(23)00233-5/sb41
http://refhub.elsevier.com/S0925-5273(23)00233-5/sb41
http://refhub.elsevier.com/S0925-5273(23)00233-5/sb41

	Multi-item dynamic lot sizing with multiple transportation modes and item fragmentation
	Introduction
	Problem motivations
	Literature review
	Problem modeling
	Lot-sizing problem
	Variable cost and size bin packing problem with fragmentation

	Problem reformulation
	Lot-sizing problem reformulation
	Bin-packing problem reformulation

	A relax-and-fix heuristic
	Computational analysis
	Design of experiments
	Comparison of the formulations
	Impact of problem parameters on computational complexity
	Performance of exact and heuristic approaches on larger instances

	Model exploitation for managerial insights
	Benefits of integrating decisions on transportation modes in lot-sizing model
	Impact of item fragmentation on total cost
	Decision integration vs. Mode flexibility

	Conclusion
	Data availability
	Acknowledgments
	References


