

This file was downloaded from BI Open, the institutional repository (open access) at
BI Norwegian Business School https://biopen.bi.no

It contains the accepted and peer reviewed manuscript to the article cited below. It
may contain minor differences from the journal's pdf version.

Caporin, M., Gupta, R., & Ravazzolo, F. (2021). Contagion between real estate and
financial markets: A Bayesian quantile-on-quantile approach. The North American
Journal of Economics and Finance, 55, 101347.
https://doi.org/10.1016/j.najef.2020.101347

Copyright policy of Elsevier, the publisher of this journal.
The author retains the right to post the accepted author manuscript on open web

sites operated by author or author's institution for scholarly purposes, with an
embargo period of 0-36 months after first view online.

 http://www.elsevier.com/journal-authors/sharing-your-article#

https://biopen.bi.no/
https://doi.org/10.1016/j.najef.2020.101347
http://www.elsevier.com/journal-authors/sharing-your-article

Minimizing the sum of completion times on a single machine with health
index and flexible maintenance operations

Louise Penz1,4 Stéphane Dauzère-Pérès1,3 Margaux Nattaf2∗

1Mines Saint-Etienne, Univ Clermont Auvergne
CNRS, UMR 6158 LIMOS

CMP, Department of Manufacturing Sciences and Logistics
Gardanne, France

E-mail: dauzere-peres@emse.fr

2Univ. Grenoble Alpes, CNRS, Grenoble INP†, G-SCOP, 38000 Grenoble, France
E-mail: margaux.nattaf@grenoble-inp.fr

3Department of Accounting and Operations Management
BI Norwegian Business School

Oslo, Norway

4Normandie Univ, UNIHAVRE, UNIROUEN, INSA Rouen, LITIS
76 600 Le Havre, France

E-mail: louise.penz@univ-lehavre.fr

Abstract

This paper is motivated by the development of Industry 4.0 and the need to better integrate

production and maintenance decisions. Our problem considers a single machine on which jobs of

different families are scheduled to minimize the sum of completion times. The machine has a health

index which decreases when jobs are processed. To restore the machine health, maintenance operations

must be scheduled. Moreover, to be scheduled, each job requires the machine to have a minimum

health index which depends on the job family. Two cases are studied: (1) The daily case with a single

flexible maintenance operation, and (2) The weekly case with two flexible maintenance operations.

The second case is shown to be NP-complete. Two Mixed Integer Linear Programming models are

presented for each case. The first model uses “classical” positional variables, while the second model

improves the first model by using the notion of master sequence. Different valid inequalities are also

proposed. Computational experiments show that the second model is much more efficient than the

first model when solved with a standard solver, and the impact of the valid inequalities is discussed.

Keywords: Single-machine scheduling; Flexible maintenance; Machine health index; Mathematical
programming; Master sequence

1. Introduction

Most of the papers in the literature on scheduling consider that a machine is either fully available

or not at all. For example, a machine is considered unavailable when a maintenance operation is

∗Corresponding author.
†Institute of Engineering Univ. Grenoble Alpes

Preprint submitted to Computers & Operations Research December 18, 2022

sequenced (deterministic event) or when a breakdown occurs (random event). However, even if the

machine is available, it may not be in a perfect state and the process quality may not be guaranteed.

With the development of Industry 4.0 concept and the Internet of Things, more and more machines

are equipped with sensors to evaluate their status in real time. This is for instance true in the

semiconductor industry, where studies show the impact of the health of the machine on the process

quality (Chen and Wu (2007)), and degradation models of the machine are developed (Rostami et al.

(2021)) that can be used to schedule jobs accordingly. The scheduling problem in this paper is

inspired from the problem studied in Kao et al. (2018) where batching machines with health indices

are considered and both productivity and quality risk are optimized. However, very differently from

Kao et al. (2018), where jobs are only scheduled between maintenance operations and the risk to

schedule a job on a machine is considered, we do not allow a job to be scheduled on the machine if

the job health index requirement is not met and we schedule maintenance operations to restore the

health of the machine. Hence, our objective is to take the degradation of the machine into account

when scheduling both jobs and maintenance operations. An important feature of this study is that,

because they have different health index requirements, the jobs have different unavailability periods

on the machine. These flexible unavailability periods depend on the schedule of the jobs, the health of

the machine and the maintenance operations, making the problem particularly complex. We believe

this is the first time an integrated production and maintenance scheduling problem where jobs have

different health index requirements is considered.

Let us clarify the scheduling problem studied in this paper. A single machine, typically a critical

machine in a factory, is considered with a health index. This index decreases when a job is processed

on the machine and can be restored through maintenance operations. Jobs are grouped in families

which correspond to different types of products. All jobs in the same family have the same processing

time, a common and relevant assumption (see for instance Bitar et al. (2016), Nattaf et al. (2019)

and Bitar et al. (2021)), and the same health index requirement. A job of family f can start on

the machine if the current health index of the machine can remain above the health requirement of

f during the entire processing of the job. Otherwise, jobs of f can no longer be sequenced on the

machine, and a maintenance operation is required to process jobs of f again. However, jobs of other

families might still be scheduled before the maintenance operation if their health index requirement

is lower than the one of f . We assume that the maintenance operation leads to an “as good as new”

state, restoring the health index of the machine at its maximum level. Maintenance operations have

a fixed duration but their start times are flexible and thus can be optimized. The objective is to

minimize the flow time, i.e. the sum of completion times. Our assumptions are that the machine is

maintained at most two times in a week, and at most one time in any day. The first assumption usually

implies the second one, as maintenance operations are usually spread over time, to avoid carrying out

a maintenance operation when the machine is in very good condition, and consequently there are not

two maintenance operations in a single day. Thus, two cases are considered:

• The daily case, where jobs are sequenced on a time horizon smaller than a day. Indeed, if at

the start of the day the machine health index is too small, then a maintenance operation must

be considered and scheduling the jobs may be difficult. In this case, at most one maintenance

operation is sequenced.

• The weekly case, where jobs are sequenced on a time horizon of a week. In this case, at most

two maintenance operations are sequenced.

This paper considers the notion of master sequence, which is introduced by Dauzère-Pérès and

Sevaux (2003, 2004) for the problem of minimizing the number of tardy jobs with release dates on a

2

single machine. The master sequence is a sequence of jobs from which at least one optimal sequence

can be generated. This notion is adapted to our problem, and Mixed Integer Linear Programming

models are derived. To evaluate the efficiency of these models, other classical Mixed Integer Linear

Programming models using positional variables are developed. Computational experiments compare

the performances of the different models, and show that the models using the notion of master sequence

are much more efficient.

The paper is organized as follows. In Section 2, the literature on scheduling problems with mainte-

nance operations is reviewed. Our problem is formalized in Section 3 and its complexity is discussed.

This section also introduces mathematical models using positional variables. In Section 4, the notion

of master sequence is studied. Mathematical models using this notion and valid inequalities are pro-

posed in Section 5. In Section 6, numerical results are presented and discussed. Finally, we conclude

and give perspectives in Section 7.

2. Literature review

In the field of scheduling, many studies have been conducted on problems with maintenance op-

erations. Most papers consider maintenance operations as constraints, which can be seen as fixed

unavailability periods (Ma et al. (2010); Mati (2010); Mor and Mosheiov (2012); Tamssaouet et al.

(2018)). In other papers, maintenance operations are flexible periods with constraints on start times.

Indeed, in Chen (2006), Yang et al. (2011) and Qamhan et al. (2020), maintenance operations must be

sequenced in time windows. Detti et al. (2019) study a robust single machine scheduling problem with

flexible maintenance while minimizing both the makespan and the total completion time. Another

constraint found in the literature is that the maintenance operations have to be sequenced before

deadlines (Qi et al. (1999); Luo et al. (2015); Ying et al. (2016)).

Some papers consider that maintenance operations have an impact on the processing time of jobs.

In this case, maintenance operations are not mandatory. Lee and Leon (2001) and Mosheiov and

Sidney (2010) work on the rate modifying activity, which is a maintenance operation that changes the

production rate of the equipment under consideration. Thus, the processing times of jobs depend on

whether the job is sequenced before or after the maintenance operation. Zhang et al. (2017) and He

et al. (2020) work on linear deteriorating jobs, where the job processing time increases as the time

interval between the job and the previous maintenance operation increases.

However, the studies discussed above do not take the machine health into account, although the

machine health can now be measured. Therefore, there is more and more interest in the study of

preventive maintenance operations. The objective is to predict the future machine health based on

real data and to use it to schedule maintenance operations in the best possible way. Therefore, the

failure rate of the machine is reduced. Among these problems, we distinguish between stochastic and

deterministic problems.

Regarding stochastic problems, in Tao et al. (2014), the health index of the machine is determined

by a function depending on the time and on the risk of breakdown. Chen and Wu (2007) study

the prognosis of the health index under aging Markovian deterioration. Sharifi and Taghipour (2021)

consider a single-machine scheduling problem where the machine can be in different multi-deterioration

states and different maintenance actions are considered. As in our problem, the authors also consider

that the maintenance operations are not already scheduled or time-based. An interesting survey on

the integration of production and maintenance scheduling decisions is also proposed in Sharifi and

Taghipour (2021). Salama and Srinivas (2021) also study a single-machine scheduling problem with

deterioration effect, where the sum of various costs is minimized instead of the makespan. Ghaleb

3

et al. (2021) consider a flexible job-shop system where production and maintenance schedules that

consider the conditions of machines are jointly optimized in real time. Recently, Yang et al. (2022)

study the scheduling of jobs on a single machine with uncertain condition, where the processing times

of jobs depend on the machine condition and maintenance actions can be performed. Molaee et al.

(2021) study a single machine scheduling problem with family setup times and a single random failure

to minimize the maximum expected tardiness. However, in these papers, all jobs have the same

requirements to be processed on the machine, and the impact of the machine condition does not

depend on the type of jobs.

Regarding deterministic problems, some papers consider that the health index of the machine

can be deduced from the type of jobs sequenced on the machine. Bock et al. (2012) and Luo et al.

(2019) study a problem where jobs have indices of deterioration. The health of the machine decreases

according to these indices but all jobs have the same health index requirement. The maintenance

duration varies and the longer the maintenance duration, the larger the health index increase. In

another study, Kao et al. (2018) consider batching machines that gradually deteriorate after processing

jobs. The objective is to balance between maximizing productivity and minimizing quality risk but

maintenance operations are not considered.

To our knowledge, no previous study considers our integrated job and maintenance scheduling

problem where the availability of the machine depends on the jobs and the maintenance operations,

and jobs have different health index requirements.

3. Problem analysis and mathematical modeling

Section 3.1 formally describes the problem and presents the daily and weekly cases. Each case

is illustrated by an example in Section 3.2. Complexity results are given in Section 3.3. Finally,

mathematical models with positional variables are presented for both cases in Section 3.4.

3.1. Problem description

A set of N jobs {J1, . . . , JN} have to be sequenced on a single machine. Jobs are grouped into

families in the set F = {1, . . . , F}. For each family f ∈ F , the number of jobs to scheduled is given

by Nf and the processing time of jobs in f is pf . Note that pf is the same for all the jobs in family f .

At each moment of the schedule, a health index associated to the machine is defined as follows:

H : {0, . . . , T} −→ {0, . . . ,Hmax}
t −→ H(t)

where T is the duration of the scheduling horizon, and Hmax is the maximum health level of the

machine.

At the beginning of the schedule, the health index of the machine H(0) is denoted by Hstart. When

a job of family f is sequenced, the health of the machine decreases by pf , i.e. if a job of family f starts

at time t, then H(t + pf) = H(t) − pf . A maintenance operation of duration pm can be sequenced

to restore the health of the machine. After a maintenance operation, the health index is set to its

maximum level Hmax. As discussed in more details in Section 7, considering the health index of the

machine and processing times as stochastic variables instead of deterministic ones is an interesting

but challenging research perspective.

Finally, each family f has a health index requirement Hmin
f . Thus, a job in f cannot start if

the health index of the machine is lower than Hmin
f when the job is completed. Then, a job can

4

only be started at time t if the current health index of the machine H(t) ≥ Hmin
f + pf . We believe

that considering the health index requirement of a job family as deterministic is the most realistic

assumption, as Hmin
f is typically given by process engineers and is thus rarely changing over time.

The notations are summarized in Table 1. The goal is to minimize the flow time, i.e. the sum of

completion times.

As discussed in the general introduction, two cases are considered:

• The daily case. In this case, the time horizon corresponds to one day and only one maintenance

operation can be scheduled. To ensure the feasibility of the problem, Hmax is assumed to be

large enough to schedule all the jobs after the maintenance operation. Hence, jobs after the

maintenance operation can be sorted in Shortest Processing Time (SPT) (Smith (1956)) order

and respect their health index requirements. Thus, the main objective is to determine which

jobs are sequenced before the maintenance operation.

• The weekly case. In this case, the time horizon corresponds to one week and two maintenance

operations can be scheduled. As in the daily case, we assume that the health of the machine

after the second maintenance operation is sufficiently large to schedule all the remaining jobs in

SPT order.

Hstart Health index of the machine at the beginning
Hmax Maximum health of the machine
pm Maintenance duration
N Number of jobs
F Set of families
Nf Number of jobs of family f ∈ F
pf Processing time of jobs of f ∈ F
Hmin

f Health index requirement of f ∈ F

Table 1: List of parameters

3.2. Illustrative examples

Figures 1 and 2 show illustrative examples of schedules for the daily and weekly cases. In both cases,

Figures 1a and 2a present the family characteristics and Figures 1b and 2b the machine characteristics.

Figures 1c and 2c show the optimal scheduled associated with the instance. Furthermore, the numbers

above the jobs show the health indices of the machine at the beginning and at the end of each job.

The dotted lines linked to the Hmin boxes represent the health index requirements of the families.

Indeed, machine health decreases by the processing time of the scheduled jobs, and schedules without

idle time are dominant. Thus, a family health requirement can be converted into a time t such that

either jobs are scheduled (and completed) before t or after the maintenance operation.

3.2.1. Daily case

Figure 1 provides an instance and the optimal schedule for the daily case. In this example, since

Hstart = 97 and Hmin
f1

= 70, jobs of f1 has to be scheduled either before t = 97− 70 = 23 or after the

maintenance operation. In the solution, the first sequenced job belongs to family f1. As pf1 = 2, the

health index of the machine decreases from Hstart = 97 to 95. Before the maintenance operation, we

notice that the jobs are not in SPT order. Indeed, it is not possible to interchange a job of f2 with the

5

second job of f1 because of the health index requirement Hmin
f2

= 85. If the interchange is performed,

the health index of the machine at the end of the job of f2 will be 84, which is lower than Hmin
f2

. After

the maintenance operation, the health index requirements are not displayed. Hmax = 100 is large

enough to schedule all the jobs in SPT order while satisfying the health index requirements.

f1 f2 f3 f4
Nf 2 3 1 1
pf 2 3 4 7
Hmin

f 75 85 90 80

(a) Family characteristics

Hstart Hmax pm
97 100 10

(b) Machine characteristics

97

f1

95

f2

92

f2

89

f2

86

f1

84

Maintenance

Hmin
f3

Hmin
f2

Hmin
f4

Hmin
f1

100

f3

96

f4

89

0 5 10 15 20 25 30 35 40

(c) Optimal schedule for the daily case

Figure 1: Example for the daily case

3.2.2. Weekly case

Figure 2 provides an instance and the optimal schedule for the weekly case. The first three Hmin
f

boxes correspond to the health index requirements of the jobs before the first maintenance operation.

The next three boxes correspond to the health index requirements for the jobs between the two

maintenance operations. After the second maintenance operation is completed, only one job remains,

which respects its health index requirement.

f1 f2 f3
Nf 4 6 5
pf 2 3 4
Hmin

f 70 75 80

(a) Family characteristics

Hstart Hmax pm
92 100 10

(b) Machine characteristics

92

f1

90

f1

88

f2

85

f2

82

f2

79

f2

76

f1

74

f1

72

Maintenance

Hmin
f3

Hmin
f2

Hmin
f1

100

f2

97

f3

93

f3

89

f3

85

f3

81

f2

78

Maintenance

Hmin
f3

Hmin
f2

Hmin
f1

100

f3

96

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70

(c) Optimal schedule for the weekly case

Figure 2: Example for the weekly case

6

3.3. Complexity result

This section first describes two polynomial cases for the daily problem. The weekly case is then

shown to be NP-complete. Unfortunately, the complexity of the general daily problem remains open.

Theorem 1. If
∑

f∈F Nf · pf ≤ Hstart − maxf∈F H
min
f , the daily scheduling problem with health

index requirements can be solved in polynomial time.

Proof. Recall that [0, Hstart −Hmin
f] is the time interval in which it is possible to schedule jobs of f

before the maintenance operation. Thus [0, Hstart −maxf∈F H
min
f] is the time interval in which it is

possible to schedule jobs of any family before the maintenance operation.

Therefore, if
∑

f∈F Nf ·pf ≤ Hstart−maxf∈F H
min
f , no maintenance operation is required. Indeed,

all jobs can be scheduled in [0, Hstart−maxf∈F H
min
f] and scheduling the jobs in SPT order gives the

optimal solution.

Note that if scheduling the jobs in SPT order without maintenance satisfies the health requirement

constraints of all jobs, then the SPT order gives the optimal solution. When this is not the case, we

define two time intervals: I1 and I2. I1 (resp. I2) is the time interval in which jobs are scheduled before

(resp. after) the maintenance operation. Since, after the maintenance operation, the health index is

set to its maximum value Hmax, which is assumed to be large enough to schedule all the remaining

jobs, jobs after the maintenance operation can be sorted in SPT order and respect their health index

requirements. Thus, the constraints on I2 for the health index requirements can be ignored. The main

objective is to determine the jobs that need to be sequenced before the maintenance operation.

Another polynomial case for the daily problem is stated in the following theorem.

Theorem 2. If Hmin
f = Hmin

k , ∀(k, f) ∈ F2, the daily scheduling problem with health index require-

ments can be solved in polynomial time.

Proof. We show that the following procedure gives the optimal solution: (1) Sort jobs in SPT order

(minimum family indices in case of equality) and schedule the jobs one by one as long as the health

requirement is met, and (2) When this is no longer the case and if there are jobs left to schedule,

schedule a maintenance operation and schedule the remaining jobs in SPT order.

Note that jobs of the same family are scheduled consecutively, and that at most one family has

some of its jobs scheduled before the maintenance operation and the other jobs scheduled after.

Let π be the schedule obtained by following the proposed procedure and f(π) the resulting flow

time of the schedule. f(π) can be divided into two values : fp(π), the processing contribution to the

flow time, and fm(π), the contribution of the maintenance operation to the flow time. The first value

fp(π) is computed as the sum of the completion times of jobs if no maintenance operation is scheduled.

The second value fm(π) is defined as the number of jobs scheduled after the maintenance operation

multiplied by the maintenance duration.

Since, in π, jobs are scheduled in SPT order, fp(π) is minimal. The value of fm(π) depends on the

number of jobs scheduled after the maintenance operation. Thus, the smaller the number of jobs after

the maintenance, the smaller the objective. We can prove that our procedure schedules the maximum

number of jobs before the maintenance operation with a classical exchange argument.

Theorem 3. When at least two maintenance operations can be sequenced, the scheduling problem

with health index requirements, i.e. the weekly case problem, is NP-complete.

7

Proof. The problem is shown to be NP-complete by reducing the Partition problem which is NP-

complete (Garey et al. (1988)).

Partition. Given a set A = {a1, . . . , a2n} of 2n positive integers and a positive integer B such

that 2B =
∑

ai∈A ai, can A be partitioned into 2 disjoints subsets A1 and A2 such that
∑

ai∈A1
ai =∑

ai∈A2
ai = B?

For a given instance of Partition, we can construct the following scheduling problem with health

index requirements P with 2n jobs in polynomial time. Let

pf = af , nf = 1, Hmin
f = 0 ∀f ∈ {1, . . . , 2n}

Hstart = Hmax = B

pm > (n+ 1) ·B

C =
n

2
· pm + (n+ 1) ·B

The decision version of the problem P is: Is there a schedule π∗ such that f(π) ≤ C?

Lemma 1. If there exists a solution for Partition, then there exists a schedule π∗ for problem P

satisfying f(π∗) ≤ C.

Proof. Suppose A1 and A2 are the subsets of the solution to Partition. Suppose also, without loss of

generality, that |A2| ≤ |A1|. The solution of P is constructed by scheduling the jobs corresponding to

elements of A1 (resp. A2) before (resp. after) the maintenance operation in SPT order.

As Hstart = Hmax = B and
∑

ai∈A1
ai =

∑
ai∈A2

ai = B, each job health requirement is satisfied.

Let p[i] be the processing time of the i− th job of the schedule. Thus:

fp(π
∗) =

2n∑
i=1

(2n− i+ 1)p[i]

= 2n · p[1] + (2n− 1) · p[2] + · · ·+ 2 · p[2n−1] + p[2n]

≤ |A1|
∑

p[i]∈A1

p[i] +
∑

p[i]∈A1

p[i] + |A2|
∑

p[i]∈A2

p[i]

= (n+ 1) ·B

And, fm(π∗) = |A2| · pm. Thus, f(π∗) = fp(π
∗) + fm(π∗) ≤ n

2 · pm + (n+ 1) ·B = C.

Lemma 2. For problem P , if there exists a schedule π∗ satisfying f(π∗) ≤ C, then we have a solution

to Partition.

Proof. The solution to Partition is constructed as follows. Jobs scheduled before (resp. after) the

maintenance operation π∗ belongs to A1 (resp. A2). We have that
∑

ai∈A1
ai =

∑
ai∈A2

ai = B. First,∑
ai∈A1

ai ≤ B since health requirement are not satisfied otherwise. Furthermore,
∑

ai∈A1
ai ≥ B,

since
∑

ai∈A2
ai > B.

The two previous lemmas prove the NP-completeness of P .

8

3.4. Mathematical Modeling

This section presents two MILP models using positional variables, i.e. binary variables that define

the positions of jobs in the sequence. This choice was motivated by the fact that our problem has

similarities with the problem of minimizing the number of late jobs (see Section 4). For the latter

problem, the use of positional variables has shown to be effective in Dauzère-Pérès (1995); Dauzère-

Pérès and Sevaux (2003, 2004). More recently, Keha et al. (2009) compare different Mixed Integer

Programming formulations for single-machine scheduling problems, and show that in models with

positional variables, each job is assigned to at most one position, and a position can be occupied

by at most one job. The first model, introduced in Section 3.4.1, corresponds to the daily case,

and constraints are added in the second model for the weekly case in Section 3.4.2. Several valid

inequalities to strengthen the models are proposed in Sections 3.4.3 and 3.4.4.

3.4.1. Daily case

Recall that I1 (resp. I2) is the time interval in which jobs are scheduled before (resp. after) the

maintenance operation. Since the number of jobs in I1 and I2 in an optimal solution is unknown, N

positions are considered both in I1 and in I2. The following variables are defined to model the daily

case:

uI1k,f = 1 iff a job of family f is in position k in interval I1, i.e. before the maintenance operation,

and 0 otherwise,

CI1
k : Completion time of job sequenced at position k in I1, which is equal to 0 if there is no job

at position k,

uI2k,f = 1 iff a job of family f is in position k in interval I2, i.e. after the maintenance operation,

and 0 otherwise,

CI2
k : Completion time of job sequenced at position k in I2, which is equal to 0 if there is no job

at position k.

The Mixed Integer Linear Program MILP-pos(daily) is formalized below:

min
N∑
k=1

(CI1
k + CI2

k) (1)

N∑
k=1

(uI1k,f + uI2k,f) = Nf ∀f = 1, . . . , |F| (2)

|F|∑
f=1

uI1k,f ≤ 1 ∀k = 1, . . . , N (3)

|F|∑
f=1

uI2k,f ≤ 1 ∀k = 1, . . . , N (4)

CI1
k ≥

k∑
l=1

|F|∑
f=1

pfu
I1
l,f +

 |F|∑
f=1

uI1k,f − 1

M I1 ∀k = 1, . . . , N (5)

k∑
l=1

|F|∑
f=1

pfu
I1
l,f ≤ H

start −
|F|∑
f=1

uI1k,fH
min
f ∀k = 1, . . . , N (6)

9

CI2
k ≥

N∑
l=1

|F|∑
f=1

pfu
I1
l,f + pm +

k∑
l=1

|F|∑
f=1

pfu
I2
l,f +

 |F|∑
f=1

uI2k,f − 1

M I2 ∀k = 1, . . . , N (7)

CI1
k ≥ 0 ∀k = 1, . . . , N (8)

CI2
k ≥ 0 ∀k = 1, . . . , N (9)

uI1k,f ∈ {0, 1} ∀k = 1, . . . , N (10)

uI2k,f ∈ {0, 1} ∀k = 1, . . . , N (11)

where M I1 (resp. M I2) is an upper bound on the completion time of the last job scheduled before
(resp. after) the maintenance operation. The value of M I1 and M I2 are given by:

M I1 = Hstart −min
f∈F

Hmin
f

M I2 = M I1 + pm +Hmax −min
f∈F

Hmin
f

Objective function (1) minimizes the flow time. Constraints (2) guarantee that exactly Nf jobs of
each family f are sequenced. Constraints (3) and (4) guarantee that at most one job is sequenced at
each position. Constraints (5) determine the completion time CI1

k of the job at position k before the

maintenance operation if there is a job at position k, i.e. if
∑|F|

f=1 u
I1
k,f = 1. If

∑|F|
f=1 u

I1
k,f = 0, M I1

is a positive constant large enough to make the constraint inactive. Constraints (6) ensure that jobs
before the maintenance operation are completed before the health index of the machine is too low. If
there is no job at position k, the constraints are redundant.

Constraints (7) determine the completion time CI2
k of the job at position k after the maintenance

operation if there is a job at position k, i.e. if
∑|F|

f=1 u
I2
k,f = 1. If

∑|F|
f=1 u

I2
k,f = 0, M I2 is a large

enough constant to make Constraints (7) redundant. Constraints (8) through (11) define the variable
domains.

3.4.2. Weekly case

The model for the weekly case is similar to the model for the daily case but with additional
decision variables corresponding to the third time interval I3, i.e. to the time interval after the second
maintenance:

uI3k,f = 1 iff a job of family f is in position k in interval I3, i.e. after the second maintenance
operation, 0 otherwise,
CI3
k : Completion time of job sequenced at position k in I3, which is equal to 0 if there is no job

at position k.

The MILP MILP-pos(weekly) is written below:

min
N∑
k=1

(CI1
k + CI2

k + CI3
k) (12)

N∑
k=1

(uI1k,f + uI2k,f + uI3k,f) = Nf ∀f = 1, . . . , |F| (13)

Constraints from (3) to (11)

|F|∑
f=1

uI3k,f ≤ 1 ∀k = 1, . . . , N (14)

10

k∑
l=1

|F|∑
f=1

pfu
I2
l,f ≤ H

max −
|F|∑
f=1

uI2k,fH
min
f ∀k = 1, . . . , N (15)

CI3
k ≥

N∑
l=1

|F|∑
f=1

pf (uI1l,f + uI2l,f) + 2pm+

k∑
l=1

|F|∑
f=1

pfu
I3
l,f +

 |F|∑
f=1

uI3k,f − 1

M I3 ∀k = 1, . . . , N (16)

CI3
k ≥ 0 ∀k = 1, . . . , N (17)

uI3k,f ∈ {0, 1} ∀k = 1, . . . , N (18)

where M I3 = M I2 + pm +Hmax −min
f∈F

Hmin
f is an upper bound on the makespan.

Objective function (12) minimizes the flow time. Constraints (13) guarantee that exactly Nf jobs
of each family f are sequenced. Constraints (14) guarantee that at most one job is sequenced in each
position after the second maintenance operation. Constraints (15) ensure that the job at position k
between the two maintenance operations is completed before the health index of the machine is too
low. If there is no job at position k, the constraints are redundant. Constraints (16) determine the
completion times of jobs after the second maintenance operation. Constraints (17) and (18) define the
variables.

3.4.3. Valid inequalities based on dominant positions

A set of valid inequalities based on dominant positions is presented to improve the mathematical
models by avoiding symmetries. Indeed, because there are 2N positions, and N jobs, there are
N empty positions. The same order of jobs can have many different empty positions. The valid
inequalities based on dominant positions ensure that only the first positions in I1, I2 and I3 are non
empty. This is ensured by Constraints (19) for I1, Constraints (20) for I2, and Constraints (21) for I3.

|F|∑
f=1

uI1k−1,f ≥
|F|∑
f=1

uI1k,f ∀k = 2, ..., N (19)

|F|∑
f=1

uI2k−1,f ≥
|F|∑
f=1

uI2k,f ∀k = 2, ..., N (20)

|F|∑
f=1

uI3k−1,f ≥
|F|∑
f=1

uI3k,f ∀k = 2, ..., N (21)

The computational efficiency of these inequalities is discussed in Section 6.1.3.

3.4.4. Valid inequalities based on SPT order

For the daily and weekly cases, jobs can be sequenced in SPT order in the last interval. Valid
inequalities can be defined to impose the SPT order. Constraints (22) define the SPT sequence, and
are applied on I2 for the daily case, and on I3 for the weekly case.

uIk,f2 + uIl,f1 ≤ 1 ∀k, l = 1, . . . , N ∀f1, f2 = 1, . . . , |F|
such that k < l, pf1 ≤ pf2 (22)

The computational efficiency of these inequalities is discussed in Section 6.1.3.

11

4. Notion of Master Sequence

The notion of master sequence is introduced in Dauzère-Pérès and Sevaux (2003, 2004) and is
adapted to our problem in this section.

The master sequence is a sequence of jobs from which at least one optimal schedule can be gener-
ated. In a master sequence, each job may appear several times and a schedule is “created” from the
master sequence by selecting at most one position for each job. The largest possible master sequence
is (J1, J2, . . . , JN , J1, J2, . . . , JN , . . . , J1, J2, . . . , JN), where (J1, J2, . . . , JN) is repeated N times, and
thus has N2 positions. The objective is to reduce the size of this naive sequence while ensuring that
an optimal schedule can always be generated.

Section 4.1 presents theorems on the order between jobs in an optimal sequence. These theorems
allow us to compute a master sequence with a smaller size than the naive master sequence, and are
used to define an algorithm to build this sequence. Other theorems reducing the size of the master
sequence even more are given in Section 4.2.

The results presented in this section show how to compute the master sequence of jobs for time
intervals in which the health requirement conditions hold. Indeed, if there are no health requirements,
computing the master sequence is easy since it corresponds to the SPT order. The results are presented
for interval I1 (before the first maintenance operation) but holds for interval I2 of the weekly case
(between the two maintenance operations).

4.1. Building the master sequence

Let us first present the following theorem.

Theorem 4. When minimizing
∑

j Cj , if two job families f1 and f2 are such that pf1 ≤ pf2 , then
there is an optimal sequence where a job of family f1 is never sequenced between two jobs of family
f2.

Proof. Suppose that, in an optimal solution, an interval contains three jobs J1 ∈ f1, J2,1 and J2,2 ∈ f2.
Let J2,1 (resp. J2,2) be sequenced before (resp. after) J1. Exchanging J2,1 and J1 reduces the
completion times of the schedule since pf1 ≤ pf2 . In addition, the health requirements are still
satisfied. Indeed, advancing forward job J1 cannot violate its health requirement and J2,1 is moved
before J2,2 which satisfies its health requirement. Figure 3 illustrates the proof of the theorem.

f2 f3 f1 f2

Hmin
f3

Hmin
f2

Hmin
f1

f1 f3 f2 f2

Hmin
f3

Hmin
f2

Hmin
f1

Figure 3: Illustration of the interchange argument in proof of Theorem 4.

Now, let us present the second theorem used to build the master sequence.

Theorem 5. When minimizing
∑

j Cj , if two job families f1 and f2 are such that pf1 ≤ pf2 , and

Hmin
f1
≥ Hmin

f2
, then there exists an optimal sequence where no job of family f1 is sequenced after a

job of family f2.

Proof. The theorem can again be proven by an interchange argument. If a job of family f1 is sequenced
after a job of family f2 in an interval, then the two jobs can be interchanged while satisfying their
health index requirements (since Hmin

f1
≥ Hmin

f2
) and all health index requirements of jobs between

them (since pf1 ≤ pf2) and reducing
∑

j Cj .

12

Figure 4 illustrates Theorem 5 and the interchange argument of the proof. The left schedule does
not satisfies the conditions of the theorem while the second schedule, where jobs of f1 and f2 are
swapped, does.

f2 f3 f1

Hmin
f3

Hmin
f1

Hmin
f2

f1 f3 f2

Hmin
f3

Hmin
f1

Hmin
f2

Figure 4: Illustration of the interchange argument in proof of Theorem 5

Theorem 5 shows that, in an optimal solution where pf1 ≤ pf2 , jobs of family f1 can only be
scheduled after jobs of family f2 if Hmin

f1
< Hmin

f2
. In this case, Theorem 4 shows that there exists an

optimal sequence where the jobs of f1 are scheduled consecutively after the jobs of f2.
From the above analysis, it is possible to derive a “master sequence of families” which is built

recursively using Algorithm 1. In this algorithm, families in F are ranked in non-decreasing order of
their processing times and, for families with the same processing time, in non-increasing order of their
health index requirements.

Algorithm 1 Building the master sequence of families

1: procedure MasterSequence(F)
2: for all f ∈ F do
3: MS ←MS ∪ f
4: F ← {f ∈ F such that f 6= f , pf ≤ pf and Hmin

f
< Hmin

f }
5: MS ←MS ∪MasterSequence(F)
6: end for
7: end procedure

Algorithm 1 considers families in non-decreasing order of their processing times and add them
in the master sequence (line 3). The corresponding positions in the master sequence are called the
generating positions. After the addition of a new family in the master sequence, the master sequence
generated by families with lower processing times and lower health index requirements is added. These
positions in the master sequence are called the generated positions (line 5). These positions are
generated for the purpose of planning a generated family after its generating family. If no job of
the generating family is sequenced, there is no reason to consider the generated positions. A valid
inequality using this idea is developed in Section 5.2.2.

Algorithm 1 computes the master sequence of families. To use this sequence in a MILP model,
the master sequence of jobs has to be derived from the master sequence of families. To ensure that
all possible job orders can be reached, a family f in the master sequence is split into Nf jobs.

Example. Let us apply Algorithm 1 on the instance of Section 3.2.1. First, f1f1f1 is added to the master
sequence in Line 3. Because, no other families satisfied the condition of Line 4, the algorithm goes
back to Line 3 and adds f2f2f2 to the master sequence.

The only family satisfying pf ≤ pf2 and Hmin
f < Hmin

f2
is f1, thus F = f1 (Line 4). The master

sequence generated by F = f1 is f1 and is added to the master sequence in Line 5. Note that the
position of f1 is generated by f2.

Then f3f3f3 is added in Line 3. We have F = {f1, f2}. The master sequence generated by F = {f1, f2}
is: f1, f2, f1. This sequence is added in Line 5. Finally, f4f4f4 is added in Line 3 and F = {f1}. Thus,
f1 is added to the master sequence in line 5.

13

The master sequence of families is:

f1f1f1, f2f2f2, f1, f3f3f3, f1, f2, f1, f4f4f4, f1

The families in bold correspond to the generating positions added in Line 3. The master sequence
of jobs is obtained by replacing each family by its jobs. For example, each occurrence of family f1 is
replaced by the two jobs of family f1. The master sequence of jobs is:

Jf1Jf1Jf1 , Jf1Jf1Jf1 , Jf2Jf2Jf2 , Jf2Jf2Jf2 , Jf2Jf2Jf2 , Jf1 , Jf1 , Jf3Jf3Jf3 , Jf1 , Jf1 , Jf2 , Jf2 , Jf2 , Jf1 , Jf1 , Jf4Jf4Jf4 , Jf1 , Jf1

4.2. Reducing the length of the master sequence

We show in this section that it is possible to reduce the length of the master sequence of jobs.
In the master sequence, let us consider the generating position corresponding of family fj . Consider

also family fi associated to a position generated by fj . Thus, we have pfi ≤ pfj and Hmin
fj

> Hmin
fi

.

Note that, in interval [0, Hstart − Hmin
fj

], it is possible to schedule both jobs of fi and jobs of fj .
Therefore, since pfi ≤ pfj , jobs of fi will always be scheduled before jobs of fj in this interval.

In interval [Hstart−Hmin
fj

, Hstart−Hmin
fj

+ Hmin
fj
− Hmin

fi
], only jobs of fi can be scheduled. Thus,⌈

Hmin
fj
−Hmin

fi

pfi

⌉
is the maximum number of jobs of fi that can be completed in this time interval.

Hence, the maximum number of jobs of fi that can be scheduled after the jobs of fj is equal to

min

(
Nfi ,

⌈
Hmin

fj
−Hmin

fi

pfi

⌉)
.

Thus, when splitting family positions into job positions, family positions fi generated by family

fj are split into min

(
Nfi ,

⌈
Hmin

fj
−Hmin

fi

pfi

⌉)
jobs.

Example. Let us use again the example of Section 3.2.1. In the master sequence computed with
Algorithm 1, family f3 in position 4 generates family f2 in position 6.

In interval [0, 97− 90] = [0, 7], jobs of both f2 and f3 can be scheduled. If a job of each family is
scheduled in this interval, the jobs of f2 will be scheduled before the jobs of f3 since pf2 ≤ pf3 .

Suppose that a job of f3 is scheduled in interval [0, 7]. Then, it is not possible to have more than
two jobs of f2 scheduled after interval [0, 7]. Indeed, if three jobs are scheduled, then one of them is

scheduled in [0, 7] and thus cannot be scheduled after the jobs of f3. This is because,

⌈
Hmin

f3
−Hmin

f2
pf2

⌉
=⌈

90−85
3

⌉
= 2, and thus only two jobs of f2 can be scheduled in [Hstart−Hmin

fj
, Hstart−Hmin

fj
+ Hmin

fj
−

Hmin
fi

] = [7, 7 + 5] = [7, 12].
In the master sequence, there are two job positions corresponding to the positions of f2 generated

by f3, and the master sequence of jobs is:

Jf1Jf1Jf1 , Jf1Jf1Jf1 , Jf2Jf2Jf2 , Jf2Jf2Jf2 , Jf2Jf2Jf2 , Jf1 , Jf1 , Jf3Jf3Jf3 , Jf1 , Jf1 , Jf2 , Jf2 , Jf1 , Jf1 , Jf4Jf4Jf4 , Jf1 , Jf1

5. Mathematical modeling based on Master Sequence

In Section 5.1, two Mixed Integer Linear Programming models for the daily and weekly cases are
derived from the master sequence. Four types of valid inequalities are introduced to strengthen the
models in Section 5.2.

14

5.1. Mathematical models

If, in an interval, the families are subject to the health index requirements, the optimal sequence
is derived from the master sequence. If the health index requirements are not considered, the optimal
sequence is derived from the SPT sequence, i.e the sequence of jobs in Shortest Processing Time order.
Note that, since jobs can be scheduled before and after the maintenance operation, both sequences
are computed with all jobs. The notations are summarized in Table 2.

L Number of positions in the master sequence
x(k) Family at position k in the master sequence
N Number of positions in the SPT sequence
y(k) Family at position k in the SPT sequence

Table 2: Notations

5.1.1. Daily case

In the daily case, jobs in interval I1 are subject to the health index requirements and thus the
master sequence is used. In I2, because there are no health index requirements, the SPT sequence is
used. The following variables are used to model the daily case:

uI1k ∈ {0, 1}: = 1 if the job at position k is sequenced in interval I1, i.e. before the maintenance
operation, = 0 otherwise,
CI1
k : Completion time of job sequenced at position k in I1, which is equal to 0 if there is no job

at position k,
uI2k ∈ {0, 1}: = 1 if the job at position k is sequenced in interval I2, i.e. after the maintenance
operation, = 0 otherwise,
CI2
k : Completion time of job sequenced at position k in I2, which is equal to 0 if there is no job

at position k.

The Mixed Integer Linear Program MILP-MS(daily) is formalized below:

min
L∑

k=1

CI1
k +

N∑
k=1

CI2
k (23)

L∑
k=1

x(k)=f

uI1k +

N∑
k=1

y(k)=f

uI2k = Nf ∀f = 1, . . . , |F| (24)

CI1
k ≥

k∑
l=1

px(l)u
I1
l + (uI1k − 1)M I1 ∀k = 1, . . . , L (25)

k∑
l=1

px(l)u
I1
l ≤ H

start − uI1k H
min
x(k) ∀k = 1, . . . , L (26)

CI2
k ≥

L∑
l=1

px(l)u
I1
l + pm +

k∑
l=1

py(l)u
I2
l + (uI2k − 1)M I2 ∀k = 1, . . . , N (27)

CI1
k ≥ 0 ∀k = 1, . . . , L (28)

CI2
k ≥ 0 ∀k = 1, . . . , N (29)

uI1k ∈ {0, 1} ∀k = 1, . . . , L (30)

15

uI2k ∈ {0, 1} ∀k = 1, . . . , N (31)

with M I1 = Hstart −min
f∈F

Hmin
f and M I2 = M I1 + pm +Hmax −min

f∈F
Hmin

f .

Objective function (23) minimizes the flow time. Constraints (24) guarantee that exactly Nf jobs
of each family f are sequenced. Constraints (25) determine the completion times of jobs before the
maintenance operation. Constraints (26) ensure that the health index requirements are respected for
jobs sequenced before the maintenance operation. Constraints (27) determine the completion times for
jobs sequenced after the maintenance operation. Constraints (28) through (31) define the variables.

5.1.2. Weekly case

The weekly case has three intervals, the first two intervals use the master sequence, thus the
number of variables of uI2k and CI2

k is now L, and the last interval uses the SPT sequence. The model
of the weekly case has additional decision variables corresponding to the third time interval I3:

uI3k,f ∈ {0, 1}: = 1 if the job at position k is sequenced in interval I3, i.e. after the second
maintenance operation, = 0 otherwise,
CI3
k : Completion time of job sequenced at position k in I3, which is equal to 0 if there is no

job at position k.

The MILP MILP-MS(weekly) is written below:

min
L∑

k=1

(CI1
k + CI2

k) +
N∑
k=1

CI3
k (32)

L∑
k=1

x(k)=f

(uI1k + uI2k) +
N∑
k=1

y(k)=f

uI3k = Nf ∀f = 1, . . . , |F| (33)

Constraints (25) and (26)

CI2
k ≥

L∑
l=1

px(l)u
I1
l + pm +

k∑
l=1

px(l)u
I2
l + (uI2k − 1)M I2 ∀k = 1, . . . , L (34)

k∑
l=1

px(l)u
I2
l ≤ H

max − uI2k H
min
x(k) ∀k = 1, . . . , L (35)

CI3
k ≥

L∑
l=1

px(l)(u
I1
l + uI2l) + 2pm +

k∑
l=1

py(l)u
I3
l + (uI3k − 1)M I3 ∀k = 1, . . . , N (36)

Constraints (28) and (30)

CI2
k ≥ 0 ∀k = 1, . . . , L (37)

CI3
k ≥ 0 ∀k = 1, . . . , N (38)

uI2k ∈ {0, 1} ∀k = 1, . . . , L (39)

uI3k ∈ {0, 1} ∀k = 1, . . . , N (40)

with M I3 = M I2 + pm +Hmax −min
f

Hmin
f

Objective function (32) minimizes the flow time. Constraints (33) guarantee that exactly Nf jobs
of each family f are sequenced. Constraints (34) determine the completion times between the two
maintenance operations. Constraints (35) ensure that the health index requirements are respected
between the two maintenance operations. Constraints (36) determine the completion times after the
second maintenance operation. Constraints (37) through (40) define the variables.

16

5.2. Valid inequalities

To improve the models based on the master sequence, four types of valid inequalities are developed.

5.2.1. Valid inequalities based on dominant positions

These valid inequalities are based on dominant positions, as for the models with positional vari-
ables in Section 3.4.3. For each occurrence of a family, only the first positions should be occupied.
Constraints (41) are applied on I1 and Constraints (42) are applied on I2 for the daily case. The same
constraints are adapted to the weekly case.

uI1k−1 ≥ u
I1
k ∀k = 2, ..., L such that x(k − 1) = x(k) (41)

uI2k−1 ≥ u
I2
k ∀k = 2, ..., N such that y(k − 1) = y(k) (42)

5.2.2. Valid inequalities based on generating positions

A family fi is generated by family fj because, in an optimal sequence, a job of fi can be after a
job of fj . If there is no job of fj sequenced, there is no need to consider the generated jobs of fi.
The function G(k) returns all positions of jobs in the last family that generate the job at position k.
Constraints (43) are applied on I1 for the daily and weekly cases, and on I2 for the weekly case.∑

l∈G(k)

uIl ≥ uIk k = 1, ..., L such that G(k) 6= ∅ (43)

5.2.3. Valid inequalities based on Theorem 5

Let two families fi and fj be such that pfi ≤ pfj and Hmin
fi
≥ Hmin

fj
. If another family generates

family fi, some jobs of fj are before jobs of fi in the master sequence. By Theorem 5, there exists an
optimal sequence where there are no jobs of fi after jobs of fj . Constraints (44) guarantee that if a
job of fj is sequenced, all jobs of fi cannot be sequenced after this job. These valid inequalities are
applied on intervals using the master sequence.

uIk + uIl ≤ 1 ∀k, l = 1, . . . , L such that l < k,

px(k) ≤ px(l) and Hmin
x(k) ≥ H

min
x(l) (44)

5.2.4. Valid inequalities based on job order around maintenance operations

These valid inequalities order jobs around maintenance operations, and are based on Lemma 3.

Lemma 3. If two families f1 and f2 are such that pf1 ≤ pf2 and Hmin
f2
≥ Hmin

f1
, then there exists an

optimal sequence such that there is no job of f2 in an interval using the master sequence if there is a
job of f1 in a following interval using the SPT sequence.

Proof. If there is a job of f2 in an interval using the master sequence and a job of f1 in a following
interval using the SPT sequence, it is possible to interchange the two jobs. The completion times of
jobs between the two interchanged jobs decrease. Because Hmin

f2
≥ Hmin

f1
, the job of f1 respects its

health index requirement. And because the job of f2 is in the interval using the SPT sequence, it
respects its health index requirement by definition.

For the daily case, Constraints (45) can be applied between I1 and I2.

uI1k + uI2l ≤ 1 ∀k = 1, . . . , L l = 1, . . . , N such that

px(k) ≥ py(l) and Hmin
x(k) ≥ H

min
y(l) (45)

For the weekly case, these valid inequalities can be applied between I1 and I3, and between I2 and I3.

17

6. Computational experiments

The numerical results for the daily case are presented in Section 6.1 and of the weekly case in
Section 6.2. Section 6.1.1, resp. 6.2.1, describes how the instances are generated for the daily case,
resp. weekly case. Section 6.1.2 compares MILP-pos(daily) and MILP-MS(daily) without and with
their valid inequalities and the reduction of the length of the master sequence. Section 6.1.3 analyzes
the impact of the valid inequalities and the reduction of the length of the master sequence on the
numerical results of MILP-MS(daily). Section 6.2.2 analyzes the numerical results for the weekly
case and compares them with the results obtained for the daily case. Note that more computational
experiments are conducted on the daily case than on the weekly case, as the daily case is simpler. The
conclusions from the daily case on the impact of the mathematical models, the valid inequalities and
the length of the master sequence were also observed for the weekly case.

The Mixed Integer Linear Programming models are implemented in C++ and solved using IBM
ILOG CPLEX Optimization Studio 12.10 with 4 threads. The maximum computational time is set
to 10 minutes. The programs run on a computer with 4 cores. The processor is an Intel Xeon CPU
W3550.

6.1. Daily case

6.1.1. Design of experiments

To compare the different models and the impact of the valid inequalities, different sets of instances
have been randomly generated. The larger the number of jobs and the number of families, the harder
the instances should be to solve. The number of families ranges from 3 to 15 and the number of
jobs from 10 to 500. For each number of families and number of jobs, 100 instances were randomly
generated as follows:

• The processing time of a family is randomly generated from a uniform distribution between 1
and 5: pf ∈ J1, 5K.

• The health index requirement of a family is randomly selected in the set {80, 70, 60, 50} with
respectively a probability in the set {20%, 20%, 30%, 30%}, i.e. there is a 20% probability that
the health index requirement is 80. Having the largest, i.e. most constraining, health index
requirement has the smallest probability.

• Hstart is randomly generated from a uniform distribution between 50 and 500 which is the
maximum number of jobs.

• We ensure that it is always possible to schedule at least one job of each family before the
maintenance operation, i.e. Hstart −Hmin

f ≥ pf , ∀f .

• The maintenance operation takes at least four times the maximum processing time of any job,
which is equal to 5, thus the maintenance duration is set to 20.

In addition, to make the instances more difficult to solve, the instances are generated such that
(1) The SPT sequence is not the same than the decreasing order of the health index requirements and
(2) Two families do not have both the same processing time and the same health index requirement.
Finally, if scheduling jobs in SPT order gives a feasible solution, i.e. where all jobs satisfy their health
requirements, we discard the instance and generate a new one.

Note that, for the daily case, Hmax has to be set to a sufficiently large value to ensure that jobs
scheduled after the maintenance can be scheduled in SPT order. Thus, we set Hmax = maxf∈F pf ·
Nmax = 5× 500 = 2600.

18

6.1.2. Comparison of the mathematical models

Let us first compare MILP-pos(daily) and MILP-MS(daily) with and without their valid inequali-
ties and the reduction of the length of the master sequence. The rows “MILP-pos(daily)” and “MILP-
MS(daily)” correspond to the results for the MILP models without valid inequalities and the reduction.
The rows “MILP-pos-all(daily)” and “MILP-MS-all(daily)” show the results for the MILP models with
their valid inequalities and the reduction. As a reminder, MILP-pos(daily) can be used with valid in-
equalities based on dominant positions and valid inequalities for the SPT sequence in the last interval,
and MILP-MS can be used with four types of valid inequalities and the reduced master sequence.

To compare the different formulations arising from the choice of different variables, we look at
the number of solutions proven optimal in 10 minutes, written in column “Nb opt”. As there are
100 instances, this number is between 0 and 100. The comparison is also done on the mean and the
maximum computational times for all instances (columns below “Time (sec)”), and the mean and the
maximum optimality gaps provided by IBM ILOG CPLEX (columns below “Gap”). More precisely,
column “Mean” below “Gap” corresponds to the sum of the optimality gaps for all instances, even when
the optimality gap is equal to 0, divided by the number of instances. The minimum computational
time is considered when it is not close to 0.

Table 3 shows the numerical results for different numbers of families and jobs. Note that MILP-
MS(daily) strongly dominates MILP-pos(daily). Indeed, for 3 families and 10 jobs, MILP-pos(daily)
takes much more time to solve the instances (about 3.8 seconds on average), while all other computa-
tional times are lower than 1 second. For 4 families and 15 jobs, MILP-pos(daily) takes 280.7 seconds
on average, while MILP-MS(daily) only takes 4.4 seconds on average. Thus the computational time of
MILP-MS(daily) is 1.6% of the computational time of MILP-pos(daily). Moreover, MILP-pos(daily)
only finds 63 optimal solutions, i.e. there are 37 instances for which an optimal solution was not found
or the optimality of the solution was not proved in 10 minutes. MILP-pos(daily) is actually the only
MILP that cannot guarantee to find some optimal solutions for 15 jobs. For both MILP-pos(daily)
and MILP-MS(daily), valid inequalities and the reduction of the length of the master sequence have
a significant impact, since the computational times are very close to 0 for MILP-pos-all(daily) and
MILP-MS-all(daily).

As expected, the average computational time increases when the number of jobs increases. For 3
families, when the number of jobs increases from 10 to 15, the computational time of MILP-pos(daily)
increases from an average of 3.8 seconds to 271 seconds, and the computational time of MILP-
MS(daily) increases from an average of 0.1 seconds to 5.4 seconds. The behaviour is not the same when
the number of families increases. The averages computational times of MILP-pos(daily) increase when
the number of families increases, while the average computational times of MILP-MS(daily) decreases
for 15 jobs.

Table 4 compares the performances of the MILP models with their valid inequalities and the
reduction of the length of the master sequence on larger instances. The number of families is set
to 5 and the number of jobs is set to 100. Note that there are larger differences between MILP-
pos-all(daily) and MILP-MS-all(daily). On average, MILP-MS-all(daily) gives better results than
MILP-pos-all(daily). MILP-pos-all(daily) does not prove the optimality of 13 solutions, while MILP-
MS-all(daily) proves the optimality of all solutions. The average computational time of MILP-MS-
all(daily) is only 2.2 seconds, while the average computational time of MILP-pos-all(daily) is 275.9
seconds, more than 100 times larger. Moreover, the minimum computational time of MILP-pos-
all(daily) is 35.4 seconds, while all the minimum computational time of MILP-MS-all(daily) is very
close to 0 and its maximum computational time is only 20.3 seconds.

19

Nb Nb
MILP

Nb Time (sec) Gap (%)
fam jobs opt Mean Max Mean Max

3 10 MILP-pos(daily) 100 3.8 105.4 0.0 0.0
MILP-pos-all(daily) 100 0.1 0.2 0.0 0.0
MILP-MS(daily) 100 0.1 0.7 0.0 0.0
MILP-MS-all(daily) 100 0.0 0.0 0.0 0.0

15 MILP-pos(daily) 60 271.0 600 2.1 10.5
MILP-pos-all(daily) 100 0.2 0.4 0.0 0.0
MILP-MS(daily) 100 5.4 112.5 0.0 0.0
MILP-MS-all(daily) 100 0.0 0.1 0.0 0.0

4 10 MILP-pos(daily) 100 5.1 101.4 0.0 0.0
MILP-pos-all(daily) 100 0.1 0.2 0.0 0.0
MILP-MS(daily) 100 0.1 0.6 0.0 0.0
MILP-MS-all(daily) 100 0.0 0.0 0.0 0.0

15 MILP-pos(daily) 63 280.7 600 2.4 13.0
MILP-pos-all(daily) 100 0.3 0.8 0.0 0.0
MILP-MS(daily) 100 4.4 84.6 0.0 0.0
MILP-MS-all(daily) 100 0.0 0.2 0.0 0.0

Table 3: Numerical results for models with and without their valid inequalities and the reduction of the length of the
master sequence for different numbers of families and jobs.

MILP
Nb Time (sec) Gap (%)
opt Min Mean Max Mean Max

MILP-pos-all(daily) 87 35.4 275.9 600 0.2 7.9
MILP-MS-all(daily) 100 0.2 2.2 20.3 0.0 0.0

Table 4: Numerical results for 5 families and 100 jobs.

6.1.3. Analysis of the valid inequalities and the reduction of the length of the master sequence

Since MILP-MS(daily) strongly dominates MILP-pos(daily), the latter is not considered in the
remaining numerical results. In this section, the impact of the valid inequalities and the reduction of
the length of the master sequence on the computational times is analyzed for MILP-MS(daily). The
following notations are used:

Dom corresponds to the valid inequalities based on dominant positions (Section 5.2.1).

Gen corresponds to the valid inequalities based on generating positions (Section 5.2.2).

Uni corresponds to the valid inequalities based on Theorem 5, so based on the unique position of
jobs (Section 5.2.3).

PAM corresponds to the valid inequalities based on the positioning of jobs around the maintenance
operation (Section 5.2.4).

Red corresponds to the reduction of the length of the master sequence (Section 4.2).

The tables in this section have the following structure: The first four columns indicate the valid
inequalities added to the model. The fifth column indicates if the length of the master sequence is

20

reduced or not. A cross indicates that the valid inequalities are applied on the model or if the master
sequence is reduced. The sixth column is the number of instances proven optimal in 10 minutes. The
seventh and eighth columns display the computational times (mean and maximum). The ninth and
tenth columns display the gap (mean and maximum).

Table 5 shows the numerical results for 4 families and 25 jobs with MILP-MS(daily). For the
100 instances, the results for all combinations of valid inequalities and the reduction of the length of
the master sequence are provided. Table 5 shows the most interesting results. The valid inequalities
that give the best results are Dom, with an average computational time of 0.3 seconds. The second
type of valid inequalities that performs well is PAM, with 170.1 seconds on average, followed by Uni,
Red and Gen. When we apply any type of valid inequalities and the reduction of the length of the
master sequence, it gives better results than MILP-MS(daily) with nothing. Even though all valid
inequalities and the reduction of the length of the master sequence give better results, valid inequalities
Dom have a very large impact (0.3 seconds on average) in contrast to the others (over 170 seconds on
average). The penultimate row shows the numerical results when all the other valid inequalities and
the reduction of the length of the master sequence are added (62.4 seconds on average). Since we test
all combinations, we know that these are the best results if we exclude the valid inequalities Dom. All
combinations that include Dom give computational times very close to 0.

Valid inequalities
Red

Nb Time (sec) Gap (%)
Dom Gen Uni PAM opt Mean Max Mean Max

57 294.6 600 3.3 21.0
× 58 285.6 600 3.1 19.2

× 60 278.9 600 2.6 18.8
× 61 277.8 600 2.8 18.3

× 75 170.1 600 1.4 15.6
× × × × 91 62.4 600 0.4 8.0

× 100 0.3 3.1 0.0 0.0

Table 5: Numerical results for 4 families and 25 jobs solved by MILP-MS(daily), with different combinations of valid
inequalities and the reduction of the length of the master sequence.

Adding Dom to the model reduces the computational times considerably. To reach higher com-
putational times, Table 6 shows the numerical results on largest instances, with 5 families and 100
jobs. Numerical results of all combinations of valid inequalities and the reduction of the length of the
master sequence including Dom can be found. The most relevant results are presented in Table 6. For
the valid inequalities excluding Dom, the order of impact remains the same. PAM has a significant
impact, because the average computational time decreases from 132.9 to 51.2 seconds. Then Uni and
Gen improve the results. Unlike the results for 4 families and 25 jobs, Red has more impact than
the other valid inequalities excluding Dom (47.1 seconds in average). Indeed, this reduction limits
the number of jobs in time intervals. Since there are many jobs in large instances, the impact of this
limitation is drastic. After testing all combinations, the best combination is when all valid inequalities
are added with a reduced master sequence (last row).

Figure 5 shows the numerical results for 15 families and 500 jobs, using MILP-MS(daily) with all
valid inequalities and the reduction of the length of the master sequence. 57 solutions on 100 are
proven to be optimal and time’s data are available on Table 5a. Gap’s data for solution not proved
optimal are available on Table 5b. For the solutions solved to the optimum, the computational times
are spread out over a large range, between 7.2 and 561.3 seconds. It is the same for the instance not
solved to the optimum. The gap go from 0.3% to 81.9%. We thus find that, when the number of jobs

21

Valid inequalities
Red

Nb Time (sec) Gap (%)
Dom Gen Uni PAM opt Mean Max Mean Max

× 90 132.9 600 0.6 14.0
× × 93 94.3 600 0.5 12.6
× × 95 88.9 600 0.1 3.7
× × 97 51.2 600 0.0 1.1
× × 98 47.1 600 0.0 0.6
× × × × × 100 2.2 20.3 0.0 0.0

Table 6: Numerical results for 5 families and 100 jobs with MILP-MS(daily), with different combinations of valid
inequalities and the reduction of the length of the master sequence.

is too large (500 jobs is a large number for most scheduling problems), the computational time might
become prohibitive, even for the easiest instances.

Time (sec)
Min Mean Max

7.2 162.2 561.3

(a) Time for the instances solved to the
optimum.

Gap (%)
Min Mean Max

0.3 22.2 81.9

(b) Gap for instances not solved to the
optimum.

Figure 5: Numerical results for 15 families and 500 jobs for MILP-MS(daily) with all valid inequalities and the reduction
of the length of the master sequence.

6.2. Weekly case

6.2.1. Design of experiments

The instances for the weekly case have been generated as follows:

• The values of pf , Hmin
f and pm (maintenance duration) are generated as in the daily case, i.e.

pf ∈ J1, 5K, Hmin
f randomly selected in the set {80, 70, 60, 50} with probability {20%, 20%, 30%, 30%}

and pm = 20.

• Hmax is set to 100.

• Hstart is between 75 and 100.

• As for the daily case, we ensure that it is always possible to schedule at least one job of each
family before the maintenance operation, i.e. Hstart −Hmin

f ≥ pf ,∀f .

• Two families cannot have the same processing time and the same health index requirements.

6.2.2. Analysis of the numerical results

As for the daily case, the computational times of MILP-MS(weekly) are much smaller than the
computational times of MILP-pos(weekly), which are also significantly impacted by the valid inequal-
ities and the reduction of the length of the master sequence.

Let us first focus on the models without valid inequalities and without the reduction of the length
of the master sequence. Table 7 shows the numerical results for 3 families and 15 jobs for the weekly
case, which can be compared to the results for the daily case in Table 3. Since three intervals are
considered for the weekly case, there are more variables and constraints. The average computational

22

times increase for the weekly case (358.3 seconds for MILP-pos(weekly) and 31.8 seconds for MILP-
MS(weekly)) compared to the daily case (271 seconds for MILP-pos(daily) and 5.4 seconds for MILP-
MS(daily)). In addition, the number of unsolved instances is larger for the weekly case (52 for MILP-
pos(weekly) and 1 for MILP-MS(weekly)) than for the daily case (40 for MILP-pos(daily) and 0 for
MILP-MS(daily)).

MILP
Nb Time (sec) Gap (%)
opt Mean Max Mean Max

MILP-pos(weekly) 48 358.3 600 4.0 16.5
MILP-MS(weekly) 99 31.8 600 0.1 5.5

Table 7: Numerical results for 3 families and 15 jobs for the weekly case.

Table 8 shows additional numerical results obtained on instances with more jobs and families for
the daily and weekly cases and the models with all valid inequalities and the reduction of the length
of the master sequence. For the weekly case, note that the minimum time, mean time and maximum
time to solve the instances significantly increase from MILP-MS-all(daily) to MILP-MS-all(weekly).
The average computational time for MILP-pos-all(daily) is 45% of the average computational time
for MILP-pos-all(weekly), while the average computational time for MILP-MS-all(daily) is only 2%
of the average computational time for MILP-MS-all(weekly). This can be explained by the fact that
the master sequence is used in two intervals in the weekly case, and thus in MILP-MS-all(weekly),
instead of one interval in the daily case, and thus in MILP-MS-all(daily).

Case MILP
Nb Time (sec)
opt Min Mean Max

Daily MILP-pos-all(daily) 100 8.0 65.4 385.1
MILP-MS-all(daily) 100 0.1 0.9 12.7

Weekly MILP-pos-all(weekly) 100 50.4 144.8 567.9
MILP-MS-all(weekly) 100 12.9 45.9 195.6

Table 8: Numerical results for 5 families and 70 jobs for the daily and weekly cases.

7. Conclusions and perspectives

In this paper, a single-machine scheduling problem where the machine has a health index was
studied. The objective is to minimize the flow time, i.e. the sum of the completion times of the jobs.
The problem complexity comes from the fact that each job has a machine health index requirement, i.e.
the job cannot be completed on the machine if the health index of the machine is too low. Two cases
were studied: (1) The daily case, where a single maintenance operation is necessary in the schedule to
restore the health of the machine and (2) The weekly case, where two maintenance operations might
be necessary. The latter case was proved to be NP-complete.

Mixed Integer Linear Programming models relying on positional variables were first proposed with
two types of valid inequalities. Then, the notion of master sequence, a sequence of jobs from which at
least one optimal sequence can be generated, was introduced. We also showed how the length of the
master sequence can be reduced. The master sequence was used to propose new Mixed Integer Linear
Programming models and four types of valid inequalities. The numerical results showed that the
MILP models based on the master sequence strongly dominate the first MILP models, that reducing

23

the length of the master sequence is very effective, in particular when there are many jobs, and that
one type of valid inequalities significantly decrease the computational times.

The following perspectives are being investigated. The complexity of the daily case still needs to
be determined, although our guess is that it is NP-hard. If we want to determine good solutions for
larger instances of the problem, heuristics and meta-heuristics could be developed and compared to
the exact approaches proposed in this paper. The weighted sum of completion times could also be
minimized. The theorems in Section 4 related to the order of jobs in an optimal sequence are no longer
valid if jobs have weights. Thus, the algorithm proposed in this paper to build the master sequence
must be modified. Other theorems should be developed, as well as a new master sequence. Another
interesting topic for future research is the problem on parallel machines, where each machine starts
with its own health index. The problem can also be made more complex by considering family setup
times, i.e. when changing from one job family to another as for instance in Nattaf et al. (2019), or
sequence-dependent and machine-dependent setup times as for instance in Bitar et al. (2021). Also,
performing a job on the machine while its health index is low could be allowed, as in Kao et al. (2018),
but will induce a risk associated to scrapping the job. A multi-criterion objective function where both
the flow time and the total risk are minimized should be considered.

Other longer term perspectives include considering the health index of the machine and the pro-
cessing time of a job family as stochastic variables. However, if determining the current health index
of a machine based on sensor data is feasible, modeling as a stochastic variable how the health index
evolves depending on the schedule of jobs is challenging in practice. Although considering processing
times as deterministic is still the most common assumption in the scheduling literature but also in
practice, stochastic processing times allow to model process uncertainty (see e.g. Flores Gómez et al.
(2021)). The main practical challenge is probably to obtain information on the variability of processing
times, which remains difficult in many industrial applications.

References

Bitar, A., Dauzère-Pérès, S., Yugma, C., 2021. Unrelated parallel machine scheduling with new
criteria: Complexity and models. Computers & Operations Research 132, 1–12.

Bitar, A., Dauzère-Pérès, S., Yugma, C., Roussel, R., 2016. A memetic algorithm to solve an unre-
lated parallel machine scheduling problem with auxiliary resources in semiconductor manufacturing.
Journal of Scheduling 19, 367–376.

Bock, S., Briskorn, D., Horbach, A., 2012. Scheduling flexible maintenance activities subject to job-
dependent machine deterioration. Journal of Scheduling 15, 565–578.

Chen, A., Wu, G.S., 2007. Real-time health prognosis and dynamic preventive maintenance policy for
equipment under aging Markovian deterioration. International Journal of Production Research 45,
3351–3379.

Chen, J.S., 2006. Single-machine scheduling with flexible and periodic maintenance. Journal of the
Operational Research Society 57, 703–710.

Dauzère-Pérès, S., 1995. Minimizing late jobs in the general one machine scheduling problem. Euro-
pean Journal of Operational Research 81, 134–142.

Dauzère-Pérès, S., Sevaux, M., 2003. Using lagrangean relaxation to minimize the weighted number
of late jobs on a single machine. Naval Research Logistics 50, 273–288.

24

Dauzère-Pérès, S., Sevaux, M., 2004. An exact method to minimize the number of tardy jobs in single
machine scheduling. Journal of scheduling 7, 405–420.

Detti, P., Nicosia, G., Pacifici, A., Zabalo Manrique de Lara, G., 2019. Robust single machine schedul-
ing with a flexible maintenance activity. Computers & Operations Research 107, 19–31.

Flores Gómez, M., Borodin, V., Dauzère-Pérès, S., 2021. A monte carlo based method to maximize
the service level on the makespan in the stochastic flexible job-shop scheduling problem, in: 2021
IEEE 17th International Conference on Automation Science and Engineering (CASE), IEEE. pp.
2072–2077.

Garey, M.R., Tarjan, R.E., Wilfong, G.T., 1988. One-Processor Scheduling With Symmetric Earliness
and Tardiness Penalties. Mathematics of Operations Research 13, 330–348.

Ghaleb, M., Taghipour, S., Zolfagharinia, H., 2021. Real-time integrated production-scheduling and
maintenance-planning in a flexible job shop with machine deterioration and condition-based main-
tenance. Journal of Manufacturing Systems 61, 423–449.

He, H., Hu, Y., Liu, W.W., 2020. Scheduling with deterioration effects and maintenance activities
under parallel processors. Engineering Optimization 0, 1–18.

Kao, Y.T., Dauzère-Pérès, S., Blue, J., Chang, S.C., 2018. Impact of integrating equipment health in
production scheduling for semiconductor fabrication. Computers and Industrial Engineering 120,
450–459.

Keha, A.B., Khowala, K., Fowler, J.W., 2009. Mixed integer programming formulations for single
machine scheduling problems. Computers and Industrial Engineering 56, 357–367.

Lee, C.Y., Leon, V.J., 2001. Machine scheduling with a rate-modifying activity. European Journal of
Operational Research 128, 119–128.

Luo, W., Cheng, T.C., Ji, M., 2015. Single-machine scheduling with a variable maintenance activity.
Computers and Industrial Engineering 79, 168–174.

Luo, W., Xu, Y., Tong, W., Lin, G., 2019. Single-machine scheduling with job-dependent machine
deterioration. Journal of Scheduling 22, 691–707.

Ma, Y., Chu, C., Zuo, C., 2010. A survey of scheduling with deterministic machine availability
constraints. Computers and Industrial Engineering 58, 199–211.

Mati, Y., 2010. Minimizing the makespan in the non-preemptive job-shop scheduling with limited
machine availability. Computers and Industrial Engineering 59, 537–543.

Molaee, E., Sadeghian, R., Fattahi, P., 2021. Minimizing maximum tardiness on a single machine with
family setup times and machine disruption. Computers & Operations Research 129, 105231.

Mor, B., Mosheiov, G., 2012. Heuristics for scheduling problems with an unavailability constraint and
position-dependent processing times. Computers and Industrial Engineering 62, 908–916.

Mosheiov, G., Sidney, J.B., 2010. Scheduling a deteriorating maintenance activity on a single machine.
Journal of the Operational Research Society 61, 882–887.

Nattaf, M., Dauzère-Pérès, S., Yugma, C., Wu, C.H., 2019. Parallel machine scheduling with time
constraints on machine qualifications. Computers & Operations Research 107, 61–76.

25

Qamhan, A.A., Ahmed, A., Al-Harkan, I.M., Badwelan, A., Al-Samhan, A.M., Hidri, L., 2020. An
exact method and ant colony optimization for single machine scheduling problem with time window
periodic maintenance. IEEE Access 8, 44836–44845.

Qi, X., Chen, T., Tu, F., 1999. Scheduling the maintenance on a single machine. Journal of the
Operational Research Society 50, 1071–1078.

Rostami, H., Blue, J., Chen, A., Yugma, C., 2021. Equipment deterioration modeling and cause
diagnosis in semiconductor manufacturing. International Journal of Intelligent Systems 36, 2618–
2638.

Salama, M., Srinivas, S., 2021. Adaptive neighborhood simulated annealing for sustainability-oriented
single machine scheduling with deterioration effect. Applied Soft Computing 110, 107632.

Sharifi, M., Taghipour, S., 2021. Optimal production and maintenance scheduling for a degrading
multi-failure modes single-machine production environment. Applied Soft Computing 106, 107312.

Smith, W.E., 1956. Various optimizers for single-stage production. Naval Research Logistics Quarterly
3, 59–66.

Tamssaouet, K., Dauzère-Pérès, S., Yugma, C., 2018. Metaheuristics for the job-shop scheduling
problem with machine availability constraints. Computers and Industrial Engineering 125, 1–8.

Tao, X., Xia, T., Xi, L., 2014. Opportunistic preventive maintenance scheduling based on theory of
constraints, pp. 230–236.

Yang, S.L., Ma, Y., Xu, D.L., Yang, J.B., 2011. Minimizing total completion time on a single machine
with a flexible maintenance activity. Computers & Operations Research 38, 755–770.

Yang, W., Chen, L., Dauzère-Pèrés, S., 2022. A dynamic optimisation approach for a single machine
scheduling problem with machine conditions and maintenance decisions. International Journal of
Production Research 60, 3047–3062.

Ying, K.C., Lu, C.C., Chen, J.C., 2016. Exact algorithms for single-machine scheduling problems with
a variable maintenance. Computers and Industrial Engineering 98, 427–433.

Zhang, X., Yin, Y., Wu, C.C., 2017. Scheduling with non-decreasing deterioration jobs and variable
maintenance activities on a single machine. Engineering Optimization 49, 84–97.

26

	50This file was downloaded from BI Ope1
	MinimizingSumOfCompletionTimesOnASingleMachine+WithHealthIndexAndFlexibleMaintenanceOperations-Penz-DauzerePeres-Nattaf-Final

