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A Novel Evolutionary Algorithm for Energy
Efficient Scheduling in Flexible Job Shops

Junwen Ding, Stéphane Dauzère-Pérès, Liji Shen, and Zhipeng Lü,

Abstract—Improving productivity at the expense of heavy
energy consumption is often no longer possible in modern man-
ufacturing industries. Through efficient scheduling technologies,
however, we are able to still maintain high productivity while
reducing energy costs. This paper addresses a flexible job shop
scheduling problem under Time-Of-Use electricity tariffs with
the objective of minimizing total energy consumption while
considering a predefined makespan constraint. We propose a
novel two-individual-based evolutionary (TIE) algorithm, which
incorporates several distinguishing features such as a tabu search
procedure, a topological order based recombination operator, a
new neighborhood structure for this specific problem, and an
approximate neighborhood evaluation method. Extensive experi-
ments are conducted on widely used benchmark instances, which
show that the proposed TIE outperforms traditional trajectory-
based and population-based methods. We also analyze the key
features of TIE to identify its critical success factors, and discuss
the impact of varying key parameters of the problem to derive
practical insights.

Index Terms—Scheduling; Flexible job shop; Energy efficient;
Optimization

I. INTRODUCTION

MANUFACTURING enterprises nowadays face great
environmental and economic challenges due to their

huge energy consumption that induces both environmental
impacts and significant energy costs. This pressure pushes
manufacturers to consider not only production efficiency but
also energy consumption in different sectors (Liu et al., 2019),
as well as in various manufacturing systems (Ding et al., 2015;
Zhou et al., 2019).

In the energy market, Time-of-use electricity tariff (TOU)
is an adjustment method that varies the electricity prices at
different times of day based on consumers’ demands. The
TOU pricing generally divides a day into several periods where
on-peak and off-peak periods are alternatively adjacent, and
assigns different prices accordingly. With a TOU scheme,
customers can adjust their electricity consumption voluntarily
to reduce their energy cost by shifting production from on-
peak hours to off-peak hours (Schulz et al., 2020).

As a direct result of TOU tariffs, the start times of operations
become variable to minimize the total energy cost. This,
in turn, significantly increases the solution space. Take the
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S. Dauzère-Pérès is with Mines Saint-Etienne, CNRS, UMR 6158 LIMOS,
Gardanne, France and Department of Accounting and Operations Manage-
ment, BI Norwegian Business School, Oslo, Norway.

L. Shen is with WHU – Otto Beisheim School of Management, Vallendar,
Germany.

flexible job shop problem (FJSP) as an example, where each
operation of a job can be processed by a set of eligible ma-
chines: A solution consists in assigning operations to machines
and sequencing operations on machines. The flexibility lies in
the machine assignment. Considering TOU adds yet another
level of flexibility to the problem. This refers to the flexible
start times of operations, which is similar to a time-tabling
procedure. Solving an FJSP to minimize the total energy cost
now involves the determination of start times in addition to
assignment and sequencing decisions.

Motivated by both academic and practical relevance, we
investigate the FJSP under TOU tariffs. The objective is
to minimize the total electricity cost (TEC) by optimally
scheduling the jobs on the machines, such that the maximum
completion time (makespan) does not exceed a given produc-
tion deadline, typically the end of a scheduling period (e.g.
one day or one week). Our purpose is to provide practical
suggestions for decision makers to achieve a balance between
productivity and the energy cost.

This approach is also known as energy-efficient scheduling
which aims at a lower energy cost while providing the same
level of service. In reducing energy cost, energy-efficient
scheduling may also facilitate operations to be assigned to
idle machines to improve resource utilization. Furthermore,
machines requiring less processing time may be preferred,
which then reduces the total energy consumption. In addition,
energy-efficient scheduling focuses on fine-tuning production
plans while requiring no further investment, which is particu-
larly important for small and medium enterprises.

In our initial study (Shen et al., 2021), we mainly aim at
refining an existing assignment and sequence for an FJSP to
minimize TEC. This approach proves to achieve significant
reduction in energy cost. It is, however, unable to explore
larger solution spaces. In this paper, we are interested in devel-
oping metaheuristics that view TEC as the primary objective
and overcome the weakness of our previous approach.

II. LITERATURE REVIEW

In this section, we give an overview of state-of-the-art
literature on the general FJSP to minimize makespan as
well as the relevant literature in the context of energy-aware
scheduling (EAS).

The FJSP is a well-studied combinatorial optimization prob-
lem, which was introduced by Brucker and Schlie (1990) as
an extension of the job shop scheduling problem. For the FJSP
with makespan criteria, exact approaches using mixed integer
programing (MIP) are proposed (Özgüven et al., 2010; Birgin
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et al., 2014; Hansmann et al., 2014). Extensive research efforts
are also devoted to developing sophisticated metaheuristic
approaches (González et al., 2015; Kemmoé-Tchomté et al.,
2017).

Climate change challenges and soaring energy prices give
compelling reasons to reduce energy consumption and carbon
footprint. Different from classical job shop problem (JSP),
the assignment decisions in the FJSP can impact the overall
energy consumption since different machine assignments can
lead to different total processing times, as well as different
machine throughput rates. This thus brings great opportunities
as well as challenges to energy efficient scheduling in flexible
job shops.

In this area, a number of settings are considered in the
literature including machine states (Wu and Sun, 2018), ma-
chine aging and maintenance (Mokhtari and Hasani, 2017),
machine processing and crane transportation (Li et al., 2022),
total carbon emission (Piroozfard et al., 2018), and total energy
consumption threshold (Lei et al., 2019). Studies considering
TOU electricity tariffs can be found in Zhang et al. (2017);
Jiang and Wang (2020); Du et al. (2022); Chen et al. (2021).
Moreover, similar energy considerations can also be found
in flow shop scheduling problems (Schulz et al., 2020; Zhao
et al., 2020, 2021a,b).

The remainder of this paper is organized as follows. In
Section III, the problem is formally defined. Section IV pro-
poses a generic tabu search algorithm with further refinements
and analyses in Section V. Section VI introduces our two-
individual-based evolutionary algorithm. Experimental results
are reported in Section VII, which validate the effectiveness
of the proposed TIE algorithm and help to derive practical
insights. Section IX concludes the paper and discusses future
works.

III. PROBLEM FORMULATION

We consider the flexible job shop scheduling problem where
the total energy cost is minimized. A set J of n jobs and a set
M of m machines are given. Each job i consists of a sequence
(route) of ni consecutive operations, denoted by o ∈ O, which
can be processed on any machine in a subset M(o) ⊆ M of
compatible (also called eligible) machines.

For each operation o, let P (o, k) be its processing time
on machine k ∈ M(o). In addition to the classic FJSP
settings, we adopt the Time-of-Use pricing scheme TOU.
Different unit electricity power costs, denoted by TOU =
{E1, . . . , Eb, . . . , EB}, are present for each individual pricing
period b, with b specifying the starting point of the associated
time interval.

Compared to traditional scheduling problems, our primary
objective is to ensure a desired throughput rate by imposing a
maximum makespan Cmax ≤ C̄. Note that it can also be
viewed as a common deadline (e.g. one day) for all jobs.
The planning horizon is thus given by T = {1, . . . , C̄}. In
this paper, C̄ is a relaxation of the lower bound (LB) of a
problem instance, i.e., C̄ = (1+ ε) ·LB. The focus is then on
minimizing the total energy cost TEC with a constraint on
the makespan. The adopted LBs are obtained by the state-
of-the-art exact methods of the literature. Note that, for a

considerable number of problem instances, LB is equal to
the best-known upper bound. The relaxation rate ϵ is set to
0.1 according to practical experience. This setting ensures that
feasible solutions are available.

We next introduce several important definitions. Let ϕ ∈
Φ be the assignment and sequence of a resulting schedule
with Cmax ≤ C̄. Each operation o is assigned to a machine
k ∈ M(o) with a corresponding start time s(o). Let P(o),
respectively S(o), be the set with the direct predecessors and
successors of o. By using the well-known definitions of head
r(o) and tail q(o) in job shop scheduling, we have s(o) = r(o)
with

r(o) = max
o′∈P(o)

{r(o′) + P (o′, k′)} (1)

q(o) = max
o′∈S(o)

{P (o′, k′) + q(o′)} . (2)

Now, let us consider the case where the makespan is allowed
to be extended to C̄. The earliest start time smin(o) and the
latest start time smax(o) for each operation o on the assigned
machine can be expressed as follows:

smin(o) = r(o) (3)
smax(o) = C̄ − q(o)− P (o, k) (4)

Accordingly, We define critical operations in terms of Cmax

and TEC.

Definition III.1 (Time-critical operation). For a given se-
quence with makespan Cmax, operation o is time-critical if
smax(o)− smin(o) = C̄ − Cmax.

Definition III.2 (Energy-critical operation). For a given se-
quence with cost TEC, operation o is energy-critical if
smin(o) < b < smax(o) + P (o, k), where b is specified by
TOU.

Note that b here indicates the interval of TOU. For example,
given that daily electricity prices are equally divided into 4
intervals (1-6, 7-12, 13-18, 19-24), then the corresponding
b values are 1, 7, 13, and 19. By definition, energy-critical
operations refer to operations that can cross these time points b
without violating C̄. In other words, energy-critical operations
are allowed to move across different price intervals. By doing
so, they can change the total energy cost.

Based on the start times of operations, we further specify
the following types of schedules.

Definition III.3 (Compact schedule). A schedule is compact
if it is either left- or right-shifted.

Definition III.4 (Partial compactness). Given a schedule and a
set Of ⊂ O of operations with fixed start times, the successors
of operations in Of ensure partial compactness if they are left-
shifted.

Alternatively, partial compactness can be defined on opera-
tions with fixed completion times and their predecessors.

As illustrated in Fig. 1, starting from a non-compact sched-
ule in the left Gantt chart, all operations in the second and
third intervals achieve partial compactness, whereas the start
times of operations in Of = {(1, 2), (2, 2), (3, 2)} remain
unchanged in the right Gantt chart.
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Fig. 1. Illustration of partial compactness

IV. GENERIC TABU SEARCH ALGORITHM

The classical FJSP is well known to be NP-hard. We next
show that our specific scheduling problem is NP-hard as well.

Proposition IV.1. The FJSP to minimize TEC is NP-hard in
the strong sense.

Proof. Assume that we have an FJSP subject to TOU pricing
where only two intervals are present. The objective is to
minimize TEC. It can be reduced to the question whether
it is possible to process all operations in the cheaper interval,
which is a classic JSP to minimize makespan. The problem is
thus NP-hard in the strong sense.

As a first attempt to solve this NP-hard problem, we propose
an initial algorithm within the basic framework of tabu search
to minimize TEC while keeping Cmax ≤ C̄. The pseudo
code can be found in Algorithm 1.

Algorithm 1 The tabu search procedure
1: Input: Initial solution S0, λ, C̄
2: Output: The best found solution S∗

3: Sc ← S0, S∗ ← S0, N ← ∅, Iter ← 0, is imp← true
4: while Iter < λ do
5: for each time-critical operation o in Sc do
6: N ← N ∪Nk(Sc, o) ∪Nπ(Sc, o)

7: S
′ ← argmin{makespan(S)|S ∈ N,S is in not tabu status}

8: if S
′

do not exists then/*all neighborhood solutions in N are in
tabu status*/

9: Randomly select one solution S
′

from N
10: end if
11: Insert the move Move(Sc, S

′
) into tabu list

12: Sc ← S
′
; N ← ∅

13: end for
14: if makespan(S∗) > makespan(Sc) then
15: S∗ ← Sc; Iter ← 0
16: end if
17: if makespan(Sc) <= C̄ then
18: while is imp is true do
19: is imp← false
20: for each operation o in Sc do
21: N ← N ∪Nk(Sc, o) ∪Nπ(Sc, o)
22: end for
23: while N is not empty do
24: Randomly select one solution S

′
from N

25: if TEC(S∗) > TEC(S
′
) and makespan(S

′
) <= C̄

then
26: S∗ ← S

′
; Sc ← S

′
; is imp← true break

27: end if
28: N ← N \ {S′}
29: end while
30: end while
31: end if
32: N ← ∅; Iter ← Iter + 1
33: end while
34: return S∗

The tabu search procedure improves the solution S by
re-assigning a critical operation to a different machine and
inserting the operation in a feasible position, or by changing
the position of a critical operation on the same machine. In this
paper, the machine re-assignment is performed using the k-
insertion neighborhood (called Nk), and the position change is
based on the well-known N7 neighborhood proposed in (Zhang
et al., 2007) (also called Nπ). The tabu search procedure
repeatedly chooses the best non-tabu move from Nπ ∪ Nk

to perform, and the move is prohibited to be reversed within
the tabu tenure.

In detail, for the re-assignment move in Nk, if an operation
o is removed from machine mo, then it is forbidden to
be reassigned to mo in the next θ1 iterations. For the re-
sequencing move in Nπ , we use the attribute-based tabu
strategy to prevent the recent critical block to be constructed
again during its tabu tenure. For example, if operation d is
removed from a critical block abcdef and inserted ahead of a
and thus results in a new block dabcef , then the partial block
abcd is prohibited to reappear for the next θ2 iterations.

Once the makespan of the current solution Sc is not
larger than C̄, we then optimize TEC under the constraint
makespan ≤ C̄. For this purpose, we use a descend local
search method with a first-improvement strategy (lines 18-
30). First, we construct the neighboring solution set N from
each operation of current solution Sc. Then, we randomly
select one solution S

′
from N , if TEC(S∗) > TEC(S

′
) and

makespan(S
′
) ≤ C̄ hold, we replace Sc with S

′
. The above

steps are iteratively executed until there is no improvement.
The stopping condition of the tabu search procedure is the
maximum number of consecutive iterations without improve-
ment. We call this number (denoted by λ) the depth of tabu
search.

V. INTEGRATING STRUCTURAL PROPERTIES

When solving the FJSP with TEC, not only the assignment
and sequence of operations, but also their specific start times,
must be considered and optimized. For better understanding,
we first illustrate major differences of our current problem
from the traditional job shop scheduling problem.

As a non-regular objective function, minimizing TEC does
not necessarily result in left-shifted schedules. In an FJSP, the
objective TEC is not equivalent to makespan minimization
even for the TOU case where prices are strictly increasing or
decreasing. Assume that the assignment is given for an FJSP
with just two TOU intervals. Minimizing Cmax and TEC can
lead to different optimal solutions, as illustrated in Fig. 2.

Consequently, using a conventional algorithm for our
scheduling problem can be time-demanding, yet less effective.
To improve the algorithm performance, it is thus essential to
narrow the search space. For this purpose, we consider differ-
ent TOU structures and develop corresponding approaches.

A. Refining neighbourhoods Nπ and Nk

Assume that an operation u is (partially) processed in inter-
val (b1, b2), and it can be moved to the adjacent neighbouring
intervals before b1 and after b2. Different pricing cases of
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Fig. 2. Different optimal solutions for Cmax and TEC under the same
assignment

TOU are given in Fig. 3. Let JP [u] and JS[u] be the direct
predecessor and direct successor of operation u of the same
job, respectively. Similarly, MP [u] and MS[u] are the direct
predecessor and direct successor of operation u on the same
machine in a solution. If the assignment is not specifically
mentioned, the simplified notation P (u) is used instead of
P (u, k) for processing times. We can derive Lemma V.1 to
suggest moving positions of u.

Fig. 3. Combinations of TOU with three adjacent intervals

Lemma V.1. The energy cost of operation u cannot be reduced
on the same machine

1) if r(MP [u]) ≥ s(u) holds for case 1;
2) if r(MS[u]) ≤ s(u) holds for case 2;
3) if b1 ≤ s(u) and b2 ≥ s(u) + P (u) hold for case 3;
4) if the following conditions hold for case 4

b1≤min{r(JP [u])+P (JP [u]),r(MP [u])+P (MP [u])} (5)
b2≥C̄−min(P (JS[u])+q(JS[u]),P (MS[u])+q(MS[u]). (6)

Following this result, we can refine the neighbourhood Nπ

by excluding moves that satisfy Lemma V.1. Note that this
lemma addresses moves on the same machine. But moves
performed on different machines (Nk) can improve TEC even
if P ′(u) ≥ P (u), where P ′(u) is the new processing time of
u after the reassignment.

In fact, the objective TEC also has a great impact on the
assignment. Occupying the cheapest interval is not always
beneficial. An alternative assignment can fall into a more
expensive interval, but may lead to a much smaller processing
time, and thus to a smaller TEC. Fig. 4 shows two small
examples to compare the optimal schedules while minimizing
Cmax and TEC, respectively. The processing time on an
eligible machine may be longer but cost less. It is thus not
always optimal to minimize the total processing time.

These observations suggest that the neighbourhood Nk shall
be carried out more frequently. To reduce computational bur-
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Fig. 4. Illustration: Different optimal solutions with different assignments

den, we can now estimate TEC subject to a given assignment
(ϕ).

Let TP (k) and TP (j) be respectively the total processing
time on machine k and of job j for a given assignment ϕ. A
lower bound on the cost for a given assignment LB(TEC, ϕ)
can be determined as follows:

LB(TEC,ϕ)=max{LB(TEC,TP (k)),LB(TEC,TP (j))}

∀k=1,...,m, j=1,...,n. (7)

where LB(TEC, TP (k)) and LB(TEC, TP (j)) are the
lower bounds on TEC according to TOU while going through
all machines and jobs.

More specifically, for a given assignment, the total pro-
cessing times on each machine (TP (k)) and for each job
(TP (j)) are determined. Assume that the processing occupies
the cheapest interval of TOU first. Then, we update the
remaing processing time ∆TP by subtracting the length of
the cheapest interval. If there is remaining time ∆TP > 0,
then the processing moves to the next cheapest interval. This
procedure is repeated until all operations assigned to this
machine, resp. of the same job, are completed (∆TP = 0). As
operation precedence of the same job or operation overlapping
on machines are not considered, the resulting TEC is a lower
bound of the optimal TEC.

B. New neighbourhood N t

So far, both Nπ and Nk focus on time-critical operations.
We next propose a new neighbourhood N t to move energy-
critical operations which are essential to reduce TEC. The
purpose of N t is to adjust the start times of these operations for
a given assignment and sequence ϕ. Ideally, cheaper intervals
are occupied while machine idle time is pushed into expensive
intervals.

Assume that we start with ϕ. For each energy-critical
operation u, we determine smin(u) and smax(u). Its current
start time s(u) is changed by one unit each iteration until its
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limit is reached. After each change, TEC is evaluated and
updated in the case of reduction. Depending on TOU pricing,
we know that a (partially) compact schedule can be dominant.
Therefore, N t adapts to the TOU structure as depicted in Fig.
3, and enables moving blocks of operations simultaneously.
After a primary move of operations u,

1) all energy-critical successors of u are pushed to the left
to ensure partial compactness in case 1;

2) all energy-critical predecessors of u are pushed to the
right to ensure partial compactness in case 2;

3) all energy-critical predecessors and successors of u are
moved to ensure partial compactness in case 3;

4) no subsequent moves in case 4.
After the move of u, its start and completion times are

fixed, which then become the latest completion time of its
immediate predecessor and the earliest start time of its imme-
diate successor. By definition of partial compactness, it is thus
possible to move the corresponding predecessors/successors
to ensure partial compactness, i.e. without unnecessary idle
times. Especially in case 3 where the prices on both sides
of adjacent intervals are higher, the purpose is to process as
many operations as possible in the middle interval. Therefore,
once a candidate operation u is moved, all its energy-critical
predecessors and successors are moved to u as closely as
possible.

C. Iterated local search

Integrating structural properties in the neighbourhood func-
tions can, on the one hand, narrow the promising area. On
the other hand, the search is more likely trapped in a smaller
search space. Therefore, we adjust our previous tabu search
by including a perturbation procedure while keeping the main
local search structure. We denote this variant as Iterated local
Search (ILS). At each iteration of ILS, Algorithm 1 is applied,
followed by a perturbation procedure used in Ding et al. (2019)
which randomly applies 0.2× |Nc| moves in Nπ ∪Nk on the
current solution or the best found solution if the number of
consecutive non-improving iterations exceeds 500, where Nc

is the set of time-critical operations.

D. Approximate neighborhood evaluation of TEC

The evaluation of neighborhood solutions is one of the key
components in a local search algorithm, where the quality of
the neighborhood solutions is the main metric for selecting one
candidate to enter the next iteration of the search process. To
improve the computational efficiency, we use three methods to
evaluate the TEC of the neighborhood solutions: TEC exa,
TEC inc, and TEC apx, whose main ideas are described
below:

• TEC exa: Exact evaluation method. After a move is ap-
plied, we calculate the actual values of r and q for all the
operations, and then calculate their energy consumption.

• TEC inc: Incremental evaluation method. In this
method, we estimate the approximate values of r and
q for all the impacted operations according to the topo-
logical order, and calculate the increase of their energy
consumption.

• TEC apx: Approximate evaluation method. In this
method, we only estimate the approximate values of r
and q for all the impacted operations on the impacted
machines, and calculate the increase of their energy
consumption.

Next, we elaborate on the approximate evaluation. The
following method is used to estimate the value of r̂(o) for
operation o after the move via the actual value of r(o) before
the move. The following three scenarios are considered:

1) Forward insert: Given a partial sequence
u,w1, . . . , wk, v, ws, . . . , wt on a machine, moving op-
eration u after v results in w1, . . . , wk, v, u, ws, . . . , wt.
Therefore, for operation w1, we have

r̂(w1)=



r(JP [w1])+P (JP [w1]), if u is the first operation
on the machine

max{r(JP [w1])+P (JP [w1]),

r(MP [u])+P (MP [u])}, otherwise.
(8)

For operation o ∈ {w2, . . . , wk, v},

r̂(o)=max{r(JP [o])+P (JP [o]),r̂(MP [o])+P (MP [o])}. (9)

For operation u,

r̂(u)=max{r(JP [u])+P (JP [u]),r̂(v)+P (v)}. (10)

For operation ws,

r̂(ws)=max{r(JP [ws])+P (JP [ws]),r̂(u)+P (u)}. (11)

For operation o ∈ {ws+1, . . . , wt},

r̂(o)=max{r(JP [o])+P (JP [o]),r̂(MP [o])+P (MP [o])}. (12)

2) Backward insert where operation v is moved directly
before u: r̂(∗) can be determined in a similar manner;

3) Change machine assignment: Assume the partial se-
quences u,w1, . . . , wk on machine mp and ws, . . . , wt

on machine mq . By removing operation u from machine
mp and inserting u after ws on machine mq , p ̸= q, we
have

r̂(u)=



r(JP [u])+P (JP [u]), ws is the first operation
on machine mq

max{r(JP [u])+P (JP [u]),

r(MP [ws])+P (MP [ws])}, otherwise.
(13)

For the impacted operations ws+1, . . . , wt on machine
mq , and w1, . . . , wk on machine mp, the corresponding
approximate values of r̂(∗) can also be determined in a
similar manner.

The pseudo code of the proposed approximate TEC es-
timation method is presented in Algorithm 2, where Mo(S)
is the operation sequence on the assigned machine of o in
solution S, and index(o

′
,Mo(S) is the position index of

operation o
′

in the sequence Mo(S). This evaluation method
only calculates the change of TEC of the impacted operations
on the involved machines, which improves the computational
efficiency dramatically. Although this approximate evaluation
method is not accurate, we do not favour the neighboring
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Algorithm 2 The approximate estimation of TEC method
1: Input: A current solution S, and a neighboring solution S

′ ∈ N(S)

2: Output: The approximate TEC value of S
′

3: ∆← 0 /* reset the change of TEC to 0 */
4: if S

′ ∈ Nπ(S, o) then
5: p← min{index(o,Mo(S))|S ∈ {S, S

′}}
6: for each operation o

′ ∈{Mo(S)|index(o
′
,Mo(S)) >= p} do

7: estimate the approximate value r̂(o
′
)

8: ∆← ∆+ EC(o
′
, S

′
)− EC(o

′
, S)

9: end for
10: else if S

′ ∈ Nk(S, o) then
11: p← min{index(o,Mo(S)|S ∈ {S, S

′}}
12: for each operation o

′ ∈{Mo(S)|index(o
′
,Mo(S)) >= p} do

13: estimate the approximate value r̂(o
′
)

14: ∆← ∆+ EC(o
′
, S

′
)− EC(op, S)

15: end for
16: for each operation
17: o

′ ∈ {Mo(S
′
)|index(o′ ,Mo(S

′
)) >= index(o,Mo(S

′
))} do

18: estimate the approximate value r̂(o
′
)

19: ∆← ∆+ EC(o
′
, S

′
)− EC(o

′
, S)

20: end for
21: else
22: ∆ ← EC(o, S

′
) − EC(o, S) /*for Nt neighborhoods, only one

operation is changed*/
23: end if
24: TEC(S

′
)← TEC(S) + ∆

solution with the best improved TEC. Our preliminary test
shows that a moderately improved solution appears to be more
suitable for speeding up the search.

VI. TWO-INDIVIDUAL-BASED EVOLUTIONARY
ALGORITHM

A. Motivation

As one of the most difficult combinatorial problems, the
classical FJSP is hard to solve, and TOU adds new challenges
to the design of solution approaches. As discussed in Section I,
solving the FJSP with TOU involves three decisions: Machine
assignment, operation sequencing, and operation time-tabling.
Especially the newly incurred time-tabling subproblem further
expands the solution space. Therefore, computational times
become a critical issue. After refining and extending our
tabu search, we integrate further elements to strengthen our
algorithm. It is denoted by Two-Individual-based Evolutionary
algorithm (TIE).

Being a trajectory-based search technique, tabu search
follows the inner properties of the solution, and neglects
the implicit relationships among the solutions. Traditional
population-based algorithms may compensate this. They, how-
ever, have to deal with a large population accompanied by
higher computational times. The drawbacks of each type of
algorithms motivated us to pursue an alternative combination
of trajectory and population-based methods.

More specifically, we focus on two individuals, which is
a unique feature of TIE. These two individuals simulate
the behaviour of people with their predecessors, and are
respectively responsible for intensification and diversification.
They evolve for a given number of generations, known as a
cycle. At the end of each cycle, one individual is replaced
by the predecessor in the previous cycle to continue the
process to absorb the essence of the evolution history. The

other individual goes through a specific procedure to ensure
diversity. In the following, we present the general architecture
as well as different components of TIE.

B. Basic framework
Based on two individuals, TIE follows the basic framework

of the evolutionary algorithms (Lü et al., 2010; Sutton and
Neumann, 2012; Zhao et al., 2020). Its diagram is depicted in
Fig. 5 and its general architecture can be found in Algorithm
3. The algorithm consists of three main components: The
Init() function to generate a random solution, the tabu search
procedure TS(S) to improve the solution S, and the topological
order based recombination operator TOCX to generate two
child solutions. A cycle consists of generations of length p,
where p is an integer parameter. The best solution in the
current (previous) cycle is stored in S∗

c

(
S∗
p

)
.

First, TIE uses the Init() procedure to generate random
solutions by assigning each operation of each job to its
candidate machines with equal probability subject to all the
constraints. As a result, initial solutions are obtained for S1,
S2, S∗

c , S∗
p and S∗, where S∗

c , S∗
p and S∗ are to be replaced

subsequently.
Next, at each generation, TIE adopts TOCX on S1 and

S2 to generate two child solutions S
′

1 and S
′

2, which are
then optimized by the tabu search procedure to become new
solutions S1 and S2.

At the end of each cycle, we update S1 by the best solution
S∗
p found in the previous cycle, while S∗

c is initialized as a
random solution before entering the next cycle. Moreover, S2

is replaced with a random solution once it becomes too close
to S1 and impairs the search diversity.

In this context, two solutions S1 and S2 are considered to
be close when the number of operations d(S1, S2) that have
different machine assignments or different positions on the
same machine is smaller than a threshold value δ of the total
number of operations of all jobs. TIE terminates when its
running time exceeds a predefined value Tmax seconds.

In detail, the solution representation of FJSP in TIE takes
the form S = (ϕ, π), where ϕ is a feasible assignment and π
the processing order on machines. More specifically, ϕ(o, S) =
k indicates that operation o is assigned to machine k ∈ M(o)
according to S whereas π(o, S) = i means that operation o
is sequenced in the i-th position of its assigned machine k.
Let β(o) be a binary variable that indicates whether or not
operation o is on the same machine and same position of two
solutions S1 and S2, which are formally defined as follows:

β(o) =

ß
1 if ϕ(o, S1) = ϕ(o, S2), π(o, S1) = π(o, S2),
0 otherwise.

(14)
Therefore, the number of operations that have different ma-
chine assignments or different positions on the same machine
can be expressed as d(S1, S2) =

∑
o∈O ϕ(o). If d(S1, S2) <

δ ·
∑n

i=1 ni holds, the two solutions S1 and S2 are deemed
close to each other.

C. Topological order based recombination operator
Algorithm 4 presents our recombination operator based on

a topological order. The operator uses a parameter γ, whose
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Fig. 5. General framework of TIE

Algorithm 3 TIE for FJSP with TOU scheme
1: Input: Problem instance
2: Output: The best solution S∗ found
3: gen← 0; S1, S2, S∗

c , S
∗
p , S

∗ ← Init()
4: while stopping condition is not reached do
5: S

′
1 ← TOCX(S1, S2), S

′
2 ← TOCX(S2, S1)

6: S1 ← TS(S
′
1), S2 ← TS(S

′
2)

7: S∗
c ← save best(S1, S2, S∗

c )
8: S∗ ← save best(S∗

c , S
∗)

9: if gen is equal to an integer parameter p then
10: S1 ← S∗

p , S∗
p ← S∗

c , S∗
c ← Init(), gen← 0

11: end if
12: if S1 ≈ S2 then
13: S2 ← Init()
14: end if
15: gen← gen+ 1
16: end while
17: return S∗

Algorithm 4 Topological order recombination (TOCX)
1: Input: parent solutions S1 and S2, γ
2: Output: An offspring solution So

3: calculate the topological order T1 of S1

4: calculate the topological order T2 of S2

5: an empty topological order list T , φ← 0
6: while φ <= total number of operations do
7: choose the first operation o from Tφ/2+1
8: N ← ∅
9: for each position i in list T do

10: insert o into position i of T , results in a sub list T i
o

11: record the corresponding machine assignment ϕ(o, Sφ/2+1) for
o in list T i

o

12: mapping T i
o into a sub solution S

i

o

13: if S
i

o is feasible then
14: N ← N ∪ {Si

o}
15: end if
16: end for
17: if rand(0, 1) < γ then
18: S

imin
o ← argmin{makespan(Si

o)|Si
o ∈ N}

19: else
20: randomly select a solution S

imin
o from N

21: end if
22: insert o into position imin of list T
23: record the corresponding machine assignment ϕ(o, Sφ/2+1) for o in

list T
24: remove o from T1 and T2

25: φ← φ+ 1
26: end while
27: mapping T into a complete solution So

28: return So

value is established empirically later. The offspring solution
So is built step by step from two parent solutions S1 and S2

as follows. First, we calculate the topological order T1 and T2
for S1 and S2, respectively. Second, we choose one operation
o alternatively from T1 and T2, insert o into each position i
of list T , and record the corresponding machine assignment,

TABLE I
PARAMETER SETTINGS IN TIE

Para. Section Description Value

ε III relaxation rate 0.1
η VII-A convert rate 0.1, 0.01a
p VI-B cycle length 10
δ VI-B similarity threshold 0.1
γ VI-C recombination rate 0.3
θ1 IV tabu tenure for Nk m+rand()%(2∗m)
θ2 IV tabu tenure for Nπ n+ rand()%n
λ IV depth of tabu search 10000
Tmax VI maximum run time of TIE 600

a For DPdata and DMUdata, we set η = 0.01 since the makespan is relatively
larger, and for the other instances, we set η = 0.1.

which corresponds to a partial solution Si
o. Si

o is collected in
set N if it is feasible. Next, we generate a random number
in the range of [0, 1]. If this number is smaller than γ, we
insert o into the position of T having the smallest objective
value. Otherwise, operation o is inserted into a random position
which leads to a feasible solution. The above steps are repeated
until all operations have been considered. Finally, T with the
machine assignment information is mapped into a complete
solution So.

The inner for loop iterates at most |T | times (line 9), the
makespan of a partial solution can be calculated in linear time
(line 18), and the outer while loop iterates no times, therefore,
the time complexity of TOCX is O(n2

o), where no is the total
number of operations, i.e., no =

∑n
i=1 ni.

VII. EXPERIMENT DESIGN

A. Parameter settings and experimental protocol

In subsequent sections, we report extensive numerical re-
sults to tackle 8 sets of a total of 393 benchmark FJSP
instances widely used in the literature. We coded TIE algo-
rithm in C++ and ran it on a cluster of Intel Xeon E5-2697
processor with 2.60 GHz CPU and 2 GB RAM. Table I gives
the descriptions and settings of the parameters used in TIE,
where the last column denotes the settings for the set of all
the instances. Given the stochastic nature of TIE, we solved
each problem instance ten times independently.

To simulate the Time-of-Use electricity tariffs in real world
industries, we adopt eight different TOUs in our experiments
as given in Table II. Each TOU has 4 basic intervals, and each
interval represents 6 hours. Therefore, a complete TOU cycle
has 24 hours. For example, in TOU0, the electricity prices in
1-6 hours, 7-12 hours, 13-18 hours, and 19-24 hours are 1, 2,
1, and 4 units, respectively.

This pricing setting simulates the energy cost in real life,
where on-, mid-, and off-peak prices are present. If the plan-
ning horizon, i.e. makespan, exceeds 24 hours, the TOU setting
repeats according to the same scheme. Note that scheduling
activities usually have a short planning horizon of one day
or several days. On the other hand, the makespan values of
the benchmark sets vary greatly. For example, the makespan
of instances in DPdata ranges from 2000 to 2500, while the
majority of the instances in the other sets have a makespan
smaller than 1000. Therefore, we adopt a parameter convert
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TABLE II
DIFFERENT TOU SETTINGS IN TIE

TOU Value TOU Value

TOU0 1, 2, 1, 4 TOU4 4, 1, 2, 1
TOU1 1, 2, 3, 2 TOU5 2, 3, 2, 1
TOU2 1, 2, 3, 4 TOU6 4, 3, 2, 1
TOU3 2, 1, 3, 4 TOU7 4, 3, 1, 2

rate η to transform the makespan to real time in hours:
η = 0.01 for DPdata and DMUdata, and η = 0.1 for the
other instances.

B. Benchmark instances

In this study, we employed five sets of benchmark in-
stances to assess the performance of our TIE algorithm:
DPdata (Dauzère-Pérès and Paulli, 1997), BCdata (Barnes
and Chambers, 1998), BRdata (Brandimarte, 1993), HUdata
(Hurink et al., 1994), and DMU (Demirkol et al., 1998),
having 393 instances in total with different sizes and flexibility
levels, where the first four sets of benchmark instances are
available in Monaldo Mastrolilli’s web page1, and the last
set of benchmark instances is available in Oleg Shylo’s web
page2. The detailed information of the above benchmarks is
presented in Table III, where column flexibility shows the
average number of candidate processing machines for the
operations.

C. Reference algorithms

• Efficient heuristics (SP, DP). The heuristics refer to
the Shifting Procedure SP and Dynamic-programming-
based Procedure DP (Shen et al., 2021). Both heuristics
operate on the existing assignment and sequence of an
FJSP. While SP systematically shifts the start times of
operations to reduce TEC, DP successively builds and
assesses partial solutions until a complete solution is
reached with the smallest TEC.

• Hybrid Tabu Search (TS(SP), TS(DP)). This approach
hybridizes the tabu search of Shen et al. (2018) and the
SP, respectively DP. Once the tabu search finds a local
optimum, we activate SP/DP to refine and improve the
current best known solution, which is then returned to
tabu search for the next iteration.

• Adjustment Strategy (AS) of Jiang and Wang (2020).
The hybrid multi-objective evolutionary algorithm based
on decomposition (HMOEA/D) proposed in Jiang and
Wang (2020) is a multi-objective algorithm evaluated
with different performance metrics. Although the proce-
dures and problem settings are not directly comparable
to ours, we adopt the crucial parts regarding TOU in
HMOEA/D, i.e., the adjustment strategy for comparison.
Since HMOEA/D is not applicable to our problem, and
also to ensure a fair comparison, the adjustment strategy
starts with the solution generated by the tabu search

1https://people.idsia.ch// monaldo/fjsp.html
2http://optimizizer.com/DMU.php

of Algorithm 1, which is of good quality and satisfies
Cmax ≤ C̄. The adjustment strategy itself consists of
three main steps:

1) For a given solution, find critical paths;
2) Determine the machine kmax with the highest elec-

tricity cost;
3) Starting from the last operation on kmax, if it is not

time-critical, then shift this operation to a possible
lowest price interval. This procedure stops once all
operations on kmax are considered.

• ILS as described in Section V-C.
• TIE as described in Section VI.
• Hybrid Evolutionary Algorithm (HEA) follows the

framework of Ding et al. (2017). The purpose of HEA is
to compare with the two-individual structure. Therefore,
it builds a large population for evolution while keeping
the other elements similar to TIE.
During each generation, HEA employs TOCX to ob-
tain a new offspring solution from randomly selected
individuals with a probability of 0.6. Otherwise, it uses
a perturbation procedure to mutate one individual into
a new offspring solution. Subsequently, local search is
applied to improve the newly generated solution. As for
population updating strategy, it replaces inferior individ-
uals with better ones. For non-improving offspring, they
are selected at a small probability of 0.3.

VIII. COMPUTATIONAL RESULTS

A. Computational efficiency of TIE

To analyze its performance, we first apply TIE to the
classical FJSP instances to minimize the makespan as the
baseline criterion for future comparison. Note that the tabu
search procedure in Algorithm 1 can be viewed as a two-
phase approach. In the first part, it optimizes the makespan
until Sc is not larger than C̄ (lines 5-16). This is to ensure that
the prerequisite of our FJSP setting is satisfied. Afterward, it
minimizes TEC under the constraint makespan ≤ C̄ (lines
17-31). Therefore, the first phase is equivalent to an algorithm
for makespan minimization. According to our experiments,
it reaches similar best-known solutions as the MAE in Ding
et al. (2019). It matches best-known upper bounds for most
benchmark instances.

To analyze the impact of the computational time on the per-
formance of TIE, we test TIE on all the benchmark instances
with TOU0 under five different cutoff times: 1, 5, 10, 20, and
30 minutes, and each instance is run for 10 independent times.
Afterwards, we apply Wilcoxon’s signed rank tests (Wilcoxon,
1992) on each pair of cutoff times for multiple comparisons.
The corresponding statistical results of p-values are reported in
Table IV. It shows that the performance of TIE is significantly
different with computational times lower than 10 minutes. The
additional improvement obtained by TIE is not significant at a
confidence level of 5% when larger computational time (more
than 10 minutes) is used.

Based on these results, we set the maximum computational
time for TIE as 10 minutes in our main experiments.
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TABLE III
DESCRIPTIONS OF THE BENCHMARK SETS

set size jobs n machines m operations ni Processing time flexibility

DPdata 18 {10, 15, 20} {5, 8, 10} [15, 25] [10,100] [1.13, 5.02]
BCdata 10 {10, 15, 20} [4, 15] [5, 15] [1, 20] [1.43, 4.1]
BRdata 21 {10, 15} [11, 18] [10, 15] [5, 100] [1.07, 1.3]
HUdata/sdata 66 [6, 30] [4, 15] [4, 15] [10, 100] {1}
HUdata/edata 66 [6, 30] [4, 15] [4, 15] [10, 100] [1, 1.15]
HUdata/rdata 66 [6, 30] [4, 15] [4, 15] [10, 100] [1, 2]
HUdata/vdata 66 [6, 30] [4, 15] [4, 15] [10, 100] [1, 7.5]

TABLE IV
THE p-VALUES OF WILCOXON’S SIGNED RANK TESTS ON THE CUTOFF

TIMES OF TIE

1 min. 5 min. 10 min. 20 min. 30 min.

1 min. - 0.0002 0.0002 0.0002 0.0002
5 min. - - 0.0004 0.0002 0.0003
10 min. - - - 0.0512 0.0576
20 min. - - - - 0.0581
30 min. - - - - -

B. Comparison with reference algorithms

We next compare the performance of TIE with the reference
algorithms listed in Section VII-C. Table V reports the results
(RPD %) of SP, DP and their hybrids TS(DP) and TS(SP),
as well as TIE, where the results are sorted by benchmark sets
and TOU-settings. The RPD is determined as follows:

RPD = 100 ·
(
TECA/TECmin − 1

)
(15)

A ∈ {SP ;DP ;TS(SP );TS(DP );TIE},

where TECA and TECmin are the TEC value of the cor-
responding algorithm and the minimum TEC of all considered
methods.

Since TS(SP) outperforms the other heuristics, let us focus
the analysis on the comparison of TS(SP) and TIE. As
discussed earlier, TIE achieves major improvements within
10 minutes. We thus set CPU times to 1 and 10 minutes for
both algorithms. Note that SP and DP operate on an existing
solution of the FJSP instance and take 40 seconds on average.

In general, TS(SP) reaches better solutions than TIE within
one minute. This is probably due to the embedded efficient
heuristic SP. However, this advantage fades with more com-
putational time since, in 10 minutes, TS(SP) provides slight
improvements for a majority of instances. In comparison,
TIE achieves substantial improvements with 10 minutes, and
has the smallest RPD on average. This also suggests that
population-based components are effective for solving this
FJSP with huge solution space.

It is also worth mentioning that, when examining the bench-
mark sets individually, TS(SP) outperforms TIE for BRdata,
DPdata, and HUdata/vdata. We assume it is due to the settings
on processing time and resource flexibility of these instances.
BRdata and DPdata both have non-identical processing times
on eligible machines which also have relatively large range,
i.e. [5,100] and [10,100]. A new assignment thus has different
processing times, which likely leads to an increased number
and duration of idle times on machines. The heuristic SP

is able to step-wise shift movable operations on different
machines simultaneously and to examine a large number of
combinations of operation start times. The N t in TIE, however,
only moves a block of related operations, which may miss
desirable combinations.

As for HUdata, processing times remain identical on all
eligible machines. With moderate resource flexibility, TIE
performs better. However, HUdata/vdata has a high flexibility
of [1,7.5]. A new assignment can again provide a large number
of potential combinations of start times. As discussed, this is
ideal for TS(SP). It is thus our conjecture that the performance
of TS(SP) and TIE is related to both processing time and
resource flexibility. When both are increased to an extent,
the instances become particularly challenging for TIE. This
may also explain the good performance of TIE on BCdata
which have a relatively high flexibility ([1.43,4.1]) but a small
processing range ([1,20]).

When sorted by TOUs, TIE performs consistently well
except for TOU7 of (4,3,1,2). Starting with a left-shifted
schedule, the decreasing pricing with an embedded case 3 as
in Fig. 3 is difficult for TIE to solve compared to TS(SP). The
latter can move a large number of operations simultaneously
to the right while step-wise movement avoids pushing many
operations into the expensive (last) interval.

These results suggest that while the metaheuristic frame-
work and neighbourhood structure are powerful and well
suited for hard problems, it would also be worthwhile to
investigate a combination of efficient heuristics.

Finally, we compare TIE with the adjustment strategy
embedded in HMOEA/D of Jiang and Wang (2020). Note
that a small portion of the benchmark instances are tested
in Jiang and Wang (2020) subject to one TOU setting. We
therefore use the same instances and a similar TOU structure
in this comparison. Table VI reports the results of TIE and
AS with TOU0, where AS is applied to the solution generated
by the tabu search of Algorithm 1. We observe from Table
VI that TIE outperforms AS for all the tested instances with
smaller TECmin and TECavg values. There is a remarkable
difference between TIE and AS on instances orb1-orb10,
where the resource flexibility is relatively smaller than that
in the other instances. This indicates the robustness of TIE
which can identify promising solutions for instances with a
wide range of features.

C. Effectiveness of two-individual-based framework
As shown in the previous section, TIE reaches good solu-

tions compared with state-of-the-art reference algorithms. In
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TABLE V
COMPARISON (RPD %) WITH SP, DP, AND THEIR HYBRIDS

Ins. SP DP TS(DP) TS(SP) TIE TOU SP DP TS(DP) TS(SP) TIE

1 m. 10 m. 1 m. 10 m. 1 m. 10 m. 1 m. 10 m.

BCdata 3.07 3.61 3.35 2.20 2.10 0.93 0.04 TOU0 6.27 3.82 2.60 1.94 1.66 1.81 0.67
BRdata 15.44 15.25 3.02 2.55 1.12 3.31 1.65 TOU1 2.38 2.34 1.40 0.97 0.77 1.02 0.40
DPdata 0.67 0.36 0.69 0.61 0.51 2.24 0.92 TOU2 2.49 1.45 1.51 1.20 0.93 1.64 0.86

HUdata/sdata 3.21 2.95 2.27 1.57 1.39 1.21 0.37 TOU3 4.05 3.31 1.72 1.15 0.90 1.17 0.44
HUdata/edata 2.79 2.31 2.22 1.63 1.51 1.00 0.29 TOU4 2.53 2.63 1.30 1.93 1.60 2.46 1.23
HUdata/rdata 2.09 1.63 1.40 1.00 0.82 1.49 0.78 TOU5 1.94 2.25 2.70 0.84 0.66 0.97 0.39
HUdata/vdata 2.77 2.32 1.03 0.77 0.37 1.91 1.18 TOU6 2.70 3.22 1.63 1.47 1.24 1.21 0.48

TOU7 1.84 2.52 1.71 0.99 0.78 1.57 0.83

Mean 3.03 2.69 1.82 1.31 1.07 1.48 0.66 Mean 3.03 2.69 1.82 1.31 1.07 1.48 0.66

TABLE VI
COMPARISON BETWEEN TIE AND TIE AS WITH TOU0

Ins. AS TIE

TECmin TECavg TECmin TECavg

Mk01 16.20 16.27 15.40 15.49
Mk02 14.60 14.67 14.40 14.48
Mk03 128.60 131.37 117.60 119.41
Mk04 37.30 37.34 36.20 36.39
Mk05 88.50 88.77 88.00 88.17
Mk06 42.20 42.51 40.80 41.13
Mk07 92.50 94.68 89.20 90.71
Mk08 407.00 417.79 368.30 371.12
Mk09 397.40 403.54 367.00 372.99
Mk10 307.20 308.58 303.40 306.14
01a 182.59 184.10 176.34 177.35
02a 199.12 200.23 197.98 197.99
03a 198.84 199.21 197.98 197.98
04a 182.23 183.36 174.95 176.20
05a 200.72 201.07 199.37 197.73
06a 198.08 198.77 198.43 198.56
07a 299.09 302.21 294.60 289.31
08a 275.56 275.79 275.76 275.94
09a 275.42 275.61 275.40 275.62
10a 302.95 304.11 297.82 291.87
orb1 972.60 977.74 910.10 912.74
orb2 921.30 925.63 853.90 858.26
orb3 958.00 962.70 865 869.95
orb4 1020.00 1026.92 938.20 941.26
orb5 858.70 861.86 798 800.44
orb6 1026.60 1030.88 938.30 951.1
orb7 384.70 387.67 356.50 360.37
orb8 806.80 815.80 729.80 735.91
orb9 940.50 948.30 851.10 855.43
orb10 1010.80 1017.27 916.20 920.79

Avg. 385.53 388.19 378.27 380.00

the following, we closely examine the performance of the two-
individual structure.

First, we compare TIE with ILS, a conventional trajectory
method discussed in Section VII-C. Note that the latter adopts
the same key components including neighbourhood functions
as TIE, which allows us to separate the effect of the two-
individual structure. Our tests are conducted on all benchmark
sets where consistent results are observed. For illustration,
Table VII presents the results for DPdata with TOU0, where
each instance is solved 10 independent times with a cutoff
time of 10 minutes. Columns TECsd, MKmin and MKavg

denote the standard deviation of TEC, minimum makespan,

and mean makespan, respectively. TIE outperforms ILS in
terms of both makespan and TEC. This suggests that TIE,
which focuses on two solutions instead of a single one, is
superior to the trajectory method.

We next compare TIE with a population-based metaheuris-
tic. For this purpose, we utilize the HEA as described in
Section VII-C with a population of 20 solutions. Other key
components remain similar for TIE and HEA, which allows
us to validate the effectiveness of the two-individual-based
framework

Both algorithms are tested on all benchmark instances with
all TOU-settings, and show consistent results. A comparison
of TIE and HEA with TOU0 on the DPdata instances can also
be found in Table VII. It can be seen that TIE obtains better
results on both TEC and makespan, which again implies that
using two individuals suffices compared to a larger population.

Table VIII summarizes all results including the mean CPU
time required by each method to find the best solution
(timeavg), as well as PRD. PRD is calculated according
to Equation (15) with A ∈ {ILS;HEA;TIE}. Overall, TIE
has the smallest deviation while using slightly more time.
The examination of detailed solutions confirms that ILS and
HEA converge quickly but are unable to escape local optima
afterwards.

D. Function of algorithm components

1) Different initial procedures: To explore how differ-
ent initial procedures impact the performance of TIE, we
implement two initial solution procedures: total random and
greedy random. Procedure total random generates random
solutions by assigning each operation to one of its candidate
machines with equal probability. Procedure greedy random
generates solutions by assigning 90% of the operations of
each job to their best candidate machine, which results in
the minimum TEC for the partial solutions, and 10% of the
operations of each job to one of their candidate machines with
equal probability.

The results of TIE and ILS with the two initial solution
procedures on instances 01a and 09a are plotted in Fig. 6a
and Fig. 6b, respectively. It can be seen that, the better initial
solutions generated by Procedure greedy random help to reach
better solutions for ILS and TIE faster than with Procedure
total random. However, TIE with different initial procedures
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TABLE VII
COMPARISON OF TIE, HEA, AND ILS WITH TOU0 ON DPdata

Ins. ILS HEA TIE

TECmin TECavg TECsd MKmin MKavg TECmin TECavg TECsd MKmin MKavg TECmin TECavg TECsd MKmin MKavg

01a 176.31 177.99 0.87 2755 2755 176.14 177.43 0.8 2755 2755 176.29 177.35 0.67 2546 2653.8
02a 197.98 198.07 0.07 2450 2450 197.98 198.18 0.33 2450 2450 197.98 197.99 0.01 2450 2450
03a 197.98 197.98 0.01 2450 2450 197.98 198 0.04 2450 2450 197.98 197.98 0 2450 2450
04a 175.68 176.54 0.65 2753 2753 175.29 176.75 0.86 2753 2753 174.77 176.2 0.98 2565 2646.9
05a 199.17 199.85 0.34 2411 2411 199.63 200.06 0.27 2411 2411 197.1 197.73 0.37 2314 2388.3
06a 198.2 198.96 0.33 2379 2379 198.74 199.31 0.37 2204 2363.09 197.92 198.56 0.37 2256 2319.8
07a 294.58 297.91 1.5 2437 2437 295.23 299.41 1.83 2437 2437 286.2 289.31 1.77 2337 2404
08a 275.7 276.07 0.25 2074 2164.27 275.91 276.26 0.2 2081 2155.27 275.63 275.94 0.17 2072 2167.6
09a 275.61 275.8 0.16 2072 2128.36 275.61 275.77 0.12 2087 2190.36 275.46 275.62 0.07 2068 2121.1
10a 296.24 299.9 1.96 2433 2433 296.19 300.14 2.57 2433 2433 289.25 291.87 1.51 2347 2406.3
11a 270.87 272.71 0.71 2219 2219 272.48 273.55 0.72 2219 2219 271.35 272.57 0.82 2073 2187
12a 263.33 265.11 1.03 2165 2165 265.13 266.13 0.76 2165 2165 263.72 264.53 0.62 2135 2167.4
13a 395.17 397.15 1.65 2416 2416 394.81 396.34 0.62 2416 2416 381.22 382.83 0.82 2301 2416.2
14a 384.61 385.03 0.25 2173 2255.27 384.81 385 0.14 2187 2272.27 384.56 384.85 0.2 2169 2226.4
15a 384.58 384.83 0.18 2174 2254.55 384.63 384.88 0.2 2179 2249.55 384.68 385.12 0.27 2173 2314.9
16a 391.44 395.35 2.5 2412 2412 394.73 397.02 1.06 2412 2412 380.18 383.12 1.33 2316 2392.9
17a 373.5 374.89 0.8 2154 2283.09 374.5 375.74 0.91 2296 2296 373.94 375.19 1.11 2161 2289.8
18a 371.64 373.23 0.85 2262 2262 371.58 373.61 1.52 2262 2262 371.24 372.79 1.17 2140 2230.1

Avg. 284.59 285.97 0.78 2343.83 2368.2 285.08 286.31 0.74 2344.28 2371.64 282.19 283.31 0.68 2270.72 2346.25

Friedman’s test is conducted on TECavg obtained by TIE, HEA, and ILS on BCdata, BRdata, and DPdata.
The resulting small value of p = 8.8827e− 06 << 0.001 indicates that the three optimization frameworks distinguish each other statistically.

TABLE VIII
SUMMARY OF TEST RESULTS OF TIE, HEA, AND ILS

TOU ILS HEA TIE

TECavg TECsd timeavg RPD TECavg TECsd timeavg RPD TECavg TECsd timeavg RPD

TOU0 724.69 4.03 298.35 0.99 724.29 3.69 311.67 0.93 717.59 3.20 318.78 0.00
TOU1 771.54 2.53 300.25 0.47 771.10 2.15 307.81 0.41 767.96 1.92 325.77 0.00
TOU2 940.30 3.40 301.46 0.64 940.47 3.76 321.27 0.66 934.29 3.24 306.77 0.00
TOU3 944.99 3.89 311.27 0.67 943.84 3.25 311.50 0.55 938.66 2.72 325.94 0.00
TOU4 776.73 5.70 268.88 1.04 775.81 4.52 316.39 0.92 768.71 3.63 310.43 0.00
TOU5 800.74 2.93 292.43 0.60 799.79 2.52 312.64 0.48 795.96 2.14 323.48 0.00
TOU6 988.81 4.18 301.59 0.66 988.34 3.74 311.83 0.61 982.30 3.33 324.47 0.00
TOU7 997.05 4.53 284.84 0.79 995.55 4.21 303.13 0.64 989.23 3.51 311.57 0.00

Average 868.11 3.90 294.88 0.73 867.40 3.48 312.03 0.65 861.84 2.96 318.40 0.00

Friedman’s test is conducted on TECavg obtained by TIE, HEA, and ILS on BCdata, BRdata, and DPdata.
The resulting small value of p = 2.8446e − 16 << 0.001 indicates that the three kinds of optimization frameworks distinguish each other statistically.
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Fig. 6. TIE and ILS with different initial procedures

converges to the same solution quality in the long run. Similar
phenomena can be observed for the other instances. This
indicates that TIE is not sensitive to the initial starting point.
Therefore, we adopt the simple total random initial procedure
in this paper.

2) Operator TOCX: To identify its performance in TIE,
we compare the TOCX crossover operator with two other
crossover operators of the literature: Precedence preserving
order-based crossover (POX) (Park et al., 2021) and path
relinking based recombinator (PRX) (Ding et al., 2019). POX
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is responsible for operation sequencing, along with one-point
crossover for machine assignment.

Both POX and PRX are embedded in TIE, and all three
versions of TIE are tested on all benchmark instances. Table IX
reports detailed results on BRdata under TOU5 with statistical
analysis. A summary of all results can be found in Table X. In
general, TIE with TOCX outperforms PRX and POX in terms
of TEC and PRD, and requires slightly more time.

3) Neighborhood N t: Under the TOU scheme, the new
proposed neighborhood N t plays an important role for TEC
minimization. To study the effectiveness of N t in TIE, we
compare TIE (with N t) and a variant, i.e., TIE without N t

(denoted by TIE−N t), and apply 10 independent runs of each
algorithm on all benchmark instances.

Table XI shows detailed results on the BCdata while Table
XII summarizes the remaining results. We can see that, by
integrating the new neighbourhood function N t, a remarkable
reduction on TEC is achieved with negligible additional com-
putational times. Wilcoxon’s test also confirms the statistical
significance of these results.

4) Different evaluation methods: Recall that, among the
three evaluation methods, only TEC exa can generate ac-
curate TEC values for the neighborhood solutions, both
TEC inc and TEC apx approximate the TEC values since
r and q are approximated. For comparison, we apply the
evaluation methods on all the instances in DPdata, BCdata,
and BRdata with a cutoff time of 10 minutes, and report the
computational results in Table XIII. TIE with TEC apx out-
performs the two other evaluation methods, with the smallest
values of TECmin, TECavg , and TECsd. We conjecture
that the approximate evaluation method is computationally
efficient while the two other methods suffer from large CPU
times. With the same time limit, TIE with TEC apx can
explore a much larger search space. Although the approximate
evaluation method may not select the best solution in the
neighborhood at each iteration, good solutions are reached in
most cases.

In the previous sections, we investigate the performance of
the two-individual framework, and examine key components
of TIE separately. Test results suggest that:

• A population-based element is necessary to improve the
algorithm performance, while focusing on two individuals
seem sufficient;

• Sophisticated initial procedures are not necessary for a
balanced algorithm, so we can emphasize other compo-
nents;

• TOCX, which is based on a topological order, can quickly
generate offspring solutions with sufficient diversification
compared to conventional operators as POX and PRX;

• For solving the additional operation time-tabling sub-
problem in the FJSP, specific neighbourhood functions
such as N t is beneficial. Considering the comparison
with TS(SP), a combination of efficient heuristic and
neighbourhood can be desirable;

• Although it does not provide accurate objective values,
approximate evaluation methods are useful, especially for
this FJSP with large solution spaces.

E. Impact of different TOUs

In this section, we analyze the impact of different TOUs on
the performance of TIE which is applied on all the instances
with TOU0 to TOU7. For illustration, the boxplot of the
resulting TEC in DPdata, BCdata, and BRdata can be found
in Fig. 7, where the distributions of TEC with TOU0, TOU1,
TOU4, and TOU5 are narrower than with the remaining TOUs,
and the values of TEC are smaller as well. It suggests that the
average price in TOU contributes to this result. In addition,
the range of TEC with TOU0, TOU1, TOU2, and TOU3
are similar to those of TOU4, TOU5, TOU6, and TOU7,
respectively. This is probably due to the symmetries of the
TOU settings in Table II.

We further explore the impact of different TOU settings by
increasing and decreasing the differences of adjacent intervals.
In particular, we adopt four additional TOU settings: TOU8
= {1, 1.5, 1, 2}, TOU9 = {1, 3, 1, 5}, TOU10 = {1, 4, 1, 6},
and TOU11 = {1, 5, 1, 7}, and apply TIE on the 18 instances
in DPdata. The corresponding results are plotted in Fig. 8.

We can see that the range of TEC increases with the differ-
ence of adjacent intervals. However, TIE obtains a relatively
smaller makespan with larger differences of adjacent intervals
of TOUs (see Fig. 8b). The average required computational
time did not change significantly with different TOUs, con-
firming that TIE is computationally efficient for the considered
problem.

From the viewpoint of practitioners, we suggest selecting
TOUs with large difference of adjacent intervals to encourage
industries to save energy consumption.

IX. CONCLUSIONS

In this study, a two-individual-based evolutionary algorithm
is proposed to solve the flexible job shop scheduling problem
under time-of-use electricity tariffs with the objective of mini-
mizing total energy consumption while satisfying a predefined
makespan constraint. To allocate operations to be processed
from on-peak periods to off-peak periods, we propose a new
neighborhood structure based on varying start times of the
operations, along with an approximate neighborhood evalua-
tion method. Based on that, we apply a tabu search procedure
to optimize the individuals and a topological order based
recombination operator to generate offspring individuals in the
evolution process.

Extensive experiments were conducted on well-known
benchmark instances, which confirmed the effectiveness of the
proposed two-individual structure, and key elements embedded
in our algorithm. Based on extensive computational analyzes,
we provided some practical suggestions and elements for
decision makers to achieve a balance between maximizing
productivity and minimizing the electricity cost.

In future work, energy-efficient scheduling in flexible job
shop manufacturing systems should be further explored by
considering additional practical requirements, such as varying
processing speeds and states of machines. In addition to
makespan, job completion times, due dates, and other time-
based criteria can be formulated as important constraints.
Incorporating machine learning approaches into our traditional
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TABLE IX
COMPARISON OF DIFFERENT CROSSOVER OPERATORS IN TIE WITH TOU5 ON BRdata

Ins. POX PRX TOCX

TECmin TECavg TECsd TECmin TECavg TECsd TECmin TECavg TECsd

Mk01 31.4 31.5 0.1 31.2 31.32 0.1 30.8 31.04 0.15
Mk02 29 29.12 0.13 29 29.14 0.13 28.8 28.96 0.08
Mk03 157.2 159.86 1.16 157.4 159.21 0.76 157.1 158.93 1.36
Mk04 72.2 72.95 0.38 72.3 72.8 0.22 71.7 72.07 0.24
Mk05 149 149.49 0.31 148.8 149.21 0.25 148.8 149.04 0.23
Mk06 82.3 83.08 0.47 81.6 82.76 0.54 80.9 82.11 0.6
Mk07 156 157.08 0.76 155.1 157.02 0.88 156.1 156.95 0.51
Mk08 459.3 461.93 1.84 458.6 461.84 1.55 452.6 458.03 2.68
Mk09 457.2 460.56 2.13 452.8 458.52 2.77 456.7 460.8 3.08
Mk10 425.1 427.01 1.43 423.8 425.97 1.33 422.8 425.82 1.61

Avg. 201.87 203.26 0.87 201.06 202.78 0.85 200.63 202.38 1.05

Friedman’s test is conducted on TECavg obtained by TIE, TIE with POX, and TIE with PRX on BCdata.
The resulting small value of p < 0.001 indicates the three crossover operators distinguish each other statistically.

TABLE X
SUMMARY RESULTS OF DIFFERENT CROSSOVER OPERATORS ON BCdata, BRdata, AND DPdata UNDER TOU0-TOU7

Ins. POX PRX TOCX

TECavg TECsd timeavg PRD TECavg TECsd timeavg PRD TECavg TECsd timeavg PRD

BCdata 1628.44 6.75 295.58 0.84 1631.15 6.72 292.28 1.00 1614.96 6.00 301.74 0.00
BRdata 209.06 1.43 291.09 0.48 209.83 1.38 293.47 0.85 208.05 1.32 297.20 0.00
DPdata 346.71 0.75 335.82 0.01 346.90 0.76 328.35 0.07 346.66 0.75 342.77 0.00

Friedman’s test is conducted on TECavg for all benchmark sets, and shows that the results are statistically significant.

TABLE XI
COMPARISON BETWEEN TIE AND TIE WITHOUT Nt ON BCdata UNDER TOU0-TOU3

Ins.
TOU0 TOU1 TOU2 TOU3

TIE-Nt TIE TIE-Nt TIE TIE-Nt TIE TIE-Nt TIE
TECavg TECavg TECavg TECavg TECavg TECavg TECavg TECavg

mt10c1 932.83 836.70 949.40 890.46 1182.48 1088.79 1193.25 1103.62
mt10cc 921.60 837.51 960.63 893.61 1175.03 1093.17 1160.89 1100.62
mt10x 945.34 853.30 956.97 900.94 1192.08 1107.31 1197.75 1122.36
mt10xx 942.09 851.53 952.98 899.14 1189.99 1104.94 1193.50 1120.46
mt10xxx 943.63 849.77 954.18 898.27 1187.92 1105.66 1192.12 1118.48
mt10xy 925.83 853.52 962.27 906.87 1184.34 1115.86 1178.70 1117.20
mt10xyz 891.47 829.35 958.92 920.78 1156.09 1115.91 1146.76 1092.29
setb4c9 1416.92 1299.80 1463.07 1379.54 1804.89 1694.13 1828.41 1713.57
setb4cc 1408.77 1284.91 1461.42 1374.60 1797.18 1683.69 1812.57 1696.65
setb4x 1413.33 1280.28 1462.80 1368.34 1800.60 1663.71 1822.51 1695.31
setb4xx 1408.43 1279.57 1457.84 1361.32 1791.31 1651.18 1811.97 1684.09
setb4xxx 1406.32 1276.85 1455.18 1361.25 1787.70 1653.35 1812.51 1680.87
setb4xy 1390.83 1268.47 1471.72 1368.64 1791.85 1658.29 1793.27 1679.14
setb4xyz 1368.29 1253.02 1476.87 1362.03 1781.79 1651.88 1776.01 1660.01
seti5c12 2141.26 1943.87 2164.12 2052.95 2685.27 2510.22 2721.74 2507.74
seti5cc 2136.26 1958.95 2189.98 2053.35 2705 2540.71 2709.48 2553.58
seti5x 2119.52 1924.28 2167.04 2059.11 2660.77 2499.02 2681.91 2447.24
seti5xx 2120.41 1923.38 2164.89 2053.22 2658.80 2495.99 2681.92 2445.76
seti5xxx 2123.26 1927.55 2161.61 2052.37 2658.52 2491.38 2680.83 2444.43
seti5xy 2133.12 1964.26 2189.85 2051.82 2700.76 2537.51 2710.47 2556.67
seti5xyz 2107.80 1956.98 2194.01 2055.79 2687.84 2549.94 2693.91 2552.77

Avg. 1485.59 1354.95 1532.18 1441.16 1884.77 1762.51 1895.26 1766.33

Wilcoxon signed rank test is conducted on TECavg for BCdata, and shows that the results are statistically significant.

metaheuristics to enhance their performance is also an inter-
esting research direction.
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TABLE XII
SUMMARY RESULTS OF TIE −Nt AND TIE ON ALL THE BENCHMARK SETS UNDER TOU0-TOU3
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TABLE XIII
SUMMARY RESULTS OF TIE WITH DIFFERENT EVALUATION METHODS ON DPdata, BCdata, AND BRdata

Ins. TIE with TEC exa TIE with TEC inc TIE with TEC apx

TECmin TECavg TECsd TECmin TECavg TECsd TECmin TECavg TECsd
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S. Kemmoé-Tchomté, D. Lamy, and N. Tchernev, “An effective multi-
start multi-level evolutionary local search for the flexible job-
shop problem,” Engineering Applications of Artificial Intelligence,
vol. 62, pp. 80–95, 2017.

X. Wu and Y. Sun, “A green scheduling algorithm for flexible job
shop with energy-saving measures,” Journal of Cleaner Produc-
tion, vol. 172, pp. 3249–3264, 2018.

H. Mokhtari and A. Hasani, “An energy-efficient multi-objective
optimization for flexible job-shop scheduling problem,” Computers
and Chemical Engineering, vol. 104, pp. 339–352, 2017.

J.-Q. Li, Y. Du, K.-Z. Gao, P.-Y. Duan, D.-W. Gong, Q.-K. Pan, and
P. N. Suganthan, “A hybrid iterated greedy algorithm for a crane
transportation flexible job shop problem,” IEEE Transactions on
Automation Science and Engineering, vol. 19, no. 3, pp. 2153–
2170, 2022.

H. Piroozfard, K. Y. Wong, and W. P. Wong, “Minimizing total
carbon footprint and total late work criterion in flexible job
shop scheduling by using an improved multi-objective genetic
algorithm,” Resources, Conservation and Recycling, vol. 128, pp.
267–283, 2018.

D. Lei, M. Li, and L. Wang, “A two-phase meta-heuristic for
multiobjective flexible job shop scheduling problem with total en-
ergy consumption threshold,” IEEE Transactions on Cybernetics,
vol. 49, no. 3, pp. 1097–1109, 2019.

H. Zhang, Z. Dai, W. Zhang, S. Zhang, Y. Wang, and R. Liu, “A new
energy-aware flexible job shop scheduling method using modified
biogeography-based optimization,” Mathematical Problems in En-
gineering, vol. 2017, 2017.

E.-D. Jiang and L. Wang, “Multi-objective optimization based on
decomposition for flexible job shop scheduling under time-of-use
electricity prices,” Knowledge-Based Systems, vol. 204, p. 106177,
2020.

Y. Du, J.-Q. Li, X.-L. Chen, P.-Y. Duan, and Q.-K. Pan, “Knowledge-
based reinforcement learning and estimation of distribution algo-
rithm for flexible job shop scheduling problem,” IEEE Transac-
tions on Emerging Topics in Computational Intelligence, pp. 1–15,
2022.

L. Chen, N. Megow, R. Rischke, L. Stougie, and J. Verschae,
“Optimal algorithms for scheduling under time-of-use tariffs,”
Annals of Operations Research, vol. 304, no. 1, pp. 85–107, 2021.

F. Zhao, X. He, and L. Wang, “A two-stage cooperative evolutionary
algorithm with problem-specific knowledge for energy-efficient
scheduling of no-wait flow-shop problem,” IEEE Transactions on
Cybernetics, vol. 51, no. 11, pp. 5291–5303, 2020.

F. Zhao, L. Zhang, J. Cao, and J. Tang, “A cooperative water wave op-
timization algorithm with reinforcement learning for the distributed
assembly no-idle flowshop scheduling problem,” Computers &
Industrial Engineering, vol. 153, p. 107082, 2021.

F. Zhao, R. Ma, and L. Wang, “A self-learning discrete jaya algo-
rithm for multiobjective energy-efficient distributed no-idle flow-
shop scheduling problem in heterogeneous factory system,” IEEE
Transactions on Cybernetics, pp. 1–12, 2021.

C. Y. Zhang, P. G. Li, Z. L. Guan, and Y. Q. Rao, “A tabu search
algorithm with a new neighborhood structure for the job shop
scheduling problem,” Computers & Operations Research, vol. 34,
no. 11, pp. 3229–3242, 2007.
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Z. Lü, F. Glover, and J. K. Hao, “A hybrid metaheuristic approach
to solving the UBQP problem,” European Journal of Operational
Research, vol. 207, no. 3, pp. 1254–1262, 2010.

A. M. Sutton and F. Neumann, “A parameterized runtime analysis
of evolutionary algorithms for the Euclidean traveling salesperson
problem,” in AAAI Conference on Artificial Intelligence, 2012, pp.
595 – 628.

S. Dauzère-Pérès and J. Paulli, “An integrated approach for modeling
and solving the general multiprocessor job-shop scheduling prob-
lem using tabu search,” Annals of Operations Research, vol. 70,
no. 1, pp. 281–306, 1997.

J. W. Barnes and J. B. Chambers, “Flexible job shop scheduling by
tabu search.” The University of Texas at Austin, Tech. Rep., June
1998.

P. Brandimarte, “Routing and scheduling in a flexible job shop by
tabu search,” Annals of Operations Research, vol. 41, pp. 57–83,
1993.

J. Hurink, B. Jurisch, and M. Thole, “Tabu search for the job-shop
scheduling problem with multi-purpose machines,” Operations-
Research-Spektrum, vol. 15, no. 4, pp. 205–215, 1994.

E. Demirkol, S. Mehta, and R. Uzsoy, “Benchmarks for shop schedul-
ing problems,” European Journal of Operational Research, vol.
109, no. 1, pp. 137–141, 1998.

L. Shen, S. Dauzère-Pérès, and J. S. Neufeld, “Solving the flexible job
shop scheduling problem with sequence-dependent setup times,”
European Journal of Operational Research, vol. 265, pp. 503–516,
2018.
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