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A B S T R A C T

This paper considers the flexible job-shop scheduling problem with stochastic processing times. To find a
sequence insensitive to shop floor disturbances, the available probabilistic information related to the variability
of processing times is taken into account by maximizing the makespan service level for a given deadline. This
corresponds to the probability of the makespan to be smaller than a given threshold. After showing why
this criterion makes sense compared to minimizing the average makespan, a solution approach relying on a
tabu search and a Monte Carlo sampling-based approximation is presented. Then, new instances are generated
by extending the deterministic benchmark instances. Extensive computational experiments are conducted to
evaluate the relevance of the makespan service level and the performance of the proposed solution method.
The drawbacks of a number of reference scenarios, including worst-case and best-case scenarios, in addressing
effectively the problem under study are presented. A numerical analysis is also performed to compare the scope
of the proposed criterion against the minimization of the expected makespan. The accuracy of the proposed
solutions induced by the hyper-parameters of the Monte Carlo approximation is explicitly analyzed.
1. Introduction

The Flexible Job-shop Scheduling Problem (FJSP) is one of the most
studied scheduling problems, found in many practical contexts where
multiple resources can perform the same operation. This is the case
when identical resources are available or when resources are flexible
and can process different types of operations. The additional complexity
associated with the assignment of operations to resources makes the
FJSP significantly more difficult to solve than the classical Job-shop
Scheduling Problem (JSP). However, the flexibility of the resources
allows classical criteria such as the makespan (i.e., the maximum
completion time of all the jobs) to be reduced compared to the JSP. One
of the reasons is that an optimal assignment of operations to resources
contributes to better balancing the workload on the resources. This
is particularly important when resources are unrelated, i.e., when the
processing time of an operation can vary from one resource to another.
In this case, it might for instance be sounder to avoid the assignment
of an operation to the slowest capable resource.

We believe that another factor to be considered when an operation
is assigned to a resource is related to the variability or the limited
control of the processing times. For instance, in industrial contexts such
as semiconductor manufacturing, the processing times of operations of
new products are often more fluctuating (i.e., less controlled) than the
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processing times of operations of mature products (Karabuk, 2001). In
this case, it could be risky to assign all the operations with the less
controlled processing times to the same machine. Also, the processing
time of an operation might be more difficult to control if the operation
is assigned to a new machine or to a machine that rarely processes
the operation, than to an older machine or to a machine that very
often processes the operation (Çatay et al., 2003). Considering average
processing times as deterministic processing times does not capture
the impact of the variability of processing times on the quality of a
schedule.

In this paper, we assume that the probability distributions of the
processing times can be estimated and are thus known, and we are
interested in solving a Stochastic FJSP (SFJSP). This problem is even
more difficult to solve than the FJSP as it makes the decision-making
process significantly more difficult with the uncertainty factor regard-
ing the processing times of the operations. The SFJSP can be found in
many industrial environments, being often subject to various sources
of variability induced by machines (e.g., breakdowns), job releases,
and/or processing times (e.g., complex multi-chamber machines, com-
plex processing routes) (see e.g., Jamrus et al. (2018)). Furthermore,
since the problem is no longer deterministic, the classical deterministic
criteria become out of context, and an adaptation is required. Typically,
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in stochastic scheduling research, the counterpart of a deterministic
criterion is its mathematical expectation (Mahdavi et al., 2010; Zhang
et al., 2012). Instead, we focus on the maximization of the makespan
service level, as proposed by Dauzère-Pérès et al. (2005, 2013). We
believe, this notion is relevant and, to the best of our knowledge,
has been rarely studied in the scheduling-related literature (see Sec-
tion 3.2). It corresponds to the probability of a classical criterion to
be smaller (or larger) than a given value. In this paper, the makespan
service level is considered, which is the probability that all the jobs are
completed before an allowed time limit. In real-life applications, this
limit corresponds to a specific scheduling horizon. The service level
of other classical criteria could be also studied such as the sum of
the completion times or the maximum tardiness (Dauzère-Pérès et al.,
2013).

This paper extends the solution approach proposed by Flores Gómez
et al. (2021) to solve the SFJSP in the following ways: (i) The explo-
ration of the neighborhood during the execution of the tabu search
algorithm is enhanced by considering a more efficient move evaluation
procedure, (ii) The accuracy of the proposed solutions induced by the
sampling size in a crude Monte Carlo sampling-based approximation
is explicitly evaluated based on existing statistical results, (iii) Sev-
eral levers allowing us to enhance the efficiency of the Monte Carlo
sampling-based approximation are empirically investigated, (iv) Exten-
sive numerical experiments are conducted to highlight the relevance of
the makespan service level against a number of reference scenarios and
the minimization of the expected makespan.

The paper is organized as follows. The literature on the determin-
istic and stochastic flexible job-shop scheduling problems is reviewed
in Section 2. The problem under study is formalized and motivated
in Section 3. A solution approach is presented in Section 4, which
combines a tabu search approach with a Monte Carlo sampling-based
approximation. Stochastic FJSP instances are generated from classical
deterministic instances in Section 5. Then, extensive computational
experiments are discussed in Section 6 to assess the relevance of
the makespan service level. Additional computational experiments are
analyzed in Section 7 to tune the hyper-parameters of the Monte Carlo
approximation. In Section 8, we conclude and discuss some perspec-
tives of this research with a view to improving the solution approach
and to applying the notion of service level to other scheduling criteria
than the makespan.

2. Literature review

As previously stated, given the large spectrum of associated real-life
applications, the FJSP is a very popular scheduling problem, both in
academic research and in practical contexts. The FJSP has been abun-
dantly studied in the literature, and new approaches are continuously
being proposed or extensions of the problem being studied. In this
section, a brief literature review is proposed, on both the FJSP and its
stochastic version, the SFJSP.

2.1. Flexible job-shop scheduling problem

The Flexible Job-shop Scheduling Problem (FJSP) is a generalization
of the classical job-shop problem, with the difference that operations
can be processed on several machines. Brucker and Schlie (1990) were
the first to address the FJSP with only two jobs. Ever since, many
papers have been published proposing different solution approaches for
this problem. In a recent survey, Chaudhry and Khan (2016) realized
that up to 2016, most of the published research dedicated to the FJSP
(almost 75%) are focused on the optimization of the value of the
makespan 𝐶𝑚𝑎𝑥 or a combination of 𝐶𝑚𝑎𝑥 and another objective func-
tion. Brandimarte (1993) decomposed the problem into an assignment
problem and a scheduling problem, and proposed a hierarchical algo-
rithm. Paulli (1995) proposed a very similar approach for the Flexible
Manufacturing System Scheduling problem, which is basically the FJSP
2

with a constraint limiting the maximal number of jobs that can be pro-
cessed at the same time. In (Hurink et al., 1994), a more integrated ap-
proach using tabu search is suggested. Dauzère-Pérès and Paulli (1994)
proposed a new procedure for the reassignment of operations. All
these publications decompose the FJSP into two subproblems. Dauzère-
Pérès and Paulli (1997) proposed an integrated approach for the FJSP,
called multiprocessor job-shop scheduling problem in the paper, using
tabu search. The approach relies on a disjunctive graph representation
of the problem and a connected neighborhood structure introduced
in (Dauzère-Péres, 1994). Besides the exploitation of the structural
properties of the problem, the authors proposed several lower bounds
on the makespan 𝐶𝑚𝑎𝑥 to accelerate the neighborhood exploration.
In (García-León et al., 2015), a tabu search using the neighborhood
structure from (Dauzère-Péres, 1994) in the disjunctive graph and novel
conditions are presented to optimize any regular criterion. This work is
extended to multi-objective optimization by García-León et al. (2019).
In (Shen et al., 2018), a Mixed Integer Linear Program (MILP) for the
FJSP with sequence-dependent setup times is presented that can only
solve small instances. In addition, the feasibility conditions in (Dauzère-
Pérès and Paulli, 1997) are revisited and improved. Recent works
on extensions of the FJSP to batching constraints and other realistic
constraints or objectives can be found in (Knopp et al., 2017) and
(Tamssaouet et al., 2022).

Several other techniques than tabu search have been used to solve
different versions of the FJSP. For instance, Kacem et al. (2002) pro-
posed two different methods, including an evolutionary algorithm,
to deal jointly with the assignment and job-shop scheduling prob-
lems. Rossi and Dini (2007) used an Ant Colony Optimization to solve
the FJSP with sequence-dependent setup and transportation times, and
operation lag times. Xing et al. (2009) proposed a simulation model
for a multi-objective version of the FJSP to minimize the makespan,
the workload of all the machines, and the workload of critical ma-
chines. Yazdani et al. (2010) proposed a heuristic based on the explo-
ration of a parallel variable neighborhood to increase the diversification
during the exploration of the search space based on shake and local
search procedures. A complete survey on different approaches used
for the FJSP is conducted by Chaudhry and Khan (2016). A survey
of solution approaches implemented for complex job-shop scheduling
problems in wafer fabrication is presented by Mönch et al. (2011).
A commonly used heuristic to solve a variant of the FJSP is the
shifting bottleneck heuristic, which decomposes the job-shop schedul-
ing problem into a set of smaller scheduling sub-problems related to
parallel machines (Adams et al., 1988). Genetic algorithms (GA) have
become increasingly popular to solve the FJSP. Çaliş and Bulkan (2015)
pointed out that more than 25% of published research related to the
FJSP involved the implementation of GAs. One of these approaches is
presented in (Mönch et al., 2007). Pezzella et al. (2008) developed a
GA-based approach to solve a resource-constrained operation-machine
assignment problem and the FJSP while optimizing the makespan. Gao
et al. (2008) proposed a hybrid GA to minimize the makespan, the
maximal machine workload, and the total workload. An extensive
survey on the evolution and implementation of GA-based techniques
for the FJSP can be found in (Amjad et al., 2018).

2.2. Stochastic job-shop and flexible job-shop scheduling problems

In the literature, the stochastic version of the classical job-shop
scheduling problem has been significantly less addressed than its deter-
ministic counterpart, even if real-life problems usually include stochas-
tic parameters. In (Horng et al., 2012), an evolutionary algorithm that
embeds an evolutionary strategy in ordinal optimization is proposed
to solve the stochastic job-shop scheduling problem while minimizing
the expected sum of storage expenses and tardiness penalties. The
approach uses simulation to select a fixed number of roughly good
schedules as a starting point, aiming to reduce the search space at
every step. For the SFJSP, Mokhtari and Dadgar (2015) proposed a
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simulation model for an FJSP with machine maintenance operations,
where processing times and due dates are stochastic and machine
failure rates are time-varying. A MILP model is introduced with the
objective of minimizing the number of tardy jobs and a minimum total
availability constraint, and a simulation–optimization framework based
on a simulated annealing optimizer and Monte Carlo sampling-based
approximation is proposed to solve the problem. In (Mahdavi et al.,
2010), a simulation-based decision support system controlling an SFJSP
manufacturing system is described. It uses the results from a real-time
simulator to identify opportunities for incremental improvements of the
performance criteria, built around the supervisory control theory based
on discrete-event simulation. Also based on simulations (Monte Carlo)
but combined with the second stage of a two-stage particle swarm
optimization algorithm, the model presented in (Zhang et al., 2012)
aims at minimizing the expected total weighted tardiness. In none of
the papers cited above, the service level is used to evaluate the quality
of a solution. In general, the expected value of the processing times can
be used to transform the stochastic problem into a deterministic one.

2.3. Service level in scheduling problems

Very few papers have used the notion of service level in schedul-
ing problems. To the best of our knowledge, Golenko-Ginzburg et al.
(1995) is the first who used the delivery performance notion as the
probability of a given job to be completed on time (i.e., to respect
the due date). Two heuristics based on pairwise job comparison, to
either maximize the weighted sum of jobs’ delivery performances or
to constrain them to a minimal value while minimizing the makespan,
were proposed. Each heuristic is based on comparing the jobs that are
available to be executed on the available machine at any point in time.
These comparisons are carried out by calculating each job’s delivery
performance. Both methods are tested on a 10 × 5 (10 jobs, 5 machines)
JSP instance. Daniels and Carrillo (1997) defined, for a single machine
scheduling problem, the 𝛽-robust scheduling problem (𝛽-RSP) as identi-
fying the schedule with the maximum likelihood of achieving flow time
performance no greater than a given target level. Exact and heuristic
solution approaches are proposed to obtain the best possible schedule
when the processing times of jobs are independent random variables.
The authors demonstrate that finding such a schedule is NP-hard.

The term service level, used in inventory management, was first
coined in scheduling in (Dauzère-Pérès et al., 2005, 2013). The authors
provide a general context of the notion and several examples based
on an instance of the flow-shop scheduling problem subject to random
processing times following several probabilistic laws. They also propose
two different methods to quantify the service level. The notion of 𝛽-
robustness was extended by Beck and Wilson (2007) to deal with the
probabilistic JSP while exploring the notion of 𝛼-makespan. If the 𝛼-
makespan of a solution 𝑆 is lower than or equal to a value 𝐷, then
here is at least a 1−𝛼 probability that the makespan of 𝑆 is lower than
r equal to 𝐷. They propose a number of techniques combining Monte
arlo sampling-based approximation with different solution approaches
uch as constraint programming and tabu search. They also prove
hat, when carefully defined, the deterministic JSP can be used as a
ower bound for the probabilistic JSP (as defined in their paper). Wu
t al. (2009) approach the 𝛽-RSP with a constraint programming model
xplicitly representing the uncertainty and robustness as input param-
ters and objectives, by developing explicit representations of the task
ncertainty and enabling the uncertainty to propagate. Three models
re developed (primal, dual, and hybrid) and the effect of dominance
ules in the search space was analyzed. All references above used the
otion of service level, although not necessarily under that name.

As the conducted literature review shows, there is much work to
e done in several directions: (i) Defining key performance indicators
o quantify to what extent a sequence is insensitive to disturbances
nd how uncertainties impact the quality of sequences, (ii) Proposing
3

tochastic extensions of scheduling criteria and explaining their scope, c
iii) Modeling uncertainty in a low-cost manner given the intrinsic
omplexity of the FJSP, etc. From an industrial point of view, the efforts
edicated to handling uncertainties in scheduling problems are still
nsufficient to support their automation in manufacturing processes.
y contributing to filling these gaps, this paper applies the notion of
ervice level on the makespan in the FJSP subject to uncertain process-
ng times. New instances are generated by extending the deterministic
enchmark instances to discuss the relevance of the makespan service
evel against the expected makespan and the makespan corresponding
o a number of reference scenarios. Based on the existing background, a
olution approach relying on a tabu search and a Monte Carlo sampling-
ased approximation is presented, while considering explicitly the
uning of its hyper-parameters.

. Problem description

As an extension of the JSP, the FJSP is thus NP-hard in the strong
ense (Garey et al., 1976). The random nature of processing times
dds another level of complexity to the deterministic FJSP, making the
tochastic FJSP at least as hard to solve.

.1. Stochastic flexible job-shop scheduling problem

The FJSP aims at scheduling a set of operations  partitioned into a
et of jobs  on a set of machines . The operations of each job 𝑗 are
rouped in set 𝑗 (⋃𝑗∈ 𝑗 = ), and have to be processed in a specific
rder (routing). A machine can only perform one operation at a time,
nd cannot be interrupted once the operation starts, i.e., preemption
s not allowed. Unlike the JSP, each operation 𝑖 can be processed on
ny machine in a given subset of machines 𝑖 in  in the FJSP.
he processing time 𝑝𝑖𝑘 of operation 𝑖 may vary depending on the
achine 𝑘 to which 𝑖 is assigned (i.e., processing times are machine-
ependent). Solving the FJSP requires determining both an assignment
f the operations to the machines and a sequence of operations on the
achines. The objective is to optimize a scheduling criterion, the most

ommon one being the makespan or 𝐶𝑚𝑎𝑥, which is the maximum com-
letion time of all operations. Contrary to the FJSP, the SFJSP includes
andom processing times described via known probability distributions.
et each random variable 𝜉𝑖𝑘 modeling the processing time of operation
on machine 𝑘 be discrete and defined on a finite support [𝑐𝑖𝑘, 𝑑𝑖𝑘].

n practical settings, an operation takes a minimum time (𝑐∙) to be
ompleted on a machine and does not take more than a maximum
ime (𝑑∙) under normal operating conditions (Jacobs et al., 2003). By
ormal operating conditions, we mean that only short stoppages of
he machine are considered, but not major disturbances (e.g., machine
reakdown, unexpected job arrivals, shortage of raw materials). The
atter usually entails a rescheduling problem (Ghaleb et al., 2020). We
ant the proposed assignment and sequence of operations to be able to
ithstand small variations of processing times without requiring them

o be updated. Processing times are assumed to be independent random
ariables.

.2. Notion of makespan service level

In this paper, we extend the study on the relevance of the notion of
akespan service level as defined in (Dauzère-Pérès et al., 2013, 2005)
nd in the continuity of our work in (Flores Gómez et al., 2021). To
etter understand the practicality of the service level in scheduling,
t is important to highlight that this notion is frequently employed in
nventory management theory. It is often used to determine the safety
tock, which is the stock level below which a new command has to be
tarted, in order to have a higher likelihood of satisfying the stochastic
emand. This stock level is called the order point, which is generally
omputed in two different ways, either by minimizing an estimated
lobal cost in the system at hand (backorder cost, order cost, holding

ost) or by satisfying a given service level (Silver et al., 1998).
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The notion of service level in scheduling applications represents the
probability that a criterion is lesser (or greater) than or equal to a given
value. If the used performance measure is the makespan, i.e., the date
of completion of all jobs in the system, then the makespan service level
is the probability of finishing the execution of all jobs before a given
point in time. It is thus possible to consider the service level of any
criterion in deterministic scheduling. Dauzère-Pérès et al. (2005, 2013)
observed that optimizing a service level on a scheduling criterion leads
to sequences of good quality with a high probability and, therefore,
optimizes the robustness of the solution. As in inventory theory, the
notion of service level is quite easy to be interpreted. In particular, in
the case of the makespan, it makes more sense to maximize the chance
of finishing all jobs before a given deadline than to minimize the mean
completion time of all jobs, especially from an industrial standpoint
when it is important to know how many hours the operator of a given
machine would be needed.

As the processing times are random variables, the makespan of a se-
quence 𝑆 is also a random variable. In the literature, the mathematical
expectation is usually optimized. A common industry practice we are
aware of is to set the values of the processing times as their expected
values and to solve a classical FJSP. We propose to study the service
level 𝛼(𝑆, 𝑇 ) on the makespan, i.e., the probability that the makespan
of sequence 𝑆 is lower than or equal to a given threshold, denoted by
𝑇 . The makespan service level is formally defined below:

𝛼(𝑆, 𝑇 ) = P(𝐶𝑚𝑎𝑥(𝑆, 𝜉) ≤ 𝑇 ),

where 𝜉 is a multivariate random variable of dimension 𝑛.
To evaluate the service level of a sequence, a set of scenarios

𝛺 is generated, and an algorithm based on Monte Carlo sampling-
based approximation is implemented. The resulting estimated service
level is denoted 𝛼(𝑆, 𝑇 ,𝛺). The proposed solution approach is based
on the tabu search of Dauzère-Pérès and Paulli (1997) and includes
a Monte Carlo sampling-based procedure to represent and deal with
uncertainties. The results of the first computational experiments as well
as an outline of the approach can be found in (Flores Gómez et al.,
2021). A more detailed overview of the approach is given in Section 4.

3.3. Reference scenarios

To assess the relevance of the notion of service level on the
makespan, let us consider the following reference scenarios:

• Average processing times: Let �̄� be the scenario where process-
ing times take the mean value given their probability distribu-
tions.

• Worst-case and best-case scenarios: Under pessimistic (resp.
optimistic) settings, a common practice to handle uncertainties is
to use the worst-case (resp. best-case) scenario, where all random
variables take their largest (smallest) values (see e.g., Birge and
Louveaux (2011)).
Let 𝜔𝑞 be the scenario where every random processing time takes
the value of 𝑐∙+(𝑑∙−𝑐∙)𝑞. Hence, 𝑞 = 1 for the worst-case scenario
(𝜔1) and 𝑞 = 0 and for the best-case scenario.
For every operation 𝑖 and every machine 𝑘, let 𝑝𝑖𝑘(𝜔) be the
realization of the processing time of 𝑖 when executed by 𝑘 in
scenario 𝜔, such that:

𝑝𝑖𝑘(𝜔0) ≤ 𝑝𝑖𝑘(𝜔) ≤ 𝑝𝑖𝑘(𝜔1), ∀𝜔 ∈ 𝛺.

Let 𝐶𝑚𝑎𝑥(𝑆,𝜔) be the makespan of sequence 𝑆 with the processing
times in scenario 𝜔. Then:

𝐶 (𝑆,𝜔 ) ≤ 𝐶 (𝑆,𝜔) ≤ 𝐶 (𝑆,𝜔 ), ∀𝜔 ∈ 𝛺.
4

𝑚𝑎𝑥 0 𝑚𝑎𝑥 𝑚𝑎𝑥 1 p
.4. Illustrative example

For illustration purposes, consider the instance with 3 jobs and 3
achines in Table 1. The processing times of operations 4 and 5 of job
are random variables following a four-parameter Beta distribution

unction 𝑓 ∙
𝛽 (𝑐, 𝑑, 𝜇, 𝜎), where 𝑐 and 𝑑 are the limits of the definition

domain, 𝜇 represents the mean and 𝜎 denotes the standard deviation.
Consider the processing times of operations 4 and 5 of job 2 ap-

roximated by their means values �̄�. The two feasible sequences shown
n Fig. 1 only differ by the position of operations 5 and 7, which
espectively belong to jobs 2 and 3. Sequence 𝜋1 has a makespan of 80,
hile the makespan of sequence 𝜋2 is equal to 90. A common decision
riven by the minimization of the makespan based on �̄� would dictate
hat 𝜋1 is a more suitable sequence.

Fig. 2 shows sequences 𝜋1 and 𝜋2 when the processing times of the
perations of job 2 take the values in the best-case scenario 𝜔0. Both
equences have the same makespan. However, when the processing
imes are approximated by the worst-case scenario, the makespan
s significantly larger for sequence 𝜋1, 𝐶𝑚𝑎𝑥(𝜋1, 𝜔1) = 130, than for
equence 𝜋2, 𝐶𝑚𝑎𝑥(𝜋2, 𝜔1) = 110, as shown in Fig. 3. Sequence 𝜋2 is
hus better than sequence 𝜋1 in the worst-case scenario. Also, the jobs
n sequence 𝜋2 have a 100% probability of being completed before 110,
.e., the service level 𝛼(𝜋2, 110) is equal to 1, whereas this is not the case
or sequence 𝜋1.

For illustration purposes, consider Fig. 4 showing the service levels
f two sequences 𝜋1 and 𝜋2 as a function of threshold 𝑇 . Two main
emarks can be made:

• The service level is specific to a sequence, not to an instance.
• The service level depends on threshold 𝑇 . In real-life settings, 𝑇 is

usually fixed. Depending on the context, 𝑇 may represent a week,
a working day, or a worker’s shift.

Maximizing the service level in the SFJSP means finding a se-
uence of operations with the largest service level among all feasible
equences. From Fig. 4, it is possible to see that there is a probability
qual to 0.5 of completing the jobs before 𝑇 = 85 using sequence
1, whereas this probability is almost zero when using sequence 𝜋2.
owever, if 𝑇 is equal to 95, then the service level of sequence 𝜋2 is
lmost 100%, while the service level of sequence 𝜋1 is around 70%.
urthermore, there is a probability equal to 0.99 that all jobs are
ompleted before 𝑇 = 118 for both sequences. The impact of the shape
f the probability density functions of the processing times on the
ervice level is analyzed in (Flores Gómez et al., 2021) for different
alues of threshold 𝑇 .

. Solution approach

The works in (Dauzère-Pérès et al., 2005, 2013) and (Beck and
ilson, 2007) are the closest to ours. In (Dauzère-Pérès et al., 2005,

013), a framework on the notion of service level and solution ap-
roaches are thoroughly explained using different distribution laws
nd an illustrative example. Beck and Wilson (2007) consider the
robabilistic JSP, where assigning operations to machines is not part of
he decision process, and most of the proposed approaches are based
n branch and bound schemes. A tabu search (Gendrau and Potvin,
010) is also presented, with a time limit as a stopping criterion, and an
stimation of the probabilistic makespan of the sequences found in the
abu search. The main difference between the current paper and (Beck
nd Wilson, 2007) lies in the way the problem is posed. Beck and
ilson (2007) aim to find as small a value of 𝐷 as possible such that

here is a sequence 𝑆 with a high 𝛼(𝑆,𝐷). In this paper, we do not
ocus on minimizing threshold 𝑇 , as it is considered as an input of the

roblem.
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Table 1
Data of an illustrative example with 3 jobs and 3 machines.

Job Number of Operation {Machine, 𝑝} Random variables 𝑓 ∙
𝛽 (𝑐, 𝑑, 𝜇, 𝜎)operations

1 {1,30}, {2,30} –
1 3 2 {2,40}, {3,20} –

3 {2,20} –

2 2 4 {2,30} 𝑓 4,2
𝛽 (12, 60, 30, 15)

5 {1,20}, {3,20} 𝑓 5,1
𝛽 (10, 40, 20, 5), 𝑓 5,3

𝛽 (10, 40, 20, 5)

3 2 6 {3,40} –
7 {1,30} –
Fig. 1. Two sequences 𝜋1 and 𝜋2 corresponding to scenario �̄�.
Fig. 2. Sequences 𝜋1 and 𝜋2 for the best-case scenario 𝜔0.
Fig. 3. Sequences 𝜋1 and 𝜋2 for the worst-case scenario 𝜔1.
4.1. Solving the deterministic flexible job-shop scheduling problem

As previously stated, the deterministic FJSP is NP-hard in the strong
sense, and exact approaches, mainly mathematical models solved by a
standard solver, can only handle small instances. The stochastic FJSP
being even more difficult, we propose a heuristic approach, which is
based on the tabu search proposed in (Dauzère-Pérès and Paulli, 1997)
for the deterministic FJSP. This tabu search relies on an extension,
introduced in (Dauzère-Péres, 1994) and illustrated in Fig. 5, of the
disjunctive graph model for the JSP (see Roy and Sussmann (1964)). In
a disjunctive graph 𝐺 = (𝑁,𝐴,𝐸), set 𝑁 includes the nodes associated
with operations  and two virtual nodes 0 and ∗ (∀𝑘 ∈ , 𝑝0𝑘 = 𝑝∗𝑘 = 0
and 0 = ∗ = ∅). 𝐴 is the set of conjunctive arcs modeling the
routing of operations, and 𝐸 is the set of disjunctive arcs modeling the
potential assignment and sequencing of the operations on the machines.
5

In the disjunctive graph, the weight of an arc is the processing
time of the operation from which the arc starts. The processing times
are machine-dependent, thus the lengths of two arcs between two
operations might be different if the two operations can be both assigned
to two common machines. In the example illustrated in Fig. 5, there are
3 jobs to be processed on 3 machines. Operations 1 and 2 belong to the
first job, operations 3, 4, and 5 to the second job, and operations 6, 7,
and 8 to the third job. Operations 2, 3, 4, 7, and 8 can only be processed
on a single machine (3 = 8 = {1},4 = {2} and 2 = 7 = {3}),
whereas operations 1, 5 and 6 may be processed on two machines
(1 = {2, 3},5 = {1, 3} and 6 = {1, 2}). Let us denote by 𝑆
the selection of conjunctive arcs in 𝐸, where the disjunctive arcs are
replaced by conjunctive arcs modeling the assignment of each operation
to a machine as well as the sequencing of operations on the machines.
Each feasible selection 𝑆 corresponds to a feasible sequence for the



Computers and Operations Research 157 (2023) 106237M. Flores-Gómez et al.
Fig. 4. Service level of sequences 𝜋1 and 𝜋2 as a function of threshold 𝑇 .
Fig. 5. Example of a disjunctive graph and a conjunctive graph for FJSP with 3 jobs and 3 machines.
scheduling problem, which can be modeled as a conjunctive graph
𝐺′ = (𝑁,𝐴, 𝑆). The sequence is feasible if and only if 𝐺′ is a directed
acyclic graph.

Using this disjunctive graph representation, a neighborhood struc-
ture is introduced and exploited to find the best solution possible. A
neighbor sequence corresponds to moving an operation 𝑖 sequenced
between operations 𝑠 and 𝑡 on the machine assigned to 𝑖 in the con-
junctive graph of the current solution, between operations 𝑠′ and 𝑡′.
This move is performed by deleting the conjunctive arcs (𝑠, 𝑖) and (𝑖, 𝑡),
adding the conjunctive arc (𝑠, 𝑡), deleting the conjunctive arc (𝑠′, 𝑡′) and
adding the conjunctive arcs (𝑠′, 𝑖) and (𝑖, 𝑡′). If operations 𝑠′ and 𝑡′ are
assigned to another machine than operations 𝑠 and 𝑡, then operation 𝑖 is
reassigned, otherwise, 𝑖 is ‘‘only’’ resequenced on the same machine. To
ensure that a cycle is not created in the resulting graph before moving
an operation, the sufficient feasibility conditions proposed in (Dauzère-
Pérès and Paulli, 1997) are used in this paper. A lower bound is also
introduced by Dauzère-Pérès and Paulli (1997) to evaluate the quality
of a move. This lower bound is used for the SFJSP in Sections 4.4 and
4.5.

The length of a path in the conjunctive graph 𝐺′ is the sum of the
weights of the arcs on the path. Let 𝐿(𝑖, 𝑖′) be the longest path between
operations 𝑖 and 𝑖′ (= 0 if there is no path), 𝑟𝑖 = 𝐿(0, 𝑖) denotes the
release date (head) of 𝑖 and 𝑞𝑖 = 𝐿(𝑖, ∗) − 𝑝𝑖𝑎(𝑖) its delivery time (tail),
where operation 𝑖 has been assigned to machine 𝑎(𝑖) ∈ 𝑖. A longest
path between virtual nodes 0 and ∗ is called a critical path, and its length
𝑟∗ = 𝐿(0, ∗) is the value of the makespan of the sequence associated with
𝐺′.

4.2. Initial solution

In general, the initial solution obtained as proposed in (Dauzère-
Pérès and Paulli, 1997) is rather poor. It is a simple two-step heuristic,
separating the assignment and the sequencing of the operations on the
6

machines. We propose a new approach based on the largest tail priority
rule. Since in the beginning, no operation is placed, the tail definition
that is usually employed is not accurate since we cannot compute the
longest path between a given node and the virtual node ∗ until all
operations have been placed. Therefore, we only take into account the
operations in the same job (predecessor of 𝑖 in the job routing 𝑝(𝑖) and
the follower of 𝑖 in the job routing 𝑓 (𝑖)) and establish the initial tail as
the sum of the smaller processing times of the subsequent operations
in the job routing (followers). If operation 𝑖 is the last in the routing of
its associated job, then 𝑓 (𝑖) =∗.

4.3. Handling uncertainty

Approximation of multivariate probability integrals is a hard prob-
lem in general (Szántai, 2009). As naturally emerges when dealing with
probabilistic knowledge in stochastic programming (Homem-de-Mello
and Bayraksan, 2014), let us estimate the service level of a given se-
quence 𝑆 via a Monte Carlo sampling-based approximation procedure.
Each operation with a stochastic processing time 𝜉 is sampled according
to its probability distribution a fixed number of times to generate a set
of scenarios, denoted by 𝛺. Hence, every processing time in scenario
𝜔 ∈ 𝛺 is a realization of the corresponding random variable. The
makespan of sequence 𝑆 (where every operation 𝑖 is assigned to and
sequenced on machine 𝑎(𝑖)) is thus computed for the processing times
in each scenario 𝜔, and denoted by 𝐶𝑚𝑎𝑥(𝑆,𝜔). For a given threshold 𝑇
and sequence 𝑆, the empirical service level is determined as follows:

P̂
(

𝐶max(𝑆, 𝜉) ≤ 𝑇
)

= 1
|𝛺|

∑

𝜔∈𝛺
I
(

𝐶max(𝑆,𝜔) ≤ 𝑇
)

(1)

where I(∙) represents the indicator function on set 𝛺, which takes 1 if
𝐶max(𝑆,𝜔) ≤ 𝑇 , and 0 otherwise, ∀𝜔 ∈ 𝛺.

In return for their simplicity, sampling-based approaches require
a trade-off between the quality of estimation and the involved com-
putational times. The literature related to probabilistic-constrained
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problems provides statistics-based results indicating how large should
be the sample size to guarantee, with a probability of at least 1 − 𝛽,
that the solution provided by the scenario-based probabilistic problem
remains feasible for the true problem with a probability at least 1 −
𝜖 (Campi and Calafiore, 2004; Calafiore and Campi, 2005; Luedtke
and Ahmed, 2008). For the general case, Luedtke and Ahmed (2008)
derived the following statistical estimates of the sampling size when
probabilistic constraints involve random parameters on the right-hand
side for finite and discrete probability distributions:

𝑁 ≥ 1
2(𝜖 − 𝛾)2

ln 1
𝛽
+ 𝑛

2(𝜖 − 𝛾)2
ln𝑈 (2)

where 𝑈𝑛 represents the size of the definition domain of the 𝑛-variate
probability distribution.

To reduce the computational time, two strategies to select a subset
of scenarios 𝛺′ ⊂ 𝛺 are also presented and compared in (Flores Gómez
et al., 2021): (i) A single random selection of subset 𝛺′ when initializ-
ing the tabu search, and (ii) A random selection of subset 𝛺′ at each
iteration of the tabu search. Computational experiments show that no
strategy dominates the other one. In what follows, the first strategy is
arbitrarily used.

4.4. Maximizing the makespan service level

Solving the SFJSP, in our case, means finding a feasible sequence
with the maximum service level. Relying on (Dauzère-Pérès and Paulli,
1997), we propose a tabu search approach to explore a large number
of feasible sequences. An overview of the proposed approach can be
found in Algorithm 1.

Algorithm 1 Given threshold 𝑇 and set of scenarios 𝛺, maximize
service level 𝛼(𝑆, 𝑇 ,𝛺)
1: Find initial sequence 𝑆𝑖𝑛𝑖𝑡 and compute 𝛼(𝑆𝑖𝑛𝑖𝑡, 𝑇 ,𝛺) (see Sec-

tion 4.2)
2: 𝑆∗ = 𝑆 = 𝑆𝑖𝑛𝑖𝑡, 𝑖𝑡 = 0, 𝑁𝑙𝑖𝑚𝑖𝑡 = 10, 000
3: while (𝑖𝑡 < 𝑁𝑙𝑖𝑚𝑖𝑡) and (𝛼(𝑆, 𝑇 ,𝛺) < 1) do
4: Search neighborhood of 𝑆 to find sequence 𝑆′ with largest

𝛼(𝑆′, 𝑇 ,𝛺) (see Section 4.5)
5: if (multiple equivalent sequences) then
6: Select 𝑆′ with smallest E(𝑆′, 𝛺) (see Section 4.5)
7: end if
8: 𝑆 ← 𝑆′

9: Compute 𝛼(𝑆, 𝑇 ,𝛺)
10: if 𝛼(𝑆, 𝑇 ,𝛺) > 𝛼(𝑆∗, 𝑇 ,𝛺) then
11: 𝑆∗ = 𝑆, 𝑖𝑡 = 0
12: else
13: 𝑖𝑡 = 𝑖𝑡 + 1
14: end if
15: end while

Solution 𝑆𝑖𝑛𝑖𝑡 referred in Step 1 is obtained by applying a fast
constructive priority-rule-based heuristic (see Section 4.2) and the tabu
search of Dauzère-Pérès and Paulli (1997) minimizing the makespan
based on �̄�. Note that the tabu search of Dauzère-Pérès and Paulli
(1997) uses a lower bound on the makespan to evaluate sequences
during the search. We use a similar strategy to evaluate the makespan
service level of every sequence in the neighborhood of a given se-
quence. The idea is to compute an upper bound on the makespan
service level of such sequences as explained thoroughly in the next
section.

The current sequence is replaced by the solution in the neighbor-
hood with the largest estimated service level (Step 9 of Algorithm 1).
Depending on the neighborhood and the quality of the move evaluation
using set 𝛺, it is possible that no sequence 𝑆′ has an estimated service
level that is strictly positive or that more than one sequence is estimated
to have a largest service level. When this happens, we propose to
7

discriminate the sequences in the neighborhood by computing the
mathematical expectation of a lower bound on the makespan detailed
in the next section.

4.5. Estimating the makespan service level

In (Dauzère-Pérès and Paulli, 1997), the makespan of potential
makespan-improving sequences is estimated using a lower bound
(𝐿𝐵𝐶𝑚𝑎𝑥

) on the makespan (see Theorem 5 in (Dauzère-Pérès and Paulli,
1997)). The sequences of the neighborhood are classified using an
upper bound (𝑈𝐵𝐶𝑚𝑎𝑥

) on the length of the critical path within the
potential sequence by comparing it to the makespan of the current
sequence. If 𝑈𝐵𝐶𝑚𝑎𝑥

< 𝐶𝑚𝑎𝑥, then the corresponding sequence is
guaranteed to have a smaller makespan. In (Flores Gómez et al.,
2021), we estimated the makespan service level of the sequences in
the neighborhood by computing 𝐿𝐵𝐶𝑚𝑎𝑥

(𝑆,𝜔),∀𝜔 ∈ 𝛺, and counting
the number of scenarios for which the lower bound is smaller than or
equal to 𝑇 . This provides an upper bound on the makespan service level
of each sequence in the neighborhood:

𝑈𝐵
P̂
(

𝐶max(𝑆,𝜉)≤𝑇
) = 1

|𝛺|

∑

𝜔∈𝛺
I
(

𝐿𝐵𝐶𝑚𝑎𝑥
(𝑆,𝜔) ≤ 𝑇

)

(3)

Since 𝐿𝐵𝐶𝑚𝑎𝑥
(𝑆, ∙) is a lower bound of 𝐶𝑚𝑎𝑥(𝑆, ∙), the true value of

𝐶𝑚𝑎𝑥(𝑆,𝜔) could be larger than 𝑇 even if 𝐿𝐵𝐶𝑚𝑎𝑥
(𝑆,𝜔) ≤ 𝑇 , ∀𝜔 ∈

𝛺. This could lead to rather poor estimations of the makespan ser-
vice level. In addition to the upper bound of the makespan service
level (3), we propose to apply the upper bound 𝑈𝐵𝐶𝑚𝑎𝑥

(𝑆, ∙) on the
makespan proposed in (Dauzère-Pérès and Paulli, 1997) (see Theorem
5 in Dauzère-Pérès and Paulli (1997)) to calculate a lower bound on
the makespan service level, as follows:

𝐿𝐵
P̂
(

𝐶max(𝑆,𝜉)≤𝑇
) = 1

|𝛺|

∑

𝜔∈𝛺
I
(

𝑈𝐵𝐶𝑚𝑎𝑥
(𝑆,𝜔) ≤ 𝑇

)

(4)

To guide the decision-making process described in Algorithm 1, the
lower bound of the makespan service level (4) is used. When more than
one sequence in the neighborhood has the largest estimated makespan
service level (even if it is 0), the neighbor with the smallest E(𝑆,𝛺) =
1
|𝛺|

∑

𝜔∈𝛺 𝐿𝐵𝐶𝑚𝑎𝑥
(𝑆,𝜔) is selected.

5. Generation of new instances

New instances for the SFJSP were required for our experiments. We
extended the benchmark instances of Hurink et al. (1994) and Dauzère-
Pérès and Paulli (1997), by considering the processing times of all
operations in a given job 𝑗 ∈  as random variables 𝜉𝑖𝑘. To do this,
he following settings are used:

• The mean values 𝜇 = �̄�𝑖𝑘,∀𝑖 ∈ 𝑗 ,∀𝑘 ∈ 𝑖, where �̄�𝑖𝑘 corresponds
to the original processing time in the benchmark instances.

• The standard deviation 𝜎 = 0.15𝜇, unless indicated otherwise.
• The finite definition interval [𝑐, 𝑑] of each random variable is

defined asymmetrically compared to 𝜇 as follows: 𝑐 = 𝜇−0.2𝜇, 𝑑 =
𝜇 + 0.8𝜇. This setting allows distributions with long tails to be
generated, where abnormal occurrences of processing times are
far from the central (normal) part of the distribution.

In this paper, we consider that the random processing times follow
he beta distribution (Marshall and Olkin, 2007), which depends on
our parameters: 𝑐 and 𝑑 (limits of the definition domain), 𝑎 > 0 (shape)
nd 𝑏 > 0 (scale). The Probability Distribution Function (PDF) of the
eta distribution is recalled below:

𝛽 (𝑥|𝑎, 𝑏, 𝑐, 𝑑) =
(𝑥 − 𝑐)𝑎−1(𝑑 − 𝑥)𝑏−1

𝐵(𝑎, 𝑏)(𝑑 − 𝑐)𝑎+𝑏−1
,

here 𝐵(𝑎, 𝑏) is the beta function defined as:

(𝑎, 𝑏) =
𝛤 (𝑎)𝛤 (𝑏)

,

𝛤 (𝑎 + 𝑏)
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Table 2
Characteristics of instances from Dauzère-Pérès and Paulli (1997).

Instance | | ||

Operations
𝐶𝑚𝑎𝑥(𝑆𝑖𝑛𝑖𝑡 , �̄�)per job

01a 2655
02a 2291
03a 10 5 [15,. . . ,25] 2255
04a 2633
05a 2282
06a 2245

07a 2481
08a 2120
09a 15 8 [15,. . . ,25] 2098
10a 2440
11a 2125
12a 2063

13a 2439
14a 2211
15a 20 10 [15,. . . ,25] 2189
16a 2422
17a 2182
18a 2171

where 𝛤 is the Gamma function (𝛤 (1) = 1 and 𝛤 (𝑛) = (𝑛 − 1)!,∀𝑛 > 1)
and parameters 𝑎 and 𝑏 (𝑎, 𝑏 > 0) can be expressed as function of
𝜇, 𝜎, 𝑐, 𝑑 as follows:

𝑎(𝜇′, 𝜎′) =
𝜇′2(1 − 𝜇′)

𝜎′2
− 𝜇′,

𝑏(𝜇′, 𝜎′, 𝑎) =
𝜇′(1 − 𝜇′)

𝜎′2
− 1 − 𝑎,

here 𝜇′ = (𝜇 − 𝑐)∕𝑑 and 𝜎′ = 𝜎∕𝑑.
By virtue of the definition of the beta distribution, and given the

alues of 𝑐, 𝑑 and 𝜎, parameters 𝑎 and 𝑏 can be negative depending
on the value of 𝜇. The beta PDF is only defined for 𝑎 > 0 and 𝑏 > 0.

henever this case arises, we ensure the Beta distribution function is
ell-defined, by setting the parameters as follows: 𝑎 = 13, 𝑏 = 26, 𝑐 =
𝑎𝑥 = {1, 𝜇 − 0.5}, 𝑑 = 𝜇 + 2.5.

Based on the continuous probability distributions described above,
e consider that the true available probability distributions of stochas-

ic processing times correspond to their discrete counterparts. To dis-
retize the continuous probability distributions, a rounding-based dis-
retization procedure of the definition interval is used. The set of
cenarios 𝛺 is generated for every job 𝑗 ∈  as described in Section 4.3.

The characteristics of the benchmark instances of Dauzère-Pérès
nd Paulli (1997) and Hurink et al. (1994) can be found in Tables 2
nd 3. To construct the instances in Table 2, a probabilistic parameter
∈ {0.1, 0.3, 0.5} has been used to generate the list of machines capable

o process a given operation. In other words, parameter 𝓁 corresponds
o three levels of flexibility. Hence, instances 01a, 02a, and 03a are
nly differentiated by the value of 𝓁. The instances in Table 3 consider
ifferent levels of flexibility associated with the average number of
achines in the subsets 𝑖. In the edata instances, few operations may

e assigned to more than one machine whereas, in the rdata instances,
his is the case for most operations. In the vdata instances, all operations
an be assigned to more than one machine.

The value in Column ‘‘𝐶𝑚𝑎𝑥(𝑆𝑖𝑛𝑖𝑡, �̄�)’’ is the makespan of sequence
𝑆𝑖𝑛𝑖𝑡 determined as described in Sections 4.1–4.2, and �̄� is the scenario
defined by the processing times of the corresponding original instances.
Independently of the experiments, sequence 𝑆𝑖𝑛𝑖𝑡 is always the same for
one particular instance as well as 𝐶𝑚𝑎𝑥(𝑆𝑖𝑛𝑖𝑡, �̄�).

6. Computational experiments

Extensive numerical experiments have been conducted to investi-
gate empirically the properties of the sequences obtained by maximiz-
ing the makespan service level in the framework of the SFJSP, and
to evaluate the performance of the proposed solution approach. More
specifically, the empirical study is performed as follows:
8

e

• The relevance of the makespan service level as an optimiza-
tion criterion for the SFJSP is discussed compared to (i) Solv-
ing the FJSP instantiated with a number of reference scenarios
(see Section 6.2), and (ii) Minimizing the expected makespan
(see Section 6.3).

• Given the high computational cost induced by the Monte Carlo
sampling-based approximation of uncertain processing times, sev-
eral levers allowing its efficiency to be enhanced are investigated
in Section 7.

In the computational experiments of this paper, a single job has ran-
dom processing times. This is for example the case when a new product
is introduced in a factory, and its processing times on the different
machines are not stabilized yet. The algorithms were implemented in
C++, and the experiments run on an INTEL® CoreTM i7-9700 CPU @
3.00 GHz with 32 RAM.

6.1. Design of experiments

Numerical experiments have been conducted according to the fol-
lowing experimental plan oriented towards two main directions:

• Evaluating the relevance of maximizing service level

1. Run the tabu search approach as described in Sections 4.1–
4.2 for every instance to determine an initial solution 𝑆𝑖𝑛𝑖𝑡
based on �̄�.

2. Randomly generate a set 𝛺5000 of 5,000 scenarios divided
in 5 batches of 1000 scenarios 𝛺𝑏

1000, 𝑏 ∈ {1, 2,… , 5}. Sam-
ples of realizations of the random variables are combined
to create the set of equiprobable scenarios 𝛺.

3. Run the tabu search approach as described in Sections 4.1–
4.2 for reference scenarios 𝜔𝑞 ,∀𝑞 ∈ {0, 0.5, 0.75, 0.95, 1}
(see Section 6.2). Evaluate 𝛼(𝑆, 𝑇 ,𝛺5000) for each resulting
sequence 𝑆.

4. Determine sequence 𝑆E that minimizes E(𝐶𝑚𝑎𝑥(𝑆)) for a
given subset 𝛺500 (Section 7.1) using the tabu search ap-
proach and analyze (see Section 6.3):

(a) E(𝐶𝑚𝑎𝑥(𝑆𝑖𝑛𝑖𝑡)) and E(𝐶𝑚𝑎𝑥(𝑆E)),
(b) 𝛼(𝑆∗, 𝑇 ,𝛺5000) and 𝛼(𝑆E, 𝑇 ,𝛺5000),
(c) Computational times.

• Monte Carlo sampling-based approximation: Hyper-parameter tuning
and performance analysis

1. Determine 𝑆∗ that maximizes 𝛼(𝑆∗, 𝑇 ,𝛺𝑠) for 𝛺𝑏′ ⊆ 𝛺1
1000,

∀𝑏′ ∈ {250, 500, 750, 1000} using Algorithm 1.
2. Evaluate the impact of |𝛺𝑏′ | on (see Section 7.1):

(a) The quality of the estimated makespan service level,
(b) 𝛼(𝑆𝑖𝑛𝑖𝑡, 𝑇 ,𝛺𝑠) and 𝛼(𝑆∗, 𝑇 ,𝛺),
(c) Computational times.

3. Analyze the impact of the number of random variables per
instance and of the size of 𝛺𝑏′ (Section 7.1.3).

4. Determine 𝑆∗ that maximizes 𝛼(𝑆∗, 𝑇 ,𝛺𝑏
500),∀𝛺

𝑏
500 ⊂ 𝛺,

𝑏 ∈ {1,… , 10} using Algorithm 1, and analyze (Sec-
tion 7.2):

(a) The accuracy of the evaluation of 𝛼(𝑆𝑖𝑛𝑖𝑡, 𝑇 ,𝛺𝑏
500) for

different subsets 𝛺𝑏
500 ⊂ 𝛺,

(b) 𝛼(𝑆∗, 𝑇 ,𝛺𝑏
500),∀𝛺

𝑏
500 ⊂ 𝛺.

.2. Solving the FJSP based on reference scenarios

As introduced in Section 3.3, let 𝜔𝑞 be a reference scenario, where
very random processing time is instantiated with a value in the
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Table 3
Characteristics of instances from Hurink et al. (1994).

Instance | | ||

Operations Average |𝑖| 𝐶𝑚𝑎𝑥(𝑆𝑖𝑛𝑖𝑡 , �̄�)

per job edata rdata vdata edata rdata vdata

mt06 6 6 6 1.15 2 3 55 47 47
mt10 10 10 10 1.15 2 5 923 698 655
mt20 20 5 5 1.15 2 2.5 1157 1025 1023

la01 621 582 576
la02 662 537 532
la03 10 5 5 1.15 2 2.5 568 482 480
la04 590 509 506
la05 503 463 465

la06 833 802 800
la07 778 755 752
la08 15 5 5 1.15 2 2.5 848 769 767
la09 892 858 855
la10 866 807 806

la11 1118 1074 1074
la12 960 939 937
la13 20 5 5 1.15 2 2.5 1053 1040 1039
la14 1127 1073 1071
la15 1136 1093 1090

la16 918 717 717
la17 739 646 646
la18 10 10 10 1.15 2 5 871 669 663
la19 826 704 617
la20 875 756 756

la21 1089 873 819
la22 937 795 751
la23 15 10 10 1.15 2 5 993 882 834
la24 964 842 789
la25 985 820 764

la26 1195 1103 1064
la27 1271 1125 1097
la28 20 10 10 1.15 2 5 1240 1115 1078
la29 1243 1018 1006
la30 1299 1121 1081

la31 1616 1546 1526
la32 1735 1677 1663
la33 30 10 10 1.15 2 5 1616 1517 1504
la34 1664 1554 1541
la35 1741 1570 1554

la36 1234 1053 948
la37 1446 1109 986
la38 15 15 15 1.15 2 7.5 1228 979 943
la39 1266 1042 922
la40 1213 987 955
Table 4
Minimization of makespan for reference scenarios and instances from Dauzère-Pérès and Paulli (1997). 𝐶𝑚𝑎𝑥 = 1

| |

∑

 𝐶𝑚𝑎𝑥(𝑆,𝜔), 𝛼 = 1
| |

∑

 𝛼(𝑆, 𝑇 ,𝛺) (in %), 𝑇 = 𝐶𝑚𝑎𝑥(𝑆𝑖𝑛𝑖𝑡 , �̄�).

Inst. 𝑆0 , 𝜔0 𝑆0.5 , 𝜔0.5 𝑆0.75 , 𝜔0.75 𝑆0.95 , 𝜔0.95 𝑆1 , 𝜔1 𝑆𝑖𝑛𝑖𝑡 , �̄�

𝐶𝑚𝑎𝑥 𝛼 𝐶𝑚𝑎𝑥 𝛼 𝐶𝑚𝑎𝑥 𝛼 𝐶𝑚𝑎𝑥 𝛼 𝐶𝑚𝑎𝑥 𝛼 𝐶𝑚𝑎𝑥 𝛼

01a 2507.9 100.0 2646.1 90.0 2734.2 60.0 2789.4 35.0 2817.5 18.0 2655.0 90.0
02a 2228.8 66.0 2333.6 3.0 2396.2 0.0 2446.1 0.0 2463.7 0.0 2291.0 80.0
03a 2200.2 55.0 2310.1 0.0 2365.3 0.0 2414.8 0.0 2429.3 0.0 2255.0 77.0
04a 2527.4 95.0 2653.1 70.0 2727.5 20.0 2795.6 20.0 2826.7 10.0 2633.0 83.0
05a 2212.3 77.0 2322.1 0.0 2382.5 0.0 2433.8 0.0 2452.9 0.0 2282.0 77.0
06a 2180.3 83.0 2292.0 0.0 2346.9 0.0 2390.4 0.0 2405.7 0.0 2245.0 76.0

07a 2432.5 73.0 2528.4 13.0 2596.7 7.0 2641.1 0.0 2658.9 0.0 2481.0 80.0
08a 2079.9 43.0 2144.9 0.0 2187.5 0.0 2236.9 0.0 2259.3 0.0 2120.0 79.0
09a 2060.1 29.0 2129.1 0.0 2163.6 0.0 2214.4 0.0 2237.5 0.0 2098.0 55.0
10a 2478.6 6.0 2554.4 0.0 2615.6 0.0 2649.7 0.0 2694.5 0.0 2440.0 79.0
11a 2078.6 68.0 2148.3 0.0 2187.7 0.0 2223.8 0.0 2245.0 0.0 2125.0 61.0
12a 2032.3 25.0 2098.3 0.0 2134.3 0.0 2171.4 0.0 2190.1 0.0 2063.0 61.0

13a 2316.2 100.0 2378.6 100.0 2413.4 85.0 2444.3 75.0 2463.7 40.0 2439.0 85.0
14a 2179.0 25.0 2232.1 5.0 2261.6 0.0 2287.2 0.0 2302.0 0.0 2211.0 64.0
15a 2162.4 13.0 2214.2 0.0 2244.0 0.0 2272.2 0.0 2288.4 0.0 2189.0 62.0
16a 2319.6 100.0 2383.9 100.0 2408.8 90.0 2450.8 30.0 2460.2 20.0 2422.0 81.0
17a 2157.8 23.0 2213.2 0.0 2242.2 0.0 2264.6 0.0 2273.8 0.0 2182.0 67.0
18a 2143.1 23.0 2192.4 0.0 2220.7 0.0 2243.9 0.0 2255.4 0.0 2171.0 63.0
9
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Table 5
Minimization of makespan for reference scenarios for some instances from Hurink et al. (1994). Three rows per job (edata, rdata and vdata). 𝐶𝑚𝑎𝑥 = 1

| |

∑

 𝐶𝑚𝑎𝑥(𝑆,𝜔), 𝛼 =
1
| |

∑

 𝛼(𝑆, 𝑇 ,𝛺) (in %), 𝑇 = 𝐶𝑚𝑎𝑥(𝑆𝑖𝑛𝑖𝑡 , �̄�).

Inst. 𝑆0 , 𝜔0 𝑆0.5 , 𝜔0.5 𝑆0.75 , 𝜔0.75 𝑆0.95 , 𝜔0.95 𝑆1 , 𝜔1 𝑆𝑖𝑛𝑖𝑡 , �̄�

𝐶𝑚𝑎𝑥 𝛼 𝐶𝑚𝑎𝑥 𝛼 𝐶𝑚𝑎𝑥 𝛼 𝐶𝑚𝑎𝑥 𝛼 𝐶𝑚𝑎𝑥 𝛼 𝐶𝑚𝑎𝑥 𝛼

53.2 47.0 57.3 40.0 60.5 25.0 63.5 16.0 66.0 14.0 55.0 45.0
mt06 46.5 0.0 50.3 46.0 52.7 17.0 55.5 17.0 59.0 0.0 47.0 58.0

45.7 16.0 49.2 83.0 52.0 50.0 54.8 50.0 58.5 33.0 47.0 69.0

893.4 73.0 930.1 69.0 964.6 10.0 1014.7 0.0 1025.3 0.0 923.0 89.0
mt10 681.3 58.0 738.0 10.0 819.2 0.0 897.7 0.0 923.8 0.0 698.0 82.0

649.2 25.0 705.7 30.0 797.3 30.0 885.2 0.0 915.3 0.0 655.0 95.0

1163.6 13.0 1185.9 5.0 1207.2 0.0 1218.3 0.0 1219.4 5.0 1157.0 83.0
mt20 1015.4 32.0 1040.6 0.0 1053.4 0.0 1063.0 0.0 1066.4 0.0 1025.0 79.0

1014.4 22.0 1039.8 0.0 1052.6 0.0 1062.2 0.0 1065.4 0.0 1023.0 63.0

598.1 89.0 628.6 59.0 649.7 28.0 670.3 19.0 676.8 9.0 621.0 80.0
la01 565.6 59.0 593.4 0.0 608.6 0.0 628.3 0.0 635.4 0.0 582.0 87.0

562.8 52.0 591.3 0.0 607.9 0.0 626.3 0.0 633.2 0.0 576.0 80.0

822.8 58.0 850.9 33.0 866.8 11.0 881.0 11.0 884.6 0.0 833.0 71.0
la06 791.3 35.0 818.1 0.0 831.0 0.0 840.9 0.0 844.6 0.0 802.0 73.0

791.2 24.0 817.2 0.0 830.1 0.0 840.7 0.0 844.1 0.0 800.0 64.0

1095.0 93.0 1122.6 72.0 1136.9 30.0 1149.2 5.0 1151.6 5.0 1118.0 79.0
la11 1062.7 40.0 1089.2 1.0 1102.8 0.0 1112.8 0.0 1116.0 0.0 1074.0 67.0

1062.4 35.0 1089.4 0.0 1102.2 0.0 1112.8 0.0 1115.6 0.0 1074.0 76.0

881.2 82.0 927.9 68.0 971.2 10.0 1022.1 10.0 1041.2 19.0 918.0 84.0
la16 714.3 5.0 770.6 10.0 854.2 0.0 935.9 0.0 961.7 0.0 717.0 92.0

711.2 24.0 763.5 50.0 840.3 40.0 928.4 0.0 959.1 0.0 717.0 94.0

1048.6 91.0 1084.5 80.0 1102.1 47.0 1132.6 27.0 1139.5 7.0 1089.0 85.0
la21 847.1 83.0 881.7 20.0 926.3 0.0 985.0 0.0 1003.3 0.0 873.0 73.0

809.4 7.0 845.1 0.0 898.9 0.0 963.5 0.0 982.7 0.0 819.0 78.0

1145.7 98.0 1175.1 95.0 1198.2 65.0 1210.8 55.0 1221.3 20.0 1195.0 75.0
la26 1078.8 69.0 1103.7 65.0 1118.2 5.0 1136.0 0.0 1145.1 0.0 1103.0 74.0

1051.0 16.0 1076.6 0.0 1090.0 0.0 1111.4 0.0 1120.1 0.0 1064.0 69.0

1561.9 100.0 1587.5 100.0 1601.8 97.0 1613.5 80.0 1615.4 63.0 1616.0 71.0
la31 1521.8 80.0 1546.3 67.0 1559.6 0.0 1569.3 0.0 1572.0 0.0 1546.0 67.0

1514.6 12.0 1539.1 0.0 1551.7 0.0 1561.8 0.0 1564.4 0.0 1526.0 57.0

1164.5 99.0 1221.1 80.0 1297.1 40.0 1402.8 13.0 1434.2 7.0 1234.0 91.0
la36 1030.0 54.0 1100.5 40.0 1228.0 0.0 1358.0 0.0 1402.6 0.0 1053.0 79.0

946.2 2.0 1051.8 40.0 1204.4 0.0 1357.7 0.0 1402.6 0.0 948.0 85.0
i
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range of its definition domain [𝑐, 𝑑] corresponding to 𝑐 + (𝑑 − 𝑐)𝑞, 𝑞 ∈
0, 0.5, 0.75, 0.95, 1}.

For every instance, the processing times of the operations from the
ob considered stochastic take the values in the reference scenarios 𝜔∙,
ne job at a time. A sequence was obtained using the deterministic tabu
earch, and its makespan was computed based on the processing times
pecified by 𝜔∙. The makespan service level was also estimated based
n the set of scenarios 𝛺 = 𝛺5000 and 𝑇 = 𝐶𝑚𝑎𝑥(𝑆𝑖𝑛𝑖𝑡, �̄�).

The average results on all jobs for all instances from Dauzère-
érès and Paulli (1997) are presented in Table 4, and the results for
ome instances from Hurink et al. (1994) in Table 5. The average
esults for all instances are given in Tables B.15, B.16 and B.17 in the
upplementary material. Tables 4 and 5 show the average makespan
nd the average makespan service level obtained for every reference
cenario 𝜔𝑞 (columns ‘‘𝑆𝑞 , 𝜔𝑞 ’’), where 𝑆𝑞 is the sequence obtained

when using scenario 𝜔𝑞 . With the objective of avoiding bias due to the
computation of the initial solution, for a given instance and a given
job in that instance, the initial sequence is the same regardless of the
scenario 𝜔𝑞 . The makespan and the average makespan service level of
𝑆𝑖𝑛𝑖𝑡 are also given as reference in Column ‘‘𝑆𝑖𝑛𝑖𝑡, �̄�’’. The best service
levels are in bold.

Tables 4 and 5 show that replacing random variables with reference
scenarios does not guarantee to obtain a sequence with an acceptable
service level. In particular, Column ‘‘𝑆1, 𝜔1’’ shows rather poor results
for almost every instance, thus indicating that the use of the worst-case
scenario is not adapted to absorb small shop floor perturbations impact-
ing the processing times. This is also the case for Column ‘‘𝑆0.95, 𝜔0.95’’.
Hence, being too conservative, the worst-case scenario leads to poor
makespan service levels.
10
In Table 6, the values of the makespan and the makespan service
level are presented for each level of flexibility (edata, rdata, vdata) and
for every job in instance mt10 from Hurink et al. (1994). In addition to
the previous observations, note that no sequence has a strictly positive
service level when the worst-case scenario 𝜔1 is considered (Column
‘‘𝑆1, 𝜔1’’). This is most likely related to the fact that the upper bound
n the definition interval of every random processing time is 𝑑 = 𝜇+0.8𝜇

(i.e., 80 percent larger than the mean value). Although there is no direct
correlation between the makespan and the makespan service level as
shown Section 3.4, the minimization of the makespan based on large
𝑝𝑖(𝜔1) is insensitive to sequences respecting 𝑇 for scenarios 𝜔 ∈ 𝛺.

Let us focus our attention on scenarios 𝜔0.5 and 𝜔0.75, where every
random processing time takes the values 𝜇+0.3𝜇 and 𝜇+0.55𝜇 respec-
tively. There are cases for which the sequence has a strictly positive
service level, in particular for the most flexible vdata instances. This
observation illustrates that, given the instance and its flexibility, the
operations of some jobs are more critical than others.

In the remaining computational experiments of the paper, 𝛺500 is
sed to estimate online the makespan service level, unless indicated
therwise. For the offline evaluation of the sequences, the whole set 𝛺
s used. The estimation quality for each subset is presented in Table 12
n Section 7.1.3.

.3. Maximizing service level versus minimizing mathematical expectation

A very common practice when considering stochasticity in schedul-
ng problems is to minimize the mathematical expectation of a given
riterion. This is because of the interesting properties of the expec-
ation, but also because of the relatively easy process of adapting
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Table 6
Minimization of makespan for reference scenarios for instance 𝑚𝑡10 from Hurink et al. (1994). Three rows per job (edata, rdata and vdata). 𝐶𝑚𝑎𝑥 = 𝐶𝑚𝑎𝑥(𝑆,𝜔), 𝛼 = 𝛼(𝑆, 𝑇 ,𝛺), 𝑇 =
𝐶𝑚𝑎𝑥(𝑆𝑖𝑛𝑖𝑡 , �̄�).

Job 𝑆0 , 𝜔0 𝑆0.5 , 𝜔0.5 𝑆0.75 , 𝜔0.75 𝑆0.95 , 𝜔0.95 𝑆1 , 𝜔1 𝑆𝑖𝑛𝑖𝑡 , �̄�

𝐶𝑚𝑎𝑥 𝛼 𝐶𝑚𝑎𝑥 𝛼 𝐶𝑚𝑎𝑥 𝛼 𝐶𝑚𝑎𝑥 𝛼 𝐶𝑚𝑎𝑥 𝛼 𝐶𝑚𝑎𝑥 𝛼

885.0 99.0 932.0 0.0 950.0 0.0 965.0 0.0 983.0 0.0 923.0 88.0
1 686.0 52.0 692.0 100.0 726.0 0.0 737.0 0.0 754.0 0.0 698.0 77.0

655.0 42.0 655.0 100.0 655.0 100.0 682.0 0.0 706.0 0.0 655.0 100.0

901.0 30.0 929.0 99.0 961.0 0.0 998.0 0.0 999.0 0.0 923.0 94.0
2 686.0 95.0 709.0 0.0 784.0 0.0 883.0 0.0 914.0 0.0 698.0 84.0

655.0 3.0 660.0 0.0 784.0 0.0 883.0 0.0 914.0 0.0 655.0 90.0

870.0 70.0 926.0 100.0 1007.0 0.0 1055.0 0.0 1076.0 0.0 923.0 94.0
3 655.0 57.0 769.0 0.0 875.0 0.0 987.0 0.0 1020.0 0.0 698.0 90.0

655.0 36.0 737.0 0.0 875.0 0.0 987.0 0.0 1020.0 0.0 655.0 98.0

897.0 83.0 953.0 88.0 1014.0 0.0 1138.0 0.0 1175.0 0.0 923.0 84.0
4 672.0 3.0 849.0 0.0 1009.0 0.0 1138.0 0.0 1175.0 0.0 698.0 94.0

597.0 46.0 849.0 0.0 1009.0 0.0 1138.0 0.0 1175.0 0.0 655.0 90.0

897.0 97.0 910.0 100.0 942.0 0.0 944.0 0.0 972.0 0.0 923.0 94.0
5 686.0 96.0 713.0 0.0 731.0 0.0 739.0 0.0 739.0 0.0 698.0 82.0

655.0 80.0 655.0 100.0 655.0 100.0 678.0 0.0 702.0 0.0 655.0 94.0

894.0 95.0 930.0 0.0 929.0 98.0 989.0 0.0 961.0 0.0 923.0 79.0
6 681.0 48.0 709.0 0.0 773.0 0.0 858.0 0.0 889.0 0.0 698.0 70.0

655.0 0.0 677.0 0.0 762.0 0.0 858.0 0.0 889.0 0.0 655.0 95.0

898.0 68.0 925.0 100.0 965.0 0.0 1000.0 0.0 998.0 0.0 923.0 82.0
7 686.0 90.0 705.0 0.0 716.0 0.0 729.0 0.0 744.0 0.0 698.0 82.0

655.0 36.0 655.0 100.0 655.0 100.0 720.0 0.0 744.0 0.0 655.0 100.0

899.0 91.0 920.0 100.0 947.0 0.0 996.0 0.0 1013.0 0.0 923.0 94.0
8 686.0 1.0 733.0 0.0 828.0 0.0 934.0 0.0 965.0 0.0 698.0 82.0

655.0 7.0 697.0 0.0 828.0 0.0 934.0 0.0 965.0 0.0 655.0 94.0

890.0 58.0 949.0 0.0 958.0 0.0 1066.0 0.0 1070.0 0.0 923.0 95.0
9 689.0 69.0 773.0 0.0 919.0 0.0 1036.0 0.0 1070.0 0.0 698.0 88.0

655.0 1.0 773.0 0.0 919.0 0.0 1036.0 0.0 1070.0 0.0 655.0 89.0

903.0 39.0 927.0 99.0 973.0 0.0 996.0 0.0 1006.0 0.0 923.0 85.0
10 686.0 73.0 728.0 0.0 831.0 0.0 936.0 0.0 968.0 0.0 698.0 74.0

655.0 0.0 699.0 0.0 831.0 0.0 936.0 0.0 968.0 0.0 655.0 97.0
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deterministic methods to solve the associated stochastic scheduling
problem. In this section, we focus on the estimation of the mathematical
expectation of the makespan of sequence 𝑆 denoted by E(𝑆,𝛺), which
corresponds to E(𝐶𝑚𝑎𝑥(𝑆,𝛺)) =

∑

𝜔∈𝛺 𝐶𝑚𝑎𝑥(𝑆,𝜔)
|𝛺|

.

Algorithm 2 Given set of scenarios 𝛺, minimize E(𝑆,𝛺)

1: Find initial sequence 𝑆𝑖𝑛𝑖𝑡 and compute E(𝑆𝑖𝑛𝑖𝑡, 𝛺)
2: 𝑆E = 𝑆 = 𝑆𝑖𝑛𝑖𝑡, 𝑖𝑡 = 0, 𝑁𝑙𝑖𝑚𝑖𝑡 = 10, 000
3: while 𝑖𝑡 < 𝑁𝑙𝑖𝑚𝑖𝑡 do
4: Classify the neighborhood of 𝑆 as explained in (Dauzère-Pérès

and Paulli, 1997)
5: Choose non-tabu 𝑆′ minimizing the estimation on E(𝑆′, 𝛺)
6: 𝑆 ← 𝑆′

7: Compute E(𝑆,𝛺)
8: if E(𝑆,𝛺) < E(𝑆E, 𝛺) then
9: 𝑆E = 𝑆, 𝑖𝑡 = 0
0: else
1: 𝑖𝑡 = 𝑖𝑡 + 1
2: end if
3: end while

A tabu search procedure that minimizes E(𝑆,𝛺) is proposed in
Algorithm 2. This algorithm was then executed using online the subset
of scenarios 𝛺500. Let 𝑆E be the obtained solution by Algorithm 2 for
very job in every instance. Let us compare the solutions obtained by
aximizing the makespan service level and minimizing the expected
akespan in terms of the following indicators:

• Mean mathematical expectation per instance: E(𝑆E) = 1
| |

∑

𝑗𝑜𝑏∈
E(𝑆E, 𝛺).
11
• Gap between initial and optimized sequences: 𝛥E = 1
| |

∑

𝑗𝑜𝑏∈
[E(𝑆𝑖𝑛𝑖𝑡, 𝛺) − E(𝑆E, 𝛺)]. There is no need to apply the absolute
value of the difference between E(𝑆𝑖𝑛𝑖𝑡, 𝛺) and E(𝑆E, 𝛺), since
E(𝑆𝑖𝑛𝑖𝑡, 𝛺) ≥ E(𝑆E, 𝛺) by definition.

• Mean gap between the makespan service levels associated with 𝑆∗

(Algorithm 1) and 𝑆E: 𝛥1 =
1
| |

∑

𝑗𝑜𝑏∈ |𝛼(𝑆E, 𝑇 ,𝛺) − 𝛼(𝑆∗, 𝑇 ,𝛺)|.
• Average computational time: 𝐶𝑃𝑈 = 1

| |

∑

𝑗𝑜𝑏∈ CPU.
• Average gap 𝛥𝐶𝑃𝑈 = 1

| |

∑

𝑗𝑜𝑏∈ |CPU(𝑆∗) - CPU(𝑆E)|, where
CPU(𝑆E) (resp. CPU(𝑆∗)) is the computational time of Algorithm
2 (resp. Algorithm 1).

Two counters are introduced in this section to track the following
ccurrences:

• 𝑁𝛼(𝑆E ,𝑆∗): Number of times per instance that 𝛼(𝑆E, 𝑇 ,𝛺) > 𝛼(𝑆∗,
𝑇 ,𝛺). Note that, even if the search process is not guided by
the maximization of the makespan service level, the value of
𝛼(𝑆E, 𝑇 ,𝛺) can be larger than 𝛼(𝑆∗, 𝑇 ,𝛺) for some jobs.

• 𝑁𝐶𝑃𝑈 (𝑆E ,𝑆∗): Number of times per instance that CPU(𝑆E) <
CPU(𝑆∗).

The results of the experiments for all studied instances are presented
n Table 7 and in Tables B.18, B.19 and B.20 in the supplementary
aterial. To better analyze the metrics, in particular 𝛥E and 𝛥1, two

olumns are added to each table to point out the minimal and max-
mal values over the entire set of jobs, for E(𝑆𝑖𝑛𝑖𝑡, 𝛺) − E(𝑆E, 𝛺) and
(𝑆E, 𝑇 ,𝛺) − 𝛼(𝑆∗, 𝑇 ,𝛺), respectively. For 𝛼(𝑆E, 𝑇 ,𝛺) − 𝛼(𝑆∗, 𝑇 ,𝛺), a
egative value means that the makespan service level of 𝑆∗ is larger
han the makespan service level estimated for 𝑆E.

In columns ‘‘E(𝑆E)’’ of Table 7 (resp. Tables B.18, B.19 and B.20 in
the supplementary material), we present the mean over all jobs of the
sequences 𝑆E determined via Algorithm 2. When compared to columns
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Table 7
Minimization of E(𝑆,𝛺500) for instances from Dauzère-Pérès and Paulli (1997). 𝛥1 in percentage. 𝐶𝑃𝑈 and 𝛥𝐶𝑃𝑈 in seconds. E(𝑆) = E(𝑆,𝛺), 𝛼(𝑆) = 𝛼(𝑆, 𝑇 ,𝛺), 𝑁𝛼 = 𝑁𝛼(𝑆E ,𝑆∗ ),
𝑁𝐶𝑃𝑈 = 𝑁𝐶𝑃𝑈 (𝑆E ,𝑆∗ ).

Inst. | | E(𝑆E) 𝛥E
E(𝑆𝑖𝑛𝑖𝑡) − E(𝑆E)

𝛥1
𝛼(𝑆E) − 𝛼(𝑆∗)

𝑁𝛼 𝐶𝑃𝑈 𝛥𝐶𝑃𝑈 𝑁𝐶𝑃𝑈
𝑚𝑖𝑛 𝑚𝑎𝑥 𝑚𝑖𝑛 𝑚𝑎𝑥

01a 2641.7 2.0 0.0 9.0 5.8 −15.3 −0.7 0 92.9 80.8 10
02a 2286.6 0.2 0.0 0.5 19.1 −31.4 −5.9 0 463.9 242.7 1
03a 10 2252.8 0.2 0.0 0.5 22.1 −30.7 −10.3 0 496.4 167.2 2
04a 2624.1 1.5 0.0 8.7 6.4 −14.1 4.2 1 173.2 52.3 1
05a 2273.7 4.5 0.6 8.7 13.8 −21.9 −5.0 0 221.8 139.6 1
06a 2240.3 2.3 0.0 18.1 21.0 −35.4 −1.4 0 371.4 129.5 4

07a 2476.4 0.9 0.0 7.9 2.0 −8.1 13.4 1 331.8 129.4 0
08a 2118.3 0.2 0.0 0.4 0.5 −6.8 0.0 0 686.9 87.5 1
09a 15 2100.1 0.2 0.0 0.2 44.1 −53.6 −25.4 0 1148.4 496.6 9
10a 2437.9 0.1 0.0 0.2 12.8 −22.0 −0.9 0 330.5 66.4 3
11a 2126.7 0.1 0.0 0.5 38.2 −49.1 −29.8 0 758.4 436.5 2
12a 2064.6 0.1 0.0 0.3 37.4 −47.5 −22.9 0 2446.4 1285.2 0

13a 2436.4 0.1 0.0 0.2 1.6 −9.2 0.0 0 1264.7 797.4 0
14a 2211.7 0.5 0.0 7.9 25.7 −47.7 −5.6 0 3952.0 2519.9 0
15a 20 2190.5 0.2 0.0 0.1 33.1 −46.7 −21.5 0 8280.6 5869.2 0
16a 2412.5 7.3 4.4 11.5 8.7 −3.9 16.5 19 2069.5 1654.5 0
17a 2182.7 0.1 0.0 0.2 31.2 −51.7 −20.0 0 4547.8 2878.2 1
18a 2171.5 0.8 0.0 2.4 31.4 −45.3 −16.5 0 6179.3 4379.4 0
Table 8
Minimization of E(𝑆,𝛺500) for instance 04𝑎 from Dauzère-Pérès and Paulli (1997). 𝛼(𝑆) = 𝛼(𝑆, 𝑇 ,𝛺). 𝛼(𝑆𝑖𝑛𝑖𝑡) and 𝛼(𝑆E) in %. 𝑇 = 𝐶𝑚𝑎𝑥(𝑆𝑖𝑛𝑖𝑡 , �̄�) =
2633.

Job 𝐶𝑚𝑎𝑥(𝑆E , �̄�) E(𝑆𝑖𝑛𝑖𝑡 , 𝛺) E(𝑆E , 𝛺) 𝛼(𝑆𝑖𝑛𝑖𝑡) 𝛼(𝑆E) 𝛼(𝑆∗) CPU (in seconds)

1 2636 2632.5 2630.8 69.0 74.0 85.3 162.7
2 2633 2626.6 2626.6 79.1 79.1 88.6 175.1
3 2633 2628.1 2628.1 89.2 89.2 92.5 180.2
4 2636 2618.3 2618.1 89.1 88.9 91.1 162.8
5 2633 2625.2 2625.2 85.4 85.4 86.2 178.7

6 2633 2629.6 2629.6 76.3 76.3 85.6 178.8
7 2620 2622.7 2613.9 86.1 97.5 93.3 204.6
8 2633 2628.7 2628.7 82.5 82.5 96.7 180.7
9 2636 2619.5 2619.4 89.9 89.4 94.0 164.0
10 2636 2623.3 2620.0 87.4 90.9 95.1 144.6
‘‘𝐶𝑚𝑎𝑥(𝑆𝑖𝑛𝑖𝑡, �̄�)’’ in Tables 2 and 3, the values of E(𝑆E) are consistently
smaller than the makespan of 𝑆𝑖𝑛𝑖𝑡 computed based on �̄�. However,
this does not systematically imply that 𝐶𝑚𝑎𝑥(𝑆E, �̄�) < 𝐶𝑚𝑎𝑥(𝑆𝑖𝑛𝑖𝑡, �̄�).
The mathematical expectation E(𝑆,𝛺) does not provide any direct
indication about the value of 𝐶𝑚𝑎𝑥(𝑆, �̄�). Being out of the scope of this
study, 𝐶𝑚𝑎𝑥(𝑆, �̄�) is not explicitly given in the tables, but a tendency is
given by the columns corresponding to 𝛥E (‘‘𝛥E’’) showing the mean
improvement of the mathematical expectation between 𝑆𝑖𝑛𝑖𝑡 and 𝑆E,
as well as their maximal values. Let us take for example the fourth
row of Table 7: The value of Ē(𝐶𝑚𝑎𝑥(𝑆E, 𝛺)) = 2624.1 is smaller than
2633 with an average variation 𝛥E = 1.5. When job 10 is considered
stochastic, the gap E(𝑆𝑖𝑛𝑖𝑡, 𝛺) − E(𝑆E, 𝛺) = 3.3 as shown in Table 8,
but 𝐶𝑚𝑎𝑥(𝑆E, �̄�) > 𝐶𝑚𝑎𝑥(𝑆𝑖𝑛𝑖𝑡, �̄�). Furthermore, E(𝑆𝑖𝑛𝑖𝑡, 𝛺) < 𝐶𝑚𝑎𝑥(𝑆𝑖𝑛𝑖𝑡, �̄�)
when job 10 is stochastic. As for the makespan and the makespan
service level, the mathematical expectation of 𝐶𝑚𝑎𝑥 is not correlated
to the makespan.

𝐶𝑃𝑈 , resp. 𝛥𝐶𝑃𝑈 , indicates the average CPU time of Algorithm 2,
resp. the mean absolute gap of the CPU time of Algorithm 2 compared
to the CPU time of Algorithm 1. Following our experiments, we ob-
served that the execution times of every iteration for both algorithms
are equivalent on average. 𝑁𝐶𝑃𝑈 (𝑆E ,𝑆∗) also indicates the number of
times per instance that CPU(𝑆E) < CPU(𝑆∗). If 𝑁𝐶𝑃𝑈 (𝑆E ,𝑆∗) is close to
the number of jobs, it means that Algorithm 2 does not perform well
on that particular instance.

Performance indicator 𝛥1 measures the mean absolute difference
between the makespan service levels of sequences 𝑆E and 𝑆∗ deter-
mined using Algorithm 1. This helps to compare the effectiveness of
both methods, in particular given the smoothing effect of the mean
between normal and abnormal processing times. To provide a better
understanding of the performance of Algorithms 1 and 2, two columns
12
with the minimal and maximal values are added to each table (𝑚𝑖𝑛
and max ), and 𝑁𝛼(𝑆E ,𝑆∗), the number of times that 𝛼(𝑆E, 𝑇 ,𝛺) is larger
than 𝛼(𝑆∗, 𝑇 ,𝛺). In other words, 𝑁𝛼(𝑆E ,𝑆∗) indicates how many times
Algorithm 2 outperforms Algorithm 1 in terms of the makespan service
level. Because of the fact that the goal of Algorithm 2 is not the maxi-
mization of 𝛼, 𝑁𝛼(𝑆E ,𝑆∗) represents a very small set of the jobs (regularly
empty) for most instances. This phenomenon is also reflected by the
values in columns ‘‘𝑚𝑎𝑥 ’’, which, when negative, presents a smaller
makespan service level for 𝑆E for all jobs in that particular instance.
However, there are specific instances for which this is not the case, in
particular for the least flexible instances (𝑒𝑑𝑎𝑡𝑎 instances from Hurink
et al. (1994) and 04a, 07a and 16a from Dauzère-Pérès and Paulli
(1997)). Let us take for example the seventh row of Table 8, Algorithm
2 outperforms Algorithm 1, but there is a significant improvement gap
between 𝛼(𝑆∗) and 𝛼(𝑆𝑖𝑛𝑖𝑡). The fact that 𝛼(𝑆E) − 𝛼(𝑆𝑖𝑛𝑖𝑡) is large could
be explained by an insufficient number of iterations of the tabu search.
Furthermore, when Jobs 4 and 9 are stochastic, there is even a slight
decrease in the makespan service level despite the improvement of the
mathematical expectation. In terms of the relevance of the makespan
service level, in the rare situations where 𝛼(𝑆E, 𝑇 ,𝛺) > 𝛼(𝑆∗, 𝑇 ,𝛺),
there is a very high probability of completing all jobs before the
deadline, which does not happen systematically when minimizing the
mathematical expectation, as shown by the results in this section.

7. Monte Carlo sampling-based approximation: Hyper-parameter
tuning and performance analysis

Monte Carlo based-methods are very general and have many prac-

tical applications, including in the field of stochastic programming
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(Homem-de-Mello and Bayraksan, 2014). The principle behind Monte
Carlo sampling-based approximation is relatively simple. For example,
in the case of E(𝐶𝑚𝑎𝑥(𝑆)), a crude Monte Carlo estimate is an average
f 𝐶𝑚𝑎𝑥(𝑆,𝜔), ∀𝜔 ∈ 𝛺. The simplicity of Monte Carlo based-methods
omes at an expensive price in terms of computational time. Since
he makespan is a random variable in the context of the problem
nder study with a given threshold, it is a known result that the
ariance of this estimate is 1

|𝛺|

V(𝐶𝑚𝑎𝑥(𝑆)) and the root mean square

error is 𝑂(|𝛺|

− 1
2 ), meaning an accuracy of 𝜖 requires |𝛺| = 𝑂(𝜖−2)

cenarios (Hammersley and Handscomb, 1964; Giles, 2015). In other
ords, the smaller the error, the larger the set of scenarios required by

he Monte Carlo sampling-based approximation.
This section is dedicated to discussing the levers allowing us to

onciliate the efficiency and effectiveness of the Monte Carlo sampling-
ased approximation used in the tabu search approach. In Section 7.1,
e first study to which extent the sample size of 𝛺 can be reduced
ithout degrading the solution quality. To enhance the competitiveness
f the proposed approach, we analyze the sensitivity of the makespan
ervice level estimation, by distinguishing the set of scenarios used to
valuate the quality of moves (online or a priori evaluation) from the set
f scenarios used to check the quality of best-found solutions (offline or
posteriori evaluation) in Section 7.2.

.1. Approximation error induced by reducing the sample size

One major drawback of Algorithm 1 is the time consumed to eval-
ate the service level of moves during the search, which depends on
he size of the set of scenarios 𝛺. To study the impact of the sample

size, several runs of Algorithm 1 were conducted with different subsets
𝛺𝑠 of sizes 𝑠 ∈ {250, 500, 750, 1000}. Every subset 𝛺𝑠 contains the first
𝑠 scenarios in set 𝛺, such that:

𝛺250 ⊂ 𝛺500 ⊂ 𝛺750 ⊂ 𝛺1000 ⊆ 𝛺1
1000 ⊂ 𝛺

The estimation quality of each subset can be found in Table 12.
In this section, let both the online and offline evaluation of candidate
sequences be based on the same set 𝛺𝑠 ⊂ 𝛺, and 𝑆∗ be the sequence
found by Algorithm 1 when one of the jobs in  is stochastic. Consider
the following performance indicators provided in Table 9 and Tables
B.21, B.22 and B.23 in the supplementary material for all instances:

• Error of estimation 1
| |

∑

𝑗𝑜𝑏∈ |𝛼(𝑆∗, 𝑇 ,𝛺) − 𝛼(𝑆∗, 𝑇 ,𝛺𝑠)|: This per-
formance indicator reflects the impact of reducing the sample size
during the entire search process on average over the set of jobs
against 𝛺. Note that the sample size plays a crucial role since,
at every iteration of Algorithm 1, the whole neighborhood of
the current sequence is evaluated to identify the move with the
best-estimated makespan service level (see Section 4.4).

• Improvement gap: 1
| |

∑

𝑗𝑜𝑏∈ [𝛼(𝑆∗, 𝑇 ,𝛺)−𝛼(𝑆𝑖𝑛𝑖𝑡, 𝑇 ,𝛺𝑠)]. This per-
formance indicator measures the gap between the initial
makespan service level 𝛼(𝑆𝑖𝑛𝑖𝑡, 𝑇 ,𝛺𝑠) (approximated on 𝛺𝑠) and
the final makespan service level 𝛼(𝑆∗, 𝑇 ,𝛺) (approximated on 𝛺).
When this gap is negative (in the worst case), it is set to zero
since 𝛼(𝑆∗, 𝑇 ,𝛺) = 𝛼(𝑆𝑖𝑛𝑖𝑡, 𝑇 ,𝛺), thus the relative value of the
difference is sufficient.

• Average computational times 𝐶𝑃𝑈 involved by Algorithm 1 over
jobs in every instance. In Columns ‘‘𝐶𝑃𝑈 ’’ of Table 9 and Tables
B.21, B.22 and B.23 in the supplementary material, aside from
few exceptions, there is a clear correlation between the size of
𝛺𝑠 and the computational time of Algorithm 1, as it takes less
time to run when the smaller subsets are used to approximate the
makespan service level.
13
7.1.1. On the error of estimation
Generally, the smaller 1

| |

∑

𝑗𝑜𝑏∈ |𝛼(𝑆∗, 𝑇 ,𝛺) − 𝛼(𝑆∗, 𝑇 ,𝛺𝑠)| the bet-
er. To be more specific, an estimation error close to 0 means that the
erformed reduction of the sample size does not influence the quality
f the estimation of the makespan service level. As observed in Table 9
n Columns ‘‘ 100%

| |

∑

 |𝛼(𝑆∗, 𝛺) − 𝛼(𝑆∗, 𝛺𝑠)|’’, this is never the case. In
act, since the size of 𝛺𝑠 in three of four cases is smaller than the order
f magnitude of 𝛺 (103 versus 104), there is an additional significant
igit in the evaluation based on the full set of scenarios, which almost
uarantees a non-zero error. However, in general, the average absolute
rror is smaller than 6%, which could indicate that for all subsets
𝑠, there is a ±3% margin of error against 𝛺. This interval decreases
ith the increase of the reduced sample size, and thus the quality
f estimation improves as shown in Fig. 6, where the dispersion of
oints in the box-plot tightens as the number of scenarios in subset 𝛺𝑠
ncreases. In Fig. 6, 10 evaluations (one per job in instances 𝑚𝑡10−𝑒𝑑𝑎𝑡𝑎

and 𝑚𝑡10−𝑣𝑑𝑎𝑡𝑎) are plotted per subset 𝛺𝑠. The dispersion of the points
follows the general observation, both in terms of wideness with respect
to the sample size and of the error margin for the less flexible instance,
and mostly for the more flexible instance, with the exception of 𝛺500.

7.1.2. On the improvement gap
Let us now focus on the improvement gap. The larger 1

| |

∑

𝑗𝑜𝑏∈
𝛼(𝑆∗, 𝑇 ,𝛺) − 𝛼(𝑆𝑖𝑛𝑖𝑡, 𝑇 ,𝛺𝑠)], the more the proposed solution approach
s effective. A large value of service level maximization indicates that
sing the mean values of the processing times to find a sequence
inimizing the makespan is not as effective for the SFJSP as maximiz-

ng the makespan service level. The improvement of 𝛼(𝑆∗, 𝑇 ,𝛺) over
(𝑆𝑖𝑛𝑖𝑡, 𝑇 ,𝛺𝑠) is set to zero when negative. The results presented in
olumn ‘‘ 100%

| |

∑

𝑗𝑜𝑏∈ [𝛼(𝑆∗, 𝑇 ,𝛺)−𝛼(𝑆𝑖𝑛𝑖𝑡, 𝑇 ,𝛺𝑠)]’’ of Table 9 and Tables
B.21, B.22 and B.23 (supplementary material) show improvement for
every considered sample size and every instance with the exception of
instances 𝑙𝑎14− 𝑒𝑑𝑎𝑡𝑎 and 𝑙𝑎30− 𝑒𝑑𝑎𝑡𝑎 from Hurink et al. (1994). How-
ever, there is not a clear tendency related to the impact of the sample
size on the improvement gap. As shown in Fig. 7, the improvement gap
varies within a similar range for this particular instance ([0, 10.4]) ∀𝛺𝑠,

hich confirms the general observation. It is important to highlight that
he estimation error is consistent with the improvement gap since the
akespan service levels of 𝑆𝑖𝑛𝑖𝑡 and 𝑆∗ are not estimated using the same

et of scenarios.
Let us pay particular attention to the approximation quality induced

y set 𝛺500 used in Section 6. In Table 10 and Tables B.24, B.25 and
.26 (supplementary material), the performance indicators are calcu-

ated for subsets 𝛺500 and 𝛺1000. The error margins and the maximal
values of improvement are provided for all jobs.

The results show that the makespan service levels calculated based
on 𝛺500 and 𝛺1000 are very similar. Although, in general, the values
of 𝛼(𝑆∗, 𝑇 ,𝛺) − 𝛼(𝑆∗, 𝑇 ,𝛺𝑠) are closer to 0 for 𝛺1000 than for 𝛺500
as shown in Columns ‘‘𝑚𝑖𝑛 ’’ and ‘‘𝑚𝑎𝑥 ’’, and confirmed in Columns
‘‘ 100%

| |

∑

 |𝛼(𝑆∗, 𝛺) − 𝛼(𝑆∗, 𝛺𝑠)|’’, the difference between the results ob-
ained with 𝛺500 and 𝛺1000 is rarely larger than 1%. Meanwhile, the
verage improvement in computational time is substantial for every
nstance as shown in Column ‘‘𝐶𝑃𝑈 ’’. The improvement gap is also

similarly wide regardless of the size of the subset used during the
search, both on average and for the maximal value, as indicated by
Columns ‘‘ 100%

| |

∑

 [𝛼(𝑆∗, 𝛺) − 𝛼(𝑆𝑖𝑛𝑖𝑡, 𝛺𝑠)]’’ and ‘‘𝑚𝑎𝑥 ’’. Due to the
number of experiments and the small difference in the results obtained
when using these two subsets, the use of 𝛺500 to evaluate online the
candidate sequence and of 𝛺 to evaluate offline the final sequence are
justified.

7.1.3. Quantifying the impact of the dimensionality of the uncertainty on
the sample size

As indicated by the results in Tables 9 and 10 as well as in Tables
B.21, B.22 B.23, B.24, B.25 and B.26 in the supplementary material, the
performance of the proposed approach vary very differently from one
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Table 9
Results for subsets of scenarios 𝛺𝑠, 𝑠 ∈ {250, 500, 750, 1000} for instances from Dauzère-Pérès and Paulli (1997). 𝛼(𝑆,𝛺) = 𝛼(𝑆, 𝑇 ,𝛺).

Inst.
100%
| |

∑

 |𝛼(𝑆∗ , 𝛺) − 𝛼(𝑆∗ , 𝛺𝑠)|
100%
| |

∑

 [𝛼(𝑆∗ , 𝛺) − 𝛼(𝑆𝑖𝑛𝑖𝑡 , 𝛺𝑠)] 𝐶𝑃𝑈 (s)

𝛺250 𝛺500 𝛺750 𝛺1000 𝛺250 𝛺500 𝛺750 𝛺1000 𝛺250 𝛺500 𝛺750 𝛺1000

01a 1.1 0.6 0.4 0.3 6.7 6.8 7.0 6.7 99.5 173.6 129.7 236.0
02a 0.7 0.6 0.4 0.2 19.2 19.2 19.4 19.6 93.3 241.9 349.8 680.4
03a 1.3 0.6 0.4 0.2 22.8 22.3 22.1 22.1 245.2 523.9 383.9 864.2
04a 2.1 1.4 0.7 0.6 8.6 7.3 8.7 8.6 107.2 132.1 168.8 219.8
05a 0.9 0.5 0.3 0.1 22.9 23.8 23.9 23.6 91.0 88.6 96.1 398.5
06a 0.7 0.7 0.3 0.2 23.8 22.8 23.7 23.4 376.4 360.4 568.7 1107.9

07a 2.2 1.6 1.1 1.0 0.3 0.5 2.3 0.9 154.3 202.3 211.8 268.5
08a 2.0 1.1 1.1 1.0 0.5 0.5 0.5 0.4 340.7 601.3 381.4 455.5
09a 1.6 0.6 0.3 0.3 44.9 45.5 44.7 45.1 644.6 1298.1 1239.1 1649.6
10a 1.2 1.0 0.8 0.6 13.1 13.0 12.5 12.8 163.3 314.7 230.8 266.8
11a 0.9 0.6 0.3 0.3 39.4 38.1 38.4 38.3 239.3 393.1 415.3 677.1
12a 1.3 0.7 0.5 0.4 37.6 37.7 37.5 37.2 720.8 1161.2 1103.6 1560.9

13a 1.5 0.9 0.7 0.6 0.7 1.7 0.8 0.6 275.3 467.3 378.1 473.5
14a 1.9 1.0 0.7 0.5 25.5 27.3 24.2 26.6 991.8 1432.1 1246.8 1591.7
15a 1.3 0.9 0.6 0.5 33.4 34.3 32.0 32.5 1615.6 2411.4 2393.4 2798.4
16a 2.1 1.1 1.1 0.8 5.0 6.0 4.8 5.4 274.6 415.1 360.1 436.5
17a 1.5 0.7 0.5 0.5 31.4 33.2 31.6 28.7 1093.9 1869.5 1919.4 2513.1
18a 1.5 0.9 0.6 0.4 35.2 36.2 35.5 35.6 1286.6 1799.9 2311.2 2674.0
Table 10
Results for instances from Dauzère-Pérès and Paulli (1997): 𝛺500 vs. 𝛺1000. 𝛼(𝑆,𝛺) = 𝛼(𝑆, 𝑇 ,𝛺).

Inst.

100%
| |

∑

 |𝛼(𝑆∗ , 𝛺) − 𝛼(𝑆∗ , 𝛺𝑠)|
100%
| |

∑

 [𝛼(𝑆∗ , 𝛺) − 𝛼(𝑆𝑖𝑛𝑖𝑡 , 𝛺𝑠)] 𝐶𝑃𝑈 (s)

𝛺500 𝛺1000 𝛺500 𝛺1000 𝛺500 𝛺1000

𝑚𝑖𝑛 max 𝑚𝑖𝑛 max 𝑚𝑎𝑥 𝑚𝑎𝑥
01a 0.5 −1.2 1.6 0.3 −0.5 1.0 6.5 16.0 6.4 15.7 158.2 215.2
02a 0.5 −1.4 0.5 0.2 −0.6 0.0 17.0 32.8 17.3 30.2 237.9 636.2
03a 0.5 −1.3 0.1 0.2 −0.5 0.1 19.1 32.4 19.1 32.1 465.2 710.6
04a 1.2 −2.5 2.2 0.5 −1.6 0.9 5.9 14.6 7.0 15.6 120.9 198.1
05a 0.5 −1.4 −0.0 0.1 −0.3 0.0 21.4 41.8 21.2 39.6 63.5 349.1
06a 0.6 −0.9 2.1 0.2 −0.4 0.2 21.4 35.6 21.8 35.0 345.7 969.3

07a 1.4 −2.2 3.9 0.9 −2.2 2.1 0.5 2.4 0.3 8.4 190.1 237.7
08a 1.0 −1.4 4.8 1.0 −2.1 2.3 0.5 7.8 0.4 6.6 578.4 426.2
09a 0.6 −1.0 0.1 0.3 −0.8 0.4 42.0 56.0 41.7 54.8 1199.1 1499.1
10a 0.8 −1.2 3.1 0.6 −1.3 1.4 12.1 21.4 11.8 21.6 297.3 249.0
11a 0.6 −1.1 −0.2 0.3 −0.5 −0.0 35.7 47.6 35.8 48.0 386.0 627.5
12a 0.7 −1.3 −0.2 0.4 −1.0 0.2 35.5 49.2 35.1 49.4 1042.3 1360.9

13a 0.9 −2.8 2.5 0.5 −1.5 1.5 1.1 11.4 0.6 3.0 461.6 451.4
14a 0.9 −4.6 1.0 0.4 −1.3 0.7 26.8 47.0 26.1 41.5 1324.2 1538.9
15a 0.9 −2.0 1.3 0.5 −1.4 0.7 32.0 48.4 30.1 46.2 2392.3 2580.8
16a 1.0 −2.3 2.9 0.8 −1.9 1.9 5.3 12.8 4.8 13.1 391.7 396.1
17a 0.7 −1.8 −0.0 0.4 −1.1 2.0 31.6 53.6 28.3 50.9 1809.8 2457.1
18a 0.9 −2.0 −0.3 0.3 −1.7 0.1 34.9 50.8 34.3 49.6 1786.4 2626.6
v
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instance to another. This could be related to the fact that the number
of considered random variables 𝑛 is not the same for every instance, as
t depends on the job that is stochastic. Also, and differently than in
tochastic JSP, where there is a single machine per operation and thus
nly one random variable per operation, in the SFJSP the number of
andom variables depends on the considered level of flexibility. There-
ore, a study on the impact of the sample size on the representativity
f each random variable for each instance was conducted. The three
ifferent levels of flexibility were considered separately for instances
rom Dauzère-Pérès and Paulli (1997) (parameter 𝓁 ∈ {0.1, 0.3, 0.5})
nd from Hurink et al. (1994) (edata, rdata, vdata). For a given level of

flexibility, all instances (one for each job and each instance) are sorted
in non-increasing order according to the number of random variables:
90 per level of flexibility for instances from Dauzère-Pérès and Paulli
(1997) and 711 per level of flexibility for instances from Hurink et al.
(1994). The associated relationships are illustrated in Figures B.11 and
B.12 (supplementary material).

Since the instances are sorted in non-increasing order of the number
of random variables 𝑛, the number of scenarios per random variable
decreases when 𝑛 increases and the sample size drops regardless of
the considered level of flexibility. However, the steepness of the evo-
lution of the descent is more significant for the most flexible instances
14

f

because, as stated earlier, a larger level of flexibility implies a larger
number of processing times in the benchmark instances and thus a
larger number of random variables in the instances. For example, for
the jobs with more operations (left to right in the axis ‘‘Instances’’) in
the least flexible instances (𝓁 = 0.1 and 𝑒𝑑𝑎𝑡𝑎), the number of scenarios
per random variable when |𝛺∙| = 500 (𝛺∙ ⊂ 𝛺) is between 150 and 200
(axis ‘‘𝑁𝑏_𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜𝑠

𝑁𝑏_𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠 ’’). This number is divided by a factor of ten which is
significant. This difference is even more extreme for the most flexible
cases (𝓁 = 0.5 and 𝑣𝑑𝑎𝑡𝑎) since the number of scenarios per random
ariable decreases to between 40 and 50 when |𝛺∙| = 5000 which is
ot the subset used in the search process, thus reducing significantly
he representativity of each random variable in the sample size.

These observations are also confirmed by the impact of the sample
ize 𝑠 on the approximation error of the makespan service level quan-
ified by 𝛼(𝑆𝑖𝑛𝑖𝑡, 𝑇 ,𝛺) − 𝛼(𝑆𝑖𝑛𝑖𝑡, 𝑇 ,𝛺𝑠), ∀𝑠 ∈ {100, 200,… , 4800, 4900},
here 𝛺𝑠 includes the first 𝑠 scenarios of 𝛺. The empirical results

or 𝛼(𝑆𝑖𝑛𝑖𝑡, 𝑇 ,𝛺) − 𝛼(𝑆𝑖𝑛𝑖𝑡, 𝑇 ,𝛺𝑠) are presented in Fig. 8 depending on
he number of scenarios 𝑠 (‘‘|𝛺𝑠|’’), and for every instance (sorted in
on-decreasing order of the number of random variables). The three
ifferent levels of flexibility were considered separately for instances

rom Dauzère-Pérès and Paulli (1997) (𝓁 ∈ {0.1, 0.3, 0.5}).
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Fig. 6. Box-plot associated with the error of estimation (in %) for each subset 𝛺𝑠 for
instances 𝑚𝑡10 − 𝑒𝑑𝑎𝑡𝑎 and 𝑚𝑡10 − 𝑣𝑑𝑎𝑡𝑎 from Hurink et al. (1994). One point per job.

Consider the plot corresponding to the least flexible instances (𝓁 =
0.1) in Fig. 8. This figure shows that the gap is quite large for the
small subsets 𝛺𝑠 for all instances in general, but the ones with more
random variables (left to right in the axis ‘‘Instances’’) present larger
estimation errors of 𝛼(𝑆𝑖𝑛𝑖𝑡). This observation also applies to the other
levels of flexibility. Since more flexibility implies more random vari-
ables per instance, there is a clear difference in the convergence of
the approximation error that requires more scenarios for more flexible
instances.

The number of random variables per instance is equal to the sum of
the size of subsets of the machines capable to execute each operation
(∑𝑖∈𝑂𝑗

|𝑖|) for every operation in a given job 𝑗. It depends on the
level of flexibility of the instance. However, for the evaluation of the
makespan service level of a particular sequence, only one random
variable per operation is considered, since every operation 𝑖 is already
assigned to a machine in 𝑖 as in a classical JSP. An overview of the
number of random variables per instance is presented in Table 11, after
15

the assignment of the operations to the machines, ranging between
Fig. 7. Box-plot representing the dispersion of values of the improvement gap (in %)
for each subset 𝛺𝑠 for instances 𝑚𝑡10−𝑒𝑑𝑎𝑡𝑎 and 𝑚𝑡10−𝑣𝑑𝑎𝑡𝑎 from Hurink et al. (1994).
One point per job.

5 and 25 for all instances for all flexibility levels. During the explo-
ration of the neighborhood, the number of random variables after the
machine assignment to operations: (i) is the same when evaluating a
sequence, where the moved operation stays in the same machine, and
(ii) increases by one when evaluating a sequence, where the moved
operation changes from one machine to another. In this case, 𝛾 = 0
in Eq. (2) since it is not a known value. The approximation quality
of the makespan service level is calculated via Eq. (5) as proposed
by Luedtke and Ahmed (2008) and presented in Table 12 for different
sample sizes and ∀𝑛 ∈ {5, 6,… , 26} with 𝛽 = 0.01.

𝜖 ≥

√

1
2𝑁

(

ln 1
𝛽
+ 𝑛 ln𝑈

)

(5)

7.2. Approximation error induced by a leave-one-out online–offline evalu-
ation scheme

As previously specified, the uncertainty in our approach is repre-

sented via a set of randomly generated scenarios. To assess the online
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Fig. 8. Estimation error 𝛼(𝑆𝑖𝑛𝑖𝑡 , 𝑇 ,𝛺) − 𝛼(𝑆𝑖𝑛𝑖𝑡 , 𝑇 ,𝛺𝑠) depending on the sample size and the number of random variables for instances from Dauzère-Pérès and Paulli (1997).
Table 11
Number of random variables per flexibility level before and after the assignment of
operations to machines.

Hurink et al. (1994) Dauzère-Pérès and Paulli (1997)

FJSP JSP FJSP JSP

Low flexibility [5,20] [5,15] [15,34] [15,25]
Medium flexibility [6,36] [5,15] [22,74] [15,25]
High flexibility [8,114] [5,15] [33,125] [15,25]

valuation of the makespan service level, 10 runs of Algorithm 1
re conducted using 10 mutually-exclusive subsets 𝛺𝑏

500 ⊂ 𝛺, 𝑏 ∈
1,… , 10}. Each subset 𝛺𝑏

500 represents the 𝑏th batch of 500 scenarios
n 𝛺. Since |𝛺| = 5000, there are 10 such subsets in 𝛺. Set 𝛺500 used in
he previous sections corresponds to 𝛺1

500. The final sequence obtained
y Algorithm 1 with 𝛺𝑏

500 is denoted by 𝑆∗
𝛺𝑏
500

. To cross-evaluate the
mpact of the sampling set used online in Algorithm 1, the following
erformance indicators are considered:

• Estimation error of 𝑆𝑖𝑛𝑖𝑡 induced by the leave-one-out evaluation
scheme 1

| |

∑

𝑗𝑜𝑏∈ |𝛼(𝑆𝑖𝑛𝑖𝑡, 𝑇 ,𝛺) − 𝛼(𝑆𝑖𝑛𝑖𝑡, 𝑇 ,𝛺𝑏
500)|,

• Improvement gap 1
| |

∑

𝑗𝑜𝑏∈ [𝛼(𝑆
∗
𝛺𝑏
500

, 𝑇 ,𝛺)−𝛼(𝑆𝑖𝑛𝑖𝑡, 𝑇 ,𝛺)] based on
an online–offline move evaluation scheme. The offline makespan
service level estimation is done using the whole set 𝛺.

he aforementioned indicators are presented in Tables 13–14 and in
ables B.27–B.32 in the supplementary material.

In general, the average estimation error induced by the leave-one-
ut evaluation scheme of 𝑆𝑖𝑛𝑖𝑡 stay in a similar range for all subsets
𝑏
500, as shown in Table 13, and Tables B.27, B.28 and B.29 (sup-
lementary material). Note that the mean compensates for extreme
alues for certain instances. In this sense, consider the dispersion of
(𝑆𝑖𝑛𝑖𝑡, 𝑇 ,𝛺) − 𝛼(𝑆𝑖𝑛𝑖𝑡, 𝑇 ,𝛺𝑏

500),∀𝑏 ∈ {1,… , 10} for instance 𝑚𝑡10 − 𝑒𝑑𝑎𝑡𝑎
rom Hurink et al. (1994) in Fig. 10, which varies between −3% and
%. The only exceptions correspond to 𝛺1

500 and 𝛺9
500 for 𝑚𝑡10 − 𝑒𝑑𝑎𝑡𝑎.

he evaluation of 𝛼(𝑆𝑖𝑛𝑖𝑡) based on these sets is ±4% far compared to 𝛺,
t least for one job. The random generation of scenarios is evidenced by
he different values of the gaps. However, the range of the dispersion
s very consistent regardless of the considered subset. In Columns
‘𝑚𝑖𝑛 , 𝑏’’ and ‘‘𝑚𝑎𝑥 , 𝑏’’, the extreme estimation errors found for all
atches for all jobs are shown jointly with the corresponding (different)
atches 𝑏. Although these values show systematically a large range,
hey seldom correspond to the same batch, meaning the dispersion for
very subset 𝛺𝑏

500 is tighter than [𝑚𝑖𝑛 , 𝑚𝑎𝑥 ].
The results based on the online–offline evaluation scheme are pre-

ented in Table 14 and in Tables B.30, B.31 and B.32 (supplementary
aterial). Column ‘‘𝑚𝑖𝑛 , 𝑏’’ (resp. ‘‘𝑚𝑎𝑥 , 𝑏’’) presents the smallest
16

 
Fig. 9. Box-plot associated with the improvement gap (in %) for subset 𝛺𝑏
500 ⊂ 𝛺, 𝑏 ∈

{1,… , 10} for instances 𝑚𝑡10 − 𝑒𝑑𝑎𝑡𝑎 and 𝑚𝑡10 − 𝑣𝑑𝑎𝑡𝑎 from Hurink et al. (1994). One
point per job. 𝛼(𝑆,𝛺) = 𝛼(𝑆, 𝑇 ,𝛺), 𝑇 = {923, 653}.

(resp. largest) improvement ∀𝑏 ∈ {1,… , 10} and the associated argu-
ment (batch 𝑏) per job and instance. If the minimum improvement gap
is equal to 0, batch 𝑏 in Column ‘‘𝑚𝑖𝑛 , 𝑏’’ corresponds to the first batch
detected. The more the flexibility level (i.e., parameter 𝓁) of instances,
the more the improvement gap as shown in Table 14. Only instances
07a, 10a, 13a, and 16a (𝓁 = 0.1) present 𝑚𝑖𝑛 , 𝑏 = 0. Furthermore,
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Table 12
Estimation quality for every subset 𝛺𝑠 depending on the number of random variables and sample size 𝑠.

# Random variables 5 6 7 8 9 10 11 12 13 14 15

𝛺250 0.25 0.27 0.29 0.31 0.33 0.35 0.36 0.38 0.39 0.40 0.42
𝛺500 0.19 0.20 0.22 0.23 0.25 0.26 0.27 0.28 0.29 0.30 0.31
𝛺750 0.16 0.17 0.18 0.20 0.21 0.22 0.23 0.24 0.25 0.25 0.26
𝛺1000 0.14 0.15 0.16 0.17 0.18 0.19 0.20 0.21 0.22 0.23 0.23
𝛺 0.07 0.07 0.08 0.09 0.09 0.09 0.10 0.10 0.11 0.11 0.12

# Random variables 16 17 18 19 20 21 22 23 24 25 26

𝛺250 0.43 0.44 0.46 0.47 0.48 0.49 0.50 0.51 0.52 0.53 0.54
𝛺500 0.32 0.33 0.34 0.35 0.36 0.37 0.38 0.38 0.39 0.40 0.41
𝛺750 0.27 0.28 0.29 0.29 0.30 0.31 0.32 0.32 0.33 0.34 0.34
𝛺1000 0.24 0.25 0.25 0.26 0.27 0.27 0.28 0.29 0.29 0.30 0.30
𝛺 0.12 0.12 0.13 0.13 0.13 0.14 0.14 0.14 0.14 0.15 0.15
Table 13
Estimation error of 𝑆𝑖𝑛𝑖𝑡 induced by leave-one-out online evaluation with 𝛺𝑏

500 ⊂ 𝛺,∀𝑏 ∈ {1,… , 10} against 𝛺 for instances from Dauzère-Pérès and Paulli (1997). 𝛼(𝛺) =
𝛼(𝑆𝑖𝑛𝑖𝑡 , 𝑇 ,𝛺).

Inst.
100%
| |

∑

 |𝛼(𝑆𝑖𝑛𝑖𝑡 , 𝑇 ,𝛺) − 𝛼(𝑆𝑖𝑛𝑖𝑡 , 𝑇 ,𝛺𝑏
500)| 𝛼(𝛺) − 𝛼(𝛺𝑏

500) (%)

𝑏 = 1 𝑏 = 2 𝑏 = 3 𝑏 = 4 𝑏 = 5 𝑏 = 6 𝑏 = 7 𝑏 = 8 𝑏 = 9 𝑏 = 10 𝑚𝑖𝑛 , 𝑏 𝑚𝑎𝑥 , 𝑏

01a 1.3 0.7 1.4 1.4 1.2 1.3 1.1 1.0 0.9 1.0 −5.1, 4 3.7, 3
02a 1.4 1.5 1.3 1.0 1.7 1.6 1.2 1.1 1.4 1.6 −3.9, 10 6.4, 5
03a 1.6 1.7 1.3 1.8 1.9 1.6 2.1 1.0 1.3 1.3 −3.5, 2 4.9, 1
04a 1.2 1.0 1.6 1.2 1.2 0.7 1.3 1.1 0.8 1.1 −3.2, 3 4.2, 1
05a 1.9 0.8 2.5 1.4 1.1 1.4 1.5 2.0 1.2 1.9 −5.2, 6 5.0, 8
06a 1.8 1.3 1.3 1.3 0.6 1.2 1.7 1.1 1.2 1.2 −3.9, 1 4.2, 3

07a 1.5 1.4 1.1 1.4 1.7 1.5 1.8 1.3 1.0 1.5 −6.2, 7 4.4, 5
08a 1.2 1.4 1.2 0.9 2.0 1.3 1.3 0.9 1.7 1.2 −4.9, 5 4.1, 7
09a 2.2 1.6 1.4 1.6 1.8 1.8 1.8 1.6 1.6 1.9 −6.5, 6 5.6, 8
10a 1.7 1.2 1.3 1.3 1.7 1.6 1.7 1.5 1.5 1.1 −5.0, 7 4.4, 8
11a 1.6 1.6 1.4 2.0 1.4 1.9 1.5 1.3 1.4 1.8 −4.8, 10 4.4, 2
12a 1.5 1.9 2.1 1.8 1.4 1.5 1.7 1.8 1.5 1.8 −5.9, 3 5.8, 9

13a 1.0 1.5 1.3 0.8 0.7 1.3 1.1 1.3 1.1 1.7 −3.8, 8 3.9, 10
14a 1.8 1.0 1.4 1.9 1.1 1.9 1.9 1.8 1.5 1.4 −5.4, 6 5.0, 6
15a 1.6 1.7 1.6 1.5 1.6 1.7 1.5 1.5 1.6 1.5 −4.2, 3 5.2, 9
16a 1.5 1.0 1.5 1.0 1.4 1.3 1.2 1.0 0.9 1.3 −4.2, 3 3.5, 1
17a 1.8 1.8 2.2 1.3 1.5 1.3 1.4 1.6 1.4 1.4 −4.4, 3 3.9, 2
18a 1.7 1.7 1.4 1.6 2.0 1.9 1.8 1.6 2.0 1.9 −5.9, 5 5.0, 5
Table 14
Improvement gap between initial and optimized sequences based on subsets 𝛺𝑏

500 ⊂ 𝛺, 𝑏 ∈ {1,… , 10} for instances from Dauzère-Pérès and Paulli (1997). 𝛼(𝑆) = 𝛼(𝑆, 𝑇 ,𝛺).

Inst.
100%
| |

∑

 [𝛼(𝑆
∗
𝛺𝑏

500
, 𝑇 ,𝛺) − 𝛼(𝑆𝑖𝑛𝑖𝑡 , 𝑇 ,𝛺)] 𝛼(𝑆∗

𝛺𝑏
500
) − 𝛼(𝑆𝑖𝑛𝑖𝑡) (%)

𝑏 = 1 𝑏 = 2 𝑏 = 3 𝑏 = 4 𝑏 = 5 𝑏 = 6 𝑏 = 7 𝑏 = 8 𝑏 = 9 𝑏 = 10 𝑚𝑖𝑛 , 𝑏 𝑚𝑎𝑥 , 𝑏

01a 7.6 7.2 7.4 7.9 6.9 6.8 7.8 8.0 7.5 8.0 0.5, 1 16.5, 7
02a 17.6 16.6 17.4 18.0 18.1 18.1 17.4 17.4 18.2 18.1 3.7, 5 31.2, 10
03a 20.0 20.1 20.1 20.3 20.0 20.3 20.1 20.2 20.2 20.2 7.7, 7 29.8, 4
04a 6.9 9.3 8.0 8.0 8.0 8.0 8.0 6.9 8.0 6.5 0.5, 1 30.1, 2
05a 19.2 19.8 19.9 19.2 19.6 19.9 19.5 19.8 21.2 20.6 3.0, 7 35.7, 1
06a 21.5 21.7 21.6 21.7 21.0 21.6 21.5 21.7 21.1 21.2 11.2, 10 34.7, 3

07a 0.3 0.6 1.2 0.5 0.2 0.6 1.1 0.7 0.6 0.3 0.0, 1 8.7, 3
08a 15.3 16.3 15.7 17.0 15.7 17.2 16.0 16.3 17.1 16.4 4.4, 1 24.9, 6
09a 39.7 39.3 39.7 39.6 39.6 39.5 39.7 39.4 39.4 39.5 21.7, 5 52.2, 2
10a 11.8 11.9 11.3 11.8 11.9 11.4 11.9 11.5 11.7 11.7 0.0, 2 24.2, 3
11a 36.1 36.1 36.2 35.9 36.2 36.2 36.0 36.2 36.2 36.0 27.1, 10 45.3, 10
12a 35.6 35.6 35.3 35.4 35.3 35.5 35.5 35.6 35.7 35.5 21.2, 5 45.8, 5

13a 0.7 0.6 0.1 0.8 0.6 0.5 0.4 0.6 0.7 0.7 0.0, 1 5.2, 4
14a 25.6 25.0 25.4 24.1 22.4 23.7 22.3 25.9 21.9 25.9 3.8, 9 44.6, 6
15a 31.7 32.3 32.3 33.2 31.4 30.6 32.9 32.9 33.7 31.2 11.4, 8 44.8, 1
16a 6.2 7.5 6.3 7.5 6.4 7.4 7.0 7.4 6.4 7.0 0.0, 1 22.7, 7
17a 28.0 27.5 27.5 25.7 27.7 28.1 27.8 26.6 26.4 27.1 10.6, 9 40.9, 7
18a 33.7 33.5 33.6 33.7 33.5 33.5 33.6 33.4 33.6 33.7 19.8, 4 46.0, 2
the values in column ‘‘𝑚𝑎𝑥 , 𝑏’’ are always larger for the instances with
𝓁 = 0.3 and 𝓁 = 0.5. The improvement gap is very consistent on average
regardless of the subset 𝛺𝑏

500 as shown in Fig. 9 regardless of the level of
flexibility, where 𝛼(𝑆∗

𝛺𝑏
500

, 𝑇 ,𝛺) − 𝛼(𝑆𝑖𝑛𝑖𝑡, 𝑇 ,𝛺) is plotted for all batches
for all jobs for instances 𝑚𝑡10−𝑒𝑑𝑎𝑡𝑎 and 𝑚𝑡10−𝑣𝑑𝑎𝑡𝑎. The improvement
is between 0% and 8%, except for 𝑏 = 4 and 𝑏 = 6 for 𝑚𝑡10− 𝑒𝑑𝑎𝑡𝑎, and
between 0% and 12% in the case of 𝑚𝑡10 − 𝑣𝑑𝑎𝑡𝑎.
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8. Conclusions and perspectives

In this paper, we maximize the makespan service level in the
stochastic flexible job-shop scheduling problem. The relevance of the
studied optimization criterion is explicitly shown compared to (i) the
minimization of the expected makespan, and (ii) the minimization
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Fig. 10. Box-plot associated with the estimation error (in %) for subset 𝛺𝑏
500 ⊂ 𝛺,

∀𝑏 ∈ {1,… , 10} for instances 𝑚𝑡10 − 𝑒𝑑𝑎𝑡𝑎 and 𝑚𝑡10 − 𝑣𝑑𝑎𝑡𝑎 from Hurink et al. (1994).
One point per job. 𝛼(𝑆,𝛺) = 𝛼(𝑆, 𝑇 ,𝛺), 𝑇 = {923, 653}.

of the makespan for several reference scenarios. To solve the con-
sidered optimization problems, a tabu search approach is combined
with a Monte Carlo sampling-based approximation when dealing with
uncertainty. New randomly generated instances are proposed for the
stochastic flexible job-shop scheduling problem. To overcome the ex-
pensive computational cost specific to Monte-Carlo approximations,
extensive numerical experiments have been conducted to study the
impact of critical hyper-parameters while keeping particular atten-
tion to the quality of the proposed sequences. The main managerial
implications are:

• Solving the SFJSP by approximating the random processing times
with reference statistical summaries (min, max, mean) does not
necessarily lead to a sequence with an acceptable service level.

• Considering the worst-case scenario (occurring under abnormal
conditions) is not adapted to absorb small shop-floor perturba-
tions impacting the processing times. Being too conservative, the
worst-case scenario leads to poor makespan service levels.

• Given the smoothing effect of the mean, minimizing the expected
makespan may lead to over-conservative sequences with respect
to processing times under normal operating conditions, in partic-
ular in the case of long-tail frequency distributions. This does not
necessarily lead to deadline-compatible sequences.
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• As long as the deadline is consistent with the processing of jobs
under normal operating conditions, maximizing the makespan
service level leads to deadline-compatible solutions while ne-
glecting the tails of the frequency distributions of processing
times.

The following perspectives are being investigated. Even if a study
on the dimensionality of the uncertainty and its impact depending on
the instance flexibility was presented for a fixed number of scenarios
for all instances, other advanced sampling-based techniques could be
applied to represent uncertainties accurately. The random fashion in
which the scenarios are generated is being replaced by a more efficient
generation based on the discretization of all random variables and the
comparability of scenarios. This should lead to new approaches for
the optimization of the makespan service level while integrating some
properties of the problem at hand. Although an important goal of
this paper is to show the relevance of the notion of makespan service
level in stochastic scheduling, it would be interesting to compare the
presented approach with other known solution approaches such as
simulated annealing and genetic algorithms. The notion of critical jobs
in the stochastic version of the FJSP is also an interesting subject, as
it could help to design more efficient methods and from a practical
standpoint, could lead to more robust schedules. Similar problems to
the one presented in this paper are also being targeted, for example, the
consideration of a resource as the source of uncertainty (new machine
in the workshop) rather than the operations of a given job. Also,
minimizing the value of 𝑇 given a minimum makespan service level, as
in the work of Beck and Wilson (2007), could be interesting to study.
Finally, we intend to explore other service levels such as the tardiness
or the weighted sum of the tardiness, by relying on the works in (Mati
et al., 2011) and (García-León et al., 2015).
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Appendix A. Nomenclature

 Set of jobs
 Set of available machines 𝑘
 = ∪𝑗∈ Set of operations partitioned into a set of jobs 
𝑖 Subset of machines capable of executing

operation 𝑖
�̄�𝑖𝑘 Deterministic processing time of operation 𝑖 on

machine 𝑘
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𝑁 Set of nodes. One by operation in set  ∪ {0, ∗}
𝐴 Set of conjunctive arcs modeling the routing

within jobs
𝐸 Set of disjunctive arcs modeling the potential

sequencing of the operations such that
𝐸 = ∪𝑘∈𝐸𝑘

𝐺 = (𝑁,𝐴,𝐸) Disjunctive graph presented in Section 4.1
𝑆 Feasible selection of conjunctive arcs from 𝐸

representing a feasible sequence
𝐺′ = (𝑁,𝐴, 𝑆) Conjunctive graph presented in Section 4.1
𝐿(𝑖, 𝑗) Longest path between operations 𝑖 and 𝑗
𝑟𝑖 Release date (head) of operation 𝑖 such that

𝑟𝑖 = 𝐿(0, 𝑖)
𝑞𝑖 Delivery time (tail) of 𝑖 such that 𝑞𝑖 = 𝐿(𝑖, ∗) − 𝑝𝑖𝑘′

with 𝑖 assigned to 𝑘′

𝑆𝑖𝑛𝑖𝑡 Initial sequence for tabu search
𝑆∗ Final sequence found by a given solution

approach
𝑆E Sequence maximizing E(𝐶𝑚𝑎𝑥(𝑆))
𝜉𝑖𝑘 Random processing time of operation 𝑖 on

machine 𝑘
𝜉 Multivariate random variable of dimension 𝑛
𝑎, 𝑏 Shape parameters for the beta probability

distribution. 𝑎 > 0, 𝑏 > 0
[𝑐𝑖𝑘, 𝑑𝑖𝑘] Definition interval for the four parameter beta

probability law
𝑓𝛽 (𝑥|𝑎, 𝑏, 𝑐, 𝑑) Four parameter beta probability law
𝜇, 𝜎 Mean and standard deviation of the considered

probability distribution
𝛺 Set of scenarios 𝜔 as described in Section 6.1
𝑝𝑖𝑘(𝜔) Realization of 𝑝𝑖𝑘 in scenario 𝜔
�̄� Scenario in which every random processing time

is its mean value 𝜇
𝐶𝑚𝑎𝑥(𝑆,𝜔) Makespan of sequence 𝑆 for processing times

from 𝜔 ∈ 𝛺
𝜔𝑞 Reference scenarios, where random processing

times take the value of 𝑐 + (𝑑 − 𝑐) ⋅ 𝑞
𝛺𝑠 ⊂ 𝛺 Subset of scenarios containing the first 𝑠 scenarios

in 𝛺
𝛺𝑏

5000 𝑏th subset of 𝛺 of 500 scenarios, 𝑏 ∈ {1, 2,… , 10}
𝑆∗
𝛺𝑏
5000

Sequence found by Algorithm 1 using subset
𝛺𝑏

5000 for intermediate evaluations
𝑇 Predetermined threshold
𝛼(𝑆, 𝑇 ) Makespan service level of sequence 𝑆 when time

is limited to 𝑇
𝛼(𝑆, 𝑇 ,𝛺) Estimation of 𝛼(𝑆, 𝑇 ) using set of scenarios 𝛺
E(𝐶𝑚𝑎𝑥(𝑆)) Expectation on the makespan of sequence 𝑆
E(𝑆,𝛺) Estimation on E(𝐶𝑚𝑎𝑥(𝑆)) of sequence 𝑆 using set

𝛺
𝛥E

1
| |

∑

𝑗𝑜𝑏∈ [E(𝑆𝑖𝑛𝑖𝑡, 𝛺) − E(𝑆E, 𝛺)]

𝛥1
1
| |

∑

𝑗𝑜𝑏∈ |𝛼(𝑆𝐸 , 𝑇 ,𝛺) − 𝛼(𝑆∗, 𝑇 ,𝛺)|

Estimation error 1
| |

∑

𝑗𝑜𝑏∈ |𝛼(𝑆∗, 𝑇 ,𝛺𝑠) − 𝛼(𝑆∗, 𝑇 ,𝛺)| (Section 7.1)

Improvement gap 1
| |

∑

𝑗𝑜𝑏∈ 𝛼(𝑆∗, 𝑇 ,𝛺) − 𝛼(𝑆𝑖𝑛𝑖𝑡, 𝑇 ,𝛺𝑠) (Section 7.1)
Estimation error 1

| |

∑

𝑗𝑜𝑏∈ |𝛼(𝑆𝑖𝑛𝑖𝑡, 𝑇 ,𝛺) − 𝛼(𝑆𝑖𝑛𝑖𝑡, 𝑇 ,𝛺𝑏
500)|

(Section 7.2)
Improvement gap 1

| |

∑

𝑗𝑜𝑏∈ [𝛼(𝑆
∗
𝛺𝑏
500

, 𝑇 ,𝛺) − 𝛼(𝑆𝑖𝑛𝑖𝑡, 𝑇 ,𝛺)]

(Section 7.2)
E(𝑆E) 1

| |

∑

𝑗𝑜𝑏∈ E(𝑆E, 𝛺)

𝛥𝐶𝑃𝑈
1
| |

∑

𝑗𝑜𝑏∈ |CPU(𝑆∗) - CPU(𝑆E)|

𝐶𝑃𝑈 1
| |

∑

𝑗𝑜𝑏∈ CPU time
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𝑁𝛼(𝑆E ,𝑆∗) Number of times per instance that
𝛼(𝑆𝐸 , 𝑇 ,𝛺) > 𝛼(𝑆∗, 𝑇 ,𝛺)

𝑁𝐶𝑃𝑈 (𝑆E ,𝑆∗) Number of times per instance that CPU(𝑆E) <
CPU(𝑆∗)

Appendix B. Supplementary data

Supplementary material related to this article can be found online
at https://doi.org/10.1016/j.cor.2023.106237.
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