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Abstract
This paper aims at linking the work presented in Dauzère-Pérès et al. (1998) and more
recently in Kasapidis et al. (2021) on the multiresource flexible job-shop scheduling
problem with nonlinear routes or equivalently with arbitrary precedence graphs. In par-
ticular, we present a mixed integer linear programming (MIP) model and a constraint
programming (CP) model to formulate the problem. We also compare the theorems
introduced in Dauzère-Pérès et al. (1998) and Kasapidis et al. (2021) and propose a
new theorem extension. Computational experiments were conducted to assess the effi-
ciency and effectiveness of all propositions. Lastly, the proposed MIP and CP models
are tested on benchmark problems of the literature and comparisons are made with
state-of-the-art algorithms.
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1 INTRODUCTION

The flexible job-shop scheduling problem (FJSP) is an exten-
sion of the classical job-shop scheduling problem, where
each operation has a subset of machines on which it can
be processed. Hence, operations must also be assigned to,
and not only sequenced on, machines. Several relevant exten-
sions of the FJSP have been considered in the literature. In
this paper, we are studying the relationships between the
work presented in Dauzère-Pérès et al. (1998) and Kasapidis
et al. (2021) on the FJSP with nonlinear routes, also called
arbitrary precedence graphs. Next, we focus on the mul-
tiresource FJSP with arbitrary precedence graphs that was
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first introduced in Dauzère-Pérès et al. (1998). We present
a mixed integer linear program (MILP) and a constraint pro-
gramming model (CP) for the problem as well as thorough
computational experimentation.

To our knowledge, the combination of arbitrary precedence
graphs and multiple necessary resources has very rarely been
considered in the literature. The FJSP where an arbitrary
directed acyclic graph models general precedence constraints
between operations has been named differently in Ivens and
Lambrecht (1996) (assembly and split structures), Dauzère-
Pérès et al. (1998) (nonlinear routes), Schutten (1998)
(convergent and divergent job routings), Birgin et al. (2015)
(sequencing flexibility), Lunardi et al. (2020), and Kasapidis
et al. (2021) (arbitrary precedence constraints). Multiple nec-
essary resources for an operation in the FJSP are explicitly
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considered for the first time in Dauzère-Pérès et al. (1998).
Another related extension of the FJSP, where each opera-
tion may have multiple modes, is initially studied in Brucker
and Neyer (1998). A mode corresponds to a predefined set
of resources required by an operation. However, consider-
ing multiple modes is different than considering multiple
necessary resources as the latter allows more flexibility.

The remainder of this paper is structured as follows.
Section 2 provides a detailed description of the problem,
while Section 3 introduces the MILP and the CP models.
Section 4 presents some comparisons among the theorems
presented in Dauzère-Pérès et al. (1998) and Kasapidis et al.
(2021), while also proposing a new theorem extension. Sec-
tion 5 presents and discusses numerical results on benchmark
instances, and Section 6 provides conclusions and some
future research prospects.

2 PROBLEM DESCRIPTION

In this section, we adopt the nomenclature for the FJSP
with arbitrary precedence graphs as presented in Kasapidis
et al. (2021) and extend it so as to incorporate multiple
resources following Dauzère-Pérès et al. (1998). The FJSP
with arbitrary precedence graphs and multiple resources can
be described as follows: There is a set of jobs J = {1, … , l}
to be processed on a set of resources R = {1, … ,m}. Every
job u ∈ J consists of a set of operations Ou, and let set
Ω = {1, … , n} denote the set of all operations of the prob-
lem, that is, Ω =

⋃
u∈J Ou. Every operation i ∈ Ω requires

a set Gi = {1, … , gi} of different resources, called necessary
resources. Every necessary resource j ∈ Gi must be selected
in a set of available resources Ri,j ∈ R. Note that two sets Ri,j
and Ri,j′ such that j ≠ j′ are not necessarily disjoint. How-
ever, the same resource cannot be assigned to operation i for
multiple necessary resources.

The processing time required to process operation i on
a resource k ∈ R is denoted by pi,k. Also, an operation i
is assumed to be completed when the processing of all
its assigned resources is completed. The total processing
time of an operation i is denoted by pi. Assuming that
𝛼(i, j) ∈ Ri,j denotes the resource selected as the necessary
resource j of operation i, pi can be calculated as follows: pi =

maxj∈Gi
pi,𝛼(i,j). Moreover, every operation i may have mul-

tiple predecessors and successor operations that are denoted
by sets PJi and SJi, respectively. Furthermore, let i◦u and i∗u
denote two dummy operations that correspond to the first and
the last operations of a job u ∈ J.

For the sake of completeness, let sets i and i denote
the sets of all predecessor and successor operations of
operation i. Let also pk(i) and f k(i) denote the immedi-
ate resource predecessor and successor operations of i on
resource k ∈

⋃
j∈Gi

Ri,j. Lastly, as in Dauzère-Pérès et al.
(1998), we assume that an operation starts simultaneously
on all the resources k ∈ R assigned to the operation and that
the resources are occupied for the same amount of time. This
policy is called “simultaneous occupation” in this paper.

3 PROBLEM MODELING

In this section, we present two formulations for the problem:
A MILP model in Section 3.1 and a CP model in Section 3.2.

3.1 MILP model

This section introduces a MILP model for the FJSP with
arbitrary precedence graphs and multiple resources with
simultaneous occupation constraints. The following variables
are considered. Let ti denote the completion time of opera-
tion i ∈ Ω and ti,j the completion time of operation i ∈ Ω

on its jth necessary resource, where j ∈ Gi. Binary variable
Yi,j,k is equal to one if resource k ∈ Ri,j is assigned as the jth
necessary resource of operation i and zero otherwise. Binary
variable Xi,i′,k is equal to one if two operations i and i′ are
assigned to the same resource k ∈ R and i′ is processed after
i and zero otherwise.

minimize Cmax (1)

subject to ∑
k∈Ri,j

Yi,j,k = 1 ∀i ∈ Ω, ∀j ∈ Gi (2)

∑
∀j∈Gi

∑
k∈Ri,j

Yi,j,k ≤ 1 ∀i ∈ Ω (3)

pi ≥
∑

k∈Ri,j

Yi,j,kpi,k ∀i ∈ Ω, ∀j ∈ Gi (4)

ti ≥ ti′ + pi ∀i ∈ Ω, ∀j ∈ Gi, ∀i′ ∈ PJi (5)

ti ≥ ti′ + pi −(2 + Xi,i′,k − Yi,j,k − Yi′,j′,k)

∀i, i′ ∈ Ω, ∀j ∈ Gi, ∀j′ ∈ Gi′ ,

∀k ∈ Ri,j ∩ Ri′,j′ (6)

ti′ ≥ ti + pi′ −(3 − Xi,i′,k − Yi,j,k − Yi′,j′,k)

∀i, i′ ∈ Ω, ∀j ∈ Gi, ∀j′ ∈ Gi′ ,

∀k ∈ Ri,j ∩ Ri′,j′ (7)

ti ≥ 0 ∀i ∈ Ω (8)

Cmax ≥ ti∗u ∀u ∈ J (9)

Xi,i′,k ∈ {0, 1} ∀i, i′ ∈ Ω, ∀k ∈ R (10)

Yi,j,k ∈ {0, 1} ∀i ∈ Ω, ∀j ∈ Gi, ∀k ∈ Ri,j (11)

As for the classical FJSP, the objective is to minimize
the makespan, see (1). Constraints (2) enforce one available
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resource k to be used for the processing of the jth neces-
sary resource of operation i. Constraints (3) ensure that an
available resource k cannot be used more than once for the
requirements of operation i. Constraints (4) are responsible
for the calculation of the actual time that the execution of
an operation i requires. Constraints (5) ensure that the com-
pletion time of every operation i is larger than the completion
time of any predecessor operation j ∈ PJi. Constraints (6) and
(7) guarantee that all operations are processed sequentially by
the available resources. Constraints (8) enforce all comple-
tion times to be positive. Constraints (9) are used to calculate
the makespan, while Constraints (10) and (11) set the domain
values for the binary variables X and Y , respectively.

3.2 CP formulation

In this section, we present the CP formulation for the FJSP
with arbitrary precedence graphs and multiple resources with
simultaneous occupation. The nomenclature of the IBM CP
Optimizer is used. We refer the reader to Kasapidis et al.
(2021) for a comprehensive discussion of the key constraint
expressions and variable types supported by the IBM CP
Optimizer used to model the FJSP and its variants.

A decision interval variable 𝜏i is defined for every oper-
ation i ∈ Ω and a decision interval variable 𝜏i,j for every
operation i ∈ Ω and necessary resource j ∈ Gi. In addition,
the decision interval variable 𝜙i,j,k is used to represent the dif-
ferent execution modes of the jth necessary resource of an
operation i on a resource k ∈ Ri,j. Note that the Size attribute
of decision interval variables 𝜙i,j,k ∀i ∈ Ω, ∀j ∈ Gi, ∀k ∈ Ri,j,
is not constrained since the resources are occupied for the
entire execution of operation i. The set 𝜇i,j = {𝜙i,j,k, ∀k ∈
Ri,j} is used to represent all the available execution modes
on the jth necessary resource of operation i. Note that 𝜇i,j
is the domain set of variable 𝜏i,j. Lastly, a sequence interval
decision variable 𝜎k is defined per resource k over the set of
interval variables 𝜎k = {𝜙i,j,k, ∀i ∈ Ω, ∀j ∈ Gi}.

minimize Cmax (12)

subject to

Alternative(𝜏i,j, 𝜇i,j) ∀i ∈ Ω, ∀j ∈ Gi (13)

PresenceOf (𝜙i,j′,k) + PresenceOf (𝜙i,j,k) ≤ 1

∀i ∈ Ω, ∀j, j′ ∈ Gi, j
′ > j,

∀k ∈ Ri,j′ ∩ Ri,j, j
′ > j (14)

StartOf (𝜏i,j) = StartOf (𝜏i) ∀i ∈ Ω, ∀j ∈ Gi (15)

EndOf (𝜏i) ≥ EndOf (𝜏i,j) ∀i ∈ Ω, ∀j ∈ Gi (16)

StartOf (𝜏i) ≥ EndOf (𝜏i′ ) ∀i ∈ Ω, ∀i′ ∈ PJi (17)

SizeOf (𝜙i,j,k) ≥ Sizeof (𝜏i) ∀i ∈ Ω, ∀j ∈ Gi, ∀k ∈ Ri,j

(18)

SizeOf (𝜙i,j,k) ≥ pi,k ∀i ∈ Ω, ∀j ∈ Gi, ∀k ∈ Ri,j (19)

NoOverlap(𝜎k) ∀k ∈ R (20)

Cmax ≥ EndOf (𝜏i) ∀i ∈ Ω (21)

Objective (12) refers to the minimization of the makespan.
Constraints (13) are used to select only one available resource
k per necessary resource j of operation i, while Constraints
(14) ensure that the same resource is not used more than once
for the same operation. Constraints (15) ensure that all the
necessary resources are occupied simultaneously as soon as
operation i starts. Constraints (16) are used to calculate the
completion time of operation i. Constraints (17) make sure
that precedence relations between operations are respected.
Constraints (18) ensure that all the available resources k ∈
Ri,j, ∀j ∈ Gi are occupied for the entire execution of opera-
tion i, while Constraints (19) set a lower bound for variables
𝜙i,j,k. Constraints (20) make sure that resources execute only
one operation at a time. Lastly, Constraints (21) calculates
the objective.

4 MOVE FEASIBILITY CHECK
AND EVALUATION IN A
NEIGHBORHOOD-BASED
METAHEURISTIC

A common way to model and solve scheduling problems
is through a disjunctive graph D(V ,A,E), where the set of
nodes V represents the operations i ∈ Ω, plus the dummy
start and finish operations 0 and ∗, while the conjunctive arcs
in A model the immediate precedence relationships between
operations in the route of a job, and disjunctive arcs in E
link operations that can be assigned to the same resource
k ∈ R.

A solution s of the problem can be represented by a
conjunctive graph G(V ,A, S) ⊂ D, where S is obtained by
replacing a conjunctive arc (when two operations are assigned
to the same resource) or deleting (if two operations are not
assigned to the same resource) each disjunctive arc in set
E. Since the available resources are only capable of process-
ing operations sequentially and operations are processed only
once, any graph G that represents a feasible solution should
be a directed acyclic graph.

A popular and efficient way to solve the FJSP is to use
neighborhood-based metaheuristics that rely on the disjunc-
tive graph model, by performing local “moves” from one
conjunctive graph to another. The first integrated move for
the FJSP is proposed in Dauzère-Pérès and Paulli (1997),
where operation i is indifferently resequenced on the same
machine or reassigned to another machine between two
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operations v and w sequenced consecutively on a machine.
Two critical questions need to be answered when design-
ing a neighborhood-based solution approach for the FJSP
or one of its extensions: (1) “Is a move feasible?” and (2)
“What is the value of the objective function after perform-
ing a move?” Both questions can be answered by actually
performing a move to check its feasibility and calculate the
value of the objective function, that is, the makespan, which
requires to traverse the directed graph after the move. How-
ever, when the number of possible moves to evaluate is very
large, as in the connected neighborhood structure and Tabu
Search of Dauzère-Pérès and Paulli (1997), the resulting com-
putational times are prohibitive. Hence, conditions have been
proposed in the literature to guarantee feasibility and estimate
the makespan without actually performing any move. These
conditions rely on the head (length of the longest path from
operation 0 to operation i) ri, the tail (length of the longest
path from the end of operation i to operation ∗) qi, the set i
of all predecessors in G and the set i of all successors in G
of each operation i ∈ Ω (see, e.g., Dauzère-Pérès & Paulli,
1997, for more details).

Regarding move feasibility, Remark 1 specifies that the
conditions in Dauzère-Pérès et al. (1998) and Kasapidis et al.
(2021), both extended from the ones in Dauzère-Pérès and
Paulli (1997), are equivalent. This is because, since the opera-
tion is moved on only one resource at a time in Dauzère-Pérès
et al. (1998), the graph can be seen as an arbitrary precedence
graph (or with nonlinear routes) for the arcs associated with
the resources that are not reassigned.

Remark 1. Theorem 1 in Kasapidis et al. (2021) is equivalent
to Theorem 1 in Dauzère-Pérès et al. (1998).

Regarding the criterion estimation of a move, Remark 2
specifies that the evaluation in Dauzère-Pérès et al. (1998)
and Kasapidis et al. (2021) is different. While the evaluation
in Kasapidis et al. (2021) is a direct extension of an arbitrary
precedence graph of the evaluation proposed in Dauzère-
Pérès and Paulli (1997), the evaluation in Dauzère-Pérès et al.
(1998) aims at reducing the computational effort by avoiding
enumerating all paths in graph G. More precisely, the evalu-
ation in Dauzère-Pérès et al. (1998) only requires to consider
the heads and tails of operations.

Remark 2. Theorem 2 in Kasapidis et al. (2021) is not
equivalent to Theorem 5 in Dauzère-Pérès et al. (1998).

Hence, following Remark 2, we propose to further extend
Theorem 5 in Dauzère-Pérès and Paulli (1997), already
extended in Kasapidis et al. (2021) for an arbitrary prece-
dence graph, to consider multiple necessary resources for
operations in the FJSP with an arbitrary precedence graph.
Theorem 1 below presents the resulting lower bound.

Theorem 1. The makespan after moving operation i between
two consecutive operations v and w in the available resource
k ∈ Ri,j, ∀j ∈ Gi, and such that Theorem 1 in Dauzère-Pérès

et al. (1998) holds, is always larger than or equal to

LB(i, v,w) = max

(
r̂v + pv, max

∀e∈PJi

(re + pe)

)
+ p̃i

+ max

(
q̂w + pw, max

∀e∈SJi

(qe + pe)

)
, (22)

where

r̂v =

⎧⎪⎨⎪⎩
rv − rsmi

+max

(
max

∀e∈PJsmi

(re+pe), rpmi
+ppmi

)
if i ∈ v,

rv if i ∉ v,

(23)

q̂w =

⎧⎪⎨⎪⎩
qw − qpmi

+max

(
max

∀e∈SJpmi

(qe+pe), qsmi
+psmi

)
if i ∈ w,

qw if i ∉ w

(24)

Proof. The proof follows the ones of Theorem 5 in Dauzère-
Pérès and Paulli (1997) and Theorem 2 in Kasapidis et al.
(2021). The only difference lies in the processing times, which
are now calculated considering multiple resources as shown
in Section 2. Note that the processing time p̃i corresponds to
the processing time of operation i after the move,that is, p̃i =

maxj∈Gi
pi,�̃�(i,j), where �̃�(i, j) denotes the selected necessary

resources after the move. □

The numerical results of Section 5 show that the evaluation
in Dauzère-Pérès et al. (1998) does not significantly reduce
the computational times compared to the evaluation in The-
orem 1, although the accuracy of the former is poorer than
the latter.

Another way of evaluating a move, called the Lpath
method, is proposed in Dell’Amico and Trubian (1993) for
the classical JSP, that is, when operations are moved to the
same machine in the FJSP. The Lpath method is extended for
the FJSP in González et al. (2015), and for the FJSP with
arbitrary precedence graphs in Kasapidis et al. (2021).

Lastly, note that Dauzère-Pérès et al. (1998) also show that
the resulting neighborhood structure is connected, that is, it
allows an optimal solution to be reached in a finite number
of moves.

5 COMPUTATIONAL EXPERIMENTS

In this section, we present and discuss the results of the
computational experiments conducted in this paper. More
specifically, Section 5.1 includes the assessment of Theo-
rems 1 and 5 of Dauzère-Pérès et al. (1998) and the extended
Lpath method, while Section 5.2 compares the results of
the proposed MILP and CP models to state-of-the-art results
using well-known benchmarks of the literature.
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TA B L E 1 Accuracy assessment of move evaluations on FJSP instances with linear precedence graphs.

Method > Cmax < Cmax Cmax Accuracy (%) Time(s)

Lpath 185,655 580,405 19,233,940 96.17 0.017

Theorem 1 4,123,396 0 15,876,604 79.38 0.010

Theorem 5 of Dauzère-Pérès et al. (1998) 11,470,719 0 8,529,281 42.65 0.008

TA B L E 2 Accuracy assessment of move evaluations on FJSP instances with arbitrary precedence graphs.

Method > Cmax < Cmax Cmax Accuracy (%) Time(s)

Lpath 703,986 438,907 18,857,107 94.29 0.016

Theorem 1 2,701,880 0 17,298,120 86.49 0.008

Theorem 5 of Dauzère-Pérès et al. (1998) 10,638,390 0 9,361,610 46.81 0.007

With regard to implementation, the IBM ILOG CPLEX
Solver (v22.1.0), respectively the IBM ILOG CP Optimizer
(v22.1.0), was used for the MILP model, respectively for the
CP model. An Intel Core i7-7700 processor and 16.0GB of
RAM were used, with a common time limit of 10,800 s for
both the MILP and the CP models.

5.1 Move evaluation assessment

To assess Theorems 1 and 5 of Dauzère-Pérès et al. (1998)
and the extended Lpath method, we used well-known bench-
mark problems of the literature for the FJSP and the FJSP
with arbitrary precedence graphs. Even though these sets of
problems do not consider multiple resources, they serve as
a suitable test bed. In particular, two different sets of experi-
ments are conducted on two different sets of benchmark prob-
lem instances. At first, regarding the problem instances of the
FJSP, the following problem instances were used: DP15a and
DP18a from the DPData benchmark set (see Dauzère-Pérès
& Paulli, 1997) as well as Mk6 and Mk10 from the BRData
benchmark set (see Brandimarte, 1993). Second, regarding
the FJSP with arbitrary precedence graphs, the five largest
available problem instances were used: DAFJS10, DAFJS29,
DAFJS30, YFJS19, and YFJS20 from the DAFJS and YFJS
benchmark sets provided in Birgin et al. (2014).

In both sets of experiments, the local search procedure of
Kasapidis et al. (2021) was used. Each method was evaluated
a total of 20 million times, and the results are presented in
Tables 1 and 2. The former includes the results on problem
instances of the FJSP, that is, with linear precedence graphs,
while the latter includes the results on problem instances
of the FJSP with arbitrary precedence graphs, that is, with
nonlinear routes.

Both tables share the same structure. The first column
includes the name of the method, while the next three
columns denote the number of times when the estimate was
larger than, lower than, or equal to the actual makespan of the
move, respectively. The fifth column includes the accuracy of
the estimation method, that is, how frequently the estimation
method was able to accurately estimate the actual makespan

of the move. Lastly, the sixth column includes the time in
microseconds (s) that was required on average for a single
evaluation of each method.

Overall, one can observe that Lpath shows high preci-
sion for all problems. More specifically, Lpath estimates the
makespan with an accuracy of 96.17% and 94.29% in the
case of linear and nonlinear precedence constraints, respec-
tively. Regarding the other move evaluation methods, we can
confirm that both Theorems 1 and 5 of Dauzère-Pérès et al.
(1998) produce valid lower bounds since there was no case
where the calculated estimate was greater than the actual
makespan of a move. We also notice that the accuracy of both
methods is lower compared to Lpath.

More specifically, Theorem 1 has an accuracy of 79.38%
and 86.49% for problems with linear and nonlinear prece-
dence constraints, respectively. Whereas Theorem 5 of
Dauzère-Pérès et al. (1998) has an accuracy of 42.65% and
46.81% for problems with linear and nonlinear precedence
constraints, respectively. In terms of performance, Lpath is
more computationally expensive than Theorems 1 and 5 of
Dauzère-Pérès et al. (1998). More specifically, in both sets
of experiments, Lpath is twice as time consuming as the
other two move evaluation methods. Note that Theorem 5 of
Dauzère-Pérès et al. (1998) is marginally faster compared to
Theorem 1. While both Theorems 1 and 5 of Dauzère-Pérès
et al. (1998) produce valid lower bounds, one could prefer
Lpath as it is more accurate despite the fact that it is more
computationally expensive.

5.2 Comparison of MILP and CP models

In this section, we assess the performance of the MILP and
CP models introduced in Sections 3.1 and 3.2, respectively.
We used benchmark problem instances of the literature for
the multiresource FJSP with arbitrary precedence graphs, in
particular, the benchmark set (denoted by MJS) introduced in
Dauzère-Pérès et al. (1998). This benchmark set includes a
total of 70 instances that can be extended by assuming: (a)
linear precedence graphs and (b) a common nonlinear prece-
dence graph, resulting in a total of 140 different instances. As
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TA B L E 3 Results on the benchmark set of Dauzère-Pérès et al. (1998) (denoted by MJS) with linear precedence constraints.

DP CP MILP

Instance Best LB Cmax LB Cmax Gap (%) Time (s) LB Cmax Gap (%) Time (s)

mjs01 361 361* 361 361* 0.00 17 354 361* 0.00 10,800

mjs02 381 384 381 381* 0.00 25 380 381* 0.00 10,800

mjs03 376 378 376 376* 0.00 51 364 381 1.33 10,800

mjs04 391 394 391 391* 0.00 34 391 391* 0.00 640

mjs05 623 643 623 623* 0.00 659 572 659 5.78 10,800

mjs06 547 585 547 547* 0.00 1171 487 570 4.20 10,800

mjs07 610 644 610 610* 0.00 10553 520 625 2.46 10,800

mjs08 552 575 552 552* 0.00 1424 511 585 5.98 10,800

mjs09 563 568 563 563* 0.00 104 549 585 3.91 10,800

mjs10 454 928 444 828 82.30 10,800 454 998 119.73 10,800

mjs11 487 1057 487 901 85.01 10,800 444 - - 10,800

mjs12 446 859 446 790 77.11 10,800 446 926 107.60 10,800

mjs13 434 827 434 791 82.26 10,800 419 889 104.84 10,800

mjs14 552 946 552 910 64.86 10,800 460 1045 89.31 10,800

mjs15 655 1469 655 1292 97.25 10,800 655 - - 10,800

mjs16 581 1312 581 1198 106.20 10,800 566 - - 10,800

mjs17 647 1572 647 1407 117.47 10,800 614 - - 10,800

mjs18 668 1544 668 1396 108.98 10,800 655 - - 10,800

mjs19 674 1572 674 1321 95.99 10,800 642 - - 10,800

mjs20 500 1033 500 902 80.40 10,800 499 1156 131.20 10,800

mjs21 438 916 438 836 90.87 10,800 419 1021 133.11 10,800

mjs22 467 924 467 865 85.22 10,800 444 1176 151.82 10,800

mjs23 475 957 475 849 78.74 10,800 452 - - 10,800

mjs24 433 918 419 790 82.44 10,800 433 1025 136.72 10,800

mjs25 653 1513 653 1315 101.38 10,800 613 - - 10,800

mjs26 620 1481 620 1203 94.03 10,800 567 - - 10,800

mjs27 633 1566 633 1327 109.64 10,800 612 - - 10,800

mjs28 610 1395 610 1325 117.21 10,800 601 - - 10,800

mjs29 690 1336 690 1215 76.09 10,800 638 1760 155.07 10,800

mjs30 216 218 216 216* 0.00 50 216 227 5.09 10,800

mjs31 218 218* 218 218* 0.00 18 218 220 0.92 10,800

mjs32 216 219 216 216* 0.00 429 210 236 9.26 10,800

mjs33 217 224 217 217* 0.00 99 211 230 5.99 10,800

mjs34 213 213* 213 213* 0.00 8 213 217 1.88 10,800

mjs35 265 265* 265 265* 0.00 4 265 265* 0.00 1401

mjs36 223 225 223 223* 0.00 27 219 226 1.35 10,800

mjs37 202 207 202 202* 0.00 64 189 220 8.91 10,800

mjs38 241 241* 241 241* 0.00 5 241 246 2.07 10,800

mjs39 210 210* 210 210* 0.00 56 210 217 3.33 10,800

mjs40 241 241* 241 241* 0.00 3 241 241* 0.00 1339

mjs41 210 218 210 210* 0.00 680 204 232 10.48 10,800

mjs42 250 250* 250 250* 0.00 2 250 250* 0.00 1836

mjs43 219 219* 219 219* 0.00 6 219 219* 0.00 814

mjs44 252 258 252 252* 0.00 8 252 253 0.40 10,800

mjs45 294 296 294 294* 0.00 73 294 318 8.16 10,800

mjs46 296 300 296 296* 0.00 556 292 356 20.27 10,800
(Continues)
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TA B L E 3 (Continued)

DP CP MILP

Instance Best LB Cmax LB Cmax Gap (%) Time (s) LB Cmax Gap (%) Time (s)

mjs47 330 333 330 330* 0.00 109 330 - - 10,800

mjs48 315 327 315 315* 0.00 164 299 - - 10,800

mjs49 356 356* 356 356* 0.00 8 356 - - 10,800

mjs50 279 327 279 326 16.85 10,800 279 - - 10,800

mjs51 289 373 289 367 26.99 10,800 277 - - 10,800

mjs52 286 317 286 317 10.84 10,800 286 - - 10,800

mjs53 267 353 267 353 32.21 10,800 266 - - 10,800

mjs54 241 311 241 299 24.07 10,800 235 - - 10,800

mjs56 380 508 380 534 40.53 10,800 372 - - 10,800

mjs59 346 490 346 476 37.57 10,800 345 - - 10,800

mjs60 246 268 246 246* 0.00 301 243 - - 10,800

mjs61 301 303 301 301* 0.00 101 301 - - 10,800

mjs62 284 284* 284 284* 0.00 63 284 298 4.93 10,800

mjs63 286 289 286 286* 0.00 44 286 297 3.85 10,800

mjs64 240 240* 240 240* 0.00 61 240 - - 10,800

mjs65 375 381 375 375* 0.00 357 368 - - 10,800

mjs66 423 423* 423 423* 0.00 796 423 - - 10,800

mjs67 400 408 400 400* 0.00 1000 399 - - 10,800

mjs68 382 400 382 382* 0.00 1189 381 - - 10,800

Abbreviations: CP, constraint programming; DP, Dauzère-Pérès et al. (1998); LB, lower bound, MILP, mixed integer linear program.
Values in bold are best solutions found, and Values with * are optimal solutions.

TA B L E 4 Results on the benchmark set of Dauzère-Pérès et al. (1998) (denoted by MJS) with Arbitrary Precedence Constraints.

DP CP MILP

Instance Best LB Cmax LB Cmax Gap (%) Time (s) LB Cmax Gap (%) Time (s)

mjs01 1052 1136 1052 1052* 0.00 0 1052 1052* 0.00 2

mjs02 1104 1160 1104 1104* 0.00 6 1104 1104* 0.00 5

mjs03 1133 1166 1133 1133* 0.00 1 1133 1133* 0.00 9

mjs04 1086 1097 1086 1086* 0.00 4 1086 1086* 0.00 14

mjs05 1761 1809 1761 1761* 0.00 21 1761 1761* 0.00 50

mjs06 1648 1712 1648 1648* 0.00 13 1648 1648* 0.00 52

mjs07 1828 1841 1828 1828* 0.00 39 1828 1828* 0.00 198

mjs08 1627 1693 1627 1627* 0.00 71 1627 1627* 0.00 148

mjs09 1557 1585 1557 1557* 0.00 20 1557 1557* 0.00 40

mjs10 1610 1739 1610 1610* 0.00 1658 1549 1631 1.30 10,800

mjs11 1637 1817 1637 1637* 0.00 3472 1495 1697 3.67 10,800

mjs12 1560 1759 1560 1560* 0.00 1074 1453 1595 2.24 10,800

mjs13 1518 1709 1518 1518* 0.00 682 1437 1571 3.49 10,800

mjs14 1658 1898 1658 1658* 0.00 305 1641 1658* 0.00 10,800

mjs15 2184 2679 2182 2450 12.28 10,800 2184 2641 20.92 10,800

mjs16 2096 2458 2096 2193 4.63 10,800 1998 2369 13.02 10,800

mjs17 2221 2679 2221 2454 10.49 10,800 2166 2624 18.14 10,800

mjs18 2302 2755 2302 2415 4.91 10,800 2199 2563 11.34 10,800

mjs19 2275 2832 2275 2402 5.58 10,800 2211 2592 13.93 10,800

mjs20 1704 1951 1704 1704* 0.00 1404 1571 1809 6.16 10,800
(Continues)
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TA B L E 4 (Continued)

DP CP MILP

Instance Best LB Cmax LB Cmax Gap (%) Time (s) LB Cmax Gap (%) Time (s)

mjs21 1486 1649 1486 1486* 0.00 639 1411 1543 3.84 10,800

mjs22 1573 1670 1573 1573* 0.00 930 1500 1598 1.59 10,800

mjs23 1541 1773 1541 1541* 0.00 923 1448 1608 4.35 10,800

mjs24 1448 1634 1448 1448* 0.00 713 1348 1525 5.32 10,800

mjs25 2233 2771 2233 2379 6.54 10,800 2138 2542 13.84 10,800

mjs26 2061 2359 2061 2204 6.94 10,800 2023 2429 17.86 10,800

mjs27 2214 2703 2214 2386 7.77 10,800 2168 2594 17.16 10,800

mjs28 2132 2540 2132 2279 6.89 10,800 2072 2585 21.25 10,800

mjs29 2267 2452 2267 2267* 0.00 7948 2081 2415 6.53 10,800

mjs30 710 721 710 710* 0.00 2 710 710* 0.00 73

mjs31 746 772 746 746* 0.00 2 746 746* 0.00 189

mjs32 722 743 722 722* 0.00 3 722 722* 0.00 75

mjs33 710 730 710 710* 0.00 0 710 710* 0.00 50

mjs34 697 760 697 697* 0.00 1 697 697* 0.00 403

mjs35 842 849 842 842* 0.00 0 842 842* 0.00 35

mjs36 673 690 673 673* 0.00 2 673 673* 0.00 137

mjs37 626 687 626 626* 0.00 2 626 626* 0.00 493

mjs38 754 774 754 754* 0.00 2 754 754* 0.00 66

mjs39 682 695 682 682* 0.00 2 682 682* 0.00 147

mjs40 688 698 688 688* 0.00 1 688 688* 0.00 250

mjs41 725 750 725 725* 0.00 1 725 725* 0.00 37

mjs42 757 773 757 757* 0.00 1 757 757* 0.00 163

mjs43 630 687 630 630* 0.00 0 630 630* 0.00 28

mjs44 750 828 750 750* 0.00 2 750 750* 0.00 53

mjs45 966 986 966 966* 0.00 12 966 966* 0.00 3555

mjs46 1010 1034 1010 1010* 0.00 4 1010 1010* 0.00 8999

mjs47 1018 1059 1018 1018* 0.00 1 1018 1018* 0.00 303

mjs48 1074 1128 1074 1074* 0.00 9 1074 1074* 0.00 5812

mjs49 1202 1251 1202 1202* 0.00 3 1202 1202* 0.00 241

mjs50 849 949 849 849* 0.00 10 849 849* 0.00 8700

mjs51 919 1049 919 919* 0.00 309 919 922 0.33 10,800

mjs52 880 948 880 880* 0.00 6 880 880* 0.00 675

mjs53 911 1018 911 911* 0.00 60 906 1038 13.94 10,800

mjs54 832 945 832 832* 0.00 78 818 833 0.12 10,800

mjs56 1257 1417 1257 1257* 0.00 33 1257 - - 10,800

mjs59 1273 1440 1273 1273* 0.00 153 1273 - - 10,800

mjs60 773 846 773 773* 0.00 15 773 773* 0.00 369

mjs61 1003 1015 1003 1003* 0.00 22 1003 1003* 0.00 3225

mjs62 931 979 931 931* 0.00 3 931 931* 0.00 163

mjs63 1056 1164 1056 1056* 0.00 3 1056 1056* 0.00 82

mjs64 823 828 823 823* 0.00 3 822 823* 0.00 270

mjs65 1277 1322 1277 1277* 0.00 1 1277 1277* 0.00 3436

mjs66 1461 1501 1461 1461* 0.00 1 1461 1461* 0.00 3288

mjs67 1370 1459 1370 1370* 0.00 89 1370 1370* 0.00 2812

mjs68 1398 1513 1398 1398* 0.00 29 1398 1398* 0.00 9013

Abbreviations: CP, constraint programming; DP, Dauzère-Pérès et al. (1998); LB, lower bound; MILP, mixed integer linear program.
Values in bold are best solutions found, and Values with * are optimal solutions.
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there were consistency problems in the data of five instances,
only 130 (two times 65) instances were considered.

Tables 3 and 4 present the numerical results. In both tables,
the first column includes the name of the problem instance,
while the second column provides the best-known lower
bound (LB). The third column shows the results of Dauzère-
Pérès et al. (1998), while the next two multicolumns provide
the results of the proposed CP and MILP models, respec-
tively. Each multicolumn includes LB, Cmax, the percentage
of the optimality gap from the LB, and the total elapsed
time, respectively.

Overall, the CP model gives the best results compared
to both the MILP model and the metaheuristic approach
of Dauzère-Pérès et al. (1998), although sometimes at the
expense of significant computational times. More specifi-
cally, regarding the instances with linear precedence con-
straints, the CP model has determined 49 new best solutions
and 38 optimal solutions with an average optimality gap of
31.12%. On the other hand, the MILP model improves five
solutions, while solving seven instances to optimality with an
average gap of 33.51%. Note that the MILP cannot produce
any feasible solution in 28 instances of this group. The same
behavior is observed in the results regarding instances with
arbitrary precedence constraints. In this case, the CP model
gives 65 new best solutions and solves 56 instances to opti-
mality with an average optimality gap of 1.02%. The MILP
model produces 41 new best solutions and solves 41 instances
to optimality with an average optimality gap of 3.18%. Note
that, in this benchmark set, the MILP model cannot find a
feasible solution for only two instances.

Note that, in this experiment, the addition of arbitrary
precedence constraints induces a significant reduction of the
average optimality gaps of both the CP and MILP models.
This may be related to the fact that, when arbitrary prece-
dence graphs are included, less operation sequences compete
in parallel over the available resources at the same time,
which typically leads to a reduction of the complexity of
the problem.

6 CONCLUSIONS

The multiresource FJSP with arbitrary precedence graphs,
also called nonlinear routes, is considered in this paper. The
theorems that were introduced in Dauzère-Pérès et al. (1998)
and more recently in Kasapidis et al. (2021) are compared,
and the extension to multiple resources is studied. In par-
ticular, a MILP model and a CP model are proposed, and
computational results are discussed. They show that the CP
model is more effective, although time-consuming for some
instances and that Theorem 1 proposed in this paper is more
effective than Theorem 5 of Dauzère-Pérès et al. (1998).

In terms of future research, it is worth studying the poli-
cies discussed in Dauzère-Pérès and Pavageau (2003), where
all resources assigned to an operation may not be simulta-
neously occupied; instead, an operation may not start or end
simultaneously on all its assigned resources.
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