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ABSTRACT

In this paper, a practical relevant operational production planning problem in complex manu-
facturing systems is adressed. In this problem, lots are planned individually to provide a more
detailed plan than approaches that only consider production quantities. A three-step approach,
which is currently fully integrated and used in a Decision Support System, is then introduced.
This work follows the one of Mhiri et al. (2018) who addressed this problem. We push the
approach a step further by introducing new optimization possibilities through new smoothing
rules, whose performance is studied according to different indicators. Furthermore, we present
the production planning process in which the decision support tool is embedded and how it
bridges the gap between the upper and lower planning levels.
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1. Introduction

1.1. Semiconductor Industry and Production Planning

The electronics industry is one of the largest industries in the world. At the heart of this indus-
try is one of the most complex systems, namely the manufacture of integrated circuits on thin
silicon discs (wafers). Semiconductor manufacturing is one of the most important and criti-
cal manufacturing sectors, particularly nowadays with the well-known shortages of integrated
circuits. This manufacturing process is divided into four stages: Wafer manufacturing, wafer
probe, packaging and final test (Uzsoy, Lee, and Martin-Vega (1992)). Wafer manufacturing is
recognized as the most complex stage because it corresponds to a flexible job-shop manufac-
turing environment with hundreds of parallel non identical machines, reentrant process flows,
hundreds of operations for each product and therefore very long lead times (generally two to
three months). Production and development lots are often processed on the same equipment,
and various process constraints must be taken into account (Uzsoy, Lee, and Martin-Vega
(1992); Monch, Fowler, and Mason (2012)). Due to their high cost, machines are usually
heterogeneous and therefore the same operations can be performed on machines of different
generations (Gupta et al. (2006)). Semiconductor manufacturing is a very competitive envi-
ronment and it is essential for companies to maximize their service level and in particular
their ability to meet their delivery dates. An optimized production management is becoming
critical and therefore justifies the growing interest that these issues have had in the literature.

Production planning problems in the semiconductor industry have been studied for decades
(Bitran, Haas, and Hax (1981); Leachman and Carmon (1992); Ménch, Fowler, and Mason
(2012)). Planning problems can take different shapes and names, depending on the scale
considered, but can generally be divided into three levels, namely strategic, tactical and oper-
ational (Anthony (1965)).

At the border between the strategic and tactical levels is the function of Master Planning.
The objective of this function is, considering the future demand of customers as well as the
entire supply chain, to coordinate the different production sites by defining for each of them
production objectives by period (usually weeks or months). These production objectives are
the inputs of the production planning function. This function, generally at the factory level,
aims to determine for each period (generally days or weeks) product quantities to be started in
production to meet the Master Planning objectives. Master Planning in semiconductor manu-
facturing is discussed in Monch, Uzsoy, and Fowler (2018), and interesting contributions can
be found in Aouam and Uzsoy (2015) and Zhang et al. (2020).

Finally, production scheduling controls the assignment and the sequencing of production
lots on resources to optimize production objectives such as on-time delivery or completion
times. This hierarchical process from production planning to production scheduling is suffi-
cient in most manufacturing systems. However, when considering the manufacturing of inte-
grated circuits (front end manufacturing or wafer manufacturing), a production lot requires on
average 700 operations to complete its fabrication. The operating time of an operation varies
from about 10 minutes to more than 12 hours. Considering the thousands of lots present at
the same time in the factory, this leads to millions of decisions to be made by the produc-
tion scheduling function to control the production flows, with the start and due dates of the
lots as the main instructions. There is therefore a significant gap in decision-making between
the two planning functions, production planning and production scheduling. Indeed, the latter
cannot optimize the management of all the stages of the lots in the factory on the only basis
of the incoming and outgoing lots of the factory. As a result, production scheduling generally
only considers subsets of machines (see for instance Yugma et al. (2012) or Zhang, Lv, and
Zhang (2018)) and only optimize local criteria such as the average cycle time of lots in a



workshop (i.e. the average time spent by lots in the workshop), the machine utilization rate
or the machine throughput. It is therefore essential to have an additional function, as pro-
posed by Govind et al. (2008), whose aim is to ensure that products are processed at the right
time in each workshop in order to meet the production objectives defined by the Master Plan-
ning. This production flow forecast also allows, for instance, a better planning of preventive
maintenance operations.

1.2. Operational Production Planning

This additional function is little studied, as pointed out by Monch, Uzsoy, and Fowler (2018),
and only a few papers have studied this interface between Production Planning and Shop-
Floor Scheduling. Horiguchi et al. (2001) seek to define the time period in which each pair
(lot, operation) must be processed. Only operations related to near-bottleneck machines are
considered. To define these short-term production plans, the authors use a classical forward
scheduling heuristic for lots in the WIP (Work In Progress i.e. products currently in the fa-
cility) and a backward scheduling for orders not filled by the WIP. Numerical experiments
using a simulation model show the value of driving workshop scheduling on the basis of data
(lot, operation, period) rather than on the basis of lot delivery dates, in particular by reduc-
ing the overall delay. A similar operational production planning problem has been studied
by Habenicht and Monch (2002), using a Beam-Search based method which they tested on
simplified instances, aggregating processing steps into operations, and have shown the ben-
efit of considering this short-term production planning problem. Habla, Monch, and Driefel
(2007) model the problem as a Mixed Integer Program (MIP), and solve it using a Lagrangian
Relaxation approach on a simplified version of the problem where only what they call bottle-
neck steps are considered. The method is also applied by Bard et al. (2010) to a very similar
problem called ‘“Manufacturing Planning Problem*. They also evaluate Benders Decompo-
sition, showing the computational intractability of the problem. Then, they develop a greedy
approach by solving each period of the planning horizon with the MIP and using a reschedul-
ing heuristic to better distribute the product quantities between the machines for each period.
The approach shows positive results but could only be tested on instances consisting of three
product families. Recently, Mhiri et al. (2018) also propose a MILP to model this operational
production planning problem and develop a heuristic approach used for the WIP projection
in semiconductor manufacturing systems.

In this paper, we pursue and improve the work in Mhiri et al. (2018), bringing some cor-
rections and improvements to the presented mathematical model, which is detailed in Section
2. We also improve the heuristic approach in different ways.

First, the three-step heuristic in Mhiri et al. (2018), only tries to optimize customer criteria
(i.e. due date performance-related criteria, see the end of Section 4.1). However, in the semi-
conductor industry, other indicators are also equally important, such as the throughput of the
fab or the machine utilization rate. Thus, we present different variants of the approach to op-
timize these different indicators, and conduct a comparative study. Since the work presented
in Mhiri et al. (2018), the approach is fully implemented and integrated in a Decision Sup-
port System which is now used to define weekly production plans in the 200mm and 300mm
factories of Crolles in France (Christ et al. (2018)). Therefore, unlike Mhiri et al. (2018) for
whose the objective was to simulate the evolution of the very large number of lots, in our
case, the objective is to provide a production plan that can be followed (as it respects produc-
tion capacity), but that is also the best possible solution (according to the various indicators
analyzed) in addition to being as close as possible to the reality.

Although this problem has not been studied much, it corresponds to a concrete case of



operational production planning in STMicroelectronics factories. The production flow corre-
sponds to complex job-shop manufacturing with re-entrant flows. Each fab includes numer-
ous (more than 300) very heterogeneous machines grouped in work-centers. The average WIP
consists of more than 3,000 lots, divided into several hundred different products, with man-
ufacturing routes involving an average of 700 operations. The planning department must, on
the basis of a given weekly release plan and a given weekly delivery plan (generally several
thousand wafers per week), give daily production instructions to optimize production flows.
This plan is generally defined for 8 weeks, and is re-evaluated each week. The main decisions
are related to the priorities of lots, and instructions on the products to perform in priority on
each machine group. The eight-week plan also makes it possible to foresee future resource
requirements, which can be prepared for example by adjusting preventive maintenance plans
or by qualifying some machines to support the processing of critical operations (not enough
capacity for the number of wafers to produce). This weekly operational plan is determined
by using a decision support system that relies on the three-step approach presented in this
article. The approach has been designed for high-mix low-volume semiconductor manufac-
turing systems, which are amongst the most complex manufacturing systems. The approach
can thus be used for less complex manufacturing systems, including low-mix high-volume
semiconductor manufacturing systems. Generally speaking, the approach is adapted to man-
ufacturing systems where products have relatively long manufacturing routes (typically more
than 10 operations) and cycle times (typically more than one week).

The remainder of this paper is structured as follows. In Section 2, we introduce the prob-
lem and present a Mixed Integer Linear Program (MILP) to model the problem of interest.
We also compare our problem with classical production planning problems (scheduling, lot-
sizing) by showing their similarities and their differences. Section 3 presents the three-step
approach initially proposed in Mhiri et al. (2018) to efficiently determine detailed production
plans. Section 4 details the different smoothing rules used in the module which integrates
capacity constraints, and provides a comparative study of the smoothing rules based on in-
dustrial instances presented in Section 5.2. Section 6 provides details on the decision support
tool utilization inside the production planning process. Finally, in Section 7, the contributions
of the paper are summarized and perspectives are discussed.

2. Problem modelling

2.1. Problem definition

First, we present the problem tackled by the heuristic approach, and the associated mathemat-
ical model. Differences with the model in Mhiri et al. (2018) are detailed in Section 2.3.

The planning horizon is decomposed into 7" periods and each period t € {1,...,7} has a
fixed duration p. A set of machines .# and a set of lots .# currently in the fab (usually called
WIP) as well as lots to be started, are considered. Each lot / has a customer delivery period also
called due date dj, a size ¢; and a release period r;. Each lot [ requires a set &} of consecutive
operations to be completed, often called a route. Operation o of a lot [ can be processed by
a set of machines .#,,, in period ¢ with a processing time p,;,, that depends on machine
m. Each machine m has a production capacity c¢,,; in period ¢ (i.e. it is available for ¢, , time
units in period ¢). The completion period C; of lot / depends on the plan. The tardiness 7;
of lot [ is defined as max(C; — d;,0). One of the objectives is to find a production plan that
minimizes the total tardiness (TT), i.e., } 7; (other objectives are also studied in Section 5.2).
A solution is a plan that defines, for each operation o of lot /, the period ¢ in which operation
o is processed, defined by the variable X, ;; € {0,1}. A number of constraints are considered,



the most important being capacity constraints.
The remaining assumptions are listed below:

2.2.

e The length of a period is an input parameter. In the context of the STMicroelectronics

factories (and in our computational experiments), the period length is generally one
week. This period length is a good compromise, as longer periods might lead to a
loss of model accuracy, while periods that are too short could conflict with some long
operations (more than 24 hours on some diffusion machines) and lead to an unsolvable
MILP, as it might not be possible to assign to the same period the start and end dates of
these long operations.

As in Mhiri et al. (2018), it is possible to split the processing of a wafer over several
machines. This hypothesis is not real, but it simplifies the problem to be solved for the
heuristic approach. This hypothesis remains justifiable as the solutions of this problem
are meant to be input for detailed scheduling approach which, for their part, consider
the non-preemption constraints.

The variables 7; have integer values. Indeed, in the semiconductor industry, lots are
generally not shipped every day, but rather every week. If a lot is not shipped on time,
it will leave at the end of the following period, hence the integer values.

Batches and setup times are integrated as inefficiencies using discount factors for each
machine m to reduce it production capacity (c,,). For setup times, the discount factor
is based on the proportion of time in a day that the lot spent in a setup state. Regard-
ing batching, the regular capacity is multiplied by the maximum batch size measured
in number of lots, discounted by a factor that takes into account the fact that batches
are not always fully loaded. This data is maintained by the Industrial Engineering team
which is in charge of the machine capacity model. These simplifying assumptions again
come from the desire not to consider detailed scheduling decisions and to reduce com-
plexity.

Storage constraints are not considered, as they are generally not critical in a semicon-
ductor manufacturing facility.

Notations

The notations for the mathematical modeling of our problem are summarized in Table 1.

2.3.

Mathematical Model

Using the notations above, the problem, as it is solved by the three-step-heuristic introduced
in the following section, can be modelled as the Mixed Integer Linear Program (P;) below.



Table 1.: Problem Notation

Sets, Indices and Parameters | Description
K2 Set of lots
le” Lot index
0, Set of consecutive operations required to complete lot [
0€ 0 Operation index of lot /
M Set of machines
me M Machine index
T Number of periods in the planning horizon
re{l,...,T} Period index
0Lt Set of machines that can process operation o of lot / in period ¢
s Start date of period  (sg = 0)
q Number of wafers in lot [ (i.e., size of lot)
rnel{l,....,T} Release period of lot /
de{l,....,T} Due date of lot /, i.e. period in which lot can be delivered without delay penalty
Po.l,m Time required to process operation o on machine m per wafer of lot /
Cn Capacity of machine m in period ¢
Variables Description
Sos €ERT Start date of operation o of lot /
E,; € R End date of operation o of lot [
T, € Nt Tardiness of lot / (in number of periods)
Qoim: €RT Number of wafers of lot  at operation o processed by machine m in period ¢
Xo1: €{0,1} Is equal to 1 if operation o of lot [ is processed in period ¢, and O otherwise

L
(Py) min Z T; (1)
=1
s.c. Xyp,=1 le Z 2)
So,l > Eofl,l le¥ oe€0 3)
SO,l + Z (po,l,on,l,m,t) < Eo,l le? o€l te {1, .. .,T}
me///(,,“
4)
T
Y Xou=1 le ? o€l (35)
t=ry
T
Sou > Y (s:Xo11) le ¥ oc0 (6)
t=ry
T
Eor <Y (s11Xo0.4) le ¥ oc0 %)
t=ry
T
T,> Y (tXo,00)—di le & 8)
t=r;
L O
Z Z (pa,l.,on,l,mJ) < Cmy meH te {1, ceey T} )
I=10=1
Z Qo tmt = qiXo 1 le? o€l ref{l,....,T}
mEJ/fnjl,t
(10)
Sots Eoty Qotme >0 le¥ o€ tel{l,....T} me.#
(11)
X, €10,1} 6 e oc0 ref{l,....T}
(12)
T,eNT le & (13)



The objective (1) is to minimize the sum of tardiness of all lots. Constraints (2) ensure
that lots must start in their release period. Constraints (3) are precedence constraints between
two consecutive operations of the same lot. Constraints (4) ensure that the end period of each
operation is larger than the start date plus the processing time of the operation. Each operation
is guaranteed to be executed in a single period through Constraints (5), while Constraints (6)
and (7) force each operation to end in the same period it started. They also link variables S, ;
and E, ; with variables X,, ; ;. Constraints (8) define the tardiness for each lot, and the capacity
constraints for each machine at each period are ensured through Constraints (9). Constraints
(10) ensure that all the wafers (also defined as the size) in each lot are processed and allow
preemption. Allowing the splitting of the wafers of a lot on multiple machines, although it is
not done in practice, is common in production planning to model capacity and handle large
complex problems. The discrete assignment of lots to machines is done at the scheduling
level. Constraints (11) guarantee that start and end dates, as well as quantities processed on
machines, are positive. Constraints (12) and (13) are integrity constraints.

This model is a rewritten version of the model in Mhiri et al. (2018), with the same char-
acteristics and several corrections to ensure that the model is consistent with the considered
operational production planning problem. The most critical correction is related to how the
workload allocation on the machines is defined. In Mhiri et al. (2018), the number of wafers
of lot / at operation o processed by machine m is a given parameter a, ; ,, while this is a
variable (Q, ;) in our model. This difference is important for two reasons:

e Mhiri et al. (2018) do not explain how the parameters a, ; ,, are defined, in particular in
the computational experiments. The most likely is that the authors rely on the historical
data distribution and assume that this distribution remains the same in the future. This
assumption is hardly acceptable given the high variability in semiconductor manufac-
turing systems, as we observed for instance in our industrial instances. The workload
distribution on the machines changes over time in particular because machines are het-
erogeneous. Constraints (4), (9) and (10) are thus different in our model than in the
model in Mhiri et al. (2018).

e Workload balancing on the machines is essential in operational production planning,
and enforcing the workload distribution prevents the use of a critical lever when opti-
mizing the production plan.

Three other differences with the model in Mhiri et al. (2018) are listed below, the first one
being the more significant:

(1) In Mhiri et al. (2018), the process time of a lot is counted in the capacity of the start
period of the operation although the operation might end in the next period. This sim-
plification may lead to a very poor estimation of the capacity consumption in two con-
secutive periods, in particular for operations that start at the very end of a period. In
our model, operations must start and end in the same period. Constraints (4) are thus
different in our model than in the model in Mhiri et al. (2018).

(2) As already mentioned, the due dates are integer, which better fit the industrial reality.

(3) There is no weight per lot since weights are not considered in operational planning. In
Mhiri et al. (2018), all weights are identical in the computational experiments.

Although it has its own characteristics, our model is also related to previous research, in
addition to Mhiri et al. (2018), as discussed below.

The definition of start and end dates for each operation, as well as precedence constraints,
are characteristic of shop-floor scheduling problems such as in Singer and Pinedo (1998). But
the scheduling of operations of lots on the machines is not considered in (P;), and is replaced
by a production capacity constraint per period for each machine.



This use of a capacity per period is a characteristic of capacitated lot sizing problems and its
variants (Karimi, Ghomi, and Wilson (2003)). However, in (P, ), besides production quantities
(lot sizes) to produce in each period, we also need to determine the start and end dates of each
operation.

The model presented in Habla, Monch, and Drief3el (2007) is probably the closest to ours.
Their objective is to define, for some operations (those on bottleneck machines) of each lot,
the period during which they should be processed. A capacity per period for groups of ma-
chines is also taken into account. However, the model in Habla, Monch, and Drief3el (2007)
does not consider all the process operations and, more importantly, does not manage the
distribution of the workload on heterogeneous machines, i.e. machines which can process
common process operations but with different processing speeds, which is a critical point in
semiconductor manufacturing.

As highlighted in Garey and Johnson (1979) and mentioned in Mhiri et al. (2018), produc-
tion planning, capacity planning and scheduling problems in complex job shops like semi-
conductor manufacturing are known to be strongly NP-hard. Although we do no detail the
proof in this paper, it is possible to show that our problem can be reduced to the well known
NP-hard bin packing problem, even with one machine and one operation per lot. Thus, this
justifies the use of a heuristic for the operational production planning decision support tool
which is introduced in the next section.

3. A three-step approach for operational production planning

3.1. Overview of the approach

As previously mentioned, semiconductor manufacturing involves planning and scheduling
problems with thousands of lots, each lot requiring hundreds of unit operations. Therefore,
considering the problem complexity, it is highly unlikely that exact methods could solve real
life instances. Hence, a planning Decision Support System has been developed, based on an
approach in which the planning problem is decomposed into three main modules as shown in
Figure 1.
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Figure 1.: Flowchart of the three-step approach.

Alt Text: Flowchart of the three-step approach consisting of 3 successive blocks with a loop
repeating for each period ¢. Each block fixes a part of the problem variables for the current
period.

Following most of the approaches in the literature, the planning horizon is discretized into
periods. The three-step approach runs each module in each period of the planning horizon.
The overall idea of the approach is as follows:

ey

2)

3)

First, in the Projection Engine module, from historical cycle times that include the
waiting times between operations, start and end processing dates are assigned to each
operation of each lot, and thus the period in which the operation is processed (thus
determine the variables S, ;, E,; and X, ;). This first initialization step does not take
capacity constraints into account. They are considered in the next two steps of the
approach to adjust the initial theoretical cycle time of each lot.

In the second step, an Utilization Balancing Engine is run to allocate lot processing
workload to the available machines (still without taking into account capacity con-
straints), which gives an estimate of the equipment utilization rate. Since capacity con-
straints are not considered, some machines may be overloaded and the solution may
therefore not be feasible.

Then, a third module, the Smoothing Engine described in Section 3.2, is in charge of
postponing lots to later periods in order to smooth the workload and satisfy capacity
constraints.

After processing on all periods, the end result is a feasible solution which respects the
capacity constraints.
This three-step approach is therefore a constructive heuristic which defines a solution by



taking decisions iteratively until a complete solution is obtained. This approach has already
been applied in semiconductor manufacturing, for instance for scheduling problems in Mason,
Fowler, and Matthew Carlyle (2002) or for a problem closer to ours in Horiguchi et al. (2001),
and are still studied in a variety of applications as in biopharmaceutical production (Oyebolu
et al. (2017)).

The well known MRP II approach is also a constructive procedure and the three-step
heuristic follows the same principles than MRP II (time phasing, capacity requirements).
However, MRP II does not detail how to apply the logic to specific settings. Because of
their complexity and characteristics, semiconductor manufacturing facilities, in particular the
“front-end** ones considered in this article, often use locally developed approaches (Monch,
Fowler, and Mason (2012)). Our approach does for instance consider a fairly accurate mod-
eling of the workload allocation on heterogeneous machines, with variable processing times
that depend on the products and the machines (module 2). Moreover, the limited capacity
of the machines leads to choices in the operations to be carried out for each lot at each pe-
riod. This choice may vary according to the current company’s strategy, and the smoothing
approach of module 3 (Section 3.2) can be selected based on this strategy.

This paper is mainly dedicated to the development and the study of the smoothing proce-
dure (third module), and the next section will be dedicated to its description. Thus, for the
sake of brevity, we will not go into further detail on the projection and balancing modules.
For the projection module, which has not been modified, we refer the reader to Mhiri et al.
(2018) to get more details on how this module operates. Regarding the balancing module, sev-
eral important changes have been made. The main changes concern the linear programming
approach used to balance the workload on machines. Instead of a one-pass resolution via an
objective function that tries to smooth the workload on the machines, an iterative approach
is used where the maximum workload is minimized at each iteration, and dual variables of
the capacity constraints are used to characterize the biding machines. This approach allows
”Min-Max Fair” solutions to be obtained, with interesting properties for our problem. The
approach and its relevance are described in details in Christ, Dauzere-Péres, and Lepelletier
(2019).

3.2. Smoothing module

Entering this step, we already have assigned values to all variables S, ;, E, ;, X, 1 ; and Qp f ;-
So, a complete production plan is defined for period ¢, which may not meet capacity con-
straints. The smoothing module builds a feasible solution from this initial plan, using a
forward smoothing process, an approach used for instance in capacitated lot-sizing prob-
lems (Trigeiro, Thomas, and McClain (1989); Brahimi, Dauzere-Péres, and Najid (2006); Lu,
Zhang, and Han (2013)). The idea is to select some lots in the current period and shift them
to the next period in order to reduce the induced utilization rate on the machines. Algorithm
1 describes the general smoothing procedure.

Algorithm 1 takes as inputs the period, the production and allocation plans, i.e. the X, ;;
and Q, 1 variables. As long as there are overloaded machines, the algorithm first selects
the most overloaded machine. Then, among its assigned operations, the algorithm selects the
one of the lot with the lowest priority. This priority can be assessed in several ways, which
are discussed in Section 4. In the algorithm used as an example, the lot priority is defined
according to its due date. Thus, a lot with an early due date has a higher priority than one with
a later due date. The lot with the latest due date will tend to be postponed, which is equivalent
to the well-known Earliest Due Date scheduling rule.

Once the lower priority lot (at a given operation) is selected, it is postponed (as well as all

10



Algorithm 1: Smoothing Procedure

Input :¢ = Current period
Xo.11> Qo.1ms = Assigned values for all lots, operations and machines
W, = Utilization rate of machine m in period ¢
Output: O f.q = Set of operations shifted to next period
1 Ogpifred <0
2 while max,,c 4 W;,; > 1 do
// Select the most overloaded machine
3 | m « argmax,,c 5 Wp,
4 | 0" {ocOpNIEL | Qyrs >0}
// Select the operation processed by the machine whose lot due
date is the farthest

5 o' < argmax, com (ddy)
6 | foroeld,...,0/] do
7 if X, ;, =1 then
8 X(JJ’, 0
9 Oshifted < Oshifrea {0}
10 for m € . do
1 | Qotms <0
12 end
13 end
14 for m € .# do
15 W, Zoeﬁl (pz;:JInQal,mJ)
16 end
17 end

11



following operations of the lot) to the next period and the corresponding workload is removed
from all the machines to which the lot was assigned.

The Smoothing module ends with a production plan for the current period that is feasible
in terms of capacity. This plan is, however, potentially unfeasible from the point of view of
respecting the due dates. It also provides the list of postponed lots and from which operation
each lot is postponed. If lots are shifted, it is necessary to project again their operations from
the next period. We therefore enter into the projection module again, which takes as inputs
the initial plan and where new start and end dates will only be re-computed for lots that have
been shifted (assignment of new values to S, ;, E,; and X, ; ;).

Once the projection is completed, the new planning is sent to the balancing module, and
the three-step approach is repeated until all the periods have been processed. The number of
iterations is thus equal to the number of periods in the planning horizon (generally 8 weeks).
Each iteration takes a finite amount of time as, in the worst case (which never happens in
practice), all lots in a period are moved to the next period.

The output of the Smoothing module in the last period is a finite capacity production plan
that aims at minimizing the lot delay, giving for each operation of each lot the period in which
it is expected to be processed, an estimate of the workload balancing and its impact on the
machine utilization rate.

4. Smoothing module

In the previous section, we presented the global framework of the three-step approach and
detailed how the third module, i.e. the smoothing procedure, works. We mentioned that this
third module ensures that the capacity of the machines is respected by postponing the lowest
priority lots to following periods. We defined the lowest priority lot as the one with the latest
due date, which resembles the Earliest Due Date (EDD) scheduling rule. We now propose
other rules that are summarized in Table 3, and evaluate their impact on the quality of the
resulting solutions. Thus, in this section, we study different ways of evaluating the priority of
a lot, which thus influences the choice of lots to be postponed (shifting the processing of an
operation from one period to the next) when machines are overloaded. These shifted lots are
those considered as having the lowest priority according to the selected smoothing rule.

In addition to the notations already used previously, we introduce in Table 2 some addi-
tional notations in order to define the implemented smoothing rules.

Table 2.: Additional notations used in the definition of smoothing rules

Notation | Description
Dol Processing time of operation o of lot /
Wo.l Waiting time of lot / before processing operation o

4.1. Due date oriented rules

Among the proposed smoothing rules, the simplest one is Earliest Due Date (EDD), based
only on the due dates of lots. Thus, once the most overloaded machine is determined, the lot
with the largest due date (among the lots processed by this machine) is first postponed.

The problem with the EDD rule is that it does not take into account the position of the lot
in its route (i.e. the fixed sequence of operations to perform on the lot before it is completed).
Indeed, two lots /1 and I, with the same due date will have the same priority. However, if
[1 still requires 100 operations before being completed while /, is only one operation from
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being completed, it will be more difficult to meet the due dates of /; than the due dates of /,.
Lot /; should therefore have a higher priority than lot /;, which is not possible with the EDD
rule. We therefore introduced a second rule, which is a variant of the Operation Due Date
rule (ODD, Baker (1984)), where the slack time is the difference between the time remaining
until the delivery date and the cumulative time of the remaining operations. Given S, ; the
start date of operation o of lot /, d; its delivery date and p,; the time required to perform the
operation o of lot /. Then, the slack time of lot / at operation o (S7,,;) is defined by:

ST,i=di—So1— Y. Pory (14)

0'>o0

However, in our case, this rule is modified to include the waiting time of the lot at each
operation w,, in addition to its processing time p, ;. This is because, in front end semicon-
ductor manufacturing facilities, waiting times in front of machines correspond to the majority
of the cycle time of a lot, much more than the sum of the processing times. Thus, a good
evaluation of the available margin must take into account not only the remaining processing
times to complete the operations of the lot, but also the estimated waiting time before each
operation. The sum of the waiting time and the process time of an operation is commonly
called the cycle time of the operation. The sum of the cycle times of all operations of a lot
(from its start date into the factory until its completion) is called the lot cycle time. Finally, the
cumulative cycle time of the remaining operations for a given lot is called its remaining cycle
time. All this data is based on statistical calculations based on historical data. This work was
the topic of a PhD thesis in collaboration with STMicroelectronics (Dequeant (2017)), whose
main subject is the variability in semiconductor manufacturing. Chapter 4 of Dequeant (2017)
is dedicated to the definition of the cycle time model used in our work. In our definition of
slack time, the term }.,~, p,/; s therefore replaced by the theoretical cycle time remaining
for the lot / from operation 0: ¥~ ,(p, ; +Wy ;). The new formula for the slack time is then:

ST(),I = dl _So,l - Z (po’,l +W0’,1) (15)

o'>o0

Thanks to the S7° smoothing rule, among the lots that can potentially be shifted, the choice
will be made among those with the largest margin for on-time delivery.

In addition to the ST rule presented above, a variant is proposed, named “Slack Time If
Postponed* (875 ). To motivate this variant, let us recall that a discretized time horizon
is considered, working iteratively period by period. Periods are generally of the order of
one week. As the period length is rather long, the impact of shifting an operation of a lot
from one period to the next will be different if the operation was originally scheduled at the
beginning or at the end of the period. If the operation was scheduled at the beginning of the
period, postponing the operation to the next period means postponing the lot by several days
(potentially up to 7). Let us take for instance lot /; having more margin than lot /5 (for example
a 10-day margin for /; against a 6-day margin for /). Assume that /; and /, are candidates
to be shifted because they both have an operation on the most loaded machine in the period
considered. Lot /; has in theory a lower priority than /. However, as /; is processed at the
beginning of the period, postponing /; would delay it by 7 days, while /; is processed at the
end of the period and would therefore only be postponed by 1 day. In this case, /; would have
a new Slack Time of 10 — 7 = 3 days, while /2 would have an Slack Time of 5 days. This
means that shifting [, is actually preferable because it would leave a larger margin than if /,
was shifted. Thus, the 7}, ,,; variant calculates the Slack Time that the lot / would have if it
was moved to the next period. If we always define S, ; as the instant when the lot / waits in
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front of the machine for its operation o, and t,,.,,; as the start date of the next period, we obtain
the expression below for the calculation of this new indicator:

STpost,o,l = STo,l - (tnext - So,l) (16)
Combining with expression (15), we obtain:

STpost,o,l =d| —thexs — Z (po/,z +W0/7l> (17)

0'>o0

Thus, the indicator $7,, ., is none other than the indicator ST, ; when considering the oper-
ation o of lot [ performed at the beginning of the following period #,y;.

Rules 2 and 3 take into account the margin of lots to be sent on time to customers. How-
ever, these rules do not differentiate between two lots with the same margin but at different
positions on their route. If a lot is considered late, it will be easier to catch up its delay if
the lot is at the beginning of its route (for example if it theoretically has 2 months left in the
factory) than if it is supposed to be delivered within the week. This is why we implemented a
fourth smoothing rule, which is a variation of the well-known rule Critical Ratio (CR, Baker
(1984)). Keeping the notations used to define the indicator ST, let us define the critical ratio
CR,; of alot [ at an operation o:

d— S,
Zo’zo (po’,l =+ W(/J)

CR,; = (18)

This indicator is therefore the ratio between the time remaining until the delivery date of the
lot and the target remaining time. The CR rule will therefore tend to give more weight to lots
that are close to the end of their route.

This indicator is the ratio between the time remaining until the due date, and the theoretical
remaining time. This rule therefore prioritizes lots near the end of their route.

In the same way as for ST rule, a variant of the CR indicator is defined, named “Critical
Ratio if Postponed* (CRoy,0,), that considers the value of the indicator of lot / if it would
effectively be postponed from operation o. This variant is the fifth smoothing rule.

Finally, we have included the rule presented in Mhiri et al. (2018). In Mhiri et al. (2018),
this priority rule, named RankingCoeff, illustrates “the priority of a lot in terms of its posi-
tion in the process sequence on the considered toolset and the urgency of delivery*. In the
remainder of this paper, we refer to this rule as the “Critical Ratio and Position on Machine*
(CRPM) rule. Adapted to our formulation, with §,,; the start date of operation o of lot / and
thext the start date of the next period, the CRPM indicator is defined below:

So,l

next

CRPM,; =CR,;+

19)

The first term is the Critical Ratio and aims at evaluating the lot delivery urgency, while the
second term is a normalized value of the position of the lot in the machine queue. This rule
tends to prioritize late lots which furthermore are at the beginning of the machine queue. This
rule aims above all to meet due dates, and is therefore customer-oriented. When analyzing
how the three-step approach proceeds and because the second term in (19) prioritizes lots that
are at the beginning of a machine queue (in the considered period), lots processed early in the
period may be prioritized. This should be close to the mechanism used in the post variants
presented earlier. Note also that the two terms CR, ; and ‘oL are ratios, with values generally

tnext
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around 1, whereas Mhiri et al. (2018) do not detail how these two terms are balanced.

4.2. Machine oriented rules

All the previously introduced rules are based on lot time considerations (due dates, remaining
cycle times) and mainly target the minimization of the overall delay (TT). However, there are
other indicators in semiconductor manufacturing, such as the average cycle time, the aver-
age machine utilization rate, or the overall fab throughput (total number of operations per-
formed in the fab on a time horizon). These indicators are monitored by managers with equal
(or sometimes greater) importance than customer-oriented indicators. However, the previous
smoothing rules do not take these other objectives into account.

Thus, it is relevant to propose new rules that take into account other non-customer-oriented
indicators (either exclusively or partially). This makes it possible to evaluate how much the
rules in Section 4.1 could degrade indicators such as the throughput and machine utilization
rate, but also to develop an approach capable of considering different optimization criteria.

Hence, we developed a sixth rule, called Machine Impact (MI), which takes the workload
generated by the lots on the machines into account. As with the previous rules, the first step is
to determine the most overloaded machine, and then to identify the set of lots with at least one
operation on that machine in the period. Then, we search in this set for the lot to postpone that
has the smallest utilization rate on the machines that are not overloaded. Our goal is to reduce
the workload on the overloaded machines, while minimizing the workload lost on the other
machines, i.e. the machines whose workload does not have to be reduced. We are therefore
trying to postpone the lot generating the least workload on non-overloaded machines. For this
purpose, for each (lot, operation) pair, the cumulative workload generated by this lot for this
operation and the subsequent operations in the period (only on non-overloaded machines) is
calculated, in order to evaluate the utilization rate reduction resulting from postponing this lot.
This is because a lot generally goes through several processing operations during the same
period. Therefore, shifting a lot from an operation implies that any following operation of this
lot planned in the period must also be shifted and therefore will lead to a smaller utilization
rate or throughput loss.

The Machine Impact rule, unlike the previous rules, ignores the customer dimension. This
rule should therefore normally favour objectives such as maximizing machine utilization or
global throughput maximization rather than delay oriented objectives. In order to reconcile
the two types of indicators, we combined the smoothing rules into two last rules called “Ma-
chine Impact and ST* (MIsr) and “Machine Impact and CR* (MIcg). These two rules are
based on the following idea: The most overloaded machine is always identified first, then all
lots with at least one operation processed by this machine during the period are identified.
However, only lots in advance are considered. Lots in advance are those with a positive Slack
Time, i.e. their theoretical remaining cycle time is lower than the remaining time available
before being delivered to the customer. Once the lots in advance have been identified, the
Machine Impact smoothing rule is applied by postponing the lot with the least impact on non-
overloaded machines. If all the lots processed by the most overloaded machine are already
late, the Machine Impact rule is not applied. Instead, the customer oriented smoothing rules
are used, respectively STp,g for the MIgr rule, and CRp,s for the MIcg rule.

Table 3 provides a summary of the different rules described above. Note that, in the column
“Description*, the lots are always selected from the subset of lots having at least one operation
processed in the period by the most overloaded machine.
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Table 3.: Rules in Smoothing module

Notation | Shifting Rule Name Description
EDD Earliest Due Date Postpone the lot with the latest Due Date
Postpone the lot with the largest margin (difference
ST Slack Time between remaining available time and remaining
theoretical cycle time)
Consider the margin of the lot if it was postponed to
STpyst Slack Time if postponed the beginning of the next period from the considered
operation
CR Critical Ratio Pos.tpone t'he lot whose ratiO. between its remaining
available time and its cycle time is the largest
- . Critical Ratio of the lot if it was postponed to the
CRpost Critical Ratio if postponed beginning of the next period from tI;le OII))eration
Postpone the lot whose induced workload in the pe-
MI Machine Impact riod (from the operation), on machines that are not
overloaded, is the lowest.
Postpone the lot (among those in advance) whose
Migr Machine Impact with Slack | induced workload in the period (from the operation)
Time if postponed on machines not overloaded is the lowest. If no lots
are in advance, apply the STp, rule
Postpone the lot (among those in advance) whose
Mick Machine Impact with Critical | induced workload in the period (from the operation)
Ratio if postponed on machines not overloaded is the lowest. If no lots
are in advance, apply the CRp,g rule
Critical Ratio and Position on Fo.r .all cons.idered operations, shift.the one Whose
CRPM Critical Ratio value plus the normalized position of

Machine

the operation in the machine queue is the largest
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5. Computational experiments

5.1. Comparing the three-step approach and the MILP

In this section, numerical results comparing the performance of the three-step approach with
the MILP solved using IBM ILOG CPLEX are analysed. This study is rather short for two
reasons. The first one is that a fairly comprehensive study has already been proposed in Mhiri
(2016)The second reason is that, unlike Mhiri (2016) who extensively worked on the exact
resolution of the problem, notably through the use of a Lagrangian relaxation approach, our
primary goal was to work on an approach that provides good solutions and is flexible and
fast enough to be integrated into the company’s planning process. Section 5.1 shows that,
although the use of advanced methods can improve the sizes of the problem instances that
can be solved, they are still far too small compared to those in our industrial application.
Then, Section 5.4 presents a comparative study of the different smoothing rules based on
industrial instances that are described in Section 5.3.

The mathematical model in Section 2 has been solved with IBM ILOG CPLEX 12.7.1 on
very small instances generated from simplified industrial instances summarized in Table 4.

Table 4.: Characteristics of simplified test instances

Parameters Values
Number of lots 1to7
Number of machines 357
Number of products 3

Average number of operations per lot | 350

Remaining time before due date is 1 (Hard)
or 2 (Easy) times the lot average cycle time
Number and period length 8 periods of one week each

Lot delivery periods distribution

The instances were taken from industrial data, but some parameters were greatly reduced.
The number of machines and the average number of operations are very close to those found
in the factory. The number of lots is the main parameter that was reduced. This number is var-
ied from 1 to 7, to be compared with the thousands of lots usually in the factory. The duration
and number of periods (8 weeks) correspond to the industrial setting. The delivery periods
have been readjusted according to two configurations. The simplest instances (“Easy‘) con-
sider lots with delivery periods such that the remaining available time is twice the theoretical
remaining cycle time of the lots. More difficult instances (“Hard*) were also proposed with a
remaining time before delivery which is equal to the average lot cycle time.

For the sake of brevity, we are not interested in analyzing the influence of each parameter
on the performance of the modelThus, we chose to keep most of the parameters as in the
industrial instances, focusing only on the number of lots as well as the tightness of the due
dates.

The problem instances were solved using an Intel Core i5 PC with a 2.3 GHz processor
and 8 GB of RAM. Some results are summarized in Table 5, providing the average CPU time
required to solve each instance.

The model was able to solve instances with up to 4 or 5 lots in less than one hour, depending
on the difficulty of the instances. In an attempt to improve the performance of the initial
model, two techniques have been developed. First, instances often have a large number of
operations with very short processing times. Thus it is possible to aggregate these operations
as a fixed total time, remaining small compared to the overall planning horizon, and therefore
having little impact on the final solution. The aggregation then allows the number of variables
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associated with the operations to be reduced and thus the calculation time to be reduced. A
second technique is to first solve the problem by relaxing the capacity constraints and then
using the resulting solution as a lower bound for the general problem. These improvements
led to an overall reduction in the computational time, making the improved MILP able to
solve instances with up to 6 or 7 lots. However, in spite of these improvements, several hours
are still necessary to solve problems with only 10 lots. Therefore, it is impossible to use this
model for problems with hundreds of lots.

Table 5.: Average CPU time (in seconds) of initial and improved MILPs for small size in-
stances

Initial MILP (sec.) | Improved MILP (sec.) | Time Reduction

Instance Size Easy Hard Easy Hard Easy Hard
1 lot / 350 oper. 13.4 12 11.8 11.4 -12% -5%
2 lots / 700 oper. 25.6 29 22.2 19 -13% -34%
3 lots / 1050 oper. | 212.4 522.8 73.2 55.8 -66%  -89%
4 lots / 1400 oper. | 464 1572.2 147 424 -68%  -713%
5 lots / 1750 oper. | 4100 9645 413 1547.0 90%  -84%
6 lots / 2100 oper. - - 2309.7 3404 - -

7 lots / 2450 oper. - - 7234 14228 - -

In constrast to the MILP, the three-step approach has the advantage of being very fast, re-
quiring only 7 seconds on average to solve small instances. For real-life instances, involving
thousands of lots, each having hundreds of operations over dozens of weeks, the approach
still delivers plans in less than 5 minutes. However, it is important to evaluate the quality of
the resulting solutions. Thus, a comparative study was conducted between optimal solutions
provided by the exact model (or the best upper bound if the MILP was not solved in less than
one hour), and solutions provided by our approach. We compared the two approaches on 20
industrial instances, with the number of lots ranging from 1 to 20. The characteristics of the
instances are the same as those in Table 4. The due date distribution is based on the config-
uration “Hard®. Results are summarized in Table 6. The rows MILP and Approach show the
total delay in number of periods (all lots combined), and the row Gap(%) (= W)
gives the gap between the solution of the three-step approach and the best feasible solution of
the MILP in one hour. Note that, for instances for which the exact model determines an opti-
mal solution, our approach achieves the same objective function for almost all cases. However,
note that our approach ends with a lower quality solution in some instances with 5 and 7 lots.
This is due to the greedy behavior of the smoothing algorithm used in the smoothing module
and is a classical example of the drawback of greedy algorithms. Nevertheless, note that our
approach finds optimal solutions in most cases, or solutions that are always better than the
upper bounds determined by the MILP. It also can be noted that, for the “larger* instances,
the gap is widening between the solutions provided by the approach and those provided by
the MILP (-57.2% gap for instances with 19 lots). This reflects the difficulty of the MILP in
providing feasible solutions in a reasonable time frame (less than one hour), which increases
rapidly with the number of lots to be managed.

5.2. Comparison of smoothing procedures

As we have already said, this paper is devoted to the study of smoothing rules. The experi-
mental studies in this section aim at comparing the performances of the approach according
to the different smoothing rules used and the different performance indicators considered.
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Table 6.: Comparison between solutions provided by three-step approach and MILP in one
hour (* when exact solution is found)

Nb lots 1 2 3 4 5 6 7 8 9 10
MILP 0* 1% 5% 7* 7* 14* 18* 26 45 45
Approach 0 1 5 7 8 14 19 22 28 30

Gap (%) 0% 0% 0% 0% 143% 0% 5.6% -154% -37.8% -33.3%
Nb lots 11 12 13 14 15 16 17 18 19 20
MILP 47 55 65 80 64 100 117 120 152 160
Approach 34 37 41 42 47 50 53 61 65 71

Gap (%) -27.7% -327% -369% -475% -271% -50% -54.7% -492% -572% -55.6%

In Mhiri et al. (2018), a study is conducted on the performance of exact methods for solv-
ing the operational production planning problem. The authors solved a MILP via CPLEX
and used a Lagrangian relaxation method to improve the size of the solvable problems. How-
ever, this size remains to some dozens of lots and hundreds of operations, underlining the
intractability of real instances with thousands of lots and almost one thousand operations per
lot.

Besides, the authors compared the plans determined by the approach and the actual pro-
duction in the fab. The study aims at evaluating the ability of the approach to reliably simulate
the evolution of the WIP in the factory. However, this is not the goal of our approach, which
is used daily, to define production objectives. The plans are therefore not only predicting
what will happen, but prescribe the path to follow to maximize the objectives. Therefore, in
this work, we focus on evaluating the impact of the different smoothing rules on different
performance measures.

5.3. Industrial instances

In this section, we compare several versions of the approach to study the impact of the smooth-
ing rules based on 25 industrial instances directly taken from two STMicrolectronics plants.
The characteristics of these instances are summarized in Table 7 whose columns are described
below.

Column named WIP shows the number of lots in the plant at the beginning of the planning
horizon with an average of 4244 lots. Then, another aspect that can impact the production plan
is the production line imbalance. Product routes are usually broken down into 10 milestones
with an equivalent number of process operations. Measuring the dispersion of the WIP on
these different milestones is a good indicator of the imbalance of the production line. The
greater the dispersion (measured by the standard deviation Std(WIP)), the more likely that
some machines will be overloaded while others will be underutilized. Since volumes can vary
between instances significantly, the relative standard deviation of the WIP (noted RStd(WIP))
is given in Table 7. The dispersion of the WIP is rather high, ranging from 18% to more than
50%, showing very unbalanced production flows.

Regarding the satisfaction of the demand, the difficulty of the instances depends on the
status of the lots (being in advance or delayed) at the beginning of the planning horizon (the
lots in the initial WIP). The status of a lot at a given operation o in the WIP can be measured
using the slack time (S7,;) defined in Section 4.1. Based on this information, we use two

indicators to evaluate the difficulty of an instance. Let us denote by n the number of lots
currently in the WIP. The first indicator, denoted Avg(ST) = % is the average initial

delay of each lot. This indicator varies from 0.46 (a rather low value considering average
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cycle times of several months) to more difficult instances with 2.98 days of delay on average

for each lot. The second indicator Y U;(%) = Li[(8T=71)2(10)] d i
. (%) = . corresponds to the ratio of lots
with a significant delay (more than 1 day) at the beginning of the planning horizon.
The last three columns of the table show the size of the instances, with respectively the
number of machines (Tools), the number of different products in the WIP (Prd), and the

average number of process operations remaining for each lot (Avg(Op)).

Table 7.: Characteristics of industrial instances

Instance | WIP (lots) | Std(WIP) | RStd(WIP) | Avg(ST) | Y.U;(%) | Tools | Prd | Avg (Op)

1 3123 71 23% 0,71 23% 322 | 320 149
2 3168 66 21% 1,50 29% 323 | 328 145
3 2877 92 32% 2,69 26% 327 | 268 134
4 2845 83 29% 1,65 31% 327 | 259 132
5 2757 77 28% 0,69 12% 326 | 243 138
6 2822 51 18% 0,86 16% 327 | 250 133
7 2785 60 21% 0,66 13% 326 | 244 135
8 2831 56 20% 0,46 11% 326 | 238 135
9 2883 60 21% 0,47 12% 326 | 239 134
10 4011 136 34% 1,48 36% 395 | 433 597
11 4002 132 33% 1,50 27% 396 | 423 594
12 4182 139 33% 1,52 28% 397 | 436 594
13 4261 156 37% 1,39 28% 397 | 428 589
14 4199 153 36% 0,81 16% 397 | 439 599
15 4190 154 37% 1,15 23% 400 | 413 593
16 4265 160 37% 1,71 26% 403 | 439 607
17 5725 300 52% 2,41 37% 417 | 575 579
18 5675 299 53% 2,84 37% 415 | 579 584
19 5542 259 47% 2,02 30% 426 | 574 556
20 5608 254 45% 2,35 26% 426 | 577 554
21 5531 251 45% 2,06 24% 429 | 574 559
22 5652 256 45% 2,24 28% 429 | 589 559
23 5652 256 45% 2,20 27% 429 | 589 559
24 5735 276 48% 2,98 30% 430 | 584 537
25 5770 288 50% 2,04 24% 439 | 629 519
Avg 4244 163 36% 1,62 25% 382 | 427 417
Max 5770 300 53% 2,98 37% 439 | 629 607
Min 2757 51 18% 0,46 11% 322 | 238 132

For each instance, we run the three-step approach for 12 periods (weeks) with the 8 smooth-
ing rules summarized in Table 3, and compared them on six performance measures detailed
in Table 8.

First, it should be noted that the first three indicators (}_.7;, Y U; and T,,,,) are based on
due dates and assess whether the approaches provide quality solutions for customers. The
other indicators focus on evaluating how smoothing rules affect lot cycle time (CT), machine
utilization rate (Utlz%) and overall throughput (TP%).

These performance measure are standard indicators in semiconductor manufacturing. Uz-
soy, Lee, and Martin-Vega (1992) classify the indicators in this context into two classes:
Those based on due dates and those based on flow time. The indicators based on due dates
(such as Y. 77, Y Ul and T,,4) aim at measuring customer satisfaction, which is essential given
the strong competition in semiconductor manufacturing. Among the indicators based on flow
time, the first is cycle time (CT), whose minimization ensures a better responsiveness of facto-
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Table 8.: Performance measures

Performance Description
Measures
Y1, Total Tardiness, i.e cumulative sum of the tardiness (in number of weeks) for all lots.
YU, Total number of lots delivered late.
Tnax Maximum tardiness among all lots.
CT Average Cycle Time of lots.
Utlz% Average utilization rate (in percentage of their maximum capacity) of machines on
the planning horizon, given as the gap with the solution obtained with the EDD rule.
Throughput gap compared to the EDD rule. A positive value means that the rule
TP% provides solutions with higher throughput, i.e. performs more operations in the same
period of time.

ries to market demands. The throughput of the factory (TP%) as well as the utilization rate of
machines (Utlz%) are also important indicators, quantifying the profitability of the production
system.

Although the indicators Y. 7;, Y, U; and T4, are due date oriented, the results can probably
differ between them. In particular, if a rule tends to share the delay between lots fairly, it will
tend to minimize the maximum delay, i.e. 7},,,. This will generally be to the detriment of the
overall number of late lots, i.e. ) U;. The empirical work in Ovacik and Uzsoy (2012) suggests
that methods that perform well for 7,,,, also perform well for objectives such as Y. 7;, Y C;
(sum of completion times, which is strongly correlated to the Cycle-Time indicator (Monch,
Fowler, and Mason (2012))) and C,,,4x (makespan). However, this implication does not seem
to be valid for } U;. As for the } 7; indicator, it is not necessarily strongly correlated with
Y U, or T,,,.. However, it can be expected that a solution giving both poor results according
to Y U; and T},,4, Will also give poor results for Y 7;.

A positive correlation between TP% and Utlz% can also be expected since an increase in
throughput TP% implies more operations to perform in a given period, and therefore a larger
machine utilization rate. However, it should be noted that this correlation is not guaranteed.
Indeed, since processing times vary from one operation to another and from one machine to
another, it may be tempting, for example, to process long operations on machines in order to
increase their utilization, to the detriment of other faster operations. This choice shows that it
is possible to increase the utilization rate of machines without increasing the overall through-
put. On the opposite, it is possible to favour fast operations in order to increase throughput
without increasing the utilization rate on the machines.

Concerning the cycle time, studies (see for instance Kacar, Monch, and Uzsoy (2013);
Kacar, Monch, and Uzsoy (2016)) show that it generally increases with the overall load of the
fab. It can therefore be expected that if a rule significantly increases the machine utilization
rate and/or fab throughput, it will be at the expense of the overall cycle time. In addition,
a positive correlation between CT and Y 7; can also be expected, since a reduction in the
average cycle time should allow lots to leave earlier and thus lots should more easily meet
their due dates.

Note also that this correlation is strongly influenced by the way the due dates are set. If
the due dates are set based on cycle time estimates, a product for which the estimated cycle
time is larger than its target cycle time would have the due dates of its lots placed later than
what would be originally planned. This could potentially reduce the impact on the measured
tardiness. On the contrary, when due dates based on target cycle times are set by the company,
which is our case, an increase of the cycle time of a product would have a direct impact on
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the tardiness measured for this product.

5.4. Comparison of smoothing procedures

5.4.1. Average performances

In this section, we compare the multiple smoothing rules according to the different indicators.
The results are summarized in Table 9 and Figures 2 and 3. Table 9 shows, for each perfor-
mance measure, the average value for each rule on the 25 instances. The results in bold in the
table correspond to the best result among the smoothing rules. For }.7;, Y U;, T4 and CT,
the best result is the lowest average, while for TP% and Utlz%, the best result is the one with
the highest average. Additional information can be found in Tables 1 and 2 in the appendix.
They give, for each smoothing rule and each performance measure, respectively the worst and
the best results among the 25 instances. Detailed results are also available at the end of the
appendix.

To complete the analysis, Figures 2 and 3 show box plots. Figure 2 presents the results
for Y. 77, Y U}, T,,14x and CT, which should be minimized, and Figure 3 presents the results for
TP% and Utlz%, which should be maximized.

In order to position the different performance measures on the same figure, the values
are normalized. Thus, if v,,; denotes the value of performance measure p obtained using

smoothing rule r on instance i, the normalized value v}, , ; is:
U

Vrp,i — Wiy, ) Vr,p i
V= (5p) (20)
MaXy(r,p) — MMy )

Table 9.: Comparison of shifting rules - average

Performance Rules

Measures EDD ST STpost CR CRpyg MI MlIgr Ml CRPM
Y71, 828.8 14757 12155 1496.5 624.1 12056 11256 9469 1366.8

YU, 363.8 3334 301.3 4963 4057 442.6 3242 3126 479

Tax 9.8 11.4 10.6 10.2 6.0 12 10.1 9.1 11.5

CT 43.4 459 45.00 45.5 42.6 44.5 44.9 43.8 44.5
TP% 0.00% 0.78% 0.82% 0.58% 0.62% 1.01% 091% 0.81% 0.23%
Utlz% 0.00% 081% 1.19% 0.57% 093% 1.75% 1.62% 142% 0.21%

First of all, note the very good results of the CRp, rule which provides the best average re-
sults for performances measures Y 7}, T,,, and CT. These good performances are also visible
in Figure 2 where we can see that the CRp,s rule has a lower dispersion and globally lower
values (max, min, median, first and third quartiles) than the other smoothing rules. However,
despite the quality of the CRp, rule, the results are more mixed for the Y U; indicator. Thus,
the CRp,s rule seems to be successful in reducing the average and maximum delay, but at the
expense of a larger number of late lots.

Concerning the Y U; indicator, Table 9 and Figure 2 indicate that the best results are ob-
tained with the ST and S7p, rules. Thus, considering lots only from the point of view of their
absolute delay (and not relative to their position), tends to minimize the number of late lots.
But this is at the expense of the overall and maximum lot delays.

A possible explanation for these results is that considering the relative delay tends to give
more weight to lots close to the end of their route (and therefore that are generally close
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Figure 2.: Comparison of smoothing rules on performance measures to minimize.

Alt Text: Box plot showing the performance of each smoothing rule for the performance
measures to be minimized, the total sum of tardiness, the maximum tardiness, the number
of lots delivered late and the average cycle time of the lots. Rule CRp, is the one showing
globally the best results

23




) e e

0.8

Rules
EDD

o
(=]

S TPasr

CRPosr
Mi
Mist
Micg
CRPM

o
B

Normalized Value
gooopanng

02

e —

0.0

TP% Utlz%
Performance Measures

Figure 3.: Comparison of smoothing rules on performance measures to maximize.

Alt Text: Box plot showing the performance of each smoothing rule for the performance
measures to be maximized, i.e. the average throughput and the average utilization rate. Rule
MI is the one showing globally the best results
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to their delivery date). Thus, the lots that are late and close to the end of their route will
have a higher priority and will not be slowed down, limiting their delay. In contrast, the ST
and ST, rules will not necessarily give priority to lots at the end of their route, which will
potentially have larger delays than with the CR or CR, rules. However, since the lots at the
beginning and the middle of their routes are less penalized, it is possible that the heuristic
better manages potential delays upstream, thus avoiding additional delays. This should make
the ST and ST, rules more effective in reducing ) U, but less effective than the CR or
CR o5 rules in reducing ). 7; and Ty,

Not surprisingly, rules considering only or in part the impact of lots on machines present
average performances regarding cycle time and due date oriented performances indicators.
We can nevertheless underline the correct performances of the MIcg rule, which sometimes
succeeds in achieving the best solutions, but above all makes it possible to generally obtain
good results and rarely very poor results.

For non-customer oriented indicators, i.e. TP% and Utlz%, note the good overall perfor-
mance of the rules considering the impact of lots on machines (MI, MIsr and MIcg). The
best results are obtained by the totally machine oriented (MI) rule with an average throughput
which is 1% larger than the EDD rule, and 1.75% larger for the average machine utilization
rate. However, this domination is limited to the TP% and Utlz% indicators. Indeed, for the
average cycle time of the lots, the CRp, rule stands out this time by providing the best results
on all instances.

Note again that the quality of the results obtained using the MIcg rule, with a good com-
promise between the three indicators.

An important remark is that the CRPM rule from Mhiri et al. (2018) does not provide good
solutions, being always dominated (average and maximum) by other rules with even the worst
results on indicators 7., TP% and Utlz%

When considering all indicators, the ST and CR rules are globally dominated by their Mgy
and MIcr variants. This means that taking into account the influence of the shift of a lot to a
new period really improves the quality of solutions. Therefore, the ST and CR rules will no
longer be considered, as well as the CRPM rule. Besides, we do not consider the Mgy rule
whose performance does not significantly differ from those of the MI or CR rules in terms of
quality, and is outperformed by MIcg rule on most of the performance measures.

5.4.2.  Best and worst case performances

Since no solution totally dominates the others over all six indicators, we now analyze the
number of times one of the rules provides the best or worst solutions. The results of the
analysis can be found in Figures 4 and 5, through two Kiviat diagrams, where each axis
corresponds to one of the performance measures and each rule has a different color. In Figure
4, the number of times a rule finds the best solution for a performance measure is shown.
Thus, a good rule is assumed to cover a large area. The maximum on an axis is 25, which
means that the rule always provides the best solution for the associated performance measure.
In contrast, in Figure 5, the number of times a rule finds the worst solution for a performance
measure is shown. A good rule should therefore cover a small area. Note that the sum on
each axis is not necessarily 25, since some of the best and worst solutions are obtained with
the OD, RS, CRPM and MIgr rules which are not deemed to be relevant in terms of solution
quality and thus are not represented for clarity of representation.

25



B EDD
B ST,
CRpost
Utlz\% TP% MI

S MIcg

2
20
15
10
| }V&f
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Alt Text: Radar diagram with 6 branches representing the different performance measures.
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Figure 5.: Number of worst solutions by performance measure and smoothing rule.

Alt Text: Radar diagram with 6 branches representing the different performance measures.
The scale corresponds to the number of time?g rule found the worst solution. The EDD and
MI rules are the ones with the largest areas represented. EDD is the first one.



Figure 4 emphasizes again the performance of the CRp, rule, which often leads to the
best solutions for some indicators. Moreover, Figure 5 shows that the CRp, rule rarely gives
worst solutions. However, note that, for the indicators for which the CRp,y rule gets the
worst solutions, the CRp, rule often also gives the best solutions, which may reflect some
variability in the results.

Figure 4 shows that EDD obtains good results by sometimes finding the best solution for
all indicators. In addition, Figure 5 shows that EDD provides 15 times the worst solution for
the Utlz% and TP% indicators, and therefore significantly degrades the quality of solutions
on these aspects.

According to Figure 4, the MI rule also obtains good results by almost always dominating
the other rules for the Utlz% and TP% indicators. According to Figure 35, it also rarely gets
the worst solutions, except for the 7}, criterion where it achieves the worst results.

Finally, the analysis shows that the MIcg rule performs well for the Utlz% and TP% indi-
cators (even though it is not as effective as the MI rule which does not consider lot delays),
but it rarely obtains the best solutions for the other indicators. However, Figure 5 shows that
the MIcg rule very rarely obtains the worst solutions (three times for 7},,, and Utlz%) and is
therefore never dominated in terms of worst performance.

5.4.3. Computational times

In Table 10, Columns Average, Minimum and Maximum give respectively the average, mini-
mum and maximum computational times in seconds of the three-step approach for the 25 in-
stances and for each smoothing rule. Column Average also gives the percentage gap (Gap(%))
from the EDD rule, which is the reference rule.

Table 10.: Average computational times of three-step approach for each smoothing rule

Average Minimum | Maximum

Smoothing Rule | CPU (sec) Gap(%) | CPU (sec) | CPU (sec)
DD 104 +0% 88 110
ST 90 -13% 77 109
STpost 95 -9% 81 105
CR 88 -15% 72 98
CRpost 104 +0% 89 116
MI 119 +15% 98 138
MIgy 101 2% 82 125
Mlcg 106 +2% 85 125
CRPM 109 +5% 91 113

First, note that the ST and CR rules are on average faster than the EDD rule and their
respective variants STp,s; and CRp,s. This last point can be explained in two ways. First, the
a priori evaluation of indicators requires more calculations. But above all, because the STp,
and CRp,y rules tend to prioritize shifting of lots at the end of the period, which generates
less workload reduction with each shift and therefore requires more iterations to ensure that
the capacity is respected. The standard rules are therefore faster, but we have seen in Sections
5.4.1 and 5.4.2 that this comes at the expense of the quality of the solutions. The CRPM rule
slightly increases the computational time, although it remains close to the overall average.
Then, note that the MI rule is the one that requires the longest computational time. This can
be explained by the fact that the MI rule requires pre-processing in order to assess the impact
that each lot would have on the machines if it was postponed. It should also be noted that the
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Mgt and Mlcg rules do not suffer a significant increase in computational time with respect to
the EDD rule. The fact that the MIs; and MIcg rules have a much shorter computational time
than the original MI rule can be explained by the fact that, in many situations, no lots available
to be shifted are considered in advance. In this case, the time-consuming pre-processing phase
to assess the impact of lots on machines is not performed, and the Mgy and MIcg rules only
use the STp,; and CRp, rules which are faster.

6. Practical Implementations

Since Mhiri et al. (2018), work on the three-step approach and the decision support tool that
contains it has continued and allows the tool to be today fully integrated into the planning
process of the Crolles site of the STMicrolectronics company. In this section, we give more
information on this integration as well as on the interest of the new smoothing rules imple-
mented.

6.1. Tool Integration in Manufacturing System

The entire production planning process is summarized in Figure 6. Based on the classical
classification of planning levels, we can see that the process presented is divided between the
tactical and operational levels.

(1) The first input of this process is the delivery plan given by the central services of the
company, which handle the Master Planning function. Here the indications are given
for each production site, and the Crolles site therefore receives a delivery plan in the
form of a delivery volume target per week and per type of product. These plans are
given over 12 months and can be periodically adjusted if necessary.

(2) On the basis of these delivery plans, the internal planning department at the Crolles
site aims to define the release plans to ensure the on time delivery. These release plans
define the volumes per product and per week, and are re-evaluated each week according
to the production evolution.

(3) Based on the delivery and release plans, the Operational Production Planning function
seeks to define an optimized production plan to meet the delivery objectives. These
production plans are drawn up over 8 weeks by the Industrial Engineering department
and are presented to the main production managers in order to give them guidelines
to follow. In addition, these weekly production plans also feed into other tools that
automatically update the priority status of lots or define production targets by product
and equipment, for use in Scheduling tools. These plans are then re-evaluated every
week, taking into account the evolution of the release plans, but also the new situation
of the factory (WIP evolution, new machine status, ...)

(4) Finally, the Scheduling, Dispatching and Human Production Management functions
aim to optimize the local performance of the various workshops while ensuring on-
time delivery of lots, with the help of instructions given by the higher functions.

As already mentioned, this approach is today fully implemented in a decision support tool,
which has been used in a rolling horizon for over three years to plan the production of two
STMicroelectronics factories in France. The tool provides production and capacity plans in a
few minutes for large-size real problems and has led to several advances within the company.
The ability to take into account capacity constraints has made it easier for planners to create
feasible production plans. The speed to obtain the plans also allows users to run “what if*
scenarios by varying the inputs (e.g. modifications of the start plans or of machine capacities).
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One of the indicators of the successful implementation of our approach is that between 68%
and 73% of the quantities recommended to be produced each week by the tool are respected.
This percentage is relatively high, given the high uncertainty in high-mix wafer manufacturing
systems and the unavoidable operational adjustments.

The different modules of the approach also support other applications. For instance, the
projection module is automatically run every morning to evaluate the earliness or lateness of
lots (based on their Slack Time or Critical Ratio) and to update their priorities. The production
plans are also used to support the management of masks in the photolithography workshop.
Various use cases are discussed in Christ et al. (2018).

6.2. Recommendations

In this section, we discuss the results obtained when using the three-step approach in an
industrial context.

Based on the results, the three preferred rules are CRp,s, MI and MIcg. The CRp,s rule
provides the best average results for the customer oriented indicators Y 7; and 7,4y, making
it a preferred rule if managers are mainly concerned by customer commitments. Note that the
STpos: rule is better at limiting the number of late lots Y U;, however leading to a significant
increase of cycle times compared to the CRp, rule (see Table 9), which makes the STp, rule
generally less preferable.

The primary objective is not always to minimize customer delays, but can be to maximize
throughput or machine utilization.

This is in particular the case when demands are very high and the fab capacity is too
low. In this context, delays can become inevitable and managers may choose to focus on
maximizing the overall throughput of the plant, by maximizing the throughput and machine
utilization. In this case, it is preferable to use the MI rule which, although it is not the best
at minimizing customer delays (in particular the maximum delay, see Figure 5), dominates
when maximizing the throughput of the facility and the average use of machines. However,
this rule induces an increase in computational time compared to any other rule. However,
this computational time remains short, about two minutes, which remains largely acceptable
for the creation of weekly plans allowing several calculations to be quickly restarted to test
several scenarios.

Finally, the use of the MIcr rule can be recommended because of its good overall per-
formance. Indeed, although this rule on average is never the best for any of the indicators,
it generally remains the second or third best. Only the maximum delay seems to pose diffi-
culties, but the MIcr rule remains efficient for the global tardiness and number of late lots.
Moreover, this is not at the expense of the computational time, which makes this rule a good
option when balancing among all indicators.

Currently, the CRp,y rule is integrated in the approach as the default rule. But we are
working to enable managers to easily select other rules (in particular the M1 and MIcg rules)
according to the indicators they consider to be the most important when running the approach.

7. Conclusions and perspectives

In this paper, we presented an operational production planning problem in a complex manu-
facturing system. In this problem, lots are planned individually to provide a more detailed plan
than approaches that only consider production quantities. To address this problem, we present
a three-step approach following the one introduced in Mhiri et al. (2018). The approach is ex-
tended by introducing new optimization possibilities through new smoothing rules, whose
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30



performances are studied according to different indicators.

The comparison of the different smoothing rules shows the influence of the choice of lots
to postpone in the smoothing module, and that although no rule fully dominates the others,
some rules stand out because of their overall performance or the fact that they rarely provide
the worst solutions. Some recommendations are also provided to propose the best rules to use
in an industrial context.

This approach is fully implemented in a decision support tool used to plan production in
two STMicroelectronics factories. The tool also supports other uses such as the management
of lot priorities based on the automatic evaluation of the slack time and critical ratio of lots.

Among future studies, extending the approach to consider multiple periods in the utiliza-
tion balancing approach and the smoothing modules seems promising. Indeed, these modules
take greedy decisions in a single period, but the utilization rate might be better balanced be-
tween periods. For example, the approach only allows the postponement of lots to a later
period in case of overload of some machines, and thus to degrade the current solution. How-
ever, the approach does not allow to anticipate the realization of certain operations if the ma-
chine capacity allows it. A backward-smoothing approach, complementary to the smoothing
approach already implemented, could be an interesting extension in order to improve the qual-
ity of the proposed plans. Other construction heuristics could be developed and compared to
our approach. Also, the smoothing rules are compared based on the quality of the production
plans determined by the three-step approach. Another interesting aspect would be to evaluate
how the rules are followed in reality, and if indeed the rules leading to the best plans also lead
to the best realized plans. This analysis is not easy to conduct in real-life conditions. Hence,
it could be relevant to develop a simplified simulation model of the production system, which
could be used to test the production guidelines resulting from the optimized plans. Another
perspective is to extend our approach to handle lot due dates that are within periods instead of
at ends of periods. This should be handled by modifying the third step of our approach where
the capacity constraints are taken into account and lots are postponed. The third step of our
approach could also be adapted to consider lots with different priorities such as hot lots.
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Appendix: Detailed numerical results

Table 1.: Comparison of shifting rules - Worst results

Performance Rules
Measures EDD ST STpyst CR CRposy M1 MIsy MIcg CRPM
Y1 2528 3353 2981 3444 1625 2768 2897 2453 2711
YU, 955 738 682 957 1030 991 718 775 865
Tnax 22 18 18 18 14 21 17 16 24
CT 539 56.5 55.8 55.4 519 548 554 54.1 56.8
TP% 0% 0% 0% -0.10% 0% 0% 0% 0% -1.85%
Utlz% 0% -345% 0% -345% 0% 0% 0% 0% -2.59%
Table 2.: Comparison of shifting rules - Best results
Performance Rules
Measures EDD ST STpyst CR  CRpyy MI MIsy  MIcg  CRPM
Y7 0 53 19 59 0 30 19 5 47
Yu; 0 50 12 56 0 23 13 3 41
Tnax 0 3 1 3 0 3 1 1 4
CT 2929 3090 29.58 31.16 29.25 30.07 29.58 29.26 30.93
TP% 0.00% 2.80% 2.80% 2.60% 190% 2.90% 280% 2.50% 2.25%
Utlz% 0.00% 3.13% 3.13% 3.13% 3.13% 513% 3.13% 3.33% 3.32%

34



Table 3.: Comparison of shifting rules on Total Tardiness

Instances Rules
EDD | ST | STp,is | CR | CRpysy | MI | MIgy | MIcg | CRPM

1 18 133 19 151 18 30 19 19 62
2 0 439 91 157 0 60 37 34 201
3 37 53 41 59 37 57 41 37 266
4 33 73 51 144 36 73 45 42 329
5 6 134 30 215 6 119 29 7 47
6 174 892 28 793 7 98 29 13 520
7 119 596 62 414 2 79 60 5 263
8 48 1001 | 249 791 63 321 258 67 361
9 73 1020 | 265 814 76 400 265 81 430
10 2086 | 2279 | 2122 | 3444 | 1353 | 2355 | 1859 | 1752 509
11 1607 | 2489 | 2309 | 2346 | 1154 | 2586 | 2170 | 1838 536
12 1330 | 2630 | 2169 | 1982 | 1028 | 2352 | 2078 | 1461 815
13 1493 | 2104 | 2073 | 2191 884 2427 | 1878 | 1553 866
14 2528 | 3188 | 2981 | 2842 | 1625 | 2768 | 2885 | 1759 920
15 1254 | 3054 | 2618 | 3017 878 1586 | 2550 | 1540 1015
16 1610 | 3353 | 2894 | 2979 | 1061 | 2693 | 2897 | 2140 830
17 1637 | 2827 | 2567 | 2504 | 1280 | 2734 | 2416 | 2132 1104
18 802 | 2460 | 1964 | 2505 628 1522 | 1362 | 1335 1370
19 1004 | 2331 | 2351 | 2531 700 1662 | 2075 | 2453 1397
20 973 | 1737 | 1383 | 2182 881 1730 | 1114 | 1349 | 2059
21 907 | 1289 | 1301 | 1188 | 1105 | 1162 | 931 1025 | 2202
22 1106 | 761 780 700 1363 | 1186 | 862 823 2476
23 690 683 679 1169 482 700 774 813 1961
24 678 708 702 | 1297 496 697 723 763 1988
25 507 658 658 996 439 743 784 631 2711

Avg 829 | 1476 | 1216 | 1496 624 1206 | 1126 | 947 1010

Max 2528 | 3353 | 2981 | 3444 | 1625 | 2768 | 2897 | 2453 | 2711

Min 0 53 19 59 0 30 19 5 47
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Table 4.: Comparison of shifting rules on Maximum Tardiness

Rules
Instances S —q T 57 T CR | CRpoy | MI | Misy | Micg | CRPM

1 2 6 2 4 2 3 2 2 4
2 0 4 1 3 0 3 1 1 4
3 3 3 3 3 3 3 3 3 6
4 1 3 3 4 1 5 2 2 6
5 3 5 5 4 3 7 5 3 5
6 5 7 5 5 5 5 5 5 9
7 2 6 4 4 1 6 4 1 5
8 2 7 5 4 2 7 5 4 6
9 3 7 5 4 2 7 5 3 6
10 20 17 17 17 9 20 17 10 24
11 16 17 17 16 7 17 17 16 18
12 12 17 17 17 9 18 17 14 16
13 14 | 18 15 18 9 18 15 14 16
14 15 17 15 15 8 20 14 12 15
15 12 | 17 17 16 8 19 17 13 12
16 17 17 16 17 8 19 15 14
17 22 18 18 18 8 21 15 15 17
18 15 14 15 14 14 20 13 13 23
19 14 11 11 9 8 14 10 10 15
20 11 11 11 11 7 11 11 11 14
21 11 12 12 10 7 9 11 11 12
22 11 13 13 11 8 12 12 12 11
23 10 12 12 10 8 11 11 12 11
24 10 12 12 10 8 11 12 12 10
25 13 13 14 12 6 14 14 14 13

Ave | 976 | 11.36 | 10.60 | 10.24 | 6.04 | 12.00 | 10.12 | 9.08 | 11.52

Max 2 | 18 18 18 14 21 17 16 24

Min 0 3 1 3 0 3 1 1 4
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Table 5.: Comparison of shifting rules on number of late lots

Instances Rules
EDD ST STpost CR CRpys MI Mgt MlIcr | CRPM

1 17 73 18 85 17 23 18 18 55
2 0 241 91 113 0 47 37 34 139
3 35 51 39 56 35 49 39 35 144
4 33 56 45 93 36 56 42 39 210
5 2 50 15 102 2 62 14 3 41
6 169 252 12 378 2 46 13 6 363
7 82 168 39 219 2 46 37 5 180
8 47 242 197 363 62 155 209 58 238
9 71 244 202 343 75 166 202 78 291
10 698 471 478 812 888 797 493 597 252
11 712 532 490 743 829 658 576 492 309
12 587 541 474 744 698 724 539 420 361
13 508 425 398 701 491 806 420 380 454
14 955 649 605 838 1030 937 616 672 511
15 450 523 518 763 577 593 549 402 399
16 605 598 564 866 679 821 623 557 342
17 718 738 682 957 788 991 718 657 490
18 388 550 518 860 431 589 503 519 532
19 603 545 588 828 571 729 675 775 488
20 537 332 333 505 575 618 311 407 733
21 482 283 351 349 720 522 311 380 769
22 630 214 259 257 897 557 337 405 767
23 299 186 205 519 256 355 272 301 608
24 259 189 214 567 260 384 259 304 684
25 208 183 198 347 222 334 291 270 865

Avg 363.8 | 333.44 | 301.32 | 496.32 | 405.72 | 442.6 | 324.16 | 312.56 409

Max 955 738 682 957 1030 991 718 775 865

Min 0 50 12 56 0 23 13 3 41
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Table 6.: Comparison of shifting rules on Cycle Time

Rules

Instances EDD | ST | STpyy | CR | CRpyy | MI | Mlsy | Micg | CRPM

33.68 | 34.01 | 33.69 | 34.04 | 33.68 | 33.7 | 33.68 | 33.68 | 32.82
3295 | 34.13 | 33.18 | 33.27 | 32.95 | 33.06 | 33.04 | 33.03 | 32.18
33.29 | 33.33 | 333 | 3335 | 33.29 | 33.33 | 333 | 33.29 | 31.76
31.94 | 32.04 | 31.97 | 32.23 | 31.94 | 32.01 | 31.95 | 31.95 | 31.00
30.54 | 309 | 30.6 | 31.16 | 30.54 | 30.77 | 30.6 | 30.54 | 30.95
30.2 | 32.45 | 30.13 | 32.21 | 30.03 | 30.22 | 30.13 | 30.06 | 31.46
30.67 | 31.98 | 30.48 | 31.5 | 30.31 | 30.47 | 30.48 | 30.32 | 30.93
29.47 | 32.09 | 29.75 | 31.38 | 29.44 | 30.07 | 29.74 | 29.48 | 31.49
29.29 | 3191 | 29.58 | 31.25 | 29.25 | 30.07 | 29.58 | 29.26 | 31.28
51.16 | 51.76 | 51.36 | 54.71 | 49.11 | 51.46 | 50.7 | 50.31 | 53.24
4757 | 504 | 4999 | 499 | 4641 | 50.22 | 49.54 | 48.68 | 54.16
48.73 | 52.02 | 50.85 | 50.41 | 47.92 | 50.88 | 50.52 | 49.02 | 56.82
48.53 | 50.2 | 50.14 | 50.32 | 47.09 | 50.91 | 49.62 | 48.8 | 52.78
53.39 | 56.52 | 55.78 | 55.12 | 51.26 | 54.78 | 55.41 | 51.77 | 55.07
46.89 | 51.72 | 50.63 | 51.56 | 45.87 | 47.76 | 50.51 | 47.69 | 56.59
51.4 | 55.63 | 54.55 | 54.67 | 50.14 | 54.19 | 54.6 | 52.71 | 56.02
49.1 | 52.22 | 51.58 | 51.42 | 48.15 | 51.84 | 51.26 | 50.44 | 52.95
49.3 | 53.29 | 51.94 | 53.17 | 4798 | 49.89 | 50.49 | 50.33 | 46.49
50.46 | 54.19 | 54.26 | 5391 | 49.19 | 51.6 | 53.26 | 54.06 | 46.23
50.12 | 53.74 | 53.52 | 53.57 | 49.21 | 52.13 | 54.7 | 51.63 | 48.52
5271 | 53.94 | 53.14 | 53.36 | 51.16 | 52.63 | 53.52 | 51.28 | 49.63
53.9 | 55.56 | 54.31 | 54.44 | 51.85 | 53.43 | 54.64 | 52.07 | 50.82
50.37 | 54.61 | 54.09 | 54.62 | 49.57 | 53.22 | 54.51 | 52.4 | 50.08
50.65 | 55.25 | 54.67 | 55.35 | 499 | 53.53 | 54.76 | 52.86 | 50.08
48.27 | 52.3 | 51.17 | 51.53 | 48.09 | 51.13 | 50.84 | 49.56 | 49.75

>[\)[\)[\)NNN,_,_,_,_,_,_,_,_,_,_
0<°m-hwl\)»—oom\loxm.pww_o©°°\10\m-l>ww~

43.38 | 45.85 | 44.99 | 45.54 | 42.57 | 44.53 | 44.86 | 43.81 | 44.52
Max 53.90 | 56.52 | 55.78 | 55.35 | 51.85 | 54.78 | 55.41 | 54.06 | 56.82
Min 29.29 | 30.90 | 29.58 | 31.16 | 29.25 | 30.07 | 29.58 | 29.26 | 30.93
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Table 7.: Comparison of shifting rules on Throughput

Instances Rules
EDD ST STrost CR CRpys MI MIsr | MIcg | CRPM
1 0.00% | 0.00% | 0.00% | 0.00% | 0.00% | 0.00% | 0.00% | 0.00% 1.2%
2 0.00% | 0.00% | 0.00% | 0.00% | 0.00% | 0.00% | 0.00% | 0.00% | 2.2%
3 0.00% | 0.00% | 0.00% | 0.00% | 0.00% | 0.00% | 0.00% | 0.00% | -0.3%
4 0.00% | 0.00% | 0.00% | 0.00% | 0.00% | 0.00% | 0.00% | 0.00% 1.1%
5 0.00% | 0.00% | 0.00% | 0.00% | 0.00% | 0.00% | 0.00% | 0.00% | -0.7%
6 0.00% | 0.00% | 0.00% | 0.00% | 0.00% | 0.00% | 0.00% | 0.00% 1.0%
7 0.00% | 0.00% | 0.00% | 0.00% | 0.00% | 0.00% | 0.00% | 0.00% | -0.5%
8 0.00% | 0.00% | 0.00% | 0.00% | 0.00% | 0.00% | 0.00% | 0.00% | 0.8%
9 0.00% | 0.00% | 0.00% | 0.00% | 0.00% | 0.00% | 0.00% | 0.00% | 0.6%
10 0.00% | 1.90% | 1.90% | 1.60% | 1.20% | 2.00% | 2.00% | 1.40% | 0.3%
11 0.00% | 2.00% | 2.00% | 1.70% | 1.10% | 2.40% | 2.20% | 1.60% | -0.6%
12 0.00% | 1.80% | 1.80% | 1.50% | 0.90% | 2.00% | 1.70% | 1.60% | -0.2%
13 0.00% | 1.60% | 1.60% | 1.10% | 1.00% | 2.00% | 1.80% | 1.50% | -0.6%
14 0.00% | 2.80% | 2.80% | 2.60% | 1.50% | 2.90% | 2.80% | 2.50% 1.9%
15 0.00% | 1.20% | 1.30% | 0.70% | 0.70% | 1.60% | 1.40% | 1.30% 1.2%
16 0.00% | 1.50% | 1.50% | 0.80% | 1.00% | 1.50% | 1.50% | 1.50% 1.4%
17 0.00% | 0.80% | 1.00% | 0.60% | 0.60% | 1.10% | 0.90% | 1.00% | 2.2%
18 0.00% | 1.30% | 1.60% | 0.40% | 1.90% | 2.10% | 1.80% | 1.80% | -0.3%
19 0.00% | 1.10% | 1.20% | 1.50% | 1.40% | 1.90% | 1.60% | 1.40% 1.1%
20 0.00% | 1.00% | 1.20% | 0.40% | 1.00% | 1.40% | 1.10% | 1.10% | -0.7%
21 0.00% | 0.90% | 0.90% | 0.40% | 1.10% | 1.40% | 1.40% | 1.20% 1.0%
22 0.00% | 0.40% | 0.50% | 0.40% | 0.80% | 1.00% | 0.90% | 0.70% | -0.5%
23 0.00% | 0.50% | 0.50% | 0.50% | 0.60% | 0.70% | 0.60% | 0.60% | 0.8%
24 0.00% | 0.60% | 0.60% | 0.50% | 0.60% | 0.80% | 0.70% | 0.70% | 0.6%
25 0.00% | 0.10% | 0.10% | -0.10% | 0.20% | 0.40% | 0.40% | 0.40% | -1.8%
Avg 0.00% | 0.78% | 0.82% | 0.58% | 0.62% | 1.01% | 0.91% | 0.81% | 0.45%
Max 0.00% | 2.80% | 2.80% | 2.60% | 1.90% | 2.90% | 2.80% | 2.50% | 2.25%
Min 0.00% | 0.00% | 0.00% | -0.10% | 0.00% | 0.00% | 0.00% | 0.00% | -1.85%
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Table 8.: Comparison of shifting rules on Utilization rate

Instances Rules
EDD ST STpost CR CRpys MI MIgr | MIcg | CRPM
1 0.00% | 2.86% | 2.86% | 2.86% | 2.86% | 2.86% | 2.86% | 2.86% | 2.1%
2 0.00% | 3.03% | 3.03% | 3.03% | 3.03% | 3.03% | 3.03% | 3.03% | 3.3%
3 0.00% | 0.00% | 0.00% | 0.00% | 0.00% | 0.00% | 0.00% | 0.00% | -1.1%
4 0.00% | 0.00% | 0.00% | 0.00% | 0.00% | 3.33% | 0.00% | 3.33% | 0.8%
5 0.00% | 0.00% | 0.00% | 0.00% | 0.00% | 0.00% | 0.00% | 0.00% | -1.5%
6 0.00% | 0.00% | 0.00% | 0.00% | 0.00% | 0.00% | 0.00% | 0.00% | 0.3%
7 0.00% | 0.00% | 0.00% | 0.00% | 0.00% | 0.00% | 0.00% | 0.00% | -1.2%
8 0.00% | -3.45% | 0.00% | -3.45% | 0.00% | 0.00% | 0.00% | 0.00% | 0.1%
9 0.00% | 0.00% | 0.00% | 0.00% | 0.00% | 0.00% | 0.00% | 0.00% | 0.00%
10 0.00% | 3.13% | 3.13% | 3.13% | 3.13% | 3.13% | 3.13% | 3.13% | 0.5%
11 0.00% | 0.00% | 0.00% | 0.00% | 0.00% | 0.00% | 0.00% | 0.00% | -0.6%
12 0.00% | 0.00% | 3.03% | 0.00% | 0.00% | 3.03% | 3.03% | 3.03% | -1.5%
13 0.00% | 0.00% | 2.94% | 2.94% | 0.00% | 2.94% | 2.94% | 2.94% | -0.5%
14 0.00% | 3.03% | 3.03% | 3.03% | 3.03% | 3.03% | 3.03% | 3.03% | 2.6%
15 0.00% | 3.03% | 3.03% | 0.00% | 3.03% | 3.03% | 3.03% | 3.03% | 2.1%
16 0.00% | 3.03% | 3.03% | 3.03% | 3.03% | 3.03% | 3.03% | 3.03% | 2.0%
17 0.00% | 3.13% | 3.13% | 0.00% | 0.00% | 3.13% | 3.13% | 0.00% | 3.3%
18 0.00% | 2.56% | 2.56% | 2.56% | 2.56% | 5.13% | 2.56% | 2.56% | -1.1%
19 0.00% | 0.00% | 0.00% | 0.00% | 0.00% | 2.50% | 2.50% | 0.00% | 0.8%
20 0.00% | 0.00% | 0.00% | 0.00% | 0.00% | 0.00% | 0.00% | 0.00% | -1.5%
21 0.00% | 0.00% | 0.00% | 0.00% | 0.00% | 2.86% | 2.86% | 2.86% | 0.3%
22 0.00% | 0.00% | 0.00% | 0.00% | 0.00% | 0.00% | 0.00% | 0.00% | -1.2%
23 0.00% | 0.00% | 0.00% | 0.00% | 0.00% | 0.00% | 2.70% | 2.70% | 0.1%
24 0.00% | 0.00% | 0.00% | 0.00% | 2.70% | 2.70% | 2.70% | 0.00% | 0.00%
25 0.00% | 0.00% | 0.00% | -2.78% | 0.00% | 0.00% | 0.00% | 0.00% | -2.6%
Avg 0.00% | 0.81% | 1.19% | 0.57% | 093% | 1.75% | 1.62% | 1.42% | 0.21%
Max 0.00% | 3.13% | 3.13% | 3.13% | 3.13% | 5.13% | 3.13% | 3.33% | 3.32%
Min 0.00% | -3.45% | 0.00% | -3.45% | 0.00% | 0.00% | 0.00% | 0.00% | -2.59%
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