
European Journal of Operational Research 311 (2023) 455–471

Contents lists available at ScienceDirect

European Journal of Operational Research

journal homepage: www.elsevier.com/locate/ejor

Discrete Optimization

A general efficient neighborhood structure framework for the job-shop

and flexible job-shop scheduling problems

Karim Tamssaouet ∗, Stéphane Dauzère-Pérès

Department of Accounting and Operations Management, BI Norwegian Business School, Nydalsveien 37, Oslo N-0484, Norway

a r t i c l e i n f o

Article history:

Received 30 September 2021

Accepted 10 May 2023

Available online 13 May 2023

Keywords:

Scheduling

Job-shop scheduling

Flexible job-shop scheduling

Heuristics

a b s t r a c t

This article introduces a framework that unifies and generalizes well-known literature results related to

local search for the job-shop and flexible job-shop scheduling problems. In addition to the choice of

the metaheuristic and the neighborhood structure, the success of most of the influential local search

approaches relies on the ability to quickly and efficiently rule out infeasible moves and evaluate the

quality of the feasible neighbors. Hence, the proposed framework focuses on the feasibility and quality

evaluation of a general move when solving the job-shop and flexible job-shop scheduling problems for

any regular objective function. The proposed framework is valid for any scheduling problem where the

defined neighborhood structure is appropriate, and each solution to the problem can be modeled with a

directed acyclic graph with non-negative weights on nodes and arcs. The feasibility conditions and quality

estimation procedures proposed in the literature rely heavily on information on the existence of a path

between two nodes. Thus, based on an original parameterized algorithm that asserts the existence of a

path between two nodes, novel generic procedures to evaluate the feasibility of a move and estimate the

value of any regular objective function of a neighbor solution are proposed. We show that many well-

known literature results are special cases of our results, which can be applied to a wide range of shop

scheduling problems.

© 2023 The Authors. Published by Elsevier B.V.

This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)

1

t

s

1

i

m

s

c

i

i

o

a

c

e

(

h

s

p

w

a

a

c

b

r

s

e

c

w

i

t

t

o

n

h

p

l

h

0

. Introduction

Scheduling deals with the allocation of resources to tasks over

ime to optimize one or more objectives (Pinedo, 2016). The job-

hop scheduling problem is one of the most well-known (Bowman,

959) and difficult (Gonzalez & Sahni, 1978) scheduling problems

n the literature. In a job-shop scheduling problem, a set of jobs

ust be processed on a set of machines, and each job requires a

equence of operations (a route) before being completed. A ma-

hine can only perform one operation at a time, and preemption

s not allowed. Each operation can only be performed on a spec-

fied machine while, in the flexible job-shop scheduling problem,

perations can be assigned to multiple machines. Such problems

nd their extensions can model a wide range of real-world appli-

ations, for example in the contexts of healthcare (Pham & Klink-

rt, 2008), manufacturing (Tamssaouet et al., 2022) and transport

 Lamorgese & Mannino, 2019). This explains why so much research

as been conducted on designing exact and heuristic algorithms to

olve these problems.
∗ Corresponding author.

E-mail addresses: karim.tamssaouet@bi.no (K. Tamssaouet), stephane.dauzere-

eres@bi.no (S. Dauzère-Pérès) .

e

c

c

ttps://doi.org/10.1016/j.ejor.2023.05.018

377-2217/© 2023 The Authors. Published by Elsevier B.V. This is an open access article u
Job-shop scheduling problems are computationally intractable

hen dealing with large instances. Therefore, heuristic algorithms

re considered in practice to find good quality solutions in reason-

ble computational times. It is common to differentiate between

onstructive and improvement heuristics. A constructive heuristic

uilds a solution from scratch, often by using some greedy crite-

ia. An improvement heuristic, starting from one or a set of initial

olutions generated randomly or by some constructive heuristic, it-

ratively explores the search space to obtain better solutions. Lo-

al search algorithms are a broad class of improvement algorithms

here, at each iteration, an improving solution is found by search-

ng the neighborhood of the current solution, that is, a set of solu-

ions that are, in some sense, “close” to that solution. Therefore,

o derive a local search algorithm for an optimization problem,

ne must carefully define the neighborhood structure specifying the

eighborhood to explore for each solution. Typically, a neighbor-

ood structure is not defined by explicitly enumerating the set of

ossible neighbors, but rather implicitly by defining the possible

ocal changes, called moves , to apply to the current solution. For

xample, a well-known move for the job-shop scheduling problem

onsists in swapping two consecutive critical operations on a ma-

hine (Van Laarhoven et al., 1992).
nder the CC BY license (http://creativecommons.org/licenses/by/4.0/)

https://doi.org/10.1016/j.ejor.2023.05.018
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ejor
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ejor.2023.05.018&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:karim.tamssaouet@bi.no
mailto:stephane.dauzere-peres@bi.no
https://doi.org/10.1016/j.ejor.2023.05.018
http://creativecommons.org/licenses/by/4.0/

K. Tamssaouet and S. Dauzère-Pérès European Journal of Operational Research 311 (2023) 455–471

n

j

t

h

u

t

o

h

e

p

t

c

c

s

a

w

a

b

T

o

t

j

r

c

t

g

t

b

a

p

t

f

m

l

a

s

p

m

s

d

p

s

p

2

q

n

n

A

t

t

T

l

i

r

l

Algorithm 1 High-level template of a local search heuristic.

1: procedure LocalSearch (G 0)

2: G ← G

∗ ← G 0

3: while Stopping criteria not satisfied do

4: ComputeSchedule (G)

5: for ˜ G ∈ N (G) do

6: if EvaluateFeasibility (̃ G) = true then

7: EvaluateQuality (̃ G)

8: G ← Select (G , N (G))

9: if G is better than G

∗ then

10: G

∗ ← G

11: return G

∗

s

Local search approaches, such as Tabu Search or Simulated An-

ealing, have been developed since the early 1990s to solve the

ob-shop and flexible job-shop scheduling problems. In addition

o local search algorithms, another broad class of improvement

euristics can be viewed as an iterative improvement of a pop-

lation of solutions. Algorithms such as Genetic Algorithms, Par-

icle Swarm Optimization, and Scatter Search belong to this class

f improvement heuristics. Over the last years, a new class of

ybrid improvement heuristics has been getting increasing inter-

st (Chaudhry & Khan, 2016). These heuristics may combine a

opulation-based heuristic with a local search heuristic to exploit

heir strengths. This paper describes a general framework, which

ombines two parameterized procedures, that provides an effi-

ient neighborhood structure that can be used within a pure local

earch heuristic or a hybrid heuristic, combining population-based

nd local search heuristics. We show that the proposed frame-

ork encompasses well-known and different results from the liter-

ture, including Dauzère-Pérès & Paulli (1997) ; Mastrolilli & Gam-

ardella (20 0 0) ; Shen et al. (2018) and Kasapidis et al. (2021) (see

ables 2 and 3), thus validating the computational effectiveness of

ur procedures.

The paper is organized as follows. Section 2 , by highlighting

he weaknesses of the available local search heuristics to solve

ob-shop scheduling problems, motivates this work and summa-

izes our contributions. Section 3 states the notation and con-

epts used throughout the paper and defines the validity scope of

he proposed framework. Section 4 presents a parameterized al-

orithm making it possible to assert the existence of a path be-

ween two nodes. Section 5 introduces a parameterized procedure

ased on the algorithm of Section 4 to evaluate the feasibility of

 move. This section also demonstrates the generality of the pro-

osed novel procedure by considering several results in the litera-

ure and showing that they can be obtained using specific values

or the procedure parameters. Section 6 is devoted to the develop-

ent of a generic procedure to be used in the computation of valid

ower bounds on any regular objective function of the neighbors of

 solution. As for the feasibility evaluation procedure, several re-

ults from the literature are used to show the generality of the

roposed procedure. To avoid overloading the paper, the Supple-

entary Material accompanying this article provides all the propo-

itions showing how a selected list of known results can be repro-

uced by choosing specific values for the parameters of the pro-

osed procedures. Finally, this work is concluded in Section 7 with

ome perspectives on the possible extension of the scope of the

roposed framework.

. Motivations and contributions

At each iteration of a local search heuristic and using some

uality measures and a selection strategy, a solution from the

eighborhood of the current solution is selected to become the

ew current solution.

To structure the discussion and position our contributions,

lgorithm 1 provides a high-level template of a local search heuris-

ic. The representation of the initial solution, the incumbent solu-

ion, and the best solution are respectively denoted G 0 , G and G

∗.

he neighborhood structure defining the neighborhood of the so-

ution represented by G is denoted N (G) , and the neighbor of G

s denoted

˜ G . Below, let us discuss some of the critical and inter-

elated questions that need to be answered when implementing a

ocal search heuristic:

• Solution representation: Choosing the appropriate representa-

tion or the encoding of a solution is a fundamental design

question in developing a solution approach. When defining

a representation, one has to bear in mind how the solu-
456
tion is evaluated and how the search operators work (Talbi,

2009). One common representation for job-shop scheduling

problems is a list of strings, each representing a permutation

of operations on a specific machine. Another popular repre-

sentation relies on a graph, and provides a convenient data

structure that can benefit from the diversity of algorithms

available in graph theory. Graph modeling is adopted in this

work, and a detailed discussion is provided in Section 3.1 .
• Solution evaluation (Algorithm 1 - Line 4): As the most use-

ful representations do not fully characterize a solution, the

solution must be decoded. For example, it is necessary to

compute the start times of operations given that the two

representations discussed above “only” provide the assign-

ment and sequencing decisions. The quality evaluation of

a solution is usually straightforward after computing the

schedule, given that most objective functions rely on the

timing decisions of operations. It is often desirable to de-

duce additional information that can be useful in practice

or to make the search more effective and efficient. For ex-

ample, identifying the critical operations is a pre-requisite

for some of the successful neighborhood structures (e.g.,

Dauzère-Pérès & Paulli, 1997; Van Laarhoven et al., 1992).

The results and procedures proposed in this work depend

on the information calculated during the evaluation of the

incumbent solution. Therefore, Section 3.1 also elaborates on

this question.
• Neighborhood structure (Algorithm 1 - Line 5): By defining

the neighborhood to explore, and therefore its size, choos-

ing an appropriate neighborhood structure is a crucial de-

sign decision for the performance of the local search heuris-

tic. One must consider the trade-off between the solution

quality and the search efficiency. The neighborhood struc-

ture adopted in this work is described in Section 3.2 .
• Neighborhood evaluation (Algorithm 1 - Lines 6 and 7): In gen-

eral, it is crucial for the success of a local search heuristic

to be able to quickly evaluate the quality of the neighbors of

a solution. Moreover, as some neighbors might not be fea-

sible, it is also critical to quickly evaluate the feasibility of

the neighbors of a solution. The primary objective of this

work is to propose procedures that can efficiently evaluate

the feasibility (see Section 5) and quality (see Section 6) of

the neighbors of a solution.
• Neighbor Selection (Algorithm 1 - Line 8): Usually, the qual-

ity evaluation of a neighbor is performed with the optimized

objective function as a quality measure. The most common

selection strategies are “best improvement”, which selects

the best move in the neighborhood, and “first improvement”,

which selects the first strictly improving move encountered

when exploring the neighborhood.

This work aims to contribute to the design of efficient local

earch heuristics. More specifically, we propose a general frame-

K. Tamssaouet and S. Dauzère-Pérès European Journal of Operational Research 311 (2023) 455–471

w

q

t

c

i

n

S

e

1

o

e

p

i

a

F

i

o

r

t

t

a

r

p

b

l

c

s

c

V

e

b

(

s

a

o

o

n

T

d

s

t

j

b

p

s

o

k

i

i

a

s

P

s

s

f

d

s

t

e

g

f

s

c

t

a

c

W

s

i

d

fi

n

r

t

F

f

p

e

a

b

b

s

n

b

c

fl

g

o

m

f

f

a

f

i

t

j

l

l

p

t

b

c

s

r

r

1

t

p

m

m

b

d

D

i

i

p

t

c

w

t

a

w

p

t

b

b

ork that encompasses efficient procedures for the feasibility and

uality evaluation of the neighbors of a solution. Indeed, when

he number of neighbors is large, the neighborhood evaluation is

omputationally the most expensive operation in each local search

teration. This explains why the most well-known approaches in-

ovate by reducing the size of the neighborhood (e.g., Nowicki &

mutnicki, 1996) or by designing efficient procedures that quickly

valuate the neighbors of a solution (e.g., Dauzère-Pérès & Paulli,

997; Dell’Amico & Trubian, 1993). Despite the originality of most

f these approaches, the properties on which the neighborhood

valuation procedures are based strongly depend on scheduling

roblem to solve.

Consequently, these properties must be adapted or general-

zed each time the problem being solved is modified to include

dditional constraints or optimize different objective functions.

or example, the work of Balas & Vazacopoulos (1998) is adapted

n Braune et al. (2013) to consider the optimization of min-sum

bjectives instead of the classical makespan criterion, which cor-

esponds to minimizing the completion time of all jobs. Beyond

he research effort spent to make these non-trivial adaptations,

his strong dependency on the solved problems of the advanced

pproaches may explain their scarce implementation in practice as

eal problems include features not considered in the pure research

roblems.

Our objective is to contribute to the design of a general neigh-

orhood structure framework that can support the resolution of a

arge variety of scheduling problems. The proposed framework en-

ompasses results from some of the most influential works that

olve job-shop and flexible job-shop scheduling problems with lo-

al search heuristics. Among those works, we can cite Balas &

azacopoulos (1998) ; Dauzère-Pérès & Paulli (1997) ; Dauzère-Pérès

t al. (1998) ; Dell’Amico & Trubian (1993) ; Mastrolilli & Gam-

ardella (20 0 0) ; Mati et al. (2011) ; Taillard (1994) ; Zhang et al.

2007) and Shen et al. (2018) . Establishing such a framework

hould allow researchers to avoid spending time on the difficult

nd time-consuming tasks of adapting existing results and focus

n questions that generate new knowledge. The applicability scope

f the framework is first defined by the relevance of the proposed

eighborhood structure to the scheduling problem to be solved.

he neighborhood structure specifies the moves that consist of

eleting an operation from a sequence and inserting it in a new

equence. As shown in Section 3.2 , the set of moves specified by

he most used neighborhood structures in the literature for the

ob-shop scheduling problems is a subset of the moves specified

y the neighborhood structure defined in this work.

Despite the widespread use of graphs to model scheduling

roblem solutions, the problem-dependent components of local

earch heuristics are strongly related to the specific constraints

f the problem to be solved, and are only partly based on the

nowledge that can be extracted from a graph. For example, it

s sufficient to modify the arc weights of a graph represent-

ng a solution for the flexible job-shop scheduling problem to

ccount for sequence-dependent setup times. However, the fea-

ibility and quality evaluation procedures proposed in Dauzère-

érès & Paulli (1997) are adapted in Shen et al. (2018) to take

equence-dependent setup times into account in the flexible job-

hop scheduling problem. The insight that allows the proposed

ramework to be less dependent on the problem constraints is to

efine its applicability scope through general specifications on the

olution graph . In addition to the considered neighborhood struc-

ure, the applicability of the proposed framework is possible when-

ver a problem induces a solution graph that is a directed acyclic

raph (DAG) with non-negative weights on nodes and arcs. There-

ore, our framework is applicable as long as the considered con-

traint does not induce a graph not complying with the specifi-

ations. Such “valid” constraints include release dates, minimum
457
ime lags, sequence-dependent setup times, multiple resources,

nd nonlinear routing. Some constraints our proposed framework

annot handle are maximum time lags and blocking constraints.

hen the defined neighborhood structure is appropriate for a

cheduling problem and its solution graphs comply with the spec-

fications described above, the framework provides efficient proce-

ures for feasibility evaluation and quality evaluation.

Like in the existing successful local search approaches, the ef-

ciency of the proposed procedures is achieved by evaluating a

eighbor’s feasibility and quality without actually performing its

elated move. Instead, a neighbor is evaluated by only relying on

he already available information provided by the current solution.

or example, the feasibility of a neighbor is not checked after per-

orming its move, but by checking some sufficient conditions ex-

loiting the start times in the current solution of the involved op-

rations. However, the efficiency is obtained at the expense of the

ccuracy of the evaluation. The feasibility evaluation procedure can

e viewed as a classifier separating feasible and infeasible neigh-

ors. The feasibility evaluation accuracy can be measured, for in-

tance, as a ratio of the total number of true positives and the

umber of true negatives divided by the total number of the neigh-

ors. For example, Kasapidis et al. (2021) report that the feasibility

onditions adapted from Dauzère-Pérès & Paulli (1997) to solve a

exible job-shop scheduling problem with an arbitrary precedence

raph, similarly to Dauzère-Pérès et al. (1998) , have an accuracy

f 91% . By increasing the accuracy, the risk of missing improving

oves is decreased. Regarding the quality evaluation, the objective

unction of a neighbor is estimated rather than computed. There-

ore, the quality evaluation accuracy can for instance be measured

s the mean absolute relative deviation of the estimated objective

unctions from the actual objective functions of the neighbors. For

nstance, Mati et al. (2011) report an accuracy ranging from 0 . 1%

o 13% depending on the problem instance and the optimized ob-

ective function. Increasing this accuracy decreases the risk of se-

ecting a non-improving move while the neighborhood contains at

east an improving move.

Contrary to the existing approaches in the literature, the pro-

osed framework, beyond its generality, allows the trade-off be-

ween evaluation accuracy and computational cost to be controlled

y setting some key parameters. The proposed parameterized pro-

edure for feasibility evaluation can reach 100% accuracy if the re-

ulting computational cost is considered less important than the

isk of discarding feasible and promising moves. The proposed pa-

ameterized procedure for quality evaluation does not guarantee

00% accuracy, even if it offers some control over the trade-off be-

ween evaluation accuracy and computational cost. However, the

rocedure can be used for any regular objective function, while

ost existing approaches are specifically designed for the case of

akespan minimization. The two procedures evaluating the neigh-

ors’ feasibility and quality rely on a novel parameterized proce-

ure that asserts the existence of a path between two nodes in a

AG with non-negative weights on nodes and arcs. While the ex-

stence of a path between two nodes is an explicit argument used

n the proofs of the different feasibility conditions of moves pro-

osed in the literature, this knowledge is more implicit regarding

he available quality evaluation procedures. For example, as dis-

ussed in Section 6.1 , the distinction between forward and back-

ard moves makes it possible to assert the absence of paths be-

ween some nodes implicitly.

In summary, the proposed framework encompasses and gener-

lizes results already published in the literature. First, contrary to

hat can be found in the literature and as discussed above, the

roposed feasibility and quality evaluation procedures allow the

rade-off between evaluation accuracy and computational cost to

e controlled. Second, the generality of the framework is possible

y basing its validity on the specifications of the solution represen-

K. Tamssaouet and S. Dauzère-Pérès European Journal of Operational Research 311 (2023) 455–471

t

g

c

(

a

s

s

s

D

3

t

d

c

t

3

l

n

T

L

b

c

(

O

(

w

T

t

s

i

i

B

o

P

a

t

a

a

a

(

m

s

ation instead of the problem constraints. As a consequence, more

eneral problems can be handled. For example, the proposed pro-

edures are valid when optimizing any regular objective function

 Mati et al., 2011) when solving a shop problem where an oper-

tion may require several resources, have several route predeces-

ors and successors (Dauzère-Pérès et al., 1998) while considering

equence-dependent setup times (Shen et al., 2018). This is pos-

ible as the solution for such a problem can be represented by a

AG with non-negative weights on nodes and arcs.

. Modeling and notations

This section formally introduces the framework within which

he propositions in this article are valid. The notations are also

efined and summarized in Table 1 . They are chosen to hopefully

learly illustrate the generality of the proposed results by showing

hat results well known in the literature are special cases.

.1. Solution representation and evaluation

The propositions of this work are valid for any scheduling prob-

em for which schedules can be represented by a DAG with non-

egative weights on nodes and arcs. As different graph models can
able 1

ist of notations.

Notations Descriptions

G DAG with non-negative weights on the nodes N and arcs A

l v Weight associated to node v ∈ V
l u, v Weight associated to arc (u, v) ∈ A
out(v) Set of outgoing arcs of node v
in (v) Set of incoming arcs of node v
l out(v) Minimum weight among those of the outgoing arcs, i.e.,

l out(v) = min { l v ,w | (v , w) ∈ out(v) }
l in (v) Minimum weight among those of the incoming arcs, i.e.,

l in (v) = min { l u, v | (u, v) ∈ in (v) }
B(v) Set of predecessors of node v
F(v) Set of successors of node v
P u, v Path from u to v
l(P u, v) Length of path P u, v
P u, v Set of all paths from u to v
L (u, v) Length of the longest path from u to v , i.e.,

L (u, v) = max { l(P u, v) | P u, v ∈ P u, v }
α Reference node in G , e.g., the dummy start node

L α Vector of the length of the longest path from α to all nodes of G ,

i.e., L α = (L (α, v) | v ∈ V)
G ′ Reverse graph of G with nodes N and arcs A ′
�′ All the notations with a prime are related to G ′
ω Reference node in G ′ , e.g., the dummy end node in G

L ′ ω Vector of the length of the longest path from ω to all nodes of

G ′ , i.e., L ′ ω = (L ′ (ω, v) | v ∈ V)
M A move specified by the neighborhood structure defined as

M = { u, O, D } Initially sequenced between and ordered pair O

(e.g., 0 = (s, t)) in G , a node u is inserted between a new ordered

pair D (e.g., D = (v , w))

D Set of arcs to be deleted when applying a move M = { u, O, D } ,
i.e., D = { (O 1 , u) , (u, O 2) , (D 1 , D 2) }

I Set of arcs to be inserted when applying a move M = { u, O, D } ,
i.e., I = { (D 1 , u) , (u, D 2) , (O 1 , O 2) }

˜ G Directed graph representing a neighbor obtained by applying

move M on G
˜ � All the notations with a tilde are related to the neighbor graph ˜ G
˜ L (u, v) Length of the longest path from u to v in ˜ G
ˆ L (u, v) Estimated length of the longest path from u to v in ˜ G

δv Decrease in the longest path from a reference node α due to

move M , i.e., δv = L (α, v) − ˜ L (α, v)
ˆ δv Upper bound on δv , i.e., ˆ δv = L (α, v) − ˆ L (α, v)
C v Layer associated to node v , i.e., set of nodes ensuring that, if a

path traverses v in G , it traverses at least one of the layer nodes

k Forward search cutoff from a node u in G

k ′ Forward search cutoff from a node v in G ′ , i.e., backward search

from v in G

t

i

o

m

t

l

r

g

i

c

s

n

n

l

u

e

t

d

2

A

n

1

1

1

1

1

1

458
e found in the literature, we use a general graph modeling to en-

ompass the different cases. For example, in Balas & Vazacopoulos

1998) , the duration of an operation is associated to an arc weight.

n the contrary, Mastrolilli & Gambardella (20 0 0) and Shen et al.

2018) associate the processing times of operations with the node

eights. Hereafter, weights are assigned to both nodes and arcs.

herefore, let G = (V, A) be a DAG with V the set of nodes and A

he set of arcs. The set of nodes represents the job operations to

chedule, while the arcs model precedence constraints to be sat-

sfied by the schedule. For a node v ∈ V , let us denote the set of

ncoming arcs by in (v) ⊂ A and the set of predecessor nodes by

(v) ⊂ V . Also, the set of outgoing arcs of node v is denoted by

ut(v) ⊂ A and the set of successor nodes by F(v) ⊂ V . A path

 v 1 , v k from v 1 ∈ V to v k ∈ V is defined as a sequence of nodes and

rcs P v 1 , v k = (v 1 , v 2 , . . . , v k) with (v i , v i +1) ∈ A for all 1 ≤ i < k . Let

he set of all paths from v 1 ∈ V to v k ∈ V be denoted by P v 1 , v k .

Let l v and l u, v denote the weights associated to node v ∈ V

nd arc (u, v) ∈ A , respectively. As already stressed, the properties

nd procedures developed in this work assume that all weights

re non-negative, i.e., l v ≥ 0 for each v ∈ V and l u, v ≥ 0 for each

u, v) ∈ A . Also, let l out(v) = min { l v ,w

| (v , w) ∈ out(v) } and l in (v) =
in { l u, v | (u, v) ∈ in (v) } . The length of a path P v 1 , v k is defined as the

um of all nodes weights belonging to the path with the excep-

ion of the two extreme nodes plus the weights of all path arcs,

.e., l(P v 1 , v k) =

∑ i = k −1
i =2 l v i +

∑ i = k −1
i =1 l v i , v i +1

. Let us denote the length

f a longest path from a node u ∈ V to a node v ∈ V by L (u, v) =
ax { l(P u, v) | P u, v ∈ P u, v } . In this work, we assume that the realistic

riangle inequality is satisfied, i.e., given three nodes u , v and w ,

 u,w

≤ l u, v + l v + l v ,w

.

It has already been mentioned in Section 2 that the graph rep-

esentation does not fully characterize a schedule. Given a solution

raph, defined as a DAG whose node and arc weights are initial-

zed with the relevant problem data, it is possible to compute the

orresponding semi-active schedule by assigning to each operation

tart time the length of the longest path from the graph source

ode to the node associated to the operation. The term reference

ode is used to qualify the node α from which the length of the

ongest path is computed. As discussed later in the paper, it is also

seful to compute the longest path length to a node from a refer-

nce node that is not the source node. Given a reference node α,

he vector of the lengths of the longest path from α to all nodes is

enoted L α , i.e., L α = (L (α, v) | v ∈ V) .

Algorithm 2 presents a well-known procedure (Katriel et al.,

005) that computes, for each node v ∈ V , the length L (α, v) of
lgorithm 2 Evaluation of length of longest path from reference

ode α to any node of G .

1: procedure computeLongestPathLength (G , α)

2: for v ∈ V do

3: indegree (v) ← | in (v) |
4: L (α, v) ← −∞

5: Q ← { v | indegree (v) = 0 }
6: L (α, α) ← 0

7: while Q
 = ∅ do

8: v ← dequeue (Q)

9: for (u, v) ∈ (v) do

0: L (α, v) ← max { L (α, v) , L (α, u) + l u + l u, v }
11: for (v , w) ∈ out(v) do

2: indegree (w) ← indegree (w) − 1

3: if indegree (w) = 0 then

4: enqueue (Q, w)

5: L α ← (L (α, v) | v ∈ V)

6: return L α

K. Tamssaouet and S. Dauzère-Pérès European Journal of Operational Research 311 (2023) 455–471

t

t

n

c

2

l

a

d

t

a

q

q

r

f

w

9

o

v

f

L

v

t

e

t

n

P

n

v

m

A

c

e

t

A

i

m

e

t

a

o

m

o

n

o

t

f

e

t

e

s

V

I

(

f

t

i

o

e

i

M

B

o

f

Fig. 1. Moving node u from between nodes s and t to between nodes v and w .

c

b

t

t

t

a

t

i

l

q

t

i

t

N

s

c

t

q

o

d

n

o

u

d

∀

3

c

p

n

c

i

o

L

b

T

o

m

n

u

{

h

o

t

M
i

l
he longest path from reference node α to v . The running time of

he algorithm is O (| V | + | A |) , and its key idea is to consider the

odes in topological order, which guarantees that, when a node is

onsidered, its predecessors have the correct longest paths. Lines

–4 compute the initial indegree of the nodes and initialize the

ength of their longest path from reference node α. Line 5 inserts

ll the source nodes into the queue Q , and Line 6 initializes the

istance from α to itself. The queue Q is a basic data structure

hat is maintained in a sequence, and which can be updated by

dding elements at one end of the sequence, called the rear of the

ueue, and by removing elements from the other end of the se-

uence, called the front of the queue. Adding an element to the

ear of the queue is known as enqueue , and removing an element

rom the front is known as dequeue . Line 8 dequeues a node v for

hich the length of its longest path from α is computed in Lines

 and 10. Lines 11–14 decrement the indegrees of the successors

f v and enqueue those for which all the predecessors have been

isited. At the end of the procedure, the length of the longest path

rom α to v ∈ V can be either L (α, v) = −∞ or L (α, v) ≥ 0 . Having

 (α, v) = −∞ for node v ∈ V means that there is no path from α to

 in G . If there is a path from α to v in G , then L (α, v) ≥ 0 due to

he non-negative weights on nodes and arcs. Another trivial prop-

rty that supports our findings, formally stated in Property 1 , is

he non-decreasing lengths along any path in the graph when the

ode and arc weights are non-negative.

roperty 1. Let G = (V, A) be a DAG with non-negative weights on

odes and arcs and α ∈ V a reference node. If there is path from u to

 , then L (α, u) ≤ L (α, v) .

As mentioned above, when the source node of the graph, that

odels the start of the schedule, is used as a reference node in

lgorithm 2 , the procedure assigns the earliest start times (also

alled operation heads) to the graph nodes. In addition to the

arliest start times, it is often necessary to derive other informa-

ion, such as the tail, the slack, or the criticality of each operation.

gain, Algorithm 2 can provide such information when comput-

ng the longest path length from some sink nodes. When mini-

izing the makespan, the DAG has one sink node that models the

nd of the schedule. When other min-sum objective functions (e.g.,

he total weighted completion time or the number of tardy jobs)

re optimized, the DAG has as many sink nodes as the number

f jobs, each sink modeling the completion time of a job. As is

ost often in the literature, we assume in this work that Line 4

f Algorithm 1 consists of running Algorithm 2 from the source

ode and the different sink nodes. The tails, slacks, and criticality

f operations that can be computed by running Algorithm 1 from

he sink nodes are rarely useful in practice. The benefit this in-

ormation can bring during the search when exploited is, how-

ver, significant and proven, making it worth paying the compu-

ational cost of using Algorithm 2 many times. For example, sev-

ral well-known neighborhood structures restrict the moves to the

et of operations that are critical (Nowicki & Smutnicki, 1996;

an Laarhoven et al., 1992) and (Dauzère-Pérès & Paulli, 1997).

nstead of the criticality of operations, Mastrolilli & Gambardella

20 0 0) rely on the heads and tails of operations to design an ef-

ective tabu search heuristic.

Although having the same objective, the properties proposed in

he literature to design efficient procedures for feasibility and qual-

ty evaluation are heterogeneous. One of the differences is whether

nly the heads or the tails of operations are used, or both. For

xample, the sufficient conditions on the feasibility of a move

n Dauzère-Pérès & Paulli (1997) only rely on the heads, while

astrolilli & Gambardella (20 0 0) use both the heads and the tails.

y recognizing the symmetry between the heads and the tails of

perations, it is possible to state a set of properties that are valid

or both the heads and the tails. To achieve this, we need to asso-
459
iate to each DAG G = (V, A) a reverse graph G

′ = (V, A

′) obtained

y reversing all the arcs A of G . Note that no change is made to

he node and arc weights. All the notations presented above for

he initial graph are modified by adding a prime ′ when applied to

he reverse graph G

′ . Due to the transformation, we have, for ex-

mple, B(v) = F

′ (v) and F(v) = B

′ (v) . For clarity, an exception for

he use of prime ′ is made for the reference node that is denoted

n the reverse graph G

′ by ω. Thanks to the definition of a path

ength, L (v , ω) = L ′ (ω, v) . Using this transformation, answering the

uestion of the existence of a path from u to v in G is equivalent

o answering the question of the existence of a path from v to u

n G

′ . It becomes then possible to check whether a path exists be-

ween u to v in G by using the lengths of the longest paths in G

′ .
ote that there is no need to construct the reverse graph G

′ , as it is

ufficient to use the reverse topological ordering in Algorithm 2 to

ompute the longest path from a reference node ω to any node of

he reverse graph G

′ .
In addition to the heads and tails, some of the feasibility and

uality evaluation procedures available in the literature are based

n the notion of “node level”, introduced in Mati et al. (2011) and

efined as the maximum number of arcs from the dummy start

ode to the given node. Following the comment on tails, the same

bservation supports the conditions proposed in the literature that

se node levels. Therefore, it is sufficient to apply the same con-

itions on an unweighted graph, i.e., l v = 0 ∀ v ∈ V and l u, v = 1

 (u, v) ∈ A .

.2. Neighborhood structure definition

In addition to the specifications of the solution graph, the appli-

ability scope of the framework is defined by the relevance of the

roposed neighborhood structure for the scheduling problem. The

eighborhood structure used in this work specifies the moves that

onsist of deleting an operation from a sequence and inserting it

n a new sequence. Suppose that a feasible solution is given with

peration u sequenced between operations s and t on resource l.

et O = (s, t) denote the original ordered pair of nodes s and t

etween which u is sequenced in G and let O 1 = s and O 2 = t .

he neighborhood structure specifies the moves, each consisting

f moving operation u between operations v and w on resource

 , where m can be different from l. Similarly, let D = (v , w) de-

ote the destination ordered pair of nodes v and w between which

 will be sequenced in

˜ G and let D 1 = v and D 2 = w . Let M =
 u, O = (s, t) , D = (v , w) } denote a move specified by the neighbor-

ood structure. As shown in Fig. 1 , a move M induces the deletion

f a set of arcs, denoted D = { (s, u) , (u, t) , (v , w) } , and the inser-

ion of a set of new arcs, denoted I = { (s, t) , (v , u) , (u, w) } .
The directed graph of the neighbor obtained by applying move

 to the solution associated to G is denoted

˜ G . The notations us-

ng ˜ refer to neighbor graph

˜ G . For example, the length of the

ongest path from u to v in neighbor graph

˜ G is denoted

˜ L (u, v) . As

K. Tamssaouet and S. Dauzère-Pérès European Journal of Operational Research 311 (2023) 455–471

Fig. 2. Swap move on (u, v) .

t

t

u

d

L

d

v

a

(

w

D

D

d

a

s

r

o

i

m

s

o

m

t

t

n

d

w

V

b

n

a

s

a

b

s

t

s

b

s

v

t

q

p

e

a

a

T

t

w

b

t

t

i

b

s

i

t

w

A

t

i

p

o

f

4

t

S

t

o

l

u

n

f

c

S

t

p

s

h

t

p

o

a

s

q

e

s

r

s

l

T

w

s

i

F

e

t

t

o

f

i

a

n

he quality of the neighbors is estimated using the information of

he current solution, the estimated length of the longest path from

 to v in

˜ G is denoted

ˆ L (u, v) . Let δv = L (α, v) − ˜ L (α, v) denote the

ecrease in the longest path from a reference node to node v . As
˜
 (α, v) is the value we aim to estimate, let ˆ δv = L (α, v) − ˆ L (α, v)
enote an upper bound on δv . The equivalent notations in the re-

erse graph G

′ , where ω is the reference node, are δ′
v and

ˆ δ′
v .

If move M = { u, O, D } is applied on graph G , the move to be

pplied on the reverse graph G

′ is M

′ = { u, O

′ , D

′ } where O

′ =
t, s) if O = (s, t) and D

′ = (w, v) if D = (v , w) . In other words,

e have the following identities O 1 = O

′
2
, O 2 = O

′
1
, D 1 = D

′
2

and

 2 = D

′
1 . A move M

′ induces the deletion of a set of arcs, denoted

′ = { (t, u) , (u, s) , (w, v) } , and the insertion of a set of new arcs,

enoted I ′ = { (t, s) , (w, u) , (v , w) } . These notations are helpful to

void establishing separate results for G and G

′ . For example, in-

tead of defining a lower bound on

˜ L (α, s) and

˜ L ′ (ω, t) , one general

esult regarding a lower bound on

˜ α, O 1 can be formulated because

f the symmetry between

˜ L (α, O 1 = s) in G and

˜ L ′ (ω, O

′
1

= t) in G

′ .
The neighborhood structure defined above is large enough that

ts associated move set includes the move set specified by the

ost commonly used neighborhood structures for solving the job-

hop scheduling problem and its extensions. Below is a shortlist

f references using a neighborhood structure specifying a set of

oves that is included in the neighborhood structure defined in

his work:

• Job-shop scheduling problem: Balas & Vazacopoulos (1998) ;

Dell’Amico & Trubian (1993) ; Nowicki & Smutnicki (1996) ;

Van Laarhoven et al. (1992) ; Zhang et al. (2007) and Mati

et al. (2011) .
• Flexible job-shop scheduling problems: Dauzère-Pérès &

Paulli (1997) and Mastrolilli & Gambardella (20 0 0) .
• Flexible job-shop scheduling problem with additional con-

straints: Dauzère-Pérès et al. (1998) ; Kasapidis et al. (2021) ;

Knopp et al. (2017) ; Shen et al. (2018) and Tamssaouet et al.

(2022) .

Note that, as a DAG can represent the schedules of problems

ackled in the works listed above with non-negative weights on

odes and arcs, the proposed framework can be used to solve

ifferent problems. However, nothing prevents making the frame-

ork tailored to the specific problem to be solved. For example,

an Laarhoven et al. (1992) introduce the first successful neigh-

orhood structure for the job-shop scheduling problem, often de-

oted N1 (Bła ̇zewicz et al., 1996). The N1 neighborhood is gener-

ted by swapping any adjacent pair of critical operations on the

ame machine. The swap of an arc (u, v) is illustrated in Fig. 2 ,

nd it is clear that it is part of the moves specified by the neigh-

orhood structure defined in this work. By considering only the

wapping of any adjacent pair of critical operations, it is shown

hat all N1 moves lead to feasible solutions when solving the clas-

ical job-shop scheduling problem. Therefore, using the N1 neigh-

orhood structure does not require the use of the proposed fea-

ibility evaluation procedure. However, this property is no longer

alid when, for example, including the sequence-dependent setup

imes (Zoghby et al., 2005). Also, there is a need for an efficient

uality evaluation even when solving the pure job-shop scheduling

roblem. The proposed procedure in this work can perform such

valuation on only the moves defined by the N1 structure. For ex-
460
mple, it is shown in Section 6.3 that the proposed quality evalu-

tion procedure reproduces the makespan estimation proposed by

aillard (1994) .

The remainder of this article is devoted to developing parame-

erized procedures for feasibility and quality evaluation of a move

ithout actually making the move. The proposed procedures can

e used as long as the solutions to a problem can be modeled

hrough a DAG with non-negative weights on nodes and arcs, and

he relevant neighborhood structure specifies a set of moves that

s equal to or a subset of the move set determined by the neigh-

orhood structure defined above. To avoid redundancy when pre-

enting the results, we assume the non-negativity of the weights

n the DAG in the remainder of the paper.

For convenience, the main contributions and structure of

he paper are highlighted in Fig. 3 . Based on a BFS algorithm

ith cutoff, Section 4 presents a parameterized procedure in

lgorithm 4 making it possible to assert the existence of a path be-

ween two nodes. Section 5 introduces a parameterized procedure

n Algorithm 5 to evaluate the feasibility of a move by direct ap-

lication of Algorithm 4 . Section 6 is devoted to the development

f a generic procedure for the computation of valid lower bounds

or a move and any regular objective function.

. Parameterized procedure for path detection

To ensure the efficiency of a local search heuristic, it is impor-

ant to identify unfeasible moves and evaluate their quality quickly.

everal important results in the scheduling literature addressing

hese challenges rely mainly on the information on the existence

f a path between two nodes in the solution graph. For example,

et us consider move M = { u, O = (s, t) , D = (v , w) } that sequences

 between v and w . To show that the move is feasible (i.e., does

ot induce a cycle), it is sufficient to show that there is no path

rom u to v or from w to u . In a general directed graph, classi-

al algorithms such as Depth-First Search (DFS) or Breadth-First

earch (BFS) can be used to verify the existence of a path between

wo given nodes. However, such algorithms are computationally

rohibitive and thus not practical if used intensively. Instead, the

cheduling data calculated from the current solution DAG, such as

eads or tails of nodes, can be used to formulate sufficient condi-

ions inferring the existence of paths between nodes. The low com-

utational cost to check these conditions comes with the drawback

f potentially overlooking feasible and promising moves.

The fundamental result on which the other contributions of this

rticle are based is a parameterized procedure that asserts the ab-

ence of a path between two nodes in a DAG. The procedure is

ualified as parameterized because it allows the trade-off between

valuation accuracy and computational cost to be controlled by

etting some key parameters. This section provides the necessary

esults that support the design of the proposed procedure.

As illustrated in Fig. 4 , the basic question to answer can be

tated as follows: Is there a path from node u to node v given the

ength (L (α, u) , L (α, v)) of the longest paths from a reference node α?

o answer this question, Lemma 1 provides a sufficient condition,

hich, if satisfied, asserts the absence of a path from u to v . As

hown later in Section 5 , several feasibility evaluation procedures

n the literature are instantiations of the condition in Lemma 1 .

or example, by considering the start dummy node as the refer-

nce node α, the sufficient condition relies on the heads of opera-

ions. As highlighted in Section 3.1 , it is also common that evalua-

ion procedures require tails, in combination or not, with the heads

f operations. However, the heads and tails are symmetric and dif-

er only in how they are computed using the solution graph G or

ts associated graph G

′ . Therefore, Lemma 1 can be used to state

nother sufficient condition on the absence of a path between two

odes in G that is based on the lengths of the longest paths from

K. Tamssaouet and S. Dauzère-Pérès European Journal of Operational Research 311 (2023) 455–471

Fig. 3. Structure of paper.

Fig. 4. Existence of a path between nodes u and v based on the lengths of the

longest paths from reference node α to u and v .

r

d

o

n

L

f

C

f

g

i

a

t

c

t

p

f

m

m

m

f

o

o

f

t

i

L

L

s

L

i

t

L

u

u

n

(

d

α
m

eference node ω in the reverse graph G

′ . This new sufficient con-

ition is given in Corollary 1 . The sufficient condition relies on the

peration tails when taking the last dummy node as the reference

ode ω.

emma 1. If L (α, v) < L (α, u) + l u + l out(u) , then there is no path

rom u to v .

orollary 1. If L ′ (ω, u) < L ′ (ω, v) + l v + l out ′ (v) , then there is no path

rom u to v in G .

The satisfaction of the condition in Lemma 1 is sufficient to

uarantee that there is no path from u to v in G . However, know-

ng that the inequality is false does not ensure that there is an

ctual path from u to v . For example, if there is no path from α
o u , then the condition is never satisfied. Consequently, the low

omputation time to verify the sufficient condition (i.e., O (1)) has

he disadvantage of potentially not recognizing the absence of a
461
ath from u to v . When used in a feasibility evaluation procedure,

or example, this sufficient condition may lead to rejecting feasible

oves. Given a set of node pairs for which the absence of a path

ust be asserted using the sufficient condition, let us define the

iss rate as the proportion of node pairs for which the condition

ails at guaranteeing the absence of a path. Suppose the miss rate

f the sufficient condition is responsible for the poor performance

f the local search heuristic. In that case, it may be necessary to

ormulate new conditions with a lower miss rate. Before providing

he main intuition behind the parameterized procedure introduced

n this section, it may be useful to rephrase the result in Lemma 1 .

et us associate to node u the interval] − ∞ , L (α, u) + l u + l out(u) [.

emma 1 ensures that there is no path from u to any node v ∈ V

uch that L (α, v) ∈] − ∞ , L (α, u) + l u + l out(u) [. As soon as L (α, v) ≥
 (α, u) + l u + l out(u) , Lemma 1 fails to differentiate between the ex-

stence and the absence of a path from u to v .
Assuming the need to reduce the miss rate of the condi-

ion L (α, v) ∈] − ∞ , L (α, u) + l u + l out(u) [, the intuition is to replace

 (α, v) with an evaluation that gives a lower value, or increase the

pper bound of the interval (i.e., L (α, u) + l u + l out(u)) with an eval-

ation that gives a larger value. Recall that, in a graph with non-

egative weights, the lengths along any path are non-decreasing

 Property 1). As the length of the longest path from α to any pre-

ecessor of v is smaller than L (α, v) , using the longest path from

to predecessors of v instead of v can yield conditions with lower

iss rate. In the same way, better conditions can be formulated

K. Tamssaouet and S. Dauzère-Pérès European Journal of Operational Research 311 (2023) 455–471

Fig. 5. Existence of a path from u to v based on the lengths of the longest paths

from a reference node α to the successors and predecessors of u and v .

u

t

c

t

e

n

t

t

{

a

n

r

m

t

c

p

f

b

H

A

o

m

a

a

u

d

t

a

t

u

s

q

(

U

t

t

o

i

l

P

u

o

t

g

i

v

a

c

i

t

w

d

A

f

d

i

w

A

g

1

1

1

1

1

1

A

sing the successors of u instead of u . This logic can be taken fur-

her to consider the successors of the successors and the prede-

essors of the predecessors. Figure 5 illustrates this idea of using

he successors of u and the predecessors of v to characterize the

xistence of a path from u to v . The successors of u are the two

odes in the set { x 1 , x 2 } which have as successors the nodes in

he set { x 3 , x 4 , x 5 , x 6 } . The predecessors of v are the two nodes in

he set { y 1 , y 2 } which have as predecessors the nodes in the set

 y 3 , y 4 , y 5 , y 6 } . For instance, showing that there is no path from

ny node in { x 1 , x 2 } to any node in { y 1 , y 2 } ensures that there is

o path from u to v .
The idea of using, for instance, the set of direct successors of u

elies on the fact that, if there is a path from u to v , then this path

ust go through at least one of the successors of u . Therefore, if

here is no path from none of the direct successors of u to v , it is
ertain that there is no path from u to v . Similarly, if there is no

ath from u to any of the direct predecessors of v , there is no path

rom u to v . Instead of u or v , the condition in Lemma 1 can be

ased on a set of nodes succeeding u or preceding v respectively.

owever, the chosen set must satisfy the following requirement:

ny path starting from u (reaching v) should pass through at least

ne of the nodes in the set associated with u (v).
As mentioned earlier, the BFS algorithm can be used to deter-

ine the existence or absence of a path between two nodes. Given

 graph G = (V, A) and a distinguished source node u , BFS system-

tically explores the arcs of G to discover each node reachable from

 . The algorithm discovers all nodes at a distance d from u before

iscovering nodes at a distance d + 1 ; the distance is defined as

he number of arcs in the shortest path between two nodes. Given

 graph G = (V, A) and a distinguished source node u , BFS produces

he so-called BFS-tree rooted at u . For any node v reachable from

 , the simple path in the BFS tree from u to v corresponds to a

hortest path from u to v in G . The term layer is generally used to

ualify the nodes of the BFS tree rooted at u at the same depth

 Dasgupta et al., 2008) and is denoted in the rest of the article C u .
sing such an algorithm to assert the existence of a path from u

o v is not attractive in a local search heuristic because its running

ime is O (| V | + | A |) (Dasgupta et al., 2008). However, as pointed
462
ut in Property 2 , a layer in a BFS tree has the property that makes

t a suitable candidate for formulating sufficient conditions with a

ower miss rate.

roperty 2. Let G be a DAG and C u a layer in the BFS-tree rooted at

 and at depth k . Any path starting from u in G goes at least trough

ne of the nodes in C u .

The basis of the proposed parameterized procedure that asserts

he existence of a path between two nodes is the modified BFS al-

orithm in Algorithm 3 . As this procedure is used to check if there

s a path from u to a given node in G , the destination node is pro-

ided to the algorithm as v . The third parameter C ′ v denotes a layer

ssociated with v in the reverse graph G

′ , i.e., a set of nodes pre-

eding v in G . At first, we consider that C ′ v = { v } , i.e., the condition

n line 13 is equivalent to y = v . Instead of exploring all the nodes

hat are reachable from u , k represents the search cutoff. In other

ords, the algorithm stops the search at the level of the nodes at

epth k . The algorithm uses the same queue data structure as in

lgorithm 2 and stores a set of nodes along with their distance d

rom u . Initially, the queue Q only consists of u , the one node at a

istance 0. When node x with distance d is removed from Q , all of

ts successors that are not discovered yet are inserted in Q along

ith their distance d + 1 .

lgorithm 3 Search for a layer related to a path from u to v at

iven depth k .

1: procedure getLayerAtDepth (G , u , v , C ′ v , k)
2: C u ← ∅
3: Q ← ∅
4: Label u as discovered

5: enqueue (Q, (u, 0))

6: while Q is not empty do

7: x, d ← dequeue (Q)

8: if d == k then

9: C u ← C u ∪ { x }
0: continue

11: for (x, y) ∈ out(x) do

2: if y is not discovered then

3: if y ∈ C ′ v then

4: C u ← { v }
5: return C u
6: Label y as discovered

17: enqueue (Q, (y, d + 1))

18: return C u

The three following different results can be derived from

lgorithm 3 :

Case C u = ∅ . If k is large enough, the algorithm explores all the

nodes that can be reached from u , and the algorithm may or

may not find v . If v is not found and all the nodes that can

be reached from u are explored, we are sure that there is no

path from u to v . Because C u is only updated if the condi-

tions in Lines 8 or 13 are satisfied, the algorithm returns an

empty set when k is very large and v is not found. Hence, if

an application requires the existence or absence of a path

between two nodes to be guaranteed, k should be larger

than the graph diameter, i.e., the length of the longest short-

est path in G after disregarding the node and arc weights.

Case C u = { v } . If, during the search, v is found, the search is

stopped and a set containing only v is returned as a layer

C u (Line 15), and we are sure that there is a path from u to

v .
Case C u
 = ∅ and C u
 = { v } . In the two first cases, C u is not a layer

but is rather used to provide information with certainty on

K. Tamssaouet and S. Dauzère-Pérès European Journal of Operational Research 311 (2023) 455–471

L

C

f

L

i

a

t

c

t

p

t

f

i

]

t

v

W

t

t

d

t

o

n

t

t

b

n

p

1

n

i

b

t

t

A

b

v

p

t

v

o

p

l

b

U

T

T

l

g

a

t

A

b

b

t

a

k

r

a

m

F

r

s

t

s

t

s

c

c

o

c

b

c

b

t

n

a

t

i

e

o

i

v

i

A

v

1

1

1

1

1

the absence (C u = ∅) or presence (C u = { v }) of a path from

u to v . The last case occurs when k is not large enough to

allow the algorithm to explore all the nodes that can be

reached from u , and if v is reachable from u , the length of

the shortest path from u is larger than k . In this case, the

algorithm returns an actual layer C u that includes all the

nodes that are at depth k in the BFS-tree rooted at u (Line

9). Contrary to the two first cases, this third case does not

provide any information on the existence or absence of a

path from u to v . Therefore, Lemma 2 states a new condi-

tion regarding the absence of a path from u to v in G using

the notion of a layer C u . When k = 0 , Algorithm 3 returns

C u = { u } , making the condition in Lemma 2 the same as the

condition in Lemma 1 . Lemma 3 shows that the sufficient

condition Lemma 2 can have a lower miss rate condition in

Lemma 1 provided that k > 0 .

emma 2. Let C u = getLayerAtDepth (G, u, v , { v } , k) be a layer, i.e.,

 u
 = ∅ and v / ∈ C u .
If L (α, v) < min x ∈C u (L (α, x) + l x + l out(x)) , then there is no path

rom u to v .

emma 3. If the condition in Lemma 1 is satisfied, then the condition

n Lemma 2 is also satisfied.

As a modified BFS, Algorithm 3 provides either information

bout the existence of a path between two nodes or a layer

hat can be used by sufficient conditions in Lemma 2 . The pro-

edure is parameterized because the search depth can be con-

rolled via parameter k . Increasing the value of k increases the

robability of falling in both cases C u = ∅ and C u = { v } , respec-

ively providing certainty on the absence or presence of a path

rom u to v . If the algorithm falls into the third case, increas-

ng the value of k increases the upper bound of the interval

 − ∞ , min x ∈C u (L (alpha, x) + l x + l out(x))[, leading to the decrease of

he miss rate of the sufficient condition. However, increasing the

alue of the search cutoff k also increases the computational cost.

hen k receives a large value, Algorithm 3 has the same execution

ime as the classic BFS, i.e. O (| V | + | A |) . However, this execution

ime does not consider the possibility of stopping the search at

epth k . Instead of using the size of V and E, it is more convenient

o describe the complexity of Algorithm 3 based on another feature

f the G graph, the branching factor . The branching factor of the

odes of a graph G is defined as the number of direct successors of

he node, i.e., the size of the set of successors. If the branching fac-

ors of the nodes are not uniform, we can consider the maximum

ranching factor, noted b. To find nodes that are at distance k from

ode u , Algorithm 3 takes O (b k) time. This exponential time com-

lexity, usually used or graphs too large to store explicitly (Korf,

985) must be carefully considered. First, remember that the run-

ing time of Algorithm 3 is bounded by O (| V | + | A |) . Moreover, as

ndicated in the following sections, most of the existing results can

e obtained by the proposed procedures using k ≤ 2 with b = 2 for

he most commonly studied problems.

When studying the existence of a path from u to v , recall

hat we considered above that C ′ v = { v } is given as an input to

lgorithm 3 which returns C u . The search could be performed

ackward, i.e., started from v to find all the nodes that can reach

 . To do this, it is sufficient to provide Algorithm 3 the following

arameters: G

′ , v , u , C u = { u } and a depth k ′ . The algorithm de-

ermines a set of nodes such that, if there is a path starting from

 in G

′ , this path must pass at least one of the nodes in C ′ v . In

ther words, if there is a path from u to v , then this path must

ass through at least one of the nodes in C ′ v . Theorem 1 formu-

ates general sufficient conditions that use the layers determined

y the forward search from u and the backward search from v .
463
sing the same arguments as in Lemma 3 , it can be shown that

heorem 1 generalizes Lemma 2 .

heorem 1. There is no path from u to v if the two

ayers C u = getLayerAtDepth (G, u, v , { v } , k) and C ′ v =
etLayerAtDepth (G

′ , v , u, C u , k ′) satisfy the following conditions:

1. C u
 = ∅ and C u
 = { v } , and

2. C ′ v
 = ∅ and C ′ v
 = { u } , and

3. max y ∈C ′ v L (α, y) < min x ∈C u (L (α, x) + l x + l out(x))

The results presented in this section are combined to design

 parameterized procedure that determines if there is a path be-

ween two nodes u and v in a DAG G with non-negative weights.

lgorithm 4 relies on Algorithm 3 in a forward search from u and a

ackward search from v . Parameters k and k ′ are the forward and

ackward search depths, respectively. Note that a single parame-

er can replace these two parameters. However, two parameters

re necessary to show how the proposed algorithm can reproduce

nown results of the literature. The last procedure parameter L α

epresents the vector of the length of the longest path from α to

ll nodes of G , i.e., L α = (L (α, v) | v ∈ V) .

The layer C u is obtained by initializing C ′ v = { v } . Algorithm 4 ter-

inates by returning True (i.e., there is no path from u to v) or

alse (i.e., there is a path from u to v) when C u = ∅ or C u = { v } ,
espectively. If these two cases do not occur during the forward

earch, then it means that v is not found and that there are nodes

hat can be reached from u and that are not discovered yet. At this

tage, the sufficient condition in Lemma 2 can be checked to assert

he potential existence of a path from C u to v . However, it is pos-

ible to run the backward search from v before using the sufficient

ondition. With the resulting set C u , the layer C ′ v is recomputed ac-

ording to the given depth k ′ . The difference with the computation

f C u is that C ′ v is computed considering a layer C u that does not

ontain u if k > 0 . In this case, if u ∈ C ′ v , then it means that the

ackward search found one of the nodes in C u , which asserts with

ertainty that a path exists from u to v . If C ′ v = ∅ , then u cannot

e reached in G

′ from v , i.e., there is no path from u to v in G . If

he resulting C ′ v does not satisfy the two previous conditions, then

one of the nodes in C u is found by the backward search and not

ll nodes that can be reached from v in G

′ are found. In this case,

he condition in Theorem 1 can be used. If the condition is sat-

sfied, Theorem 1 ensures that there is no path from u to v . Oth-

rwise, the False of Line 15, italicized to differentiate it from the

thers, does not guarantee the existence of a path but rather the

nability of the sufficient condition to conclude. By increasing the

alue of k or k ′ , the chances of executing Line 15 decrease, result-

ng in a lower miss rate.

lgorithm 4 Parametrized procedure for path detection from u to

 .

1: procedure AssertNoPath (G , u , v , k , k ′ , L α)

2: C ′ v ← { v }
3: C u ← getLayerAtDepth (G, u , v , C ′ v , k)
4: if C u = ∅ then

5: return True

6: if C u = { v } then

7: return False

8: C ′ v ← getLayerAtDepth (G

′ , v , u , C u , k ′)
9: if C ′ v = ∅ then

0: return True

11: if C ′ v = { u } then

2: return False

3: if max y ∈C ′ v L (α, y) < min x ∈C u (L (α, x) + l x + l out(x)) then

4: return True

5: return False

K. Tamssaouet and S. Dauzère-Pérès European Journal of Operational Research 311 (2023) 455–471

A

e

l

l

a

A

v

q

n

p

t

t

A

t

a

5

a

t

L

i

o

g

i

p

l

5

d

i

c

w

u

c

T

c

y

T

t

d

M

G

A

r

v

G

A

o

b

T

o

f

d

a

a

r

c

w

I
c

i

t

p

g

t

c

o

i

i

A

T

h

w

l

G

(

l

n

u

t

t

O

T

{

G

t

o

5

t

a

v

p

t

r

s

l

r

l

r

t

t

T

t

b

i

Note that we assume that the sufficient conditions in

lgorithm 4 use L α , the lengths of the longest paths from a ref-

rence node α in G . It is also possible to use the lengths of the

ongest paths from a reference node ω in G

′ . Assuming that the

engths from ω are given in an the vector L

′
ω , the existence of

 path from u to v in G can be checked using L

′
ω by calling

ssertNoPath (G

′ , v , u, k ′ , k, L

′
ω) . In conclusion, Algorithm 4 pro-

ides a parameterized procedure that can be called to answer the

uestion of whether there is a path u to v in a DAG with non-

egative weights.

Such an algorithm makes it possible, through the search cutoff

arameters k and k ′ , to decide on the trade-off between computa-

ional efficiency and miss rate. By calling Algorithm 3 and given

hat the size of a layer is at most O (b k) , the running time of

lgorithm 4 is O (b max { k,k ′ }) . This procedure is an essential block in

he procedures evaluating move feasibility and move quality that

re presented in the following sections.

. Parameterized procedure for feasibility evaluation

This section focuses on the feasibility evaluation and presents

 parameterized procedure that determines whether a move leads

o a feasible neighbor. Such procedure can typically be called in

ine 6 of Algorithm 1 . Several important results in the schedul-

ng literature addressing this question rely on the information

n the existence of a path between two nodes in the solution

raph. Similarly, the procedure for feasibility evaluation proposed

n Section 5.1 heavily relies on the procedure for path detection

resented in Section 4 . Then, Section 5.2 shows that a selection of

iterature results are special cases of the procedure.

.1. Procedure for move feasibility evaluation

Given a DAG G that models a feasible solution, the goal is to

ecide whether a move M as defined in Section 3.2 is feasible,

.e., whether the neighbor modeled by ˜ G does not include a cy-

le. Algorithm 5 formalizes the proposed procedure that asserts

hether a move M is feasible or not. After applying a move, let

s assume there is a cycle in

˜ G and the arc (x, y) is part of the

ycle. Such assumption implies the existence of a path from y to x .

herefore, to ensure that the insertion of an arc (x, y) in G does not

reate a cycle, it is sufficient to ensure that there is no path from

 to x , and this information can be obtained using Algorithm 4 .

he procedure for move feasibility is thus a “simple” application of

he procedure for path detection of Section 4 . To make the proce-

ure applicable to both G and G

′ , the general notation of a move

 = { u, O, D } is used. In addition to the current solution graph

 and a move M , Algorithm 5 requires additional parameters for

lgorithm 4 . Parameters k , resp. k ′ , are the depths of the forward,

esp. backward, search. The last procedure parameter L α is the

ector of the lengths of the longest paths from α to all nodes of

 , i.e., L α = (L (α, v) | v ∈ V) .

lgorithm 5 General procedure for move feasibility.

1: procedure evaluateMoveFeasibility (G , M = { u, O, D } , k , k ′ , L α)

2: A ← A \ { (O 1 , u) , (u, O 2) , (D 1 , D 2) } � A should be restored at

end of procedure

3: I ← { (D 1 , u) , (u, D 2) }
4: for (x, y) ∈ I do

5: if AssertNoPath (G , y , x , k , k ′ , L α) then

6: continue

7: return False

8: return True

For clarity, let us focus on the case where the original graph

f schedule G is used. Suppose that operation u is sequenced in G
464
etween operations O 1 = s and O 2 = t on resource l, i.e., O = (s, t) .

he move M = { u, O, D } consists in moving operation u between

perations D 1 = v and D 2 = w on resource m , where m can be dif-

erent from l. The move M induces the deletion of a set of arcs,

enoted D = { (s, u) , (u, t) , (v , w) } , and the insertion of a set of new

rcs, denoted I = { (s, t) , (v , u) , (u, w) } . If G is a DAG and

˜ G contains

 cycle, then the arcs added or deleted by applying the moves are

esponsible of introducing such a cycle. More specifically, as no cy-

le can be created by deleting an arc in G , it is sufficient to check

hether a cycle is created as a consequence of inserting an arc in

. Also, it can be shown that the insertion of (D 1 , D 2) = (s, t) ∈ I
annot lead to a cycle in the graph.

The procedure starts then by locally deleting the set of arcs D
nduced by move M from the set of arcs A of G . “Locally” means

hat the original set of arcs A should be recovered at the end of the

rocedure. Then, the set of arcs to be inserted to get the complete

raph of the neighbor is initialized, i.e., I = { (v , u) , (u, w) } . Note

hat the arc (O 1 , O 2) = (s, t) is not included, as it is certain that no

ycle can result from its insertion in G . To ensure that the insertion

f an arc (x, y) does not lead to a cycle, Algorithm 4 checks if there

s no path from y to x . Theorem 2 states that the moves character-

zed as feasible by Algorithm 5 lead to feasible solutions. By calling

lgorithm 4 , the running time of Algorithm 5 is also O (b max { k,k ′ }) .

heorem 2. Let M = { u, O, D } be a move specified by the neighbor-

ood structure. Let k and k ′ respectively denote the depths of the for-

ard search and backward search, and let L α denote the vector of the

engths of the longest paths from a reference node α to all nodes of

 .

If evaluateMoveFeasibility (G, M , k, k ′ , L α) = True

 Algorithm 5), then M is a feasible move.

Algorithm 5 is illustrated above when using the vector of the

engths of the longest paths from α to all nodes of the origi-

al graph G . The procedure can also be used when needed to

se the vector of the lengths of the longest paths L

′
ω from ω

o all nodes of the reverse graph G

′ . The procedure should get

he following parameters: G

′ , M

′ = { u, O

′ , D

′ } , k ′ , k and L

′
ω . If

 = (s, t) and D = (v , w) as above, then O

′ = (t, s) and D

′ = (w, v) .
he procedure then starts by locally deleting the set of arcs D

′ =

 (t, u) , (u, s) , (w, v) } induced by move M

′ from the set of arcs A

′ of

′ . Next, the set of arcs to be inserted to get the complete graph of

he neighbor is initialized, i.e., I ′ = { (w, u) , (u, v) } . The remainder

f the procedure follows as above.

.2. Relationship with results of the literature

This section shows the generality of our procedure by proving

hat a selection of classical and well-known results from the liter-

ture can be derived using specific parameter values. Table 2 pro-

ides the parameter setting for the results in ten references. The

roblem solved by each reference is denoted using the classical no-

ation α| β| γ of Graham et al. (1979) . In the α field, J , F J and F MRJ

espectively denote a job-shop scheduling problem, a flexible job-

hop scheduling problem and a flexible job-shop scheduling prob-

em with operations requiring multiple resources. In the β field,

elease dates, sequence-dependent setup times, reentrance, paral-

el batching with incompatible families and non-linear routes are

espectively denoted r j , s , recr, p − batch, incompatible and bom . In

he γ field, C max , T W T and reg denotes, respectively, the makespan,

he total weighted tardiness, and any regular objective function.

he approach of Braune et al. (2013) optimizes any objective func-

ion in the form of min-sum , which is denoted here as
∑

j f (C j) .

For each reference, Column Result reports the original results to

e shown as a special case of the procedure in Algorithm 5 , which

s a “simple” application of Algorithm 4 for each of the arcs to be

K. Tamssaouet and S. Dauzère-Pérès European Journal of Operational Research 311 (2023) 455–471

Table 2

Some literature results dealing with move feasibility evaluation.

Reference Problem Result Arc AssertNoPath

Dauzère-Pérès & Paulli (1997) F J|| C max Theorem 1 (v , u) (G , u , v , 1, 0, L α)

(u, w) (G , w , u , 0, 1, L α)

Balas & Vazacopoulos (1998) ∗ J|| C max Proposition 2.2 (v , u) (G ′ , v , u , 0, 1, L ′ ω)
Proposition 2.3 (u, w) (G , w , u , 0, 1, L α)

Dauzère-Pérès et al. (1998) F MRJ| bom | C max Theorem 1 (v , u) (G , u , v , 1, 0, L α)

(u, w) (G , w , u , 0, 1, L α)

Mastrolilli & Gambardella

(2000) ∗
F J|| C max Section 4.1 (v , u) (G , u , v , 0, 1, L α)

(G ′ , v , u , 0, 1, L ′ ω)
(u, w) (G , w , u , 0, 1, L α)

(G ′ , u , w , 0, 1, L ′ ω)
Zhang et al. (2007) ∗ J|| C max Theorem 1 (v , u) (G ′ , v , u , 0, 1, L ′ ω)

Theorem 2 (u, w) (G , w , u , 0, 1, L α)

Braune et al. (2013) ∗ J|| ∑

j f (C j) Proposition 2 (v , u) (G ′ , v , u , 0, 2, L ′ ω)
Proposition 3 (u, w) (G , w , u , 0, 1, L α)

Sobeyko & Mönch (2016) F J| r j , bom | T W T Theorem 1 (v , u) (G , u , v , 1, 0, L α)

(u, w) (G , w , u , 0, 1, L α)

Knopp et al. (2017) F J| r j , s, recr, p −
batch, incompatible | reg

Theorem 2 (v , u) (G , u , v , 1, 0, L α)

(u, w) (G , w , u , 0, 1, L α)

Shen et al. (2018) F J| s | C max Proposition

4.1

(v , u) (G , u , v , 1, 0, L α)

(u, w) (G , w , u , 0, 1, L α)

Proposition

4.2

(v , u) (G , u , v , 1, 1, L α)

(u, w) (G , w , u , 1, 1, L α)

Kasapidis et al. (2021) F J| bom | C max Theorem 1 (v , u) (G , u , v , 1, 0, L α)

(u, w) (G , w , u , 0, 1, L α)

i

g

s

r

e

p

s

b

o

s

a

6

u

i

i

t

a

p

u

T

l

i

T

i

t

s

p

6

b

p

i

m

t

b

p

h

1

t

nserted in G (i.e., I = { (v , u) , (u, w) }). As the setting are hetero-

eneous for two arcs within the same work, Table 2 reports the

etting of Algorithm 4 . All the proofs showing how the settings

eported in the last column can reproduce the corresponding lit-

rature result are provided in the Supplementary Material accom-

anying this article to avoid overloading the paper. Note that a

tar follows some references in the table when the set of feasi-

le moves defined by the original sufficient conditions is a subset

f the set of feasible moves determined by our procedure with the

ettings in the last column. Below are a few remarks regarding the

nalysis of Table 2 and the referenced works:

• As highlighted previously, the literature results use heads or

tails. The heads correspond to the longest path length L α in

G with source node α considered as a reference node. The

tails correspond to the longest path length L

′
ω in the reverse

graph G

′ from sink node ω considered as a reference node.

The parameter setting of a result published in Klemmt et al.

(2017) using the node levels is provided in the Supplemen-

tary Material.
• The depth search cutoff necessary to reproduce the literature

results is low. Note that most of the approaches proposed in

the references in Table 2 were or are still state of the art.

Therefore, it may be unnecessary to use high values for k

and k ′ , resulting in the high efficiency of the proposed pro-

cedure for the feasibility evaluation.
• Shen et al. (2018) report numerical results that can be used

to understand the impact of increasing the search depth cut-

off. Instead of using k = 1 and k ′ = 0 to assert the absence of

a path from u to v in Proposition 4.1, Proposition 4.2 uses

k = 1 and k ′ = 1 . On average, the numerical results show

that the quality of the final solution is improved with an

additional computational time. The main reason for such an

increase is the larger neighborhood to be explored. As the

set of feasible neighbors determined by Proposition 4.2 in-

cludes the one determined by Proposition 4.1, the proposed

tabu search spends more time evaluating the neighborhood

of a solution. This indicates that, when using Algorithm 5 , it

might be necessary to experimentally choose the most ap-

propriate search depth cutoff for the considered problem in-

stances.
465
• By increasing the value of the search depth cutoff, it is pos-

sible to lower the miss rate of the sufficient conditions. The

work of Mastrolilli & Gambardella (20 0 0) shows another

interesting alternative. For example, to show that the in-

sertion of (v , u) does not create a cycle, Algorithm 4 can

be called on G and G

′ using the same low search depth

cutoff.

. Parameterized procedure for quality evaluation

In addition to the move feasibility evaluation, the quality eval-

ation of a move is another critical element that is often discussed

n the literature on heuristic approaches for the job-shop schedul-

ng problem and its extensions. This section shows that several

heoretical results published on this topic share the same insights

nd fit in the general framework proposed here. An important

iece of information that implicitly supports the design of eval-

ation procedures is the existence of a path between two nodes.

herefore, the proposed procedure for move evaluation heavily re-

ies on the results in Sections 4 . A short literature review regard-

ng quality evaluation procedures is first presented in Section 6.1 .

hen, Section 6.2 introduces the parameterized procedure for qual-

ty evaluation along with its underlying theoretical results. To show

he broad applicability of the proposed parameterized procedure, a

election of literature results are shown to be special cases of the

rocedure in Section 6.3 .

.1. Literature review

In the scheduling literature, the quality evaluation of a neigh-

or is one of the key features that differentiate the different pro-

osed local search heuristic approaches. To evaluate the qual-

ty of a move, the straightforward approach is to perform the

ove and compute the value of the optimized objective func-

ion (e.g., Nowicki & Smutnicki, 1996). This exact evaluation can

e performed by using the procedure in Algorithm 2 , which ap-

ears to make the evaluation the most expensive component in

euristic approaches to solving shop scheduling problems (Taillard,

994). An alternative recently regaining attention is to incremen-

ally maintain the longest path lengths and only update the infor-

K. Tamssaouet and S. Dauzère-Pérès European Journal of Operational Research 311 (2023) 455–471

m

(

&

r

t

a

e

n

t

s

a

p

P

&

c

e

r

u

d

a

q

p

(

m

D

e

p

b

S

c

t

(

p

a

l

I

(

i

t

u

i

o

b

d

s

(

p

j

(

m

q

t

r

l

t

m

w

c

b

f

t

t

Fig. 6. Moving node u from between s and t to between v and w .

m

t

m

t

a

r

t

6

q

a

d

u

a

a

n

s

b

o

s

m

e

s

ω
L

r

t

d

i

l

i

t

s

d

p

i

d

t

a

T

s

t

l

t

i

s

T
ation of the nodes affected by the move. Bierwirth & Kuhpfahl

2017) ; Mati et al. (2011) ; Nowicki & Smutnicki (2005) ; Sobeyko

 Mönch (2016) and Madraki & Judd (2021) propose some algo-

ithms that speed up the evaluation without reaching the full po-

ential of this approach. Those algorithms might visit nodes that

re not affected by the move. The algorithms proposed in Katriel

t al. (2005) satisfy the attractive property of visiting only affected

odes but cannot be applied to most of the neighborhood struc-

ures of job-shop scheduling problems.

Instead of an exact evaluation, it is more common in the

cheduling literature to consider an approximate evaluation while

ccepting some accuracy loss. The available approximate evaluation

rocedures may verify the lower bound property (Dauzère-Pérès &

aulli, 1997; Taillard, 1994), the upper bound property (Mastrolilli

 Gambardella, 20 0 0) or none of the two properties (Balas & Vaza-

opoulos, 1998; Dell’Amico & Trubian, 1993). While most quality

valuation procedures focus on the makespan, Mati et al. (2011) ,

esp. Braune et al. (2013) , propose general procedures for any reg-

lar objective function, resp. min-sum objective functions. In ad-

ition to the lower bound properties, the upper bound properties

nd the evaluated objective function, it is possible to classify the

uality evaluation procedures based on the move they can be ap-

lied to. Some evaluation procedures are restricted to swap moves

e.g. Mati et al., 2011; Taillard, 1994) and some can be applied to

ore general insertion moves (e.g. Dauzère-Pérès & Paulli, 1997;

ell’Amico & Trubian, 1993).

When analyzing the procedures proposed in the literature, for

fficiency considerations, the evaluation relies on the length of

aths (old and new ones) that include the nodes directly impacted

y the move but also of paths that do not include such nodes.

uch evaluation was initially proposed in Taillard (1994) for the

ase of the job-shop scheduling problem with makespan minimiza-

ion. To evaluate the effect of swapping a single critical arc (u, v)
see Fig. 2), Taillard (1994) computes the exact value of the longest

ath which contains at least one of the nodes u and v in the graph

ssociated with the new solution. The length of this path is a valid

ower bound on the objective function value of the new solution.

n addition to the nodes directly impacted by the move, Mati et al.

2011) proposes to improve the lower bound accuracy by consider-

ng a subset of paths that do not go through u or v .
As highlighted earlier, the existence or absence of a path be-

ween two nodes is a property used more implicitly when eval-

ating the quality of a move instead of being used more explic-

tly in the move feasibility evaluation. For example, the absence

f some paths can be indirectly deduced by classifying the moves

ased on the position of u in its new insertion position (v , w) . The

istinction between forward and backward moves can be found in

everal papers such as Balas & Vazacopoulos (1998) ; Braune et al.

2013) and García-León et al. (2015) . This distinction allows to im-

licitly assert the absence of paths between some nodes. For the

ob-shop scheduling problem (Balas & Vazacopoulos, 1998), and

 Braune et al., 2013), these notions are characterized through the

ove direction of the resequenced operation on its machine se-

uence. In the case of the forward move, it can be ensured that

here cannot be a path from w to u only by assuming that the cur-

ent solution is feasible. For the flexible job-shop scheduling prob-

em (García-León et al., 2015), the characterization is performed

hrough the use of the notion of the level of the operation to be

oved u and its new resource predecessor v : Forward insertion

hen l u ≤ l v and backward insertion when l u > l v . Other similar

lassifications of the moves can be found in the literature.

In this work, we aim at designing a generic procedure that can

e used to compute valid lower bounds for any regular objective

unction. The calculation of the lower bound on the objective func-

ion is based on the calculation of lower bounds on the heads and

he tails of a set of nodes, most of the time those affected by the
466
ove to perform. Estimating the new heads and tails is based on

heir values in the original solution. An important piece of infor-

ation to have when calculating a node’s estimated heads and

ails is whether the node under consideration is reachable from

nother node whose head or tail changes due to the insertion or

emoval of an incident arc. This information can be found using

he results in Section 4 .

.2. Procedure for move quality evaluation

Similar to a procedure that evaluates the feasibility of a move, a

uality evaluation procedure strongly depends on the definition of

 move. We use the move defined in Section 3.2 . Let M = { u, O, D }
enote a move specified by the neighborhood structure, i.e., a node

 is moved from between O 1 and O 2 to between D 1 and D 2 . Given

 graph G that models a feasible solution, the goal is to compute

 valid lower bound on the optimized objective function of the

eighbor obtained after applying M and modeled by ˜ G . As we con-

ider any regular objective function, the computation of a lower

ound on the optimized objective function requires the estimation

f the length of the longest paths from a source node α to a set of

ink nodes { ω j } ⊂ V . Therefore, we focus below on the length esti-

ation of the longest path from α to some sink node ω. The exact

valuations related to the neighbor ˜ G are referred to by the symbol
˜ � , while the approximate evaluations are signaled by the use of

ymbol ˆ � . For example, the length of the longest path from α to

in

˜ G is denoted by ˜ L (α, ω) , while its lower bound is denoted by
ˆ
 (α, ω) . The reverse graph of ˜ G is denoted

˜ G

′ .
The quality evaluation procedures proposed in the literature

ely on the length of paths (before and after a move) that include

he nodes directly impacted by the move, but also on paths that

o not include such nodes. We focus here on the nodes directly

mpacted by the move, i.e., u , O 1 , O 2 , D 1 and D 2 . To obtain a valid

ower bound on the length of the longest paths from α to ω, it

s sufficient to compute valid lower bounds on the paths going

hrough the set of the directly affected nodes. Assume that the fea-

ible move to apply is M = { u, O = (s, t) , D = (v , w) } . Among the

ifferent ways of defining the subsets of the set of considered

aths, we choose the one illustrated in Fig. 6 , which helps the most

n Section 6.3 to illustrate the generality of the evaluation proce-

ure. The subset of paths going through O 1 = s or O 2 = t comprises

hree subsets: 1) The set of paths going through the newly inserted

rc (s, t) (black), 2) The set of paths going through s (red) and 3)

he set of paths going through t (magenta). Note that set 1) is a

ubset of the two other sets 2) and 3). We allow this overlapping

o facilitate mapping the different lower bounds proposed in the

iterature to those computed by our procedure. Also, the computa-

ion of the lower bound of a redundant set does not significantly

mpact the computational cost of the move quality evaluation. The

ubset of paths going through D 1 = v , u or D 2 = w comprises: 4)

he set of paths going through u (blue), 5) The set of paths going

K. Tamssaouet and S. Dauzère-Pérès European Journal of Operational Research 311 (2023) 455–471

t

s

(

a

m

α

t

t

α

m

G

u

t

w

(

f

a

i

d

s

i

a

l

o

e

e

(

T

n

s

{

d

a

c

r

D

t

C

n

s

u

i

A

t

d

t

a

O

r

t

t

d

t

o

t

s

A

A

l

1

1

1

1

1

1

a

f

f

i

hrough v but not the newly inserted arc (v , u) (olive) and 6) The

et of paths going through w but not the newly inserted arc (u, w)

cyan). The general idea of the proposed procedure is to compute

 lower bound for each of the six subsets of paths and takes the

aximum as a valid lower bound for the longest path length from

to ω.

If there is a path from α to ω through x , then, by defini-

ion, L (α, x) + l x + L (x, ω) is a lower bound of L (α, ω) . Therefore,

o compute a valid lower bound on the longest path length from

to ω, valid lower bounds on the lengths ˜ L (α, x) and

˜ L ′ (ω, x)

ust be computed, where x is one of the directly affected nodes.

iven a DAG G and its reverse graph G

′ , the same results can be

sed to establish a lower bound on

˜ L (α, x) and

˜ L ′ (ω, x) . Therefore,

he following results are stated for the general case of a DAG G

ith non-negative weights. Assuming a feasible move M = { u, O =

s, t) , D = (v , w) } is applied on the solution graph G modeling a

easible schedule, the same result helps establishing, for example,

 lower bound on

˜ L (α, s) and

˜ L ′ (ω, t) as O 1 = s in G and O

′
1 = t

n G

′ . As highlighted above, the efficiency of the evaluation proce-

ure is based on the idea of reusing all relevant information of the

chedule before the move to establish lower bounds. More specif-

cally, to compute a lower bound on

˜ L (α, y) of one of the directly

ffected nodes y , we first aim at computing lower bounds on the

ongest path from α to all y predecessors in

˜ G . Then, a lower bound

n

˜ L (α, y) can easily be computed as in Lines 9–10 in Algorithm 2 .

Given a general feasible move M = { u, O, D } , Theorem 3 helps

stablishing different lower bounds on

˜ L (α, x) depending on the

xistence of paths from some of the directly affected nodes

 { u, O 2 , D 2 }) by move M .

heorem 3. Let M = { u, O, D } be a feasible move specified by the

eighborhood structure transforming G to ˜ G . Let us assume that the

et of arcs D are deleted from A (i.e., A = A \ D). For each x ∈ V \
 u, O 2 , D 2 } :

1. If there is no path from u to x , from O 2 to x and from D 2 to x

in G , then ˜ L (α, x) = L (α, x) .

2. If there is no path from u to x and from O 2 to x in G , then
˜ L (α, x) ≥ L (α, x) .

3. If there is no path from u to x and from D 2 to x in G , then

L (α, x) ≥ ˜ L (α, x) ≥ L (α, x) − δO 2
.

Using Theorem 3, Corollary 2 establishes lower bounds on the

ifferent graph nodes. First, instead of always using Algorithm 4 to

ssert the absence of a path between two nodes, such a question

an be directly answered based only on the feasibility of the cur-

ent solution and the move. For example, considering that G is a

AG implies that there cannot be a path from u to O 1 and from O 2

o O 1 .

orollary 2. Let M = { u, O, D } be a feasible move specified by the

eighborhood structure transforming G to ˜ G . Let us assume that the

et of arcs D are deleted from A (i.e., A = A \ D). Let ˆ δO 2
denote an

pper bound on δO 2
= L (α, O 2) − ˜ L (α, O 2) . We have the following

dentities:

1. ˆ L (α, x) = ̃

 L (α, x) = L (α, x) , for each x ∈ B(u)

2. ˆ L (α, O 1) = L (α, O 1)

3. If there is no path from u to x and from O 2 to x in G , then
ˆ L (α, x) = L (α, x) .

4. If there is no path from u to x and from D 2 to x in G , then
ˆ L (α, x) = L (α, x) − ˆ δO 2

.

For any of the five directly affected nodes y ∈ { u, O 1 , O 2 , D 1 , D 2 } ,
lgorithm 6 computes a lower bound on the longest path from α

o y by exploiting the results in Theorem 3 and Corollary 2 . In ad-

ition to the search cutoffs k and k ′ , the procedure requires also

he move M in G , the vector of longest path lengths from α and
467
n upper bound on the decrease ˆ δO 2
in the longest path from α to

 2 (i.e., ˆ δO 2
≥ L (α, O 2) − ˜ L (α, O 2)). Conditions in Lines 2 and 4 cor-

espond to identities 1 and 2 in Corollary 2 , respectively. If none of

he previous two conditions is satisfied, the procedure computes

he lower bounds on the longest path from α to each of the y pre-

ecessors using results 3 or 4 in Corollary 2 . The lower bound on

he longest path from α to y is computed in Lines 14–16 based

n the lower bounds of each y predecessor. By calling Algorithm 4 ,

he running time of Algorithm 6 is also O (b max { k,k ′ }) . Note that, de-

pite being only used on the nodes directly impacted by the move,

lgorithm 6 is still valid for each node of the graph.

lgorithm 6 Procedure to compute a lower bound on longest path

ength from a reference node.

1: procedure computeLB (G , α, y , k , k ′ , M = { u, O, D } , L α , ˆ δO 2
) �

This procedure assumes that the arcs in D are deleted from A

2: if y = u then

3: return max (x,y) ∈ in (y) { L (α, x) + l x + l x,y }
4: if y = O 1 then

5: return L (α, y)

6: for x ∈ B y do

7: ˆ L (α, x) ← −∞

8: C ← AssertNoPath (G, u, x, k, k ′ , L α)

9: if C ∧ AssertNoPath (G, O 2 , x, k, k ′ , L α) then

0: ˆ L (α, x) ← L (α, x)

11: continue

2: if C ∧ AssertNoPath (G, D 2 , x, k, k ′ , L α) then

3: ˆ L (α, x) ← L (α, x) − ˆ δO 2

4: ˆ L (α, y) ← −∞

5: for (x, y) ∈ (y) do

6: ˆ L (α, y) ← max { ̂ L (α, y) , ̂ L (α, x) + l x + l x,y }
17: return

ˆ L (α, y)

The generic procedure in Algorithm 7 can be used to estimate

 valid lower bound on any regular objective function resulting

rom applying move M . This procedure computes a lower bound

or each of the six subsets of paths identified above and illustrated

n Fig. 6 . Below is a short description of the procedure:

• The procedure starts by checking if there is no path from

u to ω and from t to ω. Note that the assertion of the ab-

sence of a path only uses L α . It is also possible to use L

′
ω

instead or combine them. More importantly, the arcs in D
are not deleted yet. Therefore, the absence of a path from

u to ω also implies the absence of a path from t to ω. If

the condition is satisfied, the move M does not affect the

longest path from α to ω according to the first implication

in Theorem 3 .
• Lines 4–9 prepare the appropriate conditions to use

Algorithm 6 by locally deleting the arcs in D from A and

computing upper bounds on the decrease in the longest path

length from α to t and from ω to s . The assignments in Line

6 result from identity 2 in Corollary 2 . To compute a tighter

upper bound on the decrease in the longest path length

from α to t , it is necessary first to compute a lower bound

on the longest path length from α to t in

˜ G . Such longest

path might go through the new predecessor s , for which

ˆ L (α, s) is already computed in Line 6. Such longest path

might also go through the unchanged predecessors B(t) af-

ter the deletion of D arcs. In this last case, Algorithm 6 is

called. As there cannot be a path from t to any of its pre-

decessors in B(t) , each of the predecessor x ∈ B(t) can have

either L (α, x) or −∞ as a lower bound on its longest path

length from α. In other words, ˆ δt is not relevant when using

K. Tamssaouet and S. Dauzère-Pérès European Journal of Operational Research 311 (2023) 455–471

Algorithm 7 General procedure for quality evaluation.

1: procedure evaluateMoveQuality (G , M = { u, 0 = (s, t) , D = (v , w) } , k , k ′ , L α , L

′
ω)

2: if AssertNoPath (G, u, ω, k, k ′ , L α) ∧ AssertNoPath (G, w, ω, k,

k ′ , L α) then

3: return L (α, ω)

4: A ← A \ { (s, u) , (u, t) , (v , w) } � A should be restored at the end of the proceudre

5: ˆ δt ← + ∞ , ˆ δ′
s ← + ∞

6: ˆ L (α, s) ← L (α, s) , ˆ L ′ (ω, t) ← L ′ (ω, t)

7: ˆ L (α, t) ← max { ̂ L (α, s) + l s + l s,t , computeLB (G , α, t , k , k ′ , M = { u, 0 , D } , ˆ δt , L α) }
8: ˆ L ′ (ω, s) ← max { ̂ L ′ (ω, t) + l t + l ′ t,s , computeLB (G

′ , ω, s , k , k ′ , M

′ = { u, 0 ′ , D

′ } , ˆ δ′
s , L

′
ω) }

9: ˆ δt ← L (α, t) − ˆ L (α, t) , ˆ δ′
s ← L ′ (ω, s) − ˆ L ′ (ω, s)

10: for y ∈ { u, v , w } do

11: ˆ L (α, y) ← computeLB (G , α, y , k , k ′ , M = { u, 0 = (s, t) , D = (v , w) } , δt , L α)

12: ˆ L ′ (ω, y) ← computeLB (G

′ , ω, y , k , k ′ , M

′ = { u, 0 ′ = (t, s) , D

′ = (w, v) } , δs , L ω)

13: L 1 ←

ˆ L (α, s) + l s + l s,t + l t + ̂

 L ′ (ω, t) � Paths going through arc (s, t)

14: L 2 ←

ˆ L (α, t) + l t + ̂

 L ′ (ω, t) � Paths going through t

15: L 3 ←

ˆ L (α, s) + l s + ̂

 L ′ (ω, s) � Paths going through s

16: L 4 ←

ˆ L (α, v) + l v + ̂

 L ′ (ω, v) � Paths going through v but not through arc (v , u)
17: L 5 ←

ˆ L (α, w) + l w

+ ̂

 L ′ (ω, w) � Paths going through w but not through arc (u, w)

18: ˆ L (α, u) ← max { ̂ L (α, u) , ̂ L (α, v) + l v + l v ,u }
19: ˆ L ′ (ω, u) ← max { ̂ L ′ (ω, u) , ̂ L ′ (ω, w) + l w

+ l ′ w,u }
20: L 6 ←

ˆ L (α, u) + l u + ̂

 L ′ (ω, u) � Paths going through u

21: return max 1 ≤i ≤6 { L i }

b

p

d

A

O

m

s

t

o

f

t

m

e

t

l

s

i

o

b

t

m

t

t

6

S

s

f

a

a

l

s

c

p

i

t

p

c

e

s

s

t

u

r

p

p

t

p

c

t

Algorithm 6 for t . The same arguments apply for the com-

putation of ˆ L ′ (ω, s) as it is symmetrical to ˆ L (α, t) . The com-

putation in Line 9 of the upper bounds on the decrease uses

already computed

ˆ L (α, t) and

ˆ L ′ (ω, s) .
• Lines 10–12 compute, for each of the remaining directly af-

fected nodes y ∈ { u, v , w } , lower bounds on the longest path

length from α to y in G and the longest path length from ω
to y in G

′ .
• Lines 13–20 compute lower bounds on the longest path from

α to ω for each subset of paths identified above and illus-

trated in Fig. 6 . Recall that the subset of paths for which

the length is estimated using L 1 is a subset of paths go-

ing through t or u . Therefore, it can easily be shown that

L 1 ≤ min { L 2 , L 3 } . However, the cost of considering such a re-

dundant set is insignificant as it involves few arithmetic op-

erations, while it is useful in Section 6.3 . In general, depend-

ing on the specific problem to be solved, it should be pos-

sible to customize the procedure by not computing some of

the lower bounds if they can always be shown to be lower

than others.

The procedure returns the maximum among the six lower

ounds calculated if the performed move can impact the longest

ath from α to ω. The computational cost of this procedure is

etermined by the values of k and k ′ used by the procedure in

lgorithms 4 and 6 . The running time of Algorithm 7 is also

 (b max { k,k ′ }) . Increasing the values of the two control parameters

ay increase the computational cost and the accuracy of the re-

ulting lower bounds. Taking into account the properties on which

he different results are built, this procedure can be used in Line 7

f Algorithm 1 to compute lower bounds on any regular objective

unction when solving any scheduling problem for which a solu-

ion can be modeled by a DAG with non-negative weights. When

inimizing the makespan, it suffices to let ω represent the dummy

nd node to calculate valid lower bounds for this objective func-

ion. For a general regular objective function, the calculation of a

ower bound can be carried out by calling the procedure for each

ink node. In the same way as Mati et al. (2011) , it is possible to

mprove the accuracy of the lower bounds by extending the set

f paths considered to those passing through nodes not impacted
468
y the move. Moreover, depending on the scheduling problem and

he neighborhood structure, some steps of the proposed procedure

ay be unnecessary: The same subset of paths is considered more

han once, or there is a lower bound L i always lower than or equal

o another L j .

.3. Relationship with results of the literature

This section aims to illustrate the generality of the results in

ection 6.2 . We show that a selection of well-known literature re-

ults can be reproduced by Algorithm 7 when appropriate values

or the parameters are chosen. Note that, as all the selected liter-

ture results optimize the makespan, there is always a path from

ny node to the last dummy node ω, which makes the condition in

ine 2 of Algorithm 7 always false. Therefore, we mainly focus on

howing that the proposed estimations functions in the literature

orrespond to one of the six estimations in Algorithm 7 . Table 3

rovides the parameter setting for each reference. The other papers

n Section 5.2 not considered here are those using quality evalua-

ions not satisfying the lower bound property. As in Table 2 , the

roblem solved by each reference is denoted in Table 3 using the

lassical notation α[β| γ of Graham et al. (1979) . For each refer-

nce, Column Result reports the original results to be shown as a

pecial case of the procedure in Algorithm 7 . Column Lower Bound

pecifies the lower bounds in Algorithm 7 that can be mapped to

he lower bounds proposed in each reference. Finally, the last col-

mn provides the appropriate parameters (k and k ′ being the most

elevant) to use if one aims at reproducing the lower bounds pro-

osed in each reference. The interested reader can find in the Sup-

lementary Material accompanying this article the proofs mapping

he lower bounds of each reference to the six lower bounds com-

uted by our procedure and how the settings reported in the last

olumn can reproduce the corresponding literature result.

Below are a few remarks regarding the analysis of Table 3 and

he referenced works:

• The diversity of the problems solved by the selected refer-

ences illustrates the generality of the proposed procedure

for move evaluation. Beyond the diversity in terms of con-

straints, the proposed procedure can also provide a valid

K. Tamssaouet and S. Dauzère-Pérès European Journal of Operational Research 311 (2023) 455–471

Table 3

Some literature results dealing with move quality evaluation.

Reference Problem Result Lower bounds evaluateMoveQuality

Taillard (1994) J|| C max Section 2 max { L 2 , L 6 } (G , M , 0, 0, L α , L ′ ω)
Dauzère-Pérès & Paulli (1997) F J|| C max Theorem 1 max { L 1 , L 6 } (G , M , | V | , 0, L α , L ′ ω)

Remark 1

Dauzère-Pérès et al. (1998) F MRJ| bom | C max Theorem 1 L 6 (G , M , 1, 1, L α , L ′ ω)
Shen et al. (2018) F J| s | C max Proposition 4.3 L 6 (G , M , | V | , 0, L α , L ′ ω)

Proposition 4.4

Kasapidis et al. (2021) F J| bom | C max Theorem 2 max { L 1 , L 6 } (G , M , | V | , 0, L α , L ′ ω)

7

e

d

s

e

p

n

t

t

i

a

b

b

v

b

c

p

3

s

(

a

i

s

t

c

n

T

p

l

g

A

P

−

p

t

α

a

d

l

o

w

l

l

P

a

f

a

L

c

t

i

P

e

t

I

d

s

f

x

w

lower bound on any regular criterion such as total flow time

or maximum total weighted tardiness. To achieve this, it is

sufficient to use Algorithm 7 to estimate the longest path

from the dummy origin node α to each of the dummy sink

nodes ω i .
• The depth search cutoffs necessary to reproduce the litera-

ture results are either very small or very large. The nota-

tion | V | represents the cardinality of the node set in G , and

refers to situations where the absence of a path between

two nodes is asserted with certainty. In Dauzère-Pérès &

Paulli (1997) , it is proposed to compute at each iteration

of the local search algorithm for each node v the set of all

nodes that belong to all the paths from the start dummy

node α to v and the set of all nodes belonging to all the

paths from v to the end dummy node ω. Computing the sets

is expensive in terms of computational time and memory.

However, the resulting cost is still low compared to the cost

of evaluating the quality of each neighbor exactly. For exam-

ple, Kasapidis et al. (2021) , where the lower bound proposed

by Dauzère-Pérès & Paulli (1997) is adapted to tackle the

flexible job-shop scheduling problem with arbitrary prece-

dence constraints, report that using the lower bounds leads

to a speed-up factor of more than 100 in their experimental

study. Shen et al. (2018) also report brief experimental re-

sults showing the significant positive effect of the use of the

lower bound on the local search algorithm efficiency.
• Contrary to Shen et al. (2018) and Kasapidis et al. (2021) ,

where the set of all predecessors and successors are used

as in Dauzère-Pérès & Paulli (1997) ; Dauzère-Pérès et al.

(1998) drop the computation of such sets as it has a signif-

icant negative impact on the efficiency of the local search

algorithm when dealing with a flexible job-shop schedul-

ing problem with multiple resources per operation and ar-

bitrary precedence constraints. As shown in Table 3 , it is

enough to choose k = k ′ = 1 so that Algorithm 7 produces a

lower bound that is at least as tight as the one in Dauzère-

Pérès et al. (1998) . The contrast between the lower bound

in Dauzère-Pérès & Paulli (1997) and the lower bound in

Dauzère-Pérès et al. (1998) shows the capability of the pro-

cedure in Algorithm 7 to adapt to the most appropriate

trade-off between accuracy and efficiency.

. Conclusions and perspectives

A framework was proposed in this paper that unifies and gen-

ralizes the contributions of many well-known papers of the last

ecades, which heuristically solve the job-shop and flexible job-

hop scheduling problems. First, a parameterized procedure to

valuate the feasibility of a move was introduced. Besides encom-

assing multiple results from the literature, the procedure also in-

ovates by explicitly allowing the management of the trade-off be-

ween the possibility of rejecting feasible moves and the compu-

ational time of the procedure. The second proposed parameter-

zed procedure computes a valid lower bound on the length from
469
 source node to a sink node after performing a move. This lower

ound can be used to quickly evaluate the quality of a neigh-

or with any regular objective function. Again, by increasing the

alue of control parameters, the quality of the lower bound can

e increased at the expense of the computational time of the pro-

edure. The two parameterized procedures are shown to encom-

ass different contributions from the literature (see Tables 2 and

), thus ensuring that the numerical results presented for in-

tance in Dauzère-Pérès & Paulli (1997) ; Mastrolilli & Gambardella

20 0 0) and Shen et al. (2018) can be obtained with our framework.

Several directions for future research are discussed below. First,

n ongoing work aims to experimentally investigate the applicabil-

ty and generalization of the proposed framework on various clas-

ical and complex job-shop scheduling problems. Second, one way

o make the framework even more general is to consider more

omplex moves which change more than one sequence of a single

ode or which involve more than one node (see e.g., Kis, 2003).

hird, the efficiency of heuristic approaches can be further im-

roved if bounded incremental algorithms for the evaluation of so-

utions, such as the one proposed in Katriel et al. (2005) , can be

eneralized to handle complex moves.

ppendix A. Proofs

roof of Lemma 1. As the condition cannot hold when L (α, u) =
∞ , it can be used only when L (α, u) ≥ 0 , i.e., there is a

ath from α to u . Let us assume there is a path from u

o v , which implies the existence of at least one path from

to v going through u . Let P α, v = (α, w 1 , w 2 , . . . , u, . . . , v) be

 path satisfying the condition l(α, w 1 , w 2 , . . . , u) = L (α, u) . By

efinition, l(P α, v) = l(α, w 1 , w 2 , . . . , u) + l u + l(u, . . . , v) = L (α, u) +
 u + l(u, . . . , v) . As the path from u to v must contain one of the

utgoing edges of u and given the assumption on non-negative

eights, l(u, . . . , v) ≥ l out(u) . Using respectively the definition of the

ongest path, and the above inequality, L (α, v) ≥ l(P α, v) ≥ L (α, u) +
 u + l out(u) , which contradicts the condition. �

roof of Corollary 1. By definition, G

′ is obtained by reversing the

rcs of G . Therefore, deciding on the existence or not of a path

rom u to v in G is equivalent to deciding on the existence or not of

 path from v to u in G

′ . As G

′ is a DAG with non-negative weights,

emma 1 assert the absence of a path from v to u in G

′ if the

ondition L ′ (ω, u) < L ′ (ω, v) + l v + l out ′ (v) is satisfied. Consequently,

he satisfied condition asserts also the absence of path from u to v
n G . �

roof of Property 2. Let d(u, v) denote the length of the short-

st path from the BFS-tree root u to a node v . Let us assume

here is a path P (u, v) such that P (u, v) ∩ C u = ∅ and d(u, v) > k .

f such a path exists, then there is an arc (x, y) ∈ P (u, v) such that

(u, x) ≤ k − 1 and d(u, y) ≥ k + 1 . However, as BFS computes the

hortest path from u to all its reachable nodes, the shortest path

rom u to y cannot be longer than the shortest path from u to

 followed by the edge (x, y) . In other words, d(u, y) ≤ (u, x) + 1 ,

hich contradict the inequality d(u, y) ≥ k + 1 . �

K. Tamssaouet and S. Dauzère-Pérès European Journal of Operational Research 311 (2023) 455–471

P

G

f

s

m

P

m

l

t

P

T

y

i

w

P

i

g

a

h

p

s

w

c

P

t

c

h

i

L

i

(

c

i

a

f

i

l

a

l

x

i

s

δ

P

u

S

f

R

B

B

B

B

B

C

D

D

D

D

G

G

G

K

K

K

K

roof of Lemma 2. Let us assume there is a path from u to v in

 . Given that C u is a layer and using Property 2 , if there is a path

rom u to v , then there is a path from y ∈ C u to v . Property 1 en-

ures that L (α, v) ≥ L (α, y) + l y + l out(y) . As L (α, y) + l y + l out(y) ≥
in x ∈C u (L (α, x) + l x + l out(x)) , this contradicts the condition. �

roof of Lemma 3. Property 1 ensures that L (α, u) + l u + l out(u) ≤
in x ∈C u (L (α, x) + l x + l out(x)) . Therefore, L (α, v) < min x ∈C u (L (α, x) +

 x + l out(x)) is satisfied when L (α, v) < L (α, u) + l u + l out(u) is

rue. �

roof of Theorem 1. Let us assume there is a path from u to v .
he layer property (Property 2) implies the existence of x ∈ C u and

 ∈ C ′ v such that there is a path from x to y . Lemma 1 implies that,

n case there is a path from x to y , L (α, y) ≥ L (α, x) + l x + l out(x) ,

hich contradicts the condition. �

roof of Theorem 2. Let us assume that Algorithm 5 character-

zes a move as feasible (True is returned) and the resulting directed

raph

˜ G includes a cycle. Two cases must be studied:

1. A cycle is created by a separate insertion of one arc, and

2. A cycle is created by the simultaneous insertion of two or

more arcs in I .

If there is a single inserted arc (x, y) ∈ I such that a cycle is cre-

ted in the graph, then there is a path from y to x in G . This cannot

appen as the path would be detected by Algorithm 4 . Now, let us

rove the case where the cycle is created by the simultaneous in-

ertion of two or more arcs in I . Inserting both (D 1 , u) and (u, D 2)

ould create a cycle only if there is a path from D 2 to D 1 . This

ontradicts the assumption of the absence of a cycle in G . �

roof of Theorem 3. The general intuition behind the results of

his theorem is that the longest path length between two nodes

an only be changed if at least one path connecting the two nodes

as been altered.

First implication : If there is no path from u , O 2 and D 2 to x

n G , then none of the paths from α to x is altered. Therefore,
˜
 (α, x) = L (α, x) .

Second implication : If there is no path from u and O 2 to x

n G , then the deletion of (O 1 , u) and (u, O 2) and the insertion of

O 1 , O 2) cannot affect any path from α to x . Therefore, a move M
an have an impact on the longest path from α to x only after the

nserting (D 1 , u) and (u, D 2) . Considering the triangle inequality

ssumption (i.e., l D 1 ,D 2 ≤ l D 1 ,u + l u + l u,D 2
), the longest path length

rom α to x can only increase, i.e., ˜ L (α, x) ≥ L (α, x) .

Third implication : If there is no path from u and D 2 to x

n G , inserting the arcs (D 1 , u) and (u, D 2) does not affect the

ongest path length from α to x . Therefore, considering the tri-

ngle inequality assumption, ˜ L (α, x) ≤ L (α, x) . If a decrease in the

ongest path from α to x occurs then there is a path from O 2 to

 . Note that, if there is a path from O 2 to x , a path cannot ex-

st from u or D 2 to O 2 in G , otherwise this contradicts the as-

umption on the absence of a path from u to x in G . Therefore,

O 2
= L (α, O 2) − ˜ L (α, O 2) ≥ 0 .

Two situations can be considered here:

1. O 2 is not part of the longest path from α to x . In this case,
˜ L (α, x) = L (α, x) as the longest path from α to x is not al-

tered. Therefore, given that δO 2
≥ 0 , the condition

˜ L (α, x) =

L (α, x) ≥ L (α, x) − δO 2
is satisfied.

2. O 2 is part of the longest path from α to x before the

move, which implies that L (α, x) = L (α, O 2) + l O 2 + L (O 2 , x) .

As the longest path between O 2 to x cannot change,
˜ L (O 2 , x) = L (O 2 , x) = L (α, x) − L (α, O 2) − l O 2 (1). After the

move, O 2 may no longer be on the longest path, i.e.,
˜ L (α, x) ≥ ˜ L (α, O 2) + l O 2 + ̃

 L (O 2 , x) (2). By replacing (1) in
470
(2), ˜ L (α, x) ≥ ˜ L (α, O 2) + L (α, x) − L (α, O 2) . Given that δO 2
=

L (α, O 2) − ˜ L (α, O 2) , we get ˜ L (α, x) ≥ L (α, x) − δO 2
. �

roof of Corollary 2.. Each of the identity is restated and proved

sing the hypotheses and results in Theorem 3 .

1. ˆ L (α, x) = ̃

 L (α, x) = L (α, x) , for each x ∈ B(u) : First, given that

G is a DAG before deleting the arcs in D, there could not be

a path from u or O 2 to any of the predecessors of u , i.e.,

x ∈ B(u) . Also, given that M is a feasible move, there could

not be also a path from D 2 to any of u predecessors. There-

fore, the identity is true according to the first implication in

Theorem 3 .

2. ˆ L (α, 0 1) = L (α, 0 1) : Given that G is a DAG before deleting

the arcs in D, there could not be a path from u or O 2 to

O 1 . Therefore, L (α, 0 1) is a lower bound on ˜ L (α, 0 1) accord-

ing to the second implication in Theorem 3 , i.e., ˜ L (α, 0 1) =
ˆ L (α, 0 1) = L (α, 0 1) .

3. If there is no path from u and O 2 to x in G , then

ˆ L (α, x) =
L (α, x) : Straightforward result from the second implication

in Theorem 3 .

4. If there is no path from u and D 2 to x in G , then

ˆ L (α, x) =
L (α, x) − ˆ δO 2

: Straightforward result from the third implica-

tion in Theorem 3 . �

upplementary material

Supplementary material associated with this article can be

ound, in the online version, at doi: 10.1016/j.ejor.2023.05.018 .

eferences

alas, E., & Vazacopoulos, A. (1998). Guided local search with shifting bottleneck for
job shop scheduling. Management Science, 44 (2), 262–275 .

ierwirth, C., & Kuhpfahl, J. (2017). Extended grasp for the job shop scheduling

problem with total weighted tardiness objective. European Journal of Operational
Research, 261 (3), 835–848 .

ła ̇zewicz, J., Domschke, W., & Pesch, E. (1996). The job shop scheduling problem:
Conventional and new solution techniques. European Journal of Operational Re-

search, 93 (1), 1–33 .
owman, E. H. (1959). The schedule-sequencing problem. Operations Research, 7 (5),

621–624 .

raune, R., Zäpfel, G., & Affenzeller, M. (2013). Enhancing local search algorithms for
job shops with min-sum objectives by approximate move evaluation. Journal of

Scheduling, 16 (5), 495–518 .
haudhry, I. A., & Khan, A. A. (2016). A research survey: Review of flexible job shop

scheduling techniques. International Transactions in Operational Research, 23 (3),
551–591 .

asgupta, S., Papadimitriou, C. H., & Vazirani, U. V. (2008). Algorithms . McGraw-Hill

Higher Education New York .
auzère-Pérès, S., & Paulli, J. (1997). An integrated approach for modeling and solv-

ing the general multiprocessor job-shop scheduling problem using tabu search.
Annals of Operations Research, 70 , 281–306 .

auzère-Pérès, S., Roux, W., & Lasserre, J. (1998). Multi-resource shop schedul-
ing with resource flexibility. European Journal of Operational Research, 107 (2),

289–305 .

ell’Amico, M., & Trubian, M. (1993). Applying tabu search to the job-shop schedul-
ing problem. Annals of Operations Research, 41 (3), 231–252 .

arcía-León, A., Dauzère-Pérès, S., & Mati, Y. (2015). Minimizing regular criteria in
the flexible job-shop scheduling problem. In 7th multidisciplinary international

scheduling conference: Theory & applications, prague .
onzalez, T., & Sahni, S. (1978). Flowshop and jobshop schedules: Complexity and

approximation. Operations Research, 26 (1), 36–52 .

raham, R. L., Lawler, E. L., Lenstra, J. K., & Kan, A. R. (1979). Optimization and ap-
proximation in deterministic sequencing and scheduling: A survey. In Annals of

discrete mathematics: vol. 5 (pp. 287–326). Elsevier .
asapidis, G. A., Paraskevopoulos, D. C., Repoussis, P. P., & Tarantilis, C. D. (2021).

Flexible job shop scheduling problems with arbitrary precedence graphs. Pro-
duction and Operations Management, 30 (11), 4044–4068 .

atriel, I., Michel, L., & Van Hentenryck, P. (2005). Maintaining longest paths incre-
mentally. Constraints, 10 (2), 159–183 .

is, T. (2003). Job-shop scheduling with processing alternatives. European Journal of

Operational Research, 151 (2), 307–332 .
lemmt, A., Kutschke, J., & Schubert, C. (2017). From dispatching to schedul-

ing: Challenges in integrating a generic optimization platform into semi-
conductor shop floor execution. In 2017 winter simulation conference (WSC)

(pp. 3691–3702). IEEE .

https://doi.org/10.1016/j.ejor.2023.05.018
http://refhub.elsevier.com/S0377-2217(23)00381-8/sbref0001
http://refhub.elsevier.com/S0377-2217(23)00381-8/sbref0002
http://refhub.elsevier.com/S0377-2217(23)00381-8/sbref0003
http://refhub.elsevier.com/S0377-2217(23)00381-8/sbref0004
http://refhub.elsevier.com/S0377-2217(23)00381-8/sbref0005
http://refhub.elsevier.com/S0377-2217(23)00381-8/sbref0006
http://refhub.elsevier.com/S0377-2217(23)00381-8/sbref0007
http://refhub.elsevier.com/S0377-2217(23)00381-8/sbref0008
http://refhub.elsevier.com/S0377-2217(23)00381-8/sbref0009
http://refhub.elsevier.com/S0377-2217(23)00381-8/sbref0010
http://refhub.elsevier.com/S0377-2217(23)00381-8/sbref0011
http://refhub.elsevier.com/S0377-2217(23)00381-8/sbref0012
http://refhub.elsevier.com/S0377-2217(23)00381-8/sbref0013
http://refhub.elsevier.com/S0377-2217(23)00381-8/sbref0014
http://refhub.elsevier.com/S0377-2217(23)00381-8/sbref0015
http://refhub.elsevier.com/S0377-2217(23)00381-8/sbref0016
http://refhub.elsevier.com/S0377-2217(23)00381-8/sbref0017

K. Tamssaouet and S. Dauzère-Pérès European Journal of Operational Research 311 (2023) 455–471

K

K

L

M

M

M

N

N

P

P

S

S

T

T

T

V

Z

Z
nopp, S., Dauzère-Pérès, S., & Yugma, C. (2017). A batch-oblivious approach for
complex job-shop scheduling problems. European Journal of Operational Re-

search, 263 (1), 50–61 .
orf, R. E. (1985). Depth-first iterative-deepening: An optimal admissible tree

search. Artificial Intelligence, 27 (1), 97–109 .
amorgese, L., & Mannino, C. (2019). A noncompact formulation for job-shop

scheduling problems in traffic management. Operations Research, 67 (6),
1586–1609 .

adraki, G., & Judd, R. P. (2021). Accelerating the calculation of makespan used

in scheduling improvement heuristics. Computers and Operations Research, 130 ,
105233 .

astrolilli, M., & Gambardella, L. M. (20 0 0). Effective neighbourhood functions for
the flexible job shop problem. Journal of Scheduling, 3 (1), 3–20 .

ati, Y., Dauzère-Pérès, S., & Lahlou, C. (2011). A general approach for optimizing
regular criteria in the job-shop scheduling problem. European Journal of Opera-

tional Research, 212 (1), 33–42 .

owicki, E., & Smutnicki, C. (1996). A fast taboo search algorithm for the job shop
problem. Management Science, 42 (6), 797–813 .

owicki, E., & Smutnicki, C. (2005). An advanced tabu search algorithm for the job
shop problem. Journal of Scheduling, 8 (2), 145–159 .

ham, D.-N., & Klinkert, A. (2008). Surgical case scheduling as a generalized
job shop scheduling problem. European Journal of Operational Research, 185 (3),

1011–1025 .
471
inedo, M. (2016). Scheduling: Theory, algorithms, and systems . Basel: Springer Inter-
national Publishing AG .

hen, L., Dauzère-Pérès, S., & Neufeld, J. S. (2018). Solving the flexible job shop
scheduling problem with sequence-dependent setup times. European Journal of

Operational Research, 265 (2), 503–516 .
obeyko, O., & Mönch, L. (2016). Heuristic approaches for scheduling jobs in large-s-

cale flexible job shops. Computers and Operations Research, 68 , 97–109 .
aillard, E. D. (1994). Parallel taboo search techniques for the job shop scheduling

problem. ORSA Journal on Computing, 6 (2), 108–117 .

albi, E.-G. (2009). Metaheuristics: From design to implementation : vol. 74. John Wiley
& Sons .

amssaouet, K., Dauzère-Pérès, S., Knopp, S., Bitar, A., & Yugma, C. (2022). Multiob-
jective optimization for complex flexible job-shop scheduling problems. Euro-

pean Journal of Operational Research, 296 (1), 87–100 .
an Laarhoven, P. J., Aarts, E. H., & Lenstra, J. K. (1992). Job shop scheduling by

simulated annealing. Operations Research, 40 (1), 113–125 .

hang, C., Li, P., Guan, Z., & Rao, Y. (2007). A tabu search algorithm with a new
neighborhood structure for the job shop scheduling problem. Computers and Op-

erations Research, 34 (11), 3229–3242 .
oghby, J., Barnes, J. W., & Hasenbein, J. J. (2005). Modeling the reentrant job shop

scheduling problem with setups for metaheuristic searches. European Journal of
Operational Research, 167 (2), 336–348 .

http://refhub.elsevier.com/S0377-2217(23)00381-8/sbref0018
http://refhub.elsevier.com/S0377-2217(23)00381-8/sbref0019
http://refhub.elsevier.com/S0377-2217(23)00381-8/sbref0020
http://refhub.elsevier.com/S0377-2217(23)00381-8/sbref0021
http://refhub.elsevier.com/S0377-2217(23)00381-8/sbref0022
http://refhub.elsevier.com/S0377-2217(23)00381-8/sbref0023
http://refhub.elsevier.com/S0377-2217(23)00381-8/sbref0024
http://refhub.elsevier.com/S0377-2217(23)00381-8/sbref0025
http://refhub.elsevier.com/S0377-2217(23)00381-8/sbref0026
http://refhub.elsevier.com/S0377-2217(23)00381-8/sbref0027
http://refhub.elsevier.com/S0377-2217(23)00381-8/sbref0028
http://refhub.elsevier.com/S0377-2217(23)00381-8/sbref0029
http://refhub.elsevier.com/S0377-2217(23)00381-8/sbref0030
http://refhub.elsevier.com/S0377-2217(23)00381-8/sbref0031
http://refhub.elsevier.com/S0377-2217(23)00381-8/sbref0032
http://refhub.elsevier.com/S0377-2217(23)00381-8/sbref0033
http://refhub.elsevier.com/S0377-2217(23)00381-8/sbref0034
http://refhub.elsevier.com/S0377-2217(23)00381-8/sbref0035

	A general efficient neighborhood structure framework for the job-shop and flexible job-shop scheduling problems
	1 Introduction
	2 Motivations and contributions
	3 Modeling and notations
	3.1 Solution representation and evaluation
	3.2 Neighborhood structure definition

	4 Parameterized procedure for path detection
	5 Parameterized procedure for feasibility evaluation
	5.1 Procedure for move feasibility evaluation
	5.2 Relationship with results of the literature

	6 Parameterized procedure for quality evaluation
	6.1 Literature review
	6.2 Procedure for move quality evaluation
	6.3 Relationship with results of the literature

	7 Conclusions and perspectives
	Appendix A Proofs
	Supplementary material
	References

