European Journal of Operational Research 311 (2023) 455-471

European Journal of Operational Research

=
UROPEAN OURNAL OF
PERATIONAL ' ESEARCH

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/ejor

Discrete Optimization

A general efficient neighborhood structure framework for the job-shop &
and flexible job-shop scheduling problems

Karim Tamssaouet®, Stéphane Dauzére-Pérées

Department of Accounting and Operations Management, Bl Norwegian Business School, Nydalsveien 37, Oslo N-0484, Norway

ARTICLE INFO

Article history:

Received 30 September 2021
Accepted 10 May 2023
Available online 13 May 2023

Keywords:

Scheduling

Job-shop scheduling
Flexible job-shop scheduling
Heuristics

ABSTRACT

This article introduces a framework that unifies and generalizes well-known literature results related to
local search for the job-shop and flexible job-shop scheduling problems. In addition to the choice of
the metaheuristic and the neighborhood structure, the success of most of the influential local search
approaches relies on the ability to quickly and efficiently rule out infeasible moves and evaluate the
quality of the feasible neighbors. Hence, the proposed framework focuses on the feasibility and quality
evaluation of a general move when solving the job-shop and flexible job-shop scheduling problems for
any regular objective function. The proposed framework is valid for any scheduling problem where the
defined neighborhood structure is appropriate, and each solution to the problem can be modeled with a
directed acyclic graph with non-negative weights on nodes and arcs. The feasibility conditions and quality
estimation procedures proposed in the literature rely heavily on information on the existence of a path
between two nodes. Thus, based on an original parameterized algorithm that asserts the existence of a
path between two nodes, novel generic procedures to evaluate the feasibility of a move and estimate the
value of any regular objective function of a neighbor solution are proposed. We show that many well-
known literature results are special cases of our results, which can be applied to a wide range of shop

scheduling problems.

© 2023 The Authors. Published by Elsevier B.V.

This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)

1. Introduction

Scheduling deals with the allocation of resources to tasks over
time to optimize one or more objectives (Pinedo, 2016). The job-
shop scheduling problem is one of the most well-known (Bowman,
1959) and difficult (Gonzalez & Sahni, 1978) scheduling problems
in the literature. In a job-shop scheduling problem, a set of jobs
must be processed on a set of machines, and each job requires a
sequence of operations (a route) before being completed. A ma-
chine can only perform one operation at a time, and preemption
is not allowed. Each operation can only be performed on a spec-
ified machine while, in the flexible job-shop scheduling problem,
operations can be assigned to multiple machines. Such problems
and their extensions can model a wide range of real-world appli-
cations, for example in the contexts of healthcare (Pham & Klink-
ert, 2008), manufacturing (Tamssaouet et al.,, 2022) and transport
(Lamorgese & Mannino, 2019). This explains why so much research
has been conducted on designing exact and heuristic algorithms to
solve these problems.

* Corresponding author.
E-mail addresses: karim.tamssaouet@bi.no (K. Tamssaouet), stephane.dauzere-
peres@bi.no (S. Dauzére-Pérés).

https://doi.org/10.1016/j.ejor.2023.05.018

Job-shop scheduling problems are computationally intractable
when dealing with large instances. Therefore, heuristic algorithms
are considered in practice to find good quality solutions in reason-
able computational times. It is common to differentiate between
constructive and improvement heuristics. A constructive heuristic
builds a solution from scratch, often by using some greedy crite-
ria. An improvement heuristic, starting from one or a set of initial
solutions generated randomly or by some constructive heuristic, it-
eratively explores the search space to obtain better solutions. Lo-
cal search algorithms are a broad class of improvement algorithms
where, at each iteration, an improving solution is found by search-
ing the neighborhood of the current solution, that is, a set of solu-
tions that are, in some sense, “close” to that solution. Therefore,
to derive a local search algorithm for an optimization problem,
one must carefully define the neighborhood structure specifying the
neighborhood to explore for each solution. Typically, a neighbor-
hood structure is not defined by explicitly enumerating the set of
possible neighbors, but rather implicitly by defining the possible
local changes, called moves, to apply to the current solution. For
example, a well-known move for the job-shop scheduling problem
consists in swapping two consecutive critical operations on a ma-
chine (Van Laarhoven et al., 1992).

0377-2217/© 2023 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)

https://doi.org/10.1016/j.ejor.2023.05.018
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ejor
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ejor.2023.05.018&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:karim.tamssaouet@bi.no
mailto:stephane.dauzere-peres@bi.no
https://doi.org/10.1016/j.ejor.2023.05.018
http://creativecommons.org/licenses/by/4.0/

K. Tamssaouet and S. Dauzeére-Péreés

Local search approaches, such as Tabu Search or Simulated An-
nealing, have been developed since the early 1990s to solve the
job-shop and flexible job-shop scheduling problems. In addition
to local search algorithms, another broad class of improvement
heuristics can be viewed as an iterative improvement of a pop-
ulation of solutions. Algorithms such as Genetic Algorithms, Par-
ticle Swarm Optimization, and Scatter Search belong to this class
of improvement heuristics. Over the last years, a new class of
hybrid improvement heuristics has been getting increasing inter-
est (Chaudhry & Khan, 2016). These heuristics may combine a
population-based heuristic with a local search heuristic to exploit
their strengths. This paper describes a general framework, which
combines two parameterized procedures, that provides an effi-
cient neighborhood structure that can be used within a pure local
search heuristic or a hybrid heuristic, combining population-based
and local search heuristics. We show that the proposed frame-
work encompasses well-known and different results from the liter-
ature, including Dauzére-Péres & Paulli (1997); Mastrolilli & Gam-
bardella (2000); Shen et al. (2018) and Kasapidis et al. (2021) (see
Tables 2 and 3), thus validating the computational effectiveness of
our procedures.

The paper is organized as follows. Section 2, by highlighting
the weaknesses of the available local search heuristics to solve
job-shop scheduling problems, motivates this work and summa-
rizes our contributions. Section 3 states the notation and con-
cepts used throughout the paper and defines the validity scope of
the proposed framework. Section 4 presents a parameterized al-
gorithm making it possible to assert the existence of a path be-
tween two nodes. Section 5 introduces a parameterized procedure
based on the algorithm of Section 4 to evaluate the feasibility of
a move. This section also demonstrates the generality of the pro-
posed novel procedure by considering several results in the litera-
ture and showing that they can be obtained using specific values
for the procedure parameters. Section 6 is devoted to the develop-
ment of a generic procedure to be used in the computation of valid
lower bounds on any regular objective function of the neighbors of
a solution. As for the feasibility evaluation procedure, several re-
sults from the literature are used to show the generality of the
proposed procedure. To avoid overloading the paper, the Supple-
mentary Material accompanying this article provides all the propo-
sitions showing how a selected list of known results can be repro-
duced by choosing specific values for the parameters of the pro-
posed procedures. Finally, this work is concluded in Section 7 with
some perspectives on the possible extension of the scope of the
proposed framework.

2. Motivations and contributions

At each iteration of a local search heuristic and using some
quality measures and a selection strategy, a solution from the
neighborhood of the current solution is selected to become the
new current solution.

To structure the discussion and position our contributions,
Algorithm 1 provides a high-level template of a local search heuris-
tic. The representation of the initial solution, the incumbent solu-
tion, and the best solution are respectively denoted Gy, G and G*.
The neighborhood structure defining the neighborhood of the so-
lution represented by G is denoted A (G), and the neighbor of G
is denoted G. Below, let us discuss some of the critical and inter-
related questions that need to be answered when implementing a
local search heuristic:

« Solution representation: Choosing the appropriate representa-
tion or the encoding of a solution is a fundamental design
question in developing a solution approach. When defining
a representation, one has to bear in mind how the solu-

European Journal of Operational Research 311 (2023) 455-471

Algorithm 1 High-level template of a local search heuristic.
1: procedure LOCALSEARCH(Gg)
2: G« G* <Gy
3 while Stopping criteria not satisfied do
4 COMPUTESCHEDULE(G)
5 for G € N(G) do
6: if EVALUATEFEASIBILITY(G)=true then
7
8
9

EVALUATEQUALITY(G)
G <« SELECT(G, N (G))
if G is better than G* then
10: G <G
11: return G*

tion is evaluated and how the search operators work (Talbi,

2009). One common representation for job-shop scheduling

problems is a list of strings, each representing a permutation

of operations on a specific machine. Another popular repre-
sentation relies on a graph, and provides a convenient data
structure that can benefit from the diversity of algorithms
available in graph theory. Graph modeling is adopted in this

work, and a detailed discussion is provided in Section 3.1.

Solution evaluation (Algorithm 1 - Line 4): As the most use-

ful representations do not fully characterize a solution, the

solution must be decoded. For example, it is necessary to
compute the start times of operations given that the two
representations discussed above “only” provide the assign-
ment and sequencing decisions. The quality evaluation of
a solution is usually straightforward after computing the
schedule, given that most objective functions rely on the
timing decisions of operations. It is often desirable to de-
duce additional information that can be useful in practice
or to make the search more effective and efficient. For ex-
ample, identifying the critical operations is a pre-requisite

for some of the successful neighborhood structures (e.g.,

Dauzére-Pérés & Paulli, 1997; Van Laarhoven et al,, 1992).

The results and procedures proposed in this work depend

on the information calculated during the evaluation of the

incumbent solution. Therefore, Section 3.1 also elaborates on
this question.

Neighborhood structure (Algorithm 1 - Line 5): By defining

the neighborhood to explore, and therefore its size, choos-

ing an appropriate neighborhood structure is a crucial de-
sign decision for the performance of the local search heuris-
tic. One must consider the trade-off between the solution
quality and the search efficiency. The neighborhood struc-

ture adopted in this work is described in Section 3.2.

o Neighborhood evaluation (Algorithm 1 - Lines 6 and 7): In gen-
eral, it is crucial for the success of a local search heuristic
to be able to quickly evaluate the quality of the neighbors of
a solution. Moreover, as some neighbors might not be fea-
sible, it is also critical to quickly evaluate the feasibility of
the neighbors of a solution. The primary objective of this
work is to propose procedures that can efficiently evaluate
the feasibility (see Section 5) and quality (see Section 6) of
the neighbors of a solution.

o Neighbor Selection (Algorithm 1 - Line 8): Usually, the qual-
ity evaluation of a neighbor is performed with the optimized
objective function as a quality measure. The most common
selection strategies are “best improvement”, which selects
the best move in the neighborhood, and “first improvement”,
which selects the first strictly improving move encountered
when exploring the neighborhood.

This work aims to contribute to the design of efficient local
search heuristics. More specifically, we propose a general frame-

K. Tamssaouet and S. Dauzeére-Péreés

work that encompasses efficient procedures for the feasibility and
quality evaluation of the neighbors of a solution. Indeed, when
the number of neighbors is large, the neighborhood evaluation is
computationally the most expensive operation in each local search
iteration. This explains why the most well-known approaches in-
novate by reducing the size of the neighborhood (e.g., Nowicki &
Smutnicki, 1996) or by designing efficient procedures that quickly
evaluate the neighbors of a solution (e.g., Dauzére-Péres & Paulli,
1997; Dell’Amico & Trubian, 1993). Despite the originality of most
of these approaches, the properties on which the neighborhood
evaluation procedures are based strongly depend on scheduling
problem to solve.

Consequently, these properties must be adapted or general-
ized each time the problem being solved is modified to include
additional constraints or optimize different objective functions.
For example, the work of Balas & Vazacopoulos (1998) is adapted
in Braune et al. (2013) to consider the optimization of min-sum
objectives instead of the classical makespan criterion, which cor-
responds to minimizing the completion time of all jobs. Beyond
the research effort spent to make these non-trivial adaptations,
this strong dependency on the solved problems of the advanced
approaches may explain their scarce implementation in practice as
real problems include features not considered in the pure research
problems.

Our objective is to contribute to the design of a general neigh-
borhood structure framework that can support the resolution of a
large variety of scheduling problems. The proposed framework en-
compasses results from some of the most influential works that
solve job-shop and flexible job-shop scheduling problems with lo-
cal search heuristics. Among those works, we can cite Balas &
Vazacopoulos (1998); Dauzere-Péres & Paulli (1997); Dauzére-Péres
et al. (1998); DelllAmico & Trubian (1993); Mastrolilli & Gam-
bardella (2000); Mati et al. (2011); Taillard (1994); Zhang et al.
(2007) and Shen et al. (2018). Establishing such a framework
should allow researchers to avoid spending time on the difficult
and time-consuming tasks of adapting existing results and focus
on questions that generate new knowledge. The applicability scope
of the framework is first defined by the relevance of the proposed
neighborhood structure to the scheduling problem to be solved.
The neighborhood structure specifies the moves that consist of
deleting an operation from a sequence and inserting it in a new
sequence. As shown in Section 3.2, the set of moves specified by
the most used neighborhood structures in the literature for the
job-shop scheduling problems is a subset of the moves specified
by the neighborhood structure defined in this work.

Despite the widespread use of graphs to model scheduling
problem solutions, the problem-dependent components of local
search heuristics are strongly related to the specific constraints
of the problem to be solved, and are only partly based on the
knowledge that can be extracted from a graph. For example, it
is sufficient to modify the arc weights of a graph represent-
ing a solution for the flexible job-shop scheduling problem to
account for sequence-dependent setup times. However, the fea-
sibility and quality evaluation procedures proposed in Dauzére-
Pérés & Paulli (1997) are adapted in Shen et al. (2018) to take
sequence-dependent setup times into account in the flexible job-
shop scheduling problem. The insight that allows the proposed
framework to be less dependent on the problem constraints is to
define its applicability scope through general specifications on the
solution graph. In addition to the considered neighborhood struc-
ture, the applicability of the proposed framework is possible when-
ever a problem induces a solution graph that is a directed acyclic
graph (DAG) with non-negative weights on nodes and arcs. There-
fore, our framework is applicable as long as the considered con-
straint does not induce a graph not complying with the specifi-
cations. Such “valid” constraints include release dates, minimum

457

European Journal of Operational Research 311 (2023) 455-471

time lags, sequence-dependent setup times, multiple resources,
and nonlinear routing. Some constraints our proposed framework
cannot handle are maximum time lags and blocking constraints.
When the defined neighborhood structure is appropriate for a
scheduling problem and its solution graphs comply with the spec-
ifications described above, the framework provides efficient proce-
dures for feasibility evaluation and quality evaluation.

Like in the existing successful local search approaches, the ef-
ficiency of the proposed procedures is achieved by evaluating a
neighbor’s feasibility and quality without actually performing its
related move. Instead, a neighbor is evaluated by only relying on
the already available information provided by the current solution.
For example, the feasibility of a neighbor is not checked after per-
forming its move, but by checking some sufficient conditions ex-
ploiting the start times in the current solution of the involved op-
erations. However, the efficiency is obtained at the expense of the
accuracy of the evaluation. The feasibility evaluation procedure can
be viewed as a classifier separating feasible and infeasible neigh-
bors. The feasibility evaluation accuracy can be measured, for in-
stance, as a ratio of the total number of true positives and the
number of true negatives divided by the total number of the neigh-
bors. For example, Kasapidis et al. (2021) report that the feasibility
conditions adapted from Dauzere-Pérés & Paulli (1997) to solve a
flexible job-shop scheduling problem with an arbitrary precedence
graph, similarly to Dauzere-Pérés et al. (1998), have an accuracy
of 91%. By increasing the accuracy, the risk of missing improving
moves is decreased. Regarding the quality evaluation, the objective
function of a neighbor is estimated rather than computed. There-
fore, the quality evaluation accuracy can for instance be measured
as the mean absolute relative deviation of the estimated objective
functions from the actual objective functions of the neighbors. For
instance, Mati et al. (2011) report an accuracy ranging from 0.1%
to 13% depending on the problem instance and the optimized ob-
jective function. Increasing this accuracy decreases the risk of se-
lecting a non-improving move while the neighborhood contains at
least an improving move.

Contrary to the existing approaches in the literature, the pro-
posed framework, beyond its generality, allows the trade-off be-
tween evaluation accuracy and computational cost to be controlled
by setting some key parameters. The proposed parameterized pro-
cedure for feasibility evaluation can reach 100% accuracy if the re-
sulting computational cost is considered less important than the
risk of discarding feasible and promising moves. The proposed pa-
rameterized procedure for quality evaluation does not guarantee
100% accuracy, even if it offers some control over the trade-off be-
tween evaluation accuracy and computational cost. However, the
procedure can be used for any regular objective function, while
most existing approaches are specifically designed for the case of
makespan minimization. The two procedures evaluating the neigh-
bors’ feasibility and quality rely on a novel parameterized proce-
dure that asserts the existence of a path between two nodes in a
DAG with non-negative weights on nodes and arcs. While the ex-
istence of a path between two nodes is an explicit argument used
in the proofs of the different feasibility conditions of moves pro-
posed in the literature, this knowledge is more implicit regarding
the available quality evaluation procedures. For example, as dis-
cussed in Section 6.1, the distinction between forward and back-
ward moves makes it possible to assert the absence of paths be-
tween some nodes implicitly.

In summary, the proposed framework encompasses and gener-
alizes results already published in the literature. First, contrary to
what can be found in the literature and as discussed above, the
proposed feasibility and quality evaluation procedures allow the
trade-off between evaluation accuracy and computational cost to
be controlled. Second, the generality of the framework is possible
by basing its validity on the specifications of the solution represen-

K. Tamssaouet and S. Dauzeére-Péreés

tation instead of the problem constraints. As a consequence, more
general problems can be handled. For example, the proposed pro-
cedures are valid when optimizing any regular objective function
(Mati et al., 2011) when solving a shop problem where an oper-
ation may require several resources, have several route predeces-
sors and successors (Dauzére-Pérés et al., 1998) while considering
sequence-dependent setup times (Shen et al., 2018). This is pos-
sible as the solution for such a problem can be represented by a
DAG with non-negative weights on nodes and arcs.

3. Modeling and notations

This section formally introduces the framework within which
the propositions in this article are valid. The notations are also
defined and summarized in Table 1. They are chosen to hopefully
clearly illustrate the generality of the proposed results by showing
that results well known in the literature are special cases.

3.1. Solution representation and evaluation

The propositions of this work are valid for any scheduling prob-
lem for which schedules can be represented by a DAG with non-
negative weights on nodes and arcs. As different graph models can

Table 1
List of notations.

Notations Descriptions

G DAG with non-negative weights on the nodes N and arcs A

L, Weight associated to node veV

Ly Weight associated to arc (u,v) € A

out (v) Set of outgoing arcs of node v

in(v) Set of incoming arcs of node v

Lout v Minimum weight among those of the outgoing arcs, i.e.,
Loty = min{l, w|(v, w) € out(v)}

linq) Minimum weight among those of the incoming arcs, i.e.,
linwy = min{lyy| (. v) € in(v)}

B(v) Set of predecessors of node v

F(v) Set of successors of node v

Puy Path from u to v

1(Pyy) Length of path P,

Puv Set of all paths from u to v

L(u,v) Length of the longest path from u to v, i.e.,
L(u, v) = max{l(Pyv)|Pyy € Puv}

o Reference node in G, e.g., the dummy start node

Ly Vector of the length of the longest path from « to all nodes of G,
i.e, Ly = (L(a,v)|veV)

(ed Reverse graph of G with nodes N and arcs A’

mg All the notations with a prime are related to G’

5} Reference node in G/, e.g., the dummy end node in G

L, Vector of the length of the longest path from w to all nodes of
G, ie, L, =L (w,v)|veV)

M A move specified by the neighborhood structure defined as
M = {u, 0, D} Initially sequenced between and ordered pair O
(e.g., 0= (s,t)) in G, a node u is inserted between a new ordered
pair D (e.g., D= (v,w))

D Set of arcs to be deleted when applying a move M = {u, 0, D},
ie, D={(0y,u), (u,0z), (D1, D)}

A Set of arcs to be inserted when applying a move M = {u, O, D},

B ie, Z={(D1,u), (u,Dz), (01,0,)}

G Directed graph representing a neighbor obtained by applying
move M on G

0 All the notations with a tilde are related to the neighbor graph G

L(u,v) Length of the longest path from u to v in G

L, v) Estimated length of the longest path from u to v in G

Sy Decrease in the longest path from a reference node « due to
move M, ie., 8, =L(x,v) — L(a, v)

8y Upper bound on &, i.e., §, = L(a, v) — L(at, v)

Cy Layer associated to node v, i.e., set of nodes ensuring that, if a
path traverses v in G, it traverses at least one of the layer nodes

k Forward search cutoff from a node u in G

K Forward search cutoff from a node v in G, i.e., backward search
from v in G

European Journal of Operational Research 311 (2023) 455-471

be found in the literature, we use a general graph modeling to en-
compass the different cases. For example, in Balas & Vazacopoulos
(1998), the duration of an operation is associated to an arc weight.
On the contrary, Mastrolilli & Gambardella (2000) and Shen et al.
(2018) associate the processing times of operations with the node
weights. Hereafter, weights are assigned to both nodes and arcs.
Therefore, let G = (V,A) be a DAG with V the set of nodes and A
the set of arcs. The set of nodes represents the job operations to
schedule, while the arcs model precedence constraints to be sat-
isfied by the schedule. For a node v eV, let us denote the set of
incoming arcs by in(v) c A and the set of predecessor nodes by
B(v) c V. Also, the set of outgoing arcs of node v is denoted by
out(v) c A and the set of successor nodes by F(v) c V. A path
Py, v, from 11 €V to v, €V is defined as a sequence of nodes and
arcs Py, .y, = (U1, V..., v) With (v, V1) €A for all 1 <i<k. Let
the set of all paths from vy €V to v, € V be denoted by Py, y,.

Let I, and I, denote the weights associated to node veV
and arc (u,v) € A, respectively. As already stressed, the properties
and procedures developed in this work assume that all weights
are non-negative, i.e., I, >0 for each veV and I,, > 0 for each
(u,v) € A. Also, let lyqy = min{lyw|(v,w) € out(v)} and) =
min{ly y|(u, v) € in(v)}. The length of a path P,, y, is defined as the
sum of all nodes weights belonging to the path with the excep-
tion of the two extreme nodes plus the weights of all path arcs,
ie, (P) = X250, + 32241, 4, Let us denote the length
of a longest path from a node ueV to a node veV by L(u,v) =
max{l(Pyy)|Psv € Puy}. In this work, we assume that the realistic
triangle inequality is satisfied, i.e., given three nodes u, v and w,
Luw < by + 1y + lyw.

It has already been mentioned in Section 2 that the graph rep-
resentation does not fully characterize a schedule. Given a solution
graph, defined as a DAG whose node and arc weights are initial-
ized with the relevant problem data, it is possible to compute the
corresponding semi-active schedule by assigning to each operation
start time the length of the longest path from the graph source
node to the node associated to the operation. The term reference
node is used to qualify the node « from which the length of the
longest path is computed. As discussed later in the paper, it is also
useful to compute the longest path length to a node from a refer-
ence node that is not the source node. Given a reference node «,
the vector of the lengths of the longest path from « to all nodes is
denoted Lq, ie., Lo = (L(a, V)|V € V).

Algorithm 2 presents a well-known procedure (Katriel et al.,
2005) that computes, for each node v eV, the length L(o,v) of

Algorithm 2 Evaluation of length of longest path from reference
node « to any node of G.

1: procedure COMPUTELONGESTPATHLENGTH(G, o)

2: for veV do

3 indegree(v) < |in(v)|

4 L(a,v) < —c0

5: Q < {v]indegree(v) = 0}

6: Lla,a) <0

7 while Q # ¢ do

8 v <« dequeue(Q)

9: for (u,v) € (v) do

10: L(a,v) < max{L(x,v),L(a,u) + Iy + Ly p}
11: for (v, w) € out(v) do
12: indegree(w) < indegree(w) — 1
13: if indegree(w) = 0 then

14: enqueue(Q, w)

15: Lo <~ (L(a,v)|lveV)

16: return Ly

458

K. Tamssaouet and S. Dauzeére-Péreés

the longest path from reference node « to v. The running time of
the algorithm is O(]V| + |A|), and its key idea is to consider the
nodes in topological order, which guarantees that, when a node is
considered, its predecessors have the correct longest paths. Lines
2-4 compute the initial indegree of the nodes and initialize the
length of their longest path from reference node «. Line 5 inserts
all the source nodes into the queue Q, and Line 6 initializes the
distance from o to itself. The queue Q is a basic data structure
that is maintained in a sequence, and which can be updated by
adding elements at one end of the sequence, called the rear of the
queue, and by removing elements from the other end of the se-
quence, called the front of the queue. Adding an element to the
rear of the queue is known as enqueue, and removing an element
from the front is known as dequeue. Line 8 dequeues a node v for
which the length of its longest path from « is computed in Lines
9 and 10. Lines 11-14 decrement the indegrees of the successors
of v and enqueue those for which all the predecessors have been
visited. At the end of the procedure, the length of the longest path
from o to v € V can be either L(«, V) = —o0 or L(«, v) > 0. Having
L(, v) = —oo for node v € V means that there is no path from « to
v in G. If there is a path from « to v in G, then L(c,v) > 0 due to
the non-negative weights on nodes and arcs. Another trivial prop-
erty that supports our findings, formally stated in Property 1, is
the non-decreasing lengths along any path in the graph when the
node and arc weights are non-negative.

Property 1. Let G = (V,A) be a DAG with non-negative weights on
nodes and arcs and o € V a reference node. If there is path from u to
v, then L(x, u) < L(, v).

As mentioned above, when the source node of the graph, that
models the start of the schedule, is used as a reference node in
Algorithm 2, the procedure assigns the earliest start times (also
called operation heads) to the graph nodes. In addition to the
earliest start times, it is often necessary to derive other informa-
tion, such as the tail, the slack, or the criticality of each operation.
Again, Algorithm 2 can provide such information when comput-
ing the longest path length from some sink nodes. When mini-
mizing the makespan, the DAG has one sink node that models the
end of the schedule. When other min-sum objective functions (e.g.,
the total weighted completion time or the number of tardy jobs)
are optimized, the DAG has as many sink nodes as the number
of jobs, each sink modeling the completion time of a job. As is
most often in the literature, we assume in this work that Line 4
of Algorithm 1 consists of running Algorithm 2 from the source
node and the different sink nodes. The tails, slacks, and criticality
of operations that can be computed by running Algorithm 1 from
the sink nodes are rarely useful in practice. The benefit this in-
formation can bring during the search when exploited is, how-
ever, significant and proven, making it worth paying the compu-
tational cost of using Algorithm 2 many times. For example, sev-
eral well-known neighborhood structures restrict the moves to the
set of operations that are critical (Nowicki & Smutnicki, 1996;
Van Laarhoven et al, 1992) and (Dauzére-Pérés & Paulli, 1997).
Instead of the criticality of operations, Mastrolilli & Gambardella
(2000) rely on the heads and tails of operations to design an ef-
fective tabu search heuristic.

Although having the same objective, the properties proposed in
the literature to design efficient procedures for feasibility and qual-
ity evaluation are heterogeneous. One of the differences is whether
only the heads or the tails of operations are used, or both. For
example, the sufficient conditions on the feasibility of a move
in Dauzere-Péres & Paulli (1997) only rely on the heads, while
Mastrolilli & Gambardella (2000) use both the heads and the tails.
By recognizing the symmetry between the heads and the tails of
operations, it is possible to state a set of properties that are valid
for both the heads and the tails. To achieve this, we need to asso-

459

European Journal of Operational Research 311 (2023) 455-471

Fig. 1. Moving node u from between nodes s and t to between nodes v and w.

ciate to each DAG G = (V,A) a reverse graph G’ = (V,A’) obtained
by reversing all the arcs A of G. Note that no change is made to
the node and arc weights. All the notations presented above for
the initial graph are modified by adding a prime ’ when applied to
the reverse graph G'. Due to the transformation, we have, for ex-
ample, B(v) = F'(v) and F(v) = B'(v). For clarity, an exception for
the use of prime ’ is made for the reference node that is denoted
in the reverse graph G’ by w. Thanks to the definition of a path
length, L(v, w) = L' (w, v). Using this transformation, answering the
question of the existence of a path from u to v in G is equivalent
to answering the question of the existence of a path from v to u
in G'. It becomes then possible to check whether a path exists be-
tween u to v in G by using the lengths of the longest paths in G.
Note that there is no need to construct the reverse graph G/, as it is
sufficient to use the reverse topological ordering in Algorithm 2 to
compute the longest path from a reference node w to any node of
the reverse graph G'.

In addition to the heads and tails, some of the feasibility and
quality evaluation procedures available in the literature are based
on the notion of “node level”, introduced in Mati et al. (2011) and
defined as the maximum number of arcs from the dummy start
node to the given node. Following the comment on tails, the same
observation supports the conditions proposed in the literature that
use node levels. Therefore, it is sufficient to apply the same con-
ditions on an unweighted graph, ie., I, =0 YveV and [, =1
Y(u,v) € A

3.2. Neighborhood structure definition

In addition to the specifications of the solution graph, the appli-
cability scope of the framework is defined by the relevance of the
proposed neighborhood structure for the scheduling problem. The
neighborhood structure used in this work specifies the moves that
consist of deleting an operation from a sequence and inserting it
in a new sequence. Suppose that a feasible solution is given with
operation u sequenced between operations s and t on resource .
Let O = (s,t) denote the original ordered pair of nodes s and t
between which u is sequenced in G and let O; =s and O, =t.
The neighborhood structure specifies the moves, each consisting
of moving operation u between operations v and w on resource
m, where m can be different from I. Similarly, let D = (v, w) de-
note the destination ordered pair of nodes v and w between which
u will be sequenced in G and let D; =v and D, =w. Let M =
{u,0=(s,t),D = (v,w)} denote a move specified by the neighbor-
hood structure. As shown in Fig. 1, a move M induces the deletion
of a set of arcs, denoted D = {(s, u), (u,t), (v,w)}, and the inser-
tion of a set of new arcs, denoted Z = {(s,t), (v, u), (u, w)}.

The directed graph of the neighbor obtained by applying move
M to the solution associated to G is denoted G. The notations us-
ing ~ refer to neighbor graph G. For example, the length of the
longest path from u to v in neighbor graph G is denoted L(u, v). As

K. Tamssaouet and S. Dauzeére-Péreés

Fig. 2. Swap move on (u,v).

the quality of the neighbors is estimated using the information of
the current solution, the estimated length of the longest path from
u to vin G is denoted L(u, v). Let 8, = L(«, v) — L(cr, v) denote the
decrease in the longest path from a reference node to node v. As
I(a,v) is the value we aim to estimate, let 8y = L(ee,v) — L(a, v)
denote an upper bound on §,. The equivalent notations in the re-
verse graph G/, where o is the reference node, are 8, and §,.

If move M = {u, O,D} is applied on graph G, the move to be
applied on the reverse graph G’ is M’ ={u,0’,D'} where 0’ =
(t,s) if 0= (s,t) and D' = (w,v) if D= (v,w). In other words,
we have the following identities 04 = 0}, O, =0}, D; =D) and
D, = D). A move M’ induces the deletion of a set of arcs, denoted
D' ={(t,u), (u,s), (w,v)}, and the insertion of a set of new arcs,
denoted 7’ = {(t,s), (w, u), (v,w)}. These notations are helpful to
avoid establishing separate results for G and G'. For example, in-
stead of defining a lower bound on L(«, s) and I’ (w, t), one general
result regarding a lower bound on &, 0; can be formulated because
of the symmetry between L(, 0; =) in G and [' (w, 0} =t)inG.

The neighborhood structure defined above is large enough that
its associated move set includes the move set specified by the
most commonly used neighborhood structures for solving the job-
shop scheduling problem and its extensions. Below is a shortlist
of references using a neighborhood structure specifying a set of
moves that is included in the neighborhood structure defined in
this work:

e Job-shop scheduling problem: Balas & Vazacopoulos (1998);
Dell’Amico & Trubian (1993); Nowicki & Smutnicki (1996);
Van Laarhoven et al. (1992); Zhang et al. (2007) and Mati
et al. (2011).

o Flexible job-shop scheduling problems: Dauzére-Pérés &
Paulli (1997) and Mastrolilli & Gambardella (2000).

o Flexible job-shop scheduling problem with additional con-
straints: Dauzére-Pérés et al. (1998); Kasapidis et al. (2021);
Knopp et al. (2017); Shen et al. (2018) and Tamssaouet et al.
(2022).

Note that, as a DAG can represent the schedules of problems
tackled in the works listed above with non-negative weights on
nodes and arcs, the proposed framework can be used to solve
different problems. However, nothing prevents making the frame-
work tailored to the specific problem to be solved. For example,
Van Laarhoven et al. (1992) introduce the first successful neigh-
borhood structure for the job-shop scheduling problem, often de-
noted N1 (Blazewicz et al.,, 1996). The N1 neighborhood is gener-
ated by swapping any adjacent pair of critical operations on the
same machine. The swap of an arc (u,v) is illustrated in Fig. 2,
and it is clear that it is part of the moves specified by the neigh-
borhood structure defined in this work. By considering only the
swapping of any adjacent pair of critical operations, it is shown
that all N1 moves lead to feasible solutions when solving the clas-
sical job-shop scheduling problem. Therefore, using the N1 neigh-
borhood structure does not require the use of the proposed fea-
sibility evaluation procedure. However, this property is no longer
valid when, for example, including the sequence-dependent setup
times (Zoghby et al., 2005). Also, there is a need for an efficient
quality evaluation even when solving the pure job-shop scheduling
problem. The proposed procedure in this work can perform such
evaluation on only the moves defined by the N1 structure. For ex-

460

European Journal of Operational Research 311 (2023) 455-471

ample, it is shown in Section 6.3 that the proposed quality evalu-
ation procedure reproduces the makespan estimation proposed by
Taillard (1994).

The remainder of this article is devoted to developing parame-
terized procedures for feasibility and quality evaluation of a move
without actually making the move. The proposed procedures can
be used as long as the solutions to a problem can be modeled
through a DAG with non-negative weights on nodes and arcs, and
the relevant neighborhood structure specifies a set of moves that
is equal to or a subset of the move set determined by the neigh-
borhood structure defined above. To avoid redundancy when pre-
senting the results, we assume the non-negativity of the weights
in the DAG in the remainder of the paper.

For convenience, the main contributions and structure of
the paper are highlighted in Fig. 3. Based on a BFS algorithm
with cutoff, Section 4 presents a parameterized procedure in
Algorithm 4 making it possible to assert the existence of a path be-
tween two nodes. Section 5 introduces a parameterized procedure
in Algorithm 5 to evaluate the feasibility of a move by direct ap-
plication of Algorithm 4. Section 6 is devoted to the development
of a generic procedure for the computation of valid lower bounds
for a move and any regular objective function.

4. Parameterized procedure for path detection

To ensure the efficiency of a local search heuristic, it is impor-
tant to identify unfeasible moves and evaluate their quality quickly.
Several important results in the scheduling literature addressing
these challenges rely mainly on the information on the existence
of a path between two nodes in the solution graph. For example,
let us consider move M = {u, 0 = (s,t), D = (v, w)} that sequences
u between v and w. To show that the move is feasible (i.e., does
not induce a cycle), it is sufficient to show that there is no path
from u to v or from w to u. In a general directed graph, classi-
cal algorithms such as Depth-First Search (DFS) or Breadth-First
Search (BFS) can be used to verify the existence of a path between
two given nodes. However, such algorithms are computationally
prohibitive and thus not practical if used intensively. Instead, the
scheduling data calculated from the current solution DAG, such as
heads or tails of nodes, can be used to formulate sufficient condi-
tions inferring the existence of paths between nodes. The low com-
putational cost to check these conditions comes with the drawback
of potentially overlooking feasible and promising moves.

The fundamental result on which the other contributions of this
article are based is a parameterized procedure that asserts the ab-
sence of a path between two nodes in a DAG. The procedure is
qualified as parameterized because it allows the trade-off between
evaluation accuracy and computational cost to be controlled by
setting some key parameters. This section provides the necessary
results that support the design of the proposed procedure.

As illustrated in Fig. 4, the basic question to answer can be
stated as follows: Is there a path from node u to node v given the
length (L(«, u), L(«, v)) of the longest paths from a reference node «?
To answer this question, Lemma 1 provides a sufficient condition,
which, if satisfied, asserts the absence of a path from u to v. As
shown later in Section 5, several feasibility evaluation procedures
in the literature are instantiations of the condition in Lemma 1.
For example, by considering the start dummy node as the refer-
ence node «, the sufficient condition relies on the heads of opera-
tions. As highlighted in Section 3.1, it is also common that evalua-
tion procedures require tails, in combination or not, with the heads
of operations. However, the heads and tails are symmetric and dif-
fer only in how they are computed using the solution graph G or
its associated graph G’. Therefore, Lemma 1 can be used to state
another sufficient condition on the absence of a path between two
nodes in G that is based on the lengths of the longest paths from

K. Tamssaouet and S. Dauzeére-Péreés

Section 4: Parameterized Procedure for Path Detection

Algorithm 3: GETLAYERATDEPTH
Input: G, u, v, 6, k
Output: Layer at depth k in BFS-Tree rooted at u

European Journal of Operational Research 311 (2023) 455-471

Theorem 1: Given layers 4, and 4, and
longest path lengths %, provide sufficient
conditions which, if verified, assert the ab-
sence of a path from u to v.

l

Algorithm 4: ASSERTNOPATH
Input: G, u, v, k, k', Ly

Output: True if there is no path from u to v, False otherwise.

Algorithm 5: EVALUATEMOVEFEASIBILITY
Input: G, # ={u,0,D}, k, k', Ly
Output: True if . is feasible, False otherwise.

Theorem 3: Given a feasible move .7 =
{u,0,D}, establishes lower bound on longest
path from o to x depending on the absence of
a path from u to x, from O to x and from D,
to x.

Section 5: Parameterized Procedure for Feasibility Evaluation

Algorithm 6: COMPUTELB
Input: G, o0, y, k, k', 4 = {u,0,D}, %y, 00,

Output: Lower bound on longest path length from o to

yin G.

Algorithm 7: EVALUATEMOVEQUALITY
Input: G, # ={u,0,D}, k, k', Lo, %,
Output: LB on longest path length from o to .

Section 6: Parameterized Procedure for Quality Evaluation

Fig. 3. Structure of paper.

Fig. 4. Existence of a path between nodes u and v based on the lengths of the
longest paths from reference node « to u and v.

reference node w in the reverse graph G'. This new sufficient con-
dition is given in Corollary 1. The sufficient condition relies on the
operation tails when taking the last dummy node as the reference
node .

Lemma 1. If L(«,v) < L(e, u) + by + loye (), then there is no path
from u to v.

Corollary 1. If L'(w, u) < L' (@, V) + ly + Loy (), then there is no path
from u to vin G.

The satisfaction of the condition in Lemma 1 is sufficient to
guarantee that there is no path from u to v in G. However, know-
ing that the inequality is false does not ensure that there is an
actual path from u to v. For example, if there is no path from o
to u, then the condition is never satisfied. Consequently, the low
computation time to verify the sufficient condition (i.e., O(1)) has
the disadvantage of potentially not recognizing the absence of a

461

path from u to v. When used in a feasibility evaluation procedure,
for example, this sufficient condition may lead to rejecting feasible
moves. Given a set of node pairs for which the absence of a path
must be asserted using the sufficient condition, let us define the
miss rate as the proportion of node pairs for which the condition
fails at guaranteeing the absence of a path. Suppose the miss rate
of the sufficient condition is responsible for the poor performance
of the local search heuristic. In that case, it may be necessary to
formulate new conditions with a lower miss rate. Before providing
the main intuition behind the parameterized procedure introduced
in this section, it may be useful to rephrase the result in Lemma 1.
Let us associate to node u the interval] — oo, L(cr, t) 4y + loyr(u)[-
Lemma 1 ensures that there is no path from u to any node v eV
such that L(a, v) €] — oo, L(, u) + ly + loyr(yy[- As soon as L(a, v) >
L(a, u) + Iy + Loy uy» Lemma 1 fails to differentiate between the ex-
istence and the absence of a path from u to v.

Assuming the need to reduce the miss rate of the condi-
tion L(at,v) €] — oo, L(et,) + by + Loy [, the intuition is to replace
L(o, v) with an evaluation that gives a lower value, or increase the
upper bound of the interval (i.e., L(a, u) + Iy + lyy¢()) With an eval-
uation that gives a larger value. Recall that, in a graph with non-
negative weights, the lengths along any path are non-decreasing
(Property 1). As the length of the longest path from « to any pre-
decessor of v is smaller than L(«, v), using the longest path from
o to predecessors of v instead of v can yield conditions with lower
miss rate. In the same way, better conditions can be formulated

K. Tamssaouet and S. Dauzeére-Péreés

Fig. 5. Existence of a path from u to v based on the lengths of the longest paths
from a reference node « to the successors and predecessors of u and v.

using the successors of u instead of u. This logic can be taken fur-
ther to consider the successors of the successors and the prede-
cessors of the predecessors. Figure 5 illustrates this idea of using
the successors of u and the predecessors of v to characterize the
existence of a path from u to v. The successors of u are the two
nodes in the set {x{,x,} which have as successors the nodes in
the set {x3, X4, X5, Xg}. The predecessors of v are the two nodes in
the set {y;.y,} which have as predecessors the nodes in the set
{y3.¥4.¥s5.¥s}. For instance, showing that there is no path from
any node in {x{,x,} to any node in {y;,y,} ensures that there is
no path from u to v.

The idea of using, for instance, the set of direct successors of u
relies on the fact that, if there is a path from u to v, then this path
must go through at least one of the successors of u. Therefore, if
there is no path from none of the direct successors of u to v, it is
certain that there is no path from u to v. Similarly, if there is no
path from u to any of the direct predecessors of v, there is no path
from u to v. Instead of u or v, the condition in Lemma 1 can be
based on a set of nodes succeeding u or preceding v respectively.
However, the chosen set must satisfy the following requirement:
Any path starting from u (reaching v) should pass through at least
one of the nodes in the set associated with u (v).

As mentioned earlier, the BFS algorithm can be used to deter-
mine the existence or absence of a path between two nodes. Given
a graph G = (V,A) and a distinguished source node u, BFS system-
atically explores the arcs of G to discover each node reachable from
u. The algorithm discovers all nodes at a distance d from u before
discovering nodes at a distance d + 1; the distance is defined as
the number of arcs in the shortest path between two nodes. Given
a graph G = (V,A) and a distinguished source node u, BFS produces
the so-called BFS-tree rooted at u. For any node v reachable from
u, the simple path in the BFS tree from u to v corresponds to a
shortest path from u to v in G. The term layer is generally used to
qualify the nodes of the BFS tree rooted at u at the same depth
(Dasgupta et al., 2008) and is denoted in the rest of the article C,.
Using such an algorithm to assert the existence of a path from u
to v is not attractive in a local search heuristic because its running
time is O(|V|+ |A|) (Dasgupta et al., 2008). However, as pointed

462

European Journal of Operational Research 311 (2023) 455-471

out in Property 2, a layer in a BFS tree has the property that makes
it a suitable candidate for formulating sufficient conditions with a
lower miss rate.

Property 2. Let G be a DAG and Cy a layer in the BFS-tree rooted at
u and at depth k. Any path starting from u in G goes at least trough
one of the nodes in Cy.

The basis of the proposed parameterized procedure that asserts
the existence of a path between two nodes is the modified BFS al-
gorithm in Algorithm 3. As this procedure is used to check if there
is a path from u to a given node in G, the destination node is pro-
vided to the algorithm as v. The third parameter C;, denotes a layer
associated with v in the reverse graph G/, i.e., a set of nodes pre-
ceding v in G. At first, we consider that C, = {v}, i.e., the condition
in line 13 is equivalent to y = v. Instead of exploring all the nodes
that are reachable from u, k represents the search cutoff. In other
words, the algorithm stops the search at the level of the nodes at
depth k. The algorithm uses the same queue data structure as in
Algorithm 2 and stores a set of nodes along with their distance d
from u. Initially, the queue Q only consists of u, the one node at a
distance 0. When node x with distance d is removed from Q, all of
its successors that are not discovered yet are inserted in Q along
with their distance d + 1.

Algorithm 3 Search for a layer related to a path from u to v at
given depth k.

1: procedure GETLAYERATDEPTH(G, u, v, C), k)

2: Cy<~ 0

3: Q<9

4 Label u as discovered

5: enqueue(Q, (u,0))

6: while Q is not empty do

7: X, d < dequeue(Q)

8: if d ==k then

9: Cy < Cy U {x}

10: continue

11: for (x,y) € out(x) do
12: if y is not discovered then
13: if y € C, then

14: Cy < {v}

15: return C,

16: Label y as discovered
17: enqueue(Q, (y,d+ 1))
18: return C,

The three following different results can be derived from
Algorithm 3:

Case C, = 0. If k is large enough, the algorithm explores all the
nodes that can be reached from u, and the algorithm may or
may not find v. If v is not found and all the nodes that can
be reached from u are explored, we are sure that there is no
path from u to v. Because C, is only updated if the condi-
tions in Lines 8 or 13 are satisfied, the algorithm returns an
empty set when k is very large and v is not found. Hence, if
an application requires the existence or absence of a path
between two nodes to be guaranteed, k should be larger
than the graph diameter, i.e., the length of the longest short-
est path in G after disregarding the node and arc weights.

Case C, = {v}. If, during the search, v is found, the search is
stopped and a set containing only v is returned as a layer
Cy (Line 15), and we are sure that there is a path from u to
v.

Case C, # ¢ and Cy # {v}. In the two first cases, C; is not a layer
but is rather used to provide information with certainty on

K. Tamssaouet and S. Dauzeére-Péreés

the absence (C, = @) or presence (Cy = {v}) of a path from
u to v. The last case occurs when k is not large enough to
allow the algorithm to explore all the nodes that can be
reached from u, and if v is reachable from u, the length of
the shortest path from u is larger than k. In this case, the
algorithm returns an actual layer C; that includes all the
nodes that are at depth k in the BFS-tree rooted at u (Line
9). Contrary to the two first cases, this third case does not
provide any information on the existence or absence of a
path from u to v. Therefore, Lemma 2 states a new condi-
tion regarding the absence of a path from u to v in G using
the notion of a layer C,. When k = 0, Algorithm 3 returns
Cy = {u}, making the condition in Lemma 2 the same as the
condition in Lemma 1. Lemma 3 shows that the sufficient
condition Lemma 2 can have a lower miss rate condition in
Lemma 1 provided that k > 0.

Lemma 2. Let C; = GETLAYERATDEPTH(G, u, v, {v}, k) be a layer, i.e.,
Cu#Wand v ¢ Cy.

If L, v) < mingee, (L(at, X) + Iy + Loyt x)), then there is no path
from u to v.

Lemma 3. If the condition in Lemma 1 is satisfied, then the condition
in Lemma 2 is also satisfied.

As a modified BFS, Algorithm 3 provides either information
about the existence of a path between two nodes or a layer
that can be used by sufficient conditions in Lemma 2. The pro-
cedure is parameterized because the search depth can be con-
trolled via parameter k. Increasing the value of k increases the
probability of falling in both cases C, =# and C, = {v}, respec-
tively providing certainty on the absence or presence of a path
from u to v. If the algorithm falls into the third case, increas-
ing the value of k increases the upper bound of the interval
| = oo, minyec, (L(alpha, x) + Ix + Loyt (x))[, leading to the decrease of
the miss rate of the sufficient condition. However, increasing the
value of the search cutoff k also increases the computational cost.
When k receives a large value, Algorithm 3 has the same execution
time as the classic BFS, i.e. O(|V| + |A|). However, this execution
time does not consider the possibility of stopping the search at
depth k. Instead of using the size of V and E, it is more convenient
to describe the complexity of Algorithm 3 based on another feature
of the G graph, the branching factor. The branching factor of the
nodes of a graph G is defined as the number of direct successors of
the node, i.e., the size of the set of successors. If the branching fac-
tors of the nodes are not uniform, we can consider the maximum
branching factor, noted b. To find nodes that are at distance k from
node u, Algorithm 3 takes O(b¥) time. This exponential time com-
plexity, usually used or graphs too large to store explicitly (Korf,
1985) must be carefully considered. First, remember that the run-
ning time of Algorithm 3 is bounded by O(|V| + |A|). Moreover, as
indicated in the following sections, most of the existing results can
be obtained by the proposed procedures using k < 2 with b = 2 for
the most commonly studied problems.

When studying the existence of a path from u to v, recall
that we considered above that Cj, = {v} is given as an input to
Algorithm 3 which returns C,. The search could be performed
backward, i.e., started from v to find all the nodes that can reach
v. To do this, it is sufficient to provide Algorithm 3 the following
parameters: G, v, u, Cy = {u} and a depth k’. The algorithm de-
termines a set of nodes such that, if there is a path starting from
v in @, this path must pass at least one of the nodes in Cj. In
other words, if there is a path from u to v, then this path must
pass through at least one of the nodes in C,. Theorem 1 formu-
lates general sufficient conditions that use the layers determined
by the forward search from u and the backward search from wv.

463

European Journal of Operational Research 311 (2023) 455-471

Using the same arguments as in Lemma 3, it can be shown that
Theorem 1 generalizes Lemma 2.

Theorem 1. There is no path from u to v if the two
layers Cu = GETLAYERATDEPTH(G, u, v, {v}, k) and C, =
GETLAYERATDEPTH (G, v, u, Cy, k') satisfy the following conditions:

1. Cy # 9 and Cy # {v}, and
2. C, # ¢ and C,, # {u}, and
3. maxyecéL(ot,y) < Mingec, (L(at, X) + Le + Loy (x))

The results presented in this section are combined to design
a parameterized procedure that determines if there is a path be-
tween two nodes u and v in a DAG G with non-negative weights.
Algorithm 4 relies on Algorithm 3 in a forward search from u and a
backward search from v. Parameters k and k' are the forward and
backward search depths, respectively. Note that a single parame-
ter can replace these two parameters. However, two parameters
are necessary to show how the proposed algorithm can reproduce
known results of the literature. The last procedure parameter £,
represents the vector of the length of the longest path from « to
all nodes of G, i.e., Lo = (L(ax, V)|V e V).

The layer C, is obtained by initializing C/, = {v}. Algorithm 4 ter-
minates by returning True (i.e., there is no path from u to v) or
False (i.e., there is a path from u to v) when C, =9 or C, = {v},
respectively. If these two cases do not occur during the forward
search, then it means that v is not found and that there are nodes
that can be reached from u and that are not discovered yet. At this
stage, the sufficient condition in Lemma 2 can be checked to assert
the potential existence of a path from C, to v. However, it is pos-
sible to run the backward search from v before using the sufficient
condition. With the resulting set Cy, the layer C}, is recomputed ac-
cording to the given depth k'. The difference with the computation
of Cy is that C;, is computed considering a layer C;, that does not
contain u if k> 0. In this case, if u € Cj, then it means that the
backward search found one of the nodes in C,, which asserts with
certainty that a path exists from u to v. If C}, = ¢, then u cannot
be reached in G’ from v, i.e., there is no path from u to v in G. If
the resulting C;, does not satisfy the two previous conditions, then
none of the nodes in C, is found by the backward search and not
all nodes that can be reached from v in G’ are found. In this case,
the condition in Theorem 1 can be used. If the condition is sat-
isfied, Theorem 1 ensures that there is no path from u to v. Oth-
erwise, the False of Line 15, italicized to differentiate it from the
others, does not guarantee the existence of a path but rather the
inability of the sufficient condition to conclude. By increasing the
value of k or k/, the chances of executing Line 15 decrease, result-
ing in a lower miss rate.

Algorithm 4 Parametrized procedure for path detection from u to
v.

1: procedure ASSERTNOPATH(G, u, v, k, k', Lg)
2 c, <~ {v}

3 Cy < GETLAYERATDEPTH(G, u, v, C), k)

4 if C, =9 then

5: return True

6 if ¢, = {v} then

7 return False

3 C;, < GETLAYERATDEPTH(G', v, u, Cy, k)
9: ifC,=¢ then

10: return True

11: if C;, = {u} then
12: return False

13: if maxy, ., L(a,y) < mingec, (L(ct, X) + Ly + Loy (x)) then
14: return True
15: return False

K. Tamssaouet and S. Dauzeére-Péreés

Note that we assume that the sufficient conditions in
Algorithm 4 use L, the lengths of the longest paths from a ref-
erence node « in G. It is also possible to use the lengths of the
longest paths from a reference node w in G'. Assuming that the
lengths from w are given in an the vector £, the existence of
a path from u to v in G can be checked using], by calling
AsSERTNOPATH(G', v, u, k', k, £},). In conclusion, Algorithm 4 pro-
vides a parameterized procedure that can be called to answer the
question of whether there is a path u to v in a DAG with non-
negative weights.

Such an algorithm makes it possible, through the search cutoff
parameters k and k’, to decide on the trade-off between computa-
tional efficiency and miss rate. By calling Algorithm 3 and given
that the size of a layer is at most O(b¥), the running time of
Algorithm 4 is 0(b™3*{k-K'}y_ This procedure is an essential block in
the procedures evaluating move feasibility and move quality that
are presented in the following sections.

5. Parameterized procedure for feasibility evaluation

This section focuses on the feasibility evaluation and presents
a parameterized procedure that determines whether a move leads
to a feasible neighbor. Such procedure can typically be called in
Line 6 of Algorithm 1. Several important results in the schedul-
ing literature addressing this question rely on the information
on the existence of a path between two nodes in the solution
graph. Similarly, the procedure for feasibility evaluation proposed
in Section 5.1 heavily relies on the procedure for path detection
presented in Section 4. Then, Section 5.2 shows that a selection of
literature results are special cases of the procedure.

5.1. Procedure for move feasibility evaluation

Given a DAG G that models a feasible solution, the goal is to
decide whether a move M as defined in Section 3.2 is feasible,
i.e.,, whether the neighbor modeled by G does not include a cy-
cle. Algorithm 5 formalizes the proposed procedure that asserts
whether a move M is feasible or not. After applying a move, let
us assume there is a cycle in G and the arc (x,y) is part of the
cycle. Such assumption implies the existence of a path from y to x.
Therefore, to ensure that the insertion of an arc (x,y) in G does not
create a cycle, it is sufficient to ensure that there is no path from
y to x, and this information can be obtained using Algorithm 4.
The procedure for move feasibility is thus a “simple” application of
the procedure for path detection of Section 4. To make the proce-
dure applicable to both G and G, the general notation of a move
M ={u,0,D} is used. In addition to the current solution graph
G and a move M, Algorithm 5 requires additional parameters for
Algorithm 4. Parameters k, resp. k/, are the depths of the forward,
resp. backward, search. The last procedure parameter L, is the
vector of the lengths of the longest paths from « to all nodes of
G, ie, Lo = (L(a,v)|veV).

Algorithm 5 General procedure for move feasibility.

1: procedure EVALUATEMOVEFEASIBILITY(G, M = {u, O, D}, k, k', L)
22 A< A\{(0q,u), (u,0y), (D1, D)} > A should be restored at
end of procedure
T« {(D]a u), (u’ DZ)}
for (x,y) e Z do
if ASSERTNOPATH(G, y, X, k, k/, L) then
continue
return False
return True

XN DD AW

For clarity, let us focus on the case where the original graph
of schedule G is used. Suppose that operation u is sequenced in G

464

European Journal of Operational Research 311 (2023) 455-471

between operations O; = s and O, =t on resource [, i.e., 0 = (s, t).
The move M = {u, 0, D} consists in moving operation u between
operations D; = v and D, = w on resource m, where m can be dif-
ferent from . The move M induces the deletion of a set of arcs,
denoted D = {(s, u), (u,t), (v, w)}, and the insertion of a set of new
arcs, denoted Z = {(s, t), (v, u), (u,w)}. If G is a DAG and G contains
a cycle, then the arcs added or deleted by applying the moves are
responsible of introducing such a cycle. More specifically, as no cy-
cle can be created by deleting an arc in G, it is sufficient to check
whether a cycle is created as a consequence of inserting an arc in
Z. Also, it can be shown that the insertion of (D{,D2) = (s,t) € Z
cannot lead to a cycle in the graph.

The procedure starts then by locally deleting the set of arcs D
induced by move M from the set of arcs A of G. “Locally” means
that the original set of arcs A should be recovered at the end of the
procedure. Then, the set of arcs to be inserted to get the complete
graph of the neighbor is initialized, i.e., Z = {(v, u), (u, w)}. Note
that the arc (04, 0,) = (s, t) is not included, as it is certain that no
cycle can result from its insertion in G. To ensure that the insertion
of an arc (x,y) does not lead to a cycle, Algorithm 4 checks if there
is no path from y to x. Theorem 2 states that the moves character-
ized as feasible by Algorithm 5 lead to feasible solutions. By calling
Algorithm 4, the running time of Algorithm 5 is also O(bmax{k.k'}),

Theorem 2. Let M = {u, 0, D} be a move specified by the neighbor-
hood structure. Let k and k' respectively denote the depths of the for-
ward search and backward search, and let £, denote the vector of the
lengths of the longest paths from a reference node « to all nodes of
G.

If EVALUATEMOVEFEASIBILITY (G, M, k, k', L) = True
(Algorithm 5), then M is a feasible move.

Algorithm 5 is illustrated above when using the vector of the
lengths of the longest paths from « to all nodes of the origi-
nal graph G. The procedure can also be used when needed to
use the vector of the lengths of the longest paths £ from w
to all nodes of the reverse graph G'. The procedure should get
the following parameters: G/, M’ ={u,0',D'}, k', k and £, If
0= (s,t) and D = (v,w) as above, then O’ = (t,s) and D' = (w, v).
The procedure then starts by locally deleting the set of arcs D' =
{(t,u), (u,s), (w,v)} induced by move M’ from the set of arcs A’ of
G'. Next, the set of arcs to be inserted to get the complete graph of
the neighbor is initialized, i.e., Z = {(w, u), (u, v)}. The remainder
of the procedure follows as above.

5.2. Relationship with results of the literature

This section shows the generality of our procedure by proving
that a selection of classical and well-known results from the liter-
ature can be derived using specific parameter values. Table 2 pro-
vides the parameter setting for the results in ten references. The
problem solved by each reference is denoted using the classical no-
tation «|B|y of Graham et al. (1979). In the « field, J, FJ and FMRJ
respectively denote a job-shop scheduling problem, a flexible job-
shop scheduling problem and a flexible job-shop scheduling prob-
lem with operations requiring multiple resources. In the g field,
release dates, sequence-dependent setup times, reentrance, paral-
lel batching with incompatible families and non-linear routes are
respectively denoted r;, s, recr, p — batch, incompatible and bom. In
the y field, Cmax, TWT and reg denotes, respectively, the makespan,
the total weighted tardiness, and any regular objective function.
The approach of Braune et al. (2013) optimizes any objective func-
tion in the form of min-sum, which is denoted here as 3°; f(C;).

For each reference, Column Result reports the original results to
be shown as a special case of the procedure in Algorithm 5, which
is a “simple” application of Algorithm 4 for each of the arcs to be

K. Tamssaouet and S. Dauzeére-Péreés

European Journal of Operational Research 311 (2023) 455-471

Table 2
Some literature results dealing with move feasibility evaluation.
Reference Problem Result Arc ASSERTNOPATH

Dauzere-Pérés & Paulli (1997) FJ||Cmax Theorem 1 (v,u) (G, u,v,1,0, Ly)
(u,w) (G w,u,0,1, Ly)

Balas & Vazacopoulos (1998)* J1Cmax Proposition 2.2 (v,u) (G,v,u,01, L)
Proposition 2.3 (u, w) (G,w, u, 0,1, Ly)

Dauzére-Pérés et al. (1998) FMRJ|bom|Cpax Theorem 1 (v, u) (G u, v 1,0, Ly)
(u, w) (G,w,u, 0,1, Ly)

Mastrolilli & Gambardella FJ||Cax Section 4.1 (v,u) (G, u, v, 0,1, Ly)
(2000)* (G,v,u,01,L,)
(u, w) (G w,u,0,1, Ly)
(G u,w,0,1,L°,)

Zhang et al. (2007)* J1|Cmax Theorem 1 (v,u) (G,v,u,0,1, 2))
Theorem 2 (u,w) (G,w, u, 0,1, Ly)

Braune et al. (2013)* X f(C) Proposition 2 (v, u) (G, v,u,0,2,)
Proposition 3 (u, w) (G,w, 1, 0,1, Ly)

Sobeyko & Ménch (2016) FJ|rj, bom|TWT Theorem 1 (v, u) (G u, v 1,0, Ly)
(u, w) (G,w,u, 0,1, Ly)

Knopp et al. (2017) FJ|rj, s, recr, p — Theorem 2 (v,u) (G u v 1,0, Ly)
batch, incompatible|reg (u,w) (G,w,u, 0,1, Ly)

Shen et al. (2018) FJ|s|Cmax Proposition (v,u) (G, u, v, 1,0, Ly)
41 (u, w) (G, w,u,0,1, Ly)

Proposition (v,u) (G u, v, 1,1, Ly)

4.2 (u,w) (G,w,u, 1,1, Ly)

Kasapidis et al. (2021) FJ|bom|Cmax Theorem 1 (v,u) (G u, v 1,0, Ly)
(u, w) (G,w, u, 0,1, Ly)

inserted in G (ie., Z = {(v,u), (u,w)}). As the setting are hetero-
geneous for two arcs within the same work, Table 2 reports the
setting of Algorithm 4. All the proofs showing how the settings
reported in the last column can reproduce the corresponding lit-
erature result are provided in the Supplementary Material accom-
panying this article to avoid overloading the paper. Note that a
star follows some references in the table when the set of feasi-
ble moves defined by the original sufficient conditions is a subset
of the set of feasible moves determined by our procedure with the
settings in the last column. Below are a few remarks regarding the
analysis of Table 2 and the referenced works:

o As highlighted previously, the literature results use heads or
tails. The heads correspond to the longest path length £y in
G with source node « considered as a reference node. The
tails correspond to the longest path length £/, in the reverse
graph G’ from sink node w considered as a reference node.
The parameter setting of a result published in Klemmt et al.
(2017) using the node levels is provided in the Supplemen-
tary Material.

The depth search cutoff necessary to reproduce the literature
results is low. Note that most of the approaches proposed in
the references in Table 2 were or are still state of the art.
Therefore, it may be unnecessary to use high values for k
and K/, resulting in the high efficiency of the proposed pro-
cedure for the feasibility evaluation.

Shen et al. (2018) report numerical results that can be used
to understand the impact of increasing the search depth cut-
off. Instead of using k = 1 and k’ = 0 to assert the absence of
a path from u to v in Proposition 4.1, Proposition 4.2 uses
k=1 and k' =1. On average, the numerical results show
that the quality of the final solution is improved with an
additional computational time. The main reason for such an
increase is the larger neighborhood to be explored. As the
set of feasible neighbors determined by Proposition 4.2 in-
cludes the one determined by Proposition 4.1, the proposed
tabu search spends more time evaluating the neighborhood
of a solution. This indicates that, when using Algorithm 5, it
might be necessary to experimentally choose the most ap-
propriate search depth cutoff for the considered problem in-
stances.

465

e By increasing the value of the search depth cutoff, it is pos-
sible to lower the miss rate of the sufficient conditions. The
work of Mastrolilli & Gambardella (2000) shows another
interesting alternative. For example, to show that the in-
sertion of (v,u) does not create a cycle, Algorithm 4 can
be called on G and G’ using the same low search depth
cutoff.

6. Parameterized procedure for quality evaluation

In addition to the move feasibility evaluation, the quality eval-
uation of a move is another critical element that is often discussed
in the literature on heuristic approaches for the job-shop schedul-
ing problem and its extensions. This section shows that several
theoretical results published on this topic share the same insights
and fit in the general framework proposed here. An important
piece of information that implicitly supports the design of eval-
uation procedures is the existence of a path between two nodes.
Therefore, the proposed procedure for move evaluation heavily re-
lies on the results in Sections 4. A short literature review regard-
ing quality evaluation procedures is first presented in Section 6.1.
Then, Section 6.2 introduces the parameterized procedure for qual-
ity evaluation along with its underlying theoretical results. To show
the broad applicability of the proposed parameterized procedure, a
selection of literature results are shown to be special cases of the
procedure in Section 6.3.

6.1. Literature review

In the scheduling literature, the quality evaluation of a neigh-
bor is one of the key features that differentiate the different pro-
posed local search heuristic approaches. To evaluate the qual-
ity of a move, the straightforward approach is to perform the
move and compute the value of the optimized objective func-
tion (e.g., Nowicki & Smutnicki, 1996). This exact evaluation can
be performed by using the procedure in Algorithm 2, which ap-
pears to make the evaluation the most expensive component in
heuristic approaches to solving shop scheduling problems (Taillard,
1994). An alternative recently regaining attention is to incremen-
tally maintain the longest path lengths and only update the infor-

K. Tamssaouet and S. Dauzeére-Péreés

mation of the nodes affected by the move. Bierwirth & Kuhpfahl
(2017); Mati et al. (2011); Nowicki & Smutnicki (2005); Sobeyko
& Monch (2016) and Madraki & Judd (2021) propose some algo-
rithms that speed up the evaluation without reaching the full po-
tential of this approach. Those algorithms might visit nodes that
are not affected by the move. The algorithms proposed in Katriel
et al. (2005) satisfy the attractive property of visiting only affected
nodes but cannot be applied to most of the neighborhood struc-
tures of job-shop scheduling problems.

Instead of an exact evaluation, it is more common in the
scheduling literature to consider an approximate evaluation while
accepting some accuracy loss. The available approximate evaluation
procedures may verify the lower bound property (Dauzére-Péres &
Paulli, 1997; Taillard, 1994), the upper bound property (Mastrolilli
& Gambardella, 2000) or none of the two properties (Balas & Vaza-
copoulos, 1998; Dell’Amico & Trubian, 1993). While most quality
evaluation procedures focus on the makespan, Mati et al. (2011),
resp. Braune et al. (2013), propose general procedures for any reg-
ular objective function, resp. min-sum objective functions. In ad-
dition to the lower bound properties, the upper bound properties
and the evaluated objective function, it is possible to classify the
quality evaluation procedures based on the move they can be ap-
plied to. Some evaluation procedures are restricted to swap moves
(e.g. Mati et al., 2011; Taillard, 1994) and some can be applied to
more general insertion moves (e.g. Dauzére-Pérés & Paulli, 1997;
Dell’Amico & Trubian, 1993).

When analyzing the procedures proposed in the literature, for
efficiency considerations, the evaluation relies on the length of
paths (old and new ones) that include the nodes directly impacted
by the move but also of paths that do not include such nodes.
Such evaluation was initially proposed in Taillard (1994) for the
case of the job-shop scheduling problem with makespan minimiza-
tion. To evaluate the effect of swapping a single critical arc (u, v)
(see Fig. 2), Taillard (1994) computes the exact value of the longest
path which contains at least one of the nodes u and v in the graph
associated with the new solution. The length of this path is a valid
lower bound on the objective function value of the new solution.
In addition to the nodes directly impacted by the move, Mati et al.
(2011) proposes to improve the lower bound accuracy by consider-
ing a subset of paths that do not go through u or v.

As highlighted earlier, the existence or absence of a path be-
tween two nodes is a property used more implicitly when eval-
uating the quality of a move instead of being used more explic-
itly in the move feasibility evaluation. For example, the absence
of some paths can be indirectly deduced by classifying the moves
based on the position of u in its new insertion position (v, w). The
distinction between forward and backward moves can be found in
several papers such as Balas & Vazacopoulos (1998); Braune et al.
(2013) and Garcia-Le6n et al. (2015). This distinction allows to im-
plicitly assert the absence of paths between some nodes. For the
job-shop scheduling problem (Balas & Vazacopoulos, 1998), and
(Braune et al., 2013), these notions are characterized through the
move direction of the resequenced operation on its machine se-
quence. In the case of the forward move, it can be ensured that
there cannot be a path from w to u only by assuming that the cur-
rent solution is feasible. For the flexible job-shop scheduling prob-
lem (Garcia-Leén et al., 2015), the characterization is performed
through the use of the notion of the level of the operation to be
moved u and its new resource predecessor v: Forward insertion
when [, <l, and backward insertion when [, > [,. Other similar
classifications of the moves can be found in the literature.

In this work, we aim at designing a generic procedure that can
be used to compute valid lower bounds for any regular objective
function. The calculation of the lower bound on the objective func-
tion is based on the calculation of lower bounds on the heads and
the tails of a set of nodes, most of the time those affected by the

466

European Journal of Operational Research 311 (2023) 455-471

oL
%

Y

e

S S

Fig. 6. Moving node u from between s and t to between v and w.

move to perform. Estimating the new heads and tails is based on
their values in the original solution. An important piece of infor-
mation to have when calculating a node’s estimated heads and
tails is whether the node under consideration is reachable from
another node whose head or tail changes due to the insertion or
removal of an incident arc. This information can be found using
the results in Section 4.

6.2. Procedure for move quality evaluation

Similar to a procedure that evaluates the feasibility of a move, a
quality evaluation procedure strongly depends on the definition of
a move. We use the move defined in Section 3.2. Let M = {u, O, D}
denote a move specified by the neighborhood structure, i.e., a node
u is moved from between O; and O, to between D; and D,. Given
a graph G that models a feasible solution, the goal is to compute
a valid lower bound on the optimized objective function of the
neighbor obtained after applying M and modeled by G. As we con-
sider any regular objective function, the computation of a lower
bound on the optimized objective function requires the estimation
of the length of the longest paths from a source node « to a set of
sink nodes {w;} c V. Therefore, we focus below on the length esti-
mation of the longest path from « to some sink node w. The exact
evaluations related to the neighbor G are referred to by the symbol

1, while the approximate evaluations are signaled by the use of
symbol (I . For example, the length of the longest path from « to
w in G is denoted by L(a, w), while its lower bound is denoted by
L(ar, w). The reverse graph of G is denoted G

The quality evaluation procedures proposed in the literature
rely on the length of paths (before and after a move) that include
the nodes directly impacted by the move, but also on paths that
do not include such nodes. We focus here on the nodes directly
impacted by the move, i.e., u, O, O, D; and D,. To obtain a valid
lower bound on the length of the longest paths from o to w, it
is sufficient to compute valid lower bounds on the paths going
through the set of the directly affected nodes. Assume that the fea-
sible move to apply is M = {u,0 = (s,t),D = (v,w)}. Among the
different ways of defining the subsets of the set of considered
paths, we choose the one illustrated in Fig. 6, which helps the most
in Section 6.3 to illustrate the generality of the evaluation proce-
dure. The subset of paths going through O; = s or 0, =t comprises
three subsets: 1) The set of paths going through the newly inserted
arc (s,t) (black), 2) The set of paths going through s (red) and 3)
The set of paths going through t (magenta). Note that set 1) is a
subset of the two other sets 2) and 3). We allow this overlapping
to facilitate mapping the different lower bounds proposed in the
literature to those computed by our procedure. Also, the computa-
tion of the lower bound of a redundant set does not significantly
impact the computational cost of the move quality evaluation. The
subset of paths going through D; = v, u or D, = w comprises: 4)
The set of paths going through u (blue), 5) The set of paths going

K. Tamssaouet and S. Dauzeére-Péreés

through v but not the newly inserted arc (v, u) (olive) and 6) The
set of paths going through w but not the newly inserted arc (u, w)
(cyan). The general idea of the proposed procedure is to compute
a lower bound for each of the six subsets of paths and takes the
maximum as a valid lower bound for the longest path length from
o to w.

If there is a path from o to w through x, then, by defini-
tion, L(a, x) + Ix + L(x, w) is a lower bound of L(x, w). Therefore,
to compute a valid lower bound on the longest path length from
a to w, valid lower bounds on the lengths L(x,x) and I'(w,x)
must be computed, where x is one of the directly affected nodes.
Given a DAG G and its reverse graph G/, the same results can be
used to establish a lower bound on L(«, x) and I’(w, x). Therefore,
the following results are stated for the general case of a DAG G
with non-negative weights. Assuming a feasible move M = {u,0 =
(s,t),D = (v,w)} is applied on the solution graph G modeling a
feasible schedule, the same result helps establishing, for example,
a lower bound on L(e,s) and ['(w,t) as Oy =s in G and 0} =t
in G'. As highlighted above, the efficiency of the evaluation proce-
dure is based on the idea of reusing all relevant information of the
schedule before the move to establish lower bounds. More specif-
ically, to compute a lower bound on L(«,y) of one of the directly
affected nodes y, we first aim at computing lower bounds on the
longest path from « to all y predecessors in G. Then, a lower bound
on L(a,y) can easily be computed as in Lines 9-10 in Algorithm 2.

Given a general feasible move M = {u, O, D}, Theorem 3 helps
establishing different lower bounds on L(«,x) depending on the
existence of paths from some of the directly affected nodes
({u, 05, Dy}) by move M.

Theorem 3. Let M = {u,0,D} be a feasible move specified by the
neighborhood structure transforming G to G. Let us assume that the
set of arcs D are deleted from A (ie, A=A\ D). For each x eV \
{u, 02, Dz}.’

1. If there is no path from u to x, from O, to x and from D, to x
in G, then L(x, x) = L(«, x).

2. If there is no path from u to x and from O, to x in G, then
L(e, %) > L(et, x).

3. If there is no path from u to x and from D, to x in G, then
L(a,x) > L(a,x) = L(et. %) — 8.

Using Theorem 3, Corollary 2 establishes lower bounds on the
different graph nodes. First, instead of always using Algorithm 4 to
assert the absence of a path between two nodes, such a question
can be directly answered based only on the feasibility of the cur-
rent solution and the move. For example, considering that G is a
DAG implies that there cannot be a path from u to O; and from 0,
to O].

Corollary 2. Let M = {u, 0,D} be a feasible move specified by the
neighborhood structure transforming G to G. Let us assume that the
set of arcs D are deleted from A (ie., A=A\ D). Let Soz denote an
upper bound on §p, = L(, 02) —IL(a,05). We have the following
identities:

1. L(a,x) = L(a, x) = L(«t, X), for each x € B(u)

2. L(er,01) = L(at, 07)

3. If there is no path from u to x and from O, to x in G, then
L(a,x) = L(@, x).

If there is no path from u to x and from D, to x in G, then
L(e,x) = L(ev, x) — 502.

4.

For any of the five directly affected nodes y € {u, O, 05, D1, D},
Algorithm 6 computes a lower bound on the longest path from o
to y by exploiting the results in Theorem 3 and Corollary 2. In ad-
dition to the search cutoffs k and k’, the procedure requires also
the move M in G, the vector of longest path lengths from o« and

467

European Journal of Operational Research 311 (2023) 455-471

an upper bound on the decrease 302 in the longest path from « to
0, (i.e., 302 > L(a, 03) — L(a, 05)). Conditions in Lines 2 and 4 cor-
respond to identities 1 and 2 in Corollary 2, respectively. If none of
the previous two conditions is satisfied, the procedure computes
the lower bounds on the longest path from « to each of the y pre-
decessors using results 3 or 4 in Corollary 2. The lower bound on
the longest path from « to y is computed in Lines 14-16 based
on the lower bounds of each y predecessor. By calling Algorithm 4,
the running time of Algorithm 6 is also O(bmx{kk'}) Note that, de-
spite being only used on the nodes directly impacted by the move,
Algorithm 6 is still valid for each node of the graph.

Algorithm 6 Procedure to compute a lower bound on longest path
length from a reference node.

1: procedure cOMPUTELB(G, «, y, k, k', M = {u, 0, D}, Lq, 302) >
This procedure assumes that the arcs in D are deleted from A

2: if y = u then

3: return maxy y)cincy) (L(0, %) + Iy + Ik y }

4 if y = O; then

5: return L(«,y)

6: for x e B, do

7: L(a,x) <« —c0

8: C < ASSERTNOPATH(G, u, X, k, k', L4)

9: if C A AssERTNOPATH(G, Oy, x, k, k', L) then
10: L(a,x) < L(x, x)

11: continue
12: if C A AsSERTNOPATH(G, D,, x, k, k', Ly) then
13: L(ot,x) < L(et,) — 302

14 L(a,y) <« —c0
15: for (x,y) € (y) do

16: L, y) < max{L(,y), L(et, x) + Ik + Ly}

return L(c, y)

—_
N

The generic procedure in Algorithm 7 can be used to estimate
a valid lower bound on any regular objective function resulting
from applying move M. This procedure computes a lower bound
for each of the six subsets of paths identified above and illustrated
in Fig. 6. Below is a short description of the procedure:

e The procedure starts by checking if there is no path from
u to w and from t to w. Note that the assertion of the ab-
sence of a path only uses Ly. It is also possible to use £},
instead or combine them. More importantly, the arcs in D
are not deleted yet. Therefore, the absence of a path from
u to w also implies the absence of a path from t to w. If
the condition is satisfied, the move M does not affect the
longest path from « to w according to the first implication
in Theorem 3.

e Lines 4-9 prepare the appropriate conditions to use
Algorithm 6 by locally deleting the arcs in D from A and
computing upper bounds on the decrease in the longest path
length from « to t and from w to s. The assignments in Line
6 result from identity 2 in Corollary 2. To compute a tighter
upper bound on the decrease in the longest path length
from « to t, it is necessary first to compute a lower bound
on the longest path length from o to t in G. Such longest
path might go through the new predecessor s, for which
L(a,s) is already computed in Line 6. Such longest path
might also go through the unchanged predecessors B(t) af-
ter the deletion of D arcs. In this last case, Algorithm 6 is
called. As there cannot be a path from t to any of its pre-
decessors in B(t), each of the predecessor x € B(t) can have
either L(o,X) or —oo as a lower bound on its longest path
length from «. In other words, 8; is not relevant when using

K. Tamssaouet and S. Dauzeére-Péreés

European Journal of Operational Research 311 (2023) 455-471

Algorithm 7 General procedure for quality evaluation.

1: procedure EVALUATEMOVEQUALITY(G, M = {u,0 = (s,t),D = (v,w)}, k, K/, Lo, L},)

L)AASSERTNOPATH(G, W, w, k,

> A should be restored at the end of the proceudre

> Paths going through arc (s, t)

> Paths going through ¢

> Paths going through s

> Paths going through v but not through arc (v, u)
> Paths going through w but not through arc (u, w)

> Paths going through u

2: if ASSERTNOPATH(G, u, w, k, k',
k', Ly) then
3: return L(o, w)
4: A < A\ {(s,u). (u,t), (v.w)}
5: Ot < +00, 05 < +00
6: L(a,s) < L(a,s), I'(w,t) < L'(w,t)
7. L(a,t) < max{L(a,s) + I+ ls;, cOMPUTELB(G, «, t, k, k', M = {u, 0, D}, 8t La))
8 (ws) < max{l’(w,t)+1 + Il ;. coMPUTELB(G', @, s, k, k', M" = {u, 07, D'}, 8L L))
90 b < L(a.t) —L(a.t), 8, « L'(w.s) - ['(w.5)
10 forye {u,v,w} do
11: L(ar,y) « coMPUTELB(G, @, y, k, k', M ={u,0=(s,t),D = (v,w)}, &, Lq)
12: I'(w,y) < coMPUTELB(G, w, y, k, k', M’ = {u,07 = (t,5), D’ = (W, 1)}, 85, Lo)
130 Ly < L@ s)+k+le+1+D(wt)
14 L < Lo,)+l +1(wt)
150 Ly < L. s)++1(w,s)
16 Ly <L)+ +D (0
172 Ls < Lo, w) + Iy + L' (w, w)
18: Lo, u) < max{L(o, u), L(o, v) + by + ly.u}
19: I'(w, u) < max{l’(w,u), I’ (w, W) + Iy + Ly}
20 Lg <« L(a,u) + Iy + I (w, 1)
21: return maxi;.g{L;}

Algorithm 6 for t. The same arguments apply for the com-
putation of I (w, s) as it is symmetrical to L(«, t). The com-
putation in Line 9 of the upper bounds on the decrease uses
already computed (e, t) and I’ (w, 5).

Lines 10-12 compute, for each of the remaining directly af-
fected nodes y e {u, v, w}, lower bounds on the longest path
length from « to y in G and the longest path length from w
toyin G.

Lines 13-20 compute lower bounds on the longest path from
o to w for each subset of paths identified above and illus-
trated in Fig. 6. Recall that the subset of paths for which
the length is estimated using L; is a subset of paths go-
ing through t or u. Therefore, it can easily be shown that
L; < min{L,, L3}. However, the cost of considering such a re-
dundant set is insignificant as it involves few arithmetic op-
erations, while it is useful in Section 6.3. In general, depend-
ing on the specific problem to be solved, it should be pos-
sible to customize the procedure by not computing some of
the lower bounds if they can always be shown to be lower
than others.

The procedure returns the maximum among the six lower
bounds calculated if the performed move can impact the longest
path from o to w. The computational cost of this procedure is
determined by the values of k and k' used by the procedure in
Algorithms 4 and 6. The running time of Algorithm 7 is also
O(bmax{kk'}y Increasing the values of the two control parameters
may increase the computational cost and the accuracy of the re-
sulting lower bounds. Taking into account the properties on which
the different results are built, this procedure can be used in Line 7
of Algorithm 1 to compute lower bounds on any regular objective
function when solving any scheduling problem for which a solu-
tion can be modeled by a DAG with non-negative weights. When
minimizing the makespan, it suffices to let w represent the dummy
end node to calculate valid lower bounds for this objective func-
tion. For a general regular objective function, the calculation of a
lower bound can be carried out by calling the procedure for each
sink node. In the same way as Mati et al. (2011), it is possible to
improve the accuracy of the lower bounds by extending the set
of paths considered to those passing through nodes not impacted

468

by the move. Moreover, depending on the scheduling problem and
the neighborhood structure, some steps of the proposed procedure
may be unnecessary: The same subset of paths is considered more
than once, or there is a lower bound L; always lower than or equal
to another L;.

6.3. Relationship with results of the literature

This section aims to illustrate the generality of the results in
Section 6.2. We show that a selection of well-known literature re-
sults can be reproduced by Algorithm 7 when appropriate values
for the parameters are chosen. Note that, as all the selected liter-
ature results optimize the makespan, there is always a path from
any node to the last dummy node w, which makes the condition in
line 2 of Algorithm 7 always false. Therefore, we mainly focus on
showing that the proposed estimations functions in the literature
correspond to one of the six estimations in Algorithm 7. Table 3
provides the parameter setting for each reference. The other papers
in Section 5.2 not considered here are those using quality evalua-
tions not satisfying the lower bound property. As in Table 2, the
problem solved by each reference is denoted in Table 3 using the
classical notation «[B|y of Graham et al. (1979). For each refer-
ence, Column Result reports the original results to be shown as a
special case of the procedure in Algorithm 7. Column Lower Bound
specifies the lower bounds in Algorithm 7 that can be mapped to
the lower bounds proposed in each reference. Finally, the last col-
umn provides the appropriate parameters (k and k' being the most
relevant) to use if one aims at reproducing the lower bounds pro-
posed in each reference. The interested reader can find in the Sup-
plementary Material accompanying this article the proofs mapping
the lower bounds of each reference to the six lower bounds com-
puted by our procedure and how the settings reported in the last
column can reproduce the corresponding literature result.

Below are a few remarks regarding the analysis of Table 3 and
the referenced works:

o The diversity of the problems solved by the selected refer-
ences illustrates the generality of the proposed procedure
for move evaluation. Beyond the diversity in terms of con-
straints, the proposed procedure can also provide a valid

K. Tamssaouet and S. Dauzeére-Péreés

Table 3

Some literature results dealing with move quality evaluation.

European Journal of Operational Research 311 (2023) 455-471

Reference Problem Result Lower bounds EVALUATEMOVEQUALITY

Taillard (1994) J11Cnax Section 2 max{L,, L¢} (G, M, 0,0, Lo, L)

Dauzére-Pérés & Paulli (1997) FJ||Ciax Theorem 1 max{Li, Lg} (G, M, V], 0, L, L))
Remark 1

Dauzere-Pérés et al. (1998) FMRJ|bom|Cpax ~ Theorem 1 Lg (G, M, 1,1, Lq, L)

Shen et al. (2018) FJ|s|Cmax Proposition 4.3 Lg (G, M, V], 0, Lo, L},)
Proposition 4.4

Kasapidis et al. (2021) FJ|bom|Cmax Theorem 2 max{Ly, Lg} (G, M, V|, 0, Lq, L)

lower bound on any regular criterion such as total flow time
or maximum total weighted tardiness. To achieve this, it is
sufficient to use Algorithm 7 to estimate the longest path
from the dummy origin node « to each of the dummy sink
nodes w;.
o The depth search cutoffs necessary to reproduce the litera-
ture results are either very small or very large. The nota-
tion |V| represents the cardinality of the node set in G, and
refers to situations where the absence of a path between
two nodes is asserted with certainty. In Dauzére-Pérés &
Paulli (1997), it is proposed to compute at each iteration
of the local search algorithm for each node v the set of all
nodes that belong to all the paths from the start dummy
node o to v and the set of all nodes belonging to all the
paths from v to the end dummy node w. Computing the sets
is expensive in terms of computational time and memory.
However, the resulting cost is still low compared to the cost
of evaluating the quality of each neighbor exactly. For exam-
ple, Kasapidis et al. (2021), where the lower bound proposed
by Dauzére-Pérés & Paulli (1997) is adapted to tackle the
flexible job-shop scheduling problem with arbitrary prece-
dence constraints, report that using the lower bounds leads
to a speed-up factor of more than 100 in their experimental
study. Shen et al. (2018) also report brief experimental re-
sults showing the significant positive effect of the use of the
lower bound on the local search algorithm efficiency.
Contrary to Shen et al. (2018) and Kasapidis et al. (2021),
where the set of all predecessors and successors are used
as in Dauzére-Pérés & Paulli (1997); Dauzére-Pérés et al.
(1998) drop the computation of such sets as it has a signif-
icant negative impact on the efficiency of the local search
algorithm when dealing with a flexible job-shop schedul-
ing problem with multiple resources per operation and ar-
bitrary precedence constraints. As shown in Table 3, it is
enough to choose k = k' =1 so that Algorithm 7 produces a
lower bound that is at least as tight as the one in Dauzére-
Pérés et al. (1998). The contrast between the lower bound
in Dauzére-Pérés & Paulli (1997) and the lower bound in
Dauzére-Pérés et al. (1998) shows the capability of the pro-
cedure in Algorithm 7 to adapt to the most appropriate
trade-off between accuracy and efficiency.

7. Conclusions and perspectives

A framework was proposed in this paper that unifies and gen-
eralizes the contributions of many well-known papers of the last
decades, which heuristically solve the job-shop and flexible job-
shop scheduling problems. First, a parameterized procedure to
evaluate the feasibility of a move was introduced. Besides encom-
passing multiple results from the literature, the procedure also in-
novates by explicitly allowing the management of the trade-off be-
tween the possibility of rejecting feasible moves and the compu-
tational time of the procedure. The second proposed parameter-
ized procedure computes a valid lower bound on the length from

469

a source node to a sink node after performing a move. This lower
bound can be used to quickly evaluate the quality of a neigh-
bor with any regular objective function. Again, by increasing the
value of control parameters, the quality of the lower bound can
be increased at the expense of the computational time of the pro-
cedure. The two parameterized procedures are shown to encom-
pass different contributions from the literature (see Tables 2 and
3), thus ensuring that the numerical results presented for in-
stance in Dauzére-Pérés & Paulli (1997); Mastrolilli & Gambardella
(2000) and Shen et al. (2018) can be obtained with our framework.

Several directions for future research are discussed below. First,
an ongoing work aims to experimentally investigate the applicabil-
ity and generalization of the proposed framework on various clas-
sical and complex job-shop scheduling problems. Second, one way
to make the framework even more general is to consider more
complex moves which change more than one sequence of a single
node or which involve more than one node (see e.g., Kis, 2003).
Third, the efficiency of heuristic approaches can be further im-
proved if bounded incremental algorithms for the evaluation of so-
lutions, such as the one proposed in Katriel et al. (2005), can be
generalized to handle complex moves.

Appendix A. Proofs

Proof of Lemma 1. As the condition cannot hold when L(o, u) =
—oo, it can be used only when L(w,u) >0, ie., there is a
path from o to u. Let us assume there is a path from u
to v, which implies the existence of at least one path from
o to v going through u. Let Pyy= (a,wq,wq,...,uU,...,V) be
a path satisfying the condition [(o, wq,ws,...,u) =L(e,u). By
definition, [(Pyy) = (o, w1, Wy, ..., u)+ I, +1lu,..., V) =L, u) +
Iy +1(u,...,v). As the path from u to v must contain one of the
outgoing edges of u and given the assumption on non-negative
weights, [(u, ..., V) > lp). Using respectively the definition of the
longest path, and the above inequality, L(«, v) > [(Pyy) > L(a, u) +
ly + Loy uy» Which contradicts the condition. O

Proof of Corollary 1. By definition, G’ is obtained by reversing the
arcs of G. Therefore, deciding on the existence or not of a path
from u to v in G is equivalent to deciding on the existence or not of
a path from v to u in G’. As G’ is a DAG with non-negative weights,
Lemma 1 assert the absence of a path from v to u in G if the
condition L' (w, u) < L'(w, V) + Iy + ey is satisfied. Consequently,
the satisfied condition asserts also the absence of path from u to v
inG O

Proof of Property 2. Let d(u,v) denote the length of the short-
est path from the BFS-tree root u to a node v. Let us assume
there is a path P(u,v) such that P(u,v)NCy =% and d(u,v) > k.
If such a path exists, then there is an arc (x,y) € P(u,v) such that
d(u,x) <k-1 and d(u,y) > k + 1. However, as BFS computes the
shortest path from u to all its reachable nodes, the shortest path
from u to y cannot be longer than the shortest path from u to
x followed by the edge (x,y). In other words, d(u,y) < (u,x) +1,
which contradict the inequality d(u,y) > k+1. O

K. Tamssaouet and S. Dauzeére-Péreés

Proof of Lemma 2. Let us assume there is a path from u to v in
G. Given that Cy is a layer and using Property 2, if there is a path
from u to v, then there is a path from y € C, to v. Property 1 en-
sures that L(a,v) > L(o,y) +ly + louryy As Lo,) + 1y + loryy =
Minyee, (L@, X) + L + lpyr(x)), this contradicts the condition. O

Proof of Lemma 3. Property 1 ensures that L(a, u) + Iy + loye) <
mingee, (L(@0, X) + Ix + lyr(x))- Therefore, L(a, v) < minke, (L(e, X) +
be+louexy) is satisfied when Lo, v) <L, u) +lu + loyequy s
true. O

Proof of Theorem 1. Let us assume there is a path from u to v.
The layer property (Property 2) implies the existence of x € C, and
y € Cj, such that there is a path from x to y. Lemma 1 implies that,
in case there is a path from x to y, L(a,y) > Lo, X) + Ik + Loy (x)»
which contradicts the condition. O

Proof of Theorem 2. Let us assume that Algorithm 5 character-
izes a move as feasible (True is returned) and the resulting directed
graph G includes a cycle. Two cases must be studied:

1. A cycle is created by a separate insertion of one arc, and
2. A cycle is created by the simultaneous insertion of two or
more arcs in Z.

If there is a single inserted arc (x,y) € Z such that a cycle is cre-
ated in the graph, then there is a path from y to x in G. This cannot
happen as the path would be detected by Algorithm 4. Now, let us
prove the case where the cycle is created by the simultaneous in-
sertion of two or more arcs in Z. Inserting both (Dq, u) and (u, D,)
would create a cycle only if there is a path from D, to D;. This
contradicts the assumption of the absence of a cycle in G. O

Proof of Theorem 3. The general intuition behind the results of
this theorem is that the longest path length between two nodes
can only be changed if at least one path connecting the two nodes
has been altered.

First implication: If there is no path from u, 0, and D, to x
in G, then none of the paths from « to x is altered. Therefore,
I(a,x) = L(a, X).

Second implication: If there is no path from u and O, to x
in G, then the deletion of (O¢,u) and (u, 0,) and the insertion of
(01, 07) cannot affect any path from « to x. Therefore, a move M
can have an impact on the longest path from « to x only after the
inserting (Dq,u) and (u,D,). Considering the triangle inequality
assumption (i.e., Ip, p, < Ip,u + lu + Iy p,), the longest path length
from « to x can only increase, i.e., L(a, x) > L(a, x).

Third implication: If there is no path from u and D, to x
in G, inserting the arcs (Dy,u) and (u,D,) does not affect the
longest path length from « to x. Therefore, considering the tri-
angle inequality assumption, L(c, x) < L(c, x). If a decrease in the
longest path from o to x occurs then there is a path from O, to
x. Note that, if there is a path from O, to x, a path cannot ex-
ist from u or D, to O, in G, otherwise this contradicts the as-
sumption on the absence of a path from u to x in G. Therefore,
(So2 = L(O{, 02) — f(oz, 02) > 0.

Two situations can be considered here:

1. O, is not part of the longest path from « to x. In this case,
I(a,x) = L(«, x) as the longest path from « to x is not al-
tered. Therefore, given that §p, > 0, the condition I(a,x) =
L(a,x) = L(er, x) — 8o, Is satisfied.

. 0, is part of the longest path from o to x before the
move, which implies that L(c, x) = L(«, 03) + lo, +L(O2, X).
As the longest path between O, to x cannot change,
[(02.%) = L(02,%) = L(er, X) — L(«, 03) —lp, (1). After the
move, O, may no longer be on the longest path, i.e.
L(or,x) = L(, 03) +lo, + L(05.%) (2). By replacing (1) in

470

European Journal of Operational Research 311 (2023) 455-471

(2), L(a.x) = L(a, 03) + L(et, x) — L(cx, 05). Given that 8, =
L(er, 07) — L(ex, 0,), we get L(er,x) > L(at, X) — 8p,. O

Proof of Corollary 2.. Each of the identity is restated and proved
using the hypotheses and results in Theorem 3.

1. Lo, x) = L(a, x) = L(e, x), for each x € B(u): First, given that
G is a DAG before deleting the arcs in D, there could not be
a path from u or O, to any of the predecessors of u, i.e.,
x € B(u). Also, given that M is a feasible move, there could
not be also a path from D, to any of u predecessors. There-
fore, the identity is true according to the first implication in
Theorem 3.

. L(a,07) = L(a, 01): Given that G is a DAG before deleting
the arcs in D, there could not be a path from u or 0, to
0. Therefore, L(xv, 0) is a lower bound on L(«,0;) accord-
ing to the second implication in Theorem 3, i.e., L(«,0;) =
L(er,01) = L(at, 07).

. I there is no path from u and 0, to x in G, then L(o,x) =
L(a, x): Straightforward result from the second implication
in Theorem 3.

. If there is no path from u and D, to x in G, then L(x,x) =
Lo, x) — SOZ: Straightforward result from the third implica-
tion in Theorem 3. O

Supplementary material

Supplementary material associated with this article can be
found, in the online version, at doi:10.1016/j.ejor.2023.05.018.

References

Balas, E., & Vazacopoulos, A. (1998). Guided local search with shifting bottleneck for
job shop scheduling. Management Science, 44(2), 262-275.

Bierwirth, C., & Kuhpfahl, J. (2017). Extended grasp for the job shop scheduling
problem with total weighted tardiness objective. European Journal of Operational
Research, 261(3), 835-848.

Btazewicz,]., Domschke, W., & Pesch, E. (1996). The job shop scheduling problem:
Conventional and new solution techniques. European Journal of Operational Re-
search, 93(1), 1-33.

Bowman, E. H. (1959). The schedule-sequencing problem. Operations Research, 7(5),
621-624.

Braune, R, Zdpfel, G., & Affenzeller, M. (2013). Enhancing local search algorithms for
job shops with min-sum objectives by approximate move evaluation. Journal of
Scheduling, 16(5), 495-518.

Chaudhry, I. A., & Khan, A. A. (2016). A research survey: Review of flexible job shop
scheduling techniques. International Transactions in Operational Research, 23(3),
551-591.

Dasgupta, S., Papadimitriou, C. H., & Vazirani, U. V. (2008). Algorithms. McGraw-Hill
Higher Education New York.

Dauzére-Péres, S., & Paulli, J. (1997). An integrated approach for modeling and solv-
ing the general multiprocessor job-shop scheduling problem using tabu search.
Annals of Operations Research, 70, 281-306.

Dauzére-Pérés, S., Roux, W., & Lasserre, J. (1998). Multi-resource shop schedul-
ing with resource flexibility. European Journal of Operational Research, 107(2),
289-305.

Dell’Amico, M., & Trubian, M. (1993). Applying tabu search to the job-shop schedul-
ing problem. Annals of Operations Research, 41(3), 231-252.

Garcia-Ledn, A., Dauzére-Pérés, S., & Mati, Y. (2015). Minimizing regular criteria in
the flexible job-shop scheduling problem. In 7th multidisciplinary international
scheduling conference: Theory & applications, prague.

Gonzalez, T., & Sahni, S. (1978). Flowshop and jobshop schedules: Complexity and
approximation. Operations Research, 26(1), 36-52.

Graham, R. L., Lawler, E. L., Lenstra, J. K., & Kan, A. R. (1979). Optimization and ap-
proximation in deterministic sequencing and scheduling: A survey. In Annals of
discrete mathematics: vol. 5 (pp. 287-326). Elsevier.

Kasapidis, G. A., Paraskevopoulos, D. C., Repoussis, P. P, & Tarantilis, C. D. (2021).
Flexible job shop scheduling problems with arbitrary precedence graphs. Pro-
duction and Operations Management, 30(11), 4044-4068.

Katriel, I., Michel, L., & Van Hentenryck, P. (2005). Maintaining longest paths incre-
mentally. Constraints, 10(2), 159-183.

Kis, T. (2003). Job-shop scheduling with processing alternatives. European Journal of
Operational Research, 151(2), 307-332.

Klemmt, A., Kutschke,], & Schubert, C. (2017). From dispatching to schedul-
ing: Challenges in integrating a generic optimization platform into semi-
conductor shop floor execution. In 2017 winter simulation conference (WSC)
(pp. 3691-3702). IEEE.

https://doi.org/10.1016/j.ejor.2023.05.018
http://refhub.elsevier.com/S0377-2217(23)00381-8/sbref0001
http://refhub.elsevier.com/S0377-2217(23)00381-8/sbref0002
http://refhub.elsevier.com/S0377-2217(23)00381-8/sbref0003
http://refhub.elsevier.com/S0377-2217(23)00381-8/sbref0004
http://refhub.elsevier.com/S0377-2217(23)00381-8/sbref0005
http://refhub.elsevier.com/S0377-2217(23)00381-8/sbref0006
http://refhub.elsevier.com/S0377-2217(23)00381-8/sbref0007
http://refhub.elsevier.com/S0377-2217(23)00381-8/sbref0008
http://refhub.elsevier.com/S0377-2217(23)00381-8/sbref0009
http://refhub.elsevier.com/S0377-2217(23)00381-8/sbref0010
http://refhub.elsevier.com/S0377-2217(23)00381-8/sbref0011
http://refhub.elsevier.com/S0377-2217(23)00381-8/sbref0012
http://refhub.elsevier.com/S0377-2217(23)00381-8/sbref0013
http://refhub.elsevier.com/S0377-2217(23)00381-8/sbref0014
http://refhub.elsevier.com/S0377-2217(23)00381-8/sbref0015
http://refhub.elsevier.com/S0377-2217(23)00381-8/sbref0016
http://refhub.elsevier.com/S0377-2217(23)00381-8/sbref0017

K. Tamssaouet and S. Dauzeére-Pérés

Knopp, S., Dauzére-Péres, S., & Yugma, C. (2017). A batch-oblivious approach for
complex job-shop scheduling problems. European Journal of Operational Re-
search, 263(1), 50-61.

Korf, R. E. (1985). Depth-first iterative-deepening: An optimal admissible tree
search. Artificial Intelligence, 27(1), 97-1009.

Lamorgese, L, & Mannino, C. (2019). A noncompact formulation for job-shop
scheduling problems in traffic management. Operations Research, 67(6),
1586-1609.

Madraki, G., & Judd, R. P. (2021). Accelerating the calculation of makespan used
in scheduling improvement heuristics. Computers and Operations Research, 130,
105233.

Mastrolilli, M., & Gambardella, L. M. (2000). Effective neighbourhood functions for
the flexible job shop problem. Journal of Scheduling, 3(1), 3-20.

Mati, Y., Dauzére-Pérés, S., & Lahlou, C. (2011). A general approach for optimizing
regular criteria in the job-shop scheduling problem. European Journal of Opera-
tional Research, 212(1), 33-42.

Nowicki, E., & Smutnicki, C. (1996). A fast taboo search algorithm for the job shop
problem. Management Science, 42(6), 797-813.

Nowicki, E., & Smutnicki, C. (2005). An advanced tabu search algorithm for the job
shop problem. Journal of Scheduling, 8(2), 145-159.

Pham, D.-N., & Klinkert, A. (2008). Surgical case scheduling as a generalized
job shop scheduling problem. European Journal of Operational Research, 185(3),
1011-1025.

471

European Journal of Operational Research 311 (2023) 455-471

Pinedo, M. (2016). Scheduling: Theory, algorithms, and systems. Basel: Springer Inter-
national Publishing AG.

Shen, L., Dauzére-Pérés, S., & Neufeld, J. S. (2018). Solving the flexible job shop
scheduling problem with sequence-dependent setup times. European Journal of
Operational Research, 265(2), 503-516.

Sobeyko, 0., & Monch, L. (2016). Heuristic approaches for scheduling jobs in large-s-
cale flexible job shops. Computers and Operations Research, 68, 97-109.

Taillard, E. D. (1994). Parallel taboo search techniques for the job shop scheduling
problem. ORSA Journal on Computing, 6(2), 108-117.

Talbi, E.-G. (2009). Metaheuristics: From design to implementation: vol. 74. John Wiley
& Sons.

Tamssaouet, K., Dauzére-Pérés, S., Knopp, S., Bitar, A., & Yugma, C. (2022). Multiob-
jective optimization for complex flexible job-shop scheduling problems. Euro-
pean Journal of Operational Research, 296(1), 87-100.

Van Laarhoven, P.], Aarts, E. H, & Lenstra, J. K. (1992). Job shop scheduling by
simulated annealing. Operations Research, 40(1), 113-125.

Zhang, C,, Li, P, Guan, Z., & Rao, Y. (2007). A tabu search algorithm with a new
neighborhood structure for the job shop scheduling problem. Computers and Op-
erations Research, 34(11), 3229-3242.

Zoghby, J., Barnes,]. W., & Hasenbein, J.]. (2005). Modeling the reentrant job shop
scheduling problem with setups for metaheuristic searches. European Journal of
Operational Research, 167(2), 336-348.

http://refhub.elsevier.com/S0377-2217(23)00381-8/sbref0018
http://refhub.elsevier.com/S0377-2217(23)00381-8/sbref0019
http://refhub.elsevier.com/S0377-2217(23)00381-8/sbref0020
http://refhub.elsevier.com/S0377-2217(23)00381-8/sbref0021
http://refhub.elsevier.com/S0377-2217(23)00381-8/sbref0022
http://refhub.elsevier.com/S0377-2217(23)00381-8/sbref0023
http://refhub.elsevier.com/S0377-2217(23)00381-8/sbref0024
http://refhub.elsevier.com/S0377-2217(23)00381-8/sbref0025
http://refhub.elsevier.com/S0377-2217(23)00381-8/sbref0026
http://refhub.elsevier.com/S0377-2217(23)00381-8/sbref0027
http://refhub.elsevier.com/S0377-2217(23)00381-8/sbref0028
http://refhub.elsevier.com/S0377-2217(23)00381-8/sbref0029
http://refhub.elsevier.com/S0377-2217(23)00381-8/sbref0030
http://refhub.elsevier.com/S0377-2217(23)00381-8/sbref0031
http://refhub.elsevier.com/S0377-2217(23)00381-8/sbref0032
http://refhub.elsevier.com/S0377-2217(23)00381-8/sbref0033
http://refhub.elsevier.com/S0377-2217(23)00381-8/sbref0034
http://refhub.elsevier.com/S0377-2217(23)00381-8/sbref0035

	A general efficient neighborhood structure framework for the job-shop and flexible job-shop scheduling problems
	1 Introduction
	2 Motivations and contributions
	3 Modeling and notations
	3.1 Solution representation and evaluation
	3.2 Neighborhood structure definition

	4 Parameterized procedure for path detection
	5 Parameterized procedure for feasibility evaluation
	5.1 Procedure for move feasibility evaluation
	5.2 Relationship with results of the literature

	6 Parameterized procedure for quality evaluation
	6.1 Literature review
	6.2 Procedure for move quality evaluation
	6.3 Relationship with results of the literature

	7 Conclusions and perspectives
	Appendix A Proofs
	Supplementary material
	References

