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Abstract

This paper outlines a mathematical model to solve a scheduling problem for a company engineering

and producing propellers to order. Non̊as and Olsen (2005) have previously introduced a Mixed Integer

Programming model for this production setting with the objective of minimizing the total tardiness.

The mathematical model could however not be used to solve realistic sized problem instances, because

of the very large solution time. We propose a new time indexed formulation that can solve most

industrial problem instances in less than 10 minutes. This work is further extended by taking into

account limited storage capacity and by proposing different methods to balance between total tardiness

and maximum tardiness. We illustrate how the solution time and the criteria change for different

setups of the mathematical model and suggest which setup to use for different scenarios. The paper

also discusses how the new model can be extended to include unexpected events such as emergency

orders and unavailable production equipment.

Keywords: Scheduling; Engineer-To-Order; Optimization; Mathematical Modeling

1. Introduction

This paper outlines a mathematical model that is able to solve scheduling problems for a foundry

(an engineer-to-order company) producing propellers for ships. The objective of the company is to

find a production plan that minimizes both the total tardiness and the maximum tardiness, while

taking into account capacity restrictions on labor, tools and space. Since minimizing total tardiness

and minimizing maximum tardiness can be conflicting objectives, we have to find a production plan

with a good balance between these objectives. The problem is previously studied by Non̊as and Olsen
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(2005), where a Mixed Integer Linear Programming (MILP) model and a heuristic solution procedure

are proposed where the main focus is on minimizing total tardiness. The MILP model can however

not be used to solve realistic sized problem instances due to a very large solution time. We here

extend their work by proposing a new and more efficient time indexed formulation, so that medium-

sized scheduling problems on a one-month horizon can be solved within a reasonable time frame.

We further improve their work by studying how to find a production plan with the right balance

between total tardiness and maximum tardiness. The main objective of the company is to minimize

the total number of days the jobs are late, but they would in addition also like to avoid orders that are

delivered too late, because that would make the customer unsatisfied and might impact future demand.

Formally, this translates into keeping the maximum tardiness low, in addition to the main objective.

Different methods are suggested and the results for each method, both in relation to the solution time

and the balance between total tardiness and maximum tardiness, are presented. Suggestions are given

for which alternative to choose based on which market the foundry faces. The new mathematical

model is also extended so that the production plan can take into account the limited storage capacity

at the foundry. Constraints that specify the earliest possible completion date for each job are included

in the model to meet this restriction. The company meets from time to time challenges as how to deal

with orders that cannot be processed as planned due to unavailable equipment and how to schedule

emergency orders in a currently fully booked schedule. We here propose to meet these challenges by

including simple constraints in the new model.

The paper is organized as follows. First, the related literature is reviewed in Section 2. In Section

3, a new and more efficient formulation for the scheduling problem is proposed. We discuss how to

get the right balance between total tardiness and maximum tardiness in Section 4. Numerical results

that illustrate the huge improvement in solution time and how the solution time differs with different

objectives are presented in Section 5. In Section 6, we make suggestions on the variant of the new

model the company should use. In addition, we briefly discuss in Section 7 how to take into account

emergency orders and forced changes in the schedule due to missing equipment. A summary and a

conclusion are given in Section 8.

2. Literature review

Few works have been published that outline mathematical models that can solve scheduling prob-

lems for real world foundry cases. Teixeira et al. (2010) describe the development and solution of binary

integer formulations for production scheduling problems in market-driven foundries. They claim that

the characteristics and constraints involved in a typical production environment at these industries

challenge the formulation of mathematical programming models that can be computationally solved

when considering real applications. Matibevic et al. (2008) develop a new mathematical model for

scheduling foundry operations based on the MRP II (Manufacturing Resource Planning), JIT (Just

2



in Time) and OPT (Optimized Production Technology) concepts. The proposed model is successfully

implemented into the ERP (Enterprise Resource Planning) system of Aluminium Ltd. in Mostar.

The authors do not specify the size of the problem, but they claim that the time required to develope

a production plan using the mathematical model takes 15 minutes, while it takes 60 minutes to do

it manually. Gauri (2009) presents a weighted integer goal programming model for the product-mix

planning, developed in the context of a small scale iron foundry. The implementation of the model

is illustrated using real life data from an Indian foundry. Hans and van de Velde (2011) study the

monthly planning and scheduling of the sand-casting department in a metal foundry. The problem can

be characterized as a single-level multi-item capacitated lot-sizing model with a variety of additional

process-specific constraints. The main objective is to smooth production. They present a hierarchical

solution approach (MILP, shortest path, local improvement) that is by far superior to the quality

of the schedules constructed by an expert production planner with no other tool than a plan board.

They consider problems with around 40–50 jobs, two different product specific production lines, and

a scheduling horizon of 20 days. CPLEX was not able to solve most of their real-life instances to op-

timality, not even with more than several hours of computing time. However, it consistently managed

to find very satisfactory feasible solutions within a practical time limit of 10 minutes. Ballest́ın et al.

(2012) study a multi-objective production scheduling problem for a medium sized foundry delivering

a wide range of castings. To solve this problem, the authors present two methodological approaches, a

sequence of Mixed Integer Linear Programs (MILP) on a rolling horizon and a metaheuristic algorithm

that models the problem as a project scheduling problem. In the first approach, each MILP is solved

for a restricted set of customer orders, to minimize the time required to find the optimal solution.

More specificaly, each MILP aims to determine the set of units to be molded when the furnace is next

tapped (the furnace can be tapped up to 6 times per day). Ballestin et al. (2012) compare the two

solutions approaches for a planning horizon of 10, 15 and 30 days, with different types of workloads.

The average solution times for the MILP approach vary from 37.78 seconds to 29.24 seconds. Non̊as

and Olsen (2005) study a scheduling problem for an engineer-to-order company producing propellers

for ships. The objective is to find a production plan that minimizes total tardiness, taking into account

capacity restriction on labor, tool, and space. The problem presented can be viewed as a scheduling

problem with limited resources used in parallel. The common way to solve this problem is to use

priority rules for scheduling jobs on machines and for assigning auxiliary resources to jobs processed

in machines. Instead of dealing with a combination of different assignment rules, one assignment rule

is considered that determines the “capacity combination” to use at the set of machines. In this paper,

we extend the work of Non̊as and Olsen (2005) by proposing a new and more efficient time indexed

formulation for the scheduling problem.

Time indexed formulations for machine scheduling problems have received a great deal of atten-

tion; mainly due to the strong lower bounds often provided by their linear programming relaxations.
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Dyer and Wolsey (1990) introduce the time-indexed formulation and prove its strength relative to

some other formulations. Sousa and Wolsey (1992) derive some valid inequalities and perform some

computational experiments. It is based on a time discretization of a time horizon M and uses binary

variables xjt to indicate that job j in J is completed at time t (xjt = 1). For a more general study

of time indexed formulations and polyhedral approaches for machine scheduling problems, we refer to

the comprehensive survey of Queyranne and Schulz (1994). Several researchers (van den Akker et al.

(1999), Chen and Powell (1999b), Chen and Powell (1999a), van den Akker et al. (2000), Bigras et al.

(2008)) have used time indexed formulations for scheduling jobs on a single machine or on parallel ma-

chines using column generation and considering weighted sum objective functions for parallel machines

(e.g. weighted sum of completion times and weighted sum of tardy jobs). Ku and Beck (2016) recently

showed that the disjunctive formulation of the job-shop scheduling problem proposed by Manne (1960)

performs better with a standard Mixed Integer Programming solver than time indexed formulations.

However, this is true because as soon as jobs have routes (i.e. multiple operations to perform), prece-

dence constraints are required and those weaken time indexed formulations. Hence, these formulations

are more effective for single machine scheduling problems and parallel machine scheduling problems

such as our problem. Detienne et al. (2011) introduce an integer linear programming model relying

on time indexed variables for a parallel machine scheduling problem with the objective of minimiz-

ing a regular step total cost function. Obeid et al. (2014) are for instance proposing time indexed

formulations to schedule job families on non-identical parallel machines with time constraints that

can solve problem instances with up to 70 jobs. Boland et al. (2016) present a generalization of the

classical time indexed formulation for single machine scheduling problems in which at most two jobs

can be processed in each time period. Deghdak et al. (2016) introduce a time indexed formulation for

a large scheduling problem of evacuation operations after a major disaster. The model is using this

formulation within a matheuristic. Velez et al. (2017) propose and compare different ways of modeling

sequence-dependent changeovers in time indexed formulations when tasks are scheduled on parallel

machines. In a recent paper, Pan and Liang (2017) cover very well the literature on time indexed for-

mulations, and in particular their relaxations, for single machine scheduling problems. They develop a

novel approach to compute optimal dual solutions that are used in a branch-and-bound procedure to

minimize the total weighted tardiness. Finally, Artigues (2017) wrote an interesting note to analyze

the strength of different time indexed formulations for the resource-constrained project scheduling

problem.

In Non̊as and Olsen (2005), the main focus was to minimize total tardiness. However, the company

in consideration wants to minimize both total tardiness and maximum tardiness. A common choice in

the literature when facing different performance indicators is to investigate different MILP formulations

with single objective functions in order to find a good compromise among the different indicators. In

a recent paper, Samà et al. (2017) discuss multiple performance indicators in the aircraft industry.
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They investigate microscopic MILP formulations of the aircraft scheduling problem with different

objective functions and examine the differences between the solutions in terms of various performance

indicators. We here extend the work of Non̊as and Olsen (2005) by proposing a new Mixed Integer

Linear Programming model, relying on time indexed binary variables, and by considering different

types of solution approaches to balance total tardiness and maximum tardiness. Using the new model,

larger problem instances can be solved to optimality and more complex objective functions can be

considered. Modeling the problem with the other classical types of binary variables for scheduling

problems, sequencing variables as in Ku and Beck (2016) for the job-shop scheduling problem or

positional variables as in Dauzère-Pérès (1995) to minimize the number of late jobs on a single machine,

seems impossible because of the characteristics of the problem described in the following section. This

is discussed in more details in the beginning of Section 3.2.

3. Problem formulation

3.1. Description of the problem

The production of propeller blades is engineer- or made-to-order, and no inventory is maintained.

Finished propeller blades are transported by truck or shipped directly to the customer.

Each order consists of a set of identical propeller blades. To produce a propeller blade, a model of

the propeller blade is first manufactured in wood by a CAD/CAM process. The wood model is then

placed in a two-part metal box, and a sand-fixture solution is used to make a mold of the upper and

lower parts of the blade. When the sand has hardened, the model is removed and the upper and lower

parts of the box are combined, defining a space that is filled with nickel-aluminum alloy. The box is

then moved to a place where the alloy or propeller blade can harden. The time it takes for the alloy

to harden depends on the size of the propeller blade, the time increases as the size of the propeller

blade increases. The firm uses five different types of boxes (b = 1, . . . , 5) to produce a propeller blade.

In order to save sand and space, the smallest box that can fit the blade is used. This process is then

repeated for every blade of the job. Each job i in the system is defined by the number of blades (Oi)

to be produced, the box type b that fits the blade, and the due date (DDi) for the job.

Box type (b) Number (Oi) Due Date (DDi)

Job (i) 2 7 8

Table 1. Data for job i.

Due to space limitation and technical product considerations, holding and handling more than one

wood model for each box type is difficult. This implies that all blades for a job have to be produced

successively. Further, at most one job can be processed for each box type on a given day. An exception

occurs when a job does not need all the capacity available on its last production day. A new job of a

similar box type can then use the excess capacity.
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The company also faces constraints on limited availability of work area, labor, tools and machines.

These constraints, in addition to the knowledge of how long a propeller blade needs to harden, are

formulated as a set of possible box combination usages on a day. Table 2 lists the combinations of

which and how many boxes that can be handled on one day (a shift). An example, selecting box

combination 3 in one day means that it is possible to make 1 box of type 1, 3 boxes of type 2, 2 boxes

of type 3 and 0 box of types 4 and 5. A different set of box type combinations is considered if the

company operates with more than one shift per day.

Box combinations
Box type 1 2 3 4 5 6 7 8 9 10

1 7 5 1 2 2 2 0 0 1 0
2 0 0 3 2 0 0 2 1 0 1
3 0 0 2 0 2 2 2 2 0 0
4 0 2 0 1 1 0 1 0 1 1
5 0 0 0 0 0 1 0 1 1 1

Table 2. Capacity restrictions: Allowed combinations of boxes.

The main objective for the company is to find a production schedule that satisfies the production

requirements and minimizes total tardiness while keeping the maximum tardiness low.

Example: A simplified production schedule

To illustrate a possible schedule, the data for five different jobs can be found below, where each

job is defined by its specified box type, the number of propeller blades to produce and its due date.

Job i Box type b Number Oi Due Date DDi

1 1 5 1
2 2 4 3
3 2 4 4
4 3 8 5
5 4 6 5

The schedule below includes for each day, which box combination to use and which jobs to produce

in the selected combination of boxes.

Day Box combination Scheduled jobs
d b=1 b=2 b=3 b=4 b=5 b=1 b=2 b=3 b=4 b=5

1 5 0 0 2 0 1 5
2 0 2 2 1 0 2 4 5
3 0 2 2 1 0 2 4 5
4 0 2 2 1 0 3 4 5
5 0 2 2 1 0 3 4 5

From the schedule above, we can see that at day 3, box combination 7 is used, and jobs 2, 4, and 5

are scheduled with respectively, 2, 2 and 1 propeller blades. Furthermore, note that job 4 is scheduled

at days 2, 3, 4, and 5, with two propeller blades in each day. Note also that only job 3 is tardy in the

schedule.
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3.2. Outline of the new model

The Mixed Integer Linear Programming (MILP) model outlined in Non̊as and Olsen (2005) uses

binary variables βij to indicate if job i is scheduled at day j. In the new model, binary decision

variables are used to indicate the first and last production days of job i:

• sij ∈ {1, 0} - sij is equal to 1 if the processing of job i starts at day j, and 0 otherwise,

• eij ∈ {1, 0} - eij is equal to 1 if the processing of job i ends at day j, and 0 otherwise.

By using a time indexed formulation, the number of variables in the problem is doubled, but

solution times are strongly decreased as shown in the computational experiments. As discussed in

Section 2, time indexed formulations are known to give strong lower bounds for the linear relaxation

of the MILP model (Dyer and Wolsey (1990) and Queyranne and Schulz (1994)). Moreover, because

of the choice of one and only one box combination per day, we do not believe it is possible to model the

problem using sequencing or positional binary variables. More precisely, time indexed binary variables

are required to decide if a box combination is selected in a day, and temporal constraints (see model

below) are required to ensure that only one box combination is allowed per day and that the jobs

performed in a day satisfy the selected box combination.

The full menu of parameters and decision variables for the new formulation is summarized below.

We use uppercase letters for parameters and lowercase letters for variables.

Parameters:
Jb Set of jobs to be produced in box type b,
N Number of jobs,
B Number of box types,
K Number of box combinations,
D Upper bound on the number of days needed to schedule all jobs,
Oi Number of propeller blades requested for job i,
DDi Date when the processing of job i is due to be completed (due date),
COMBb

k Number of boxes of type b in box combination k.

Decision variables:
ci Completion day of job i,
ti Tardiness of job i, ti = max{0, ci −DDi},
xkj Indicator variable that flags if box combination k is used at day j,
sij Indicator variable that flags if job i starts at day j,
eij Indicator variable that flags if job i ends at day j,
δi,j Number of propeller blades of job i scheduled on day j.

The mutually exlusive sets Jb, b = 1, . . . , B partition the set J = {1, . . . , N}. Thus,
⋃B

b=1 J
b =

J, Jb′ ⋂ Jb = ∅ for all b, b′ ∈ {1, . . . , B} where b 6= b′. Further, we assume that the jobs in each set Jb

are ordered according to their due dates. Let us first assume an objective function (1) that minimizes

total tardiness (as in Non̊as and Olsen (2005)). Other objectives will be consider later in this paper.
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The new time indexed based formulation can then be formulated as follows:

min
N∑
i=1

ti (1)

D∑
d=1

sid = 1 i = 1, . . . , N (2)

D∑
d=1

eid = 1 i = 1, . . . , N (3)

d∑
j=1

eij −
d∑

j=1

sij ≤ 0 i = 1, . . . , N, d = 1, . . . , D (4)

δid −
d∑

j=1

sij +
d−1∑
j=1

eij ≥ 0 i = 1, . . . , N, d = 1, . . . , D (5)

d∑
j=1

δij −Oi

d∑
j=1

sij ≤ 0 i = 1, . . . , N, d = 1, . . . , D (6)

D∑
j=d

δij −Oi

D∑
j=d

eij ≤ 0 i = 1, . . . , N, d = 1, . . . , D (7)

D∑
d=1

δid = Oi i = 1, . . . , N (8)

∑
i∈Jb

(
d∑

j=1

sij −
d∑

j=1

eij) ≤ 1 b = 1, . . . , B, d = 1, . . . , D (9)

(
d−1∑
j=1

sij −
d−1∑
j=1

eij) + (
d∑

j=1

sij −
d∑

j=1

eij) + skd ≤ 2 b = 1, . . . , B, d = 2, . . . , D, (10)

∀ i ∈ Jb,∀ k ∈ Jb, k 6= i∑
i∈Jb

(ei,d − si,d) +
∑
i∈Jb

si,d ≤ 2, d = 1, . . . , D (11)

K∑
k=1

xkd = 1 d = 1, . . . , D (12)

∑
i∈Jb

δid −
K∑
k=1

COMBb
kxkd ≤ 0 b = 1, . . . , B, d = 1, . . . , D (13)

ci −
D∑

d=1

eidd = 0 i = 1, . . . , N (14)

ti − ci +DDi ≥ 0 i = 1, . . . , N (15)

sid, eid ∈ {0, 1}, δid, ci, ti ≥ 0 i = 1, . . . , N, d = 1, . . . , D (16)

xkd ∈ {0, 1} k = 1, . . . ,K, d = 1, . . . , D (17)

Constraint (2) ensures that each job should start on one and only one day, and Constraint (3)

that each job should end on one and only one day. Constraint (4) ensures that a job cannot end

before starting. This constraint is not necessary but helps to tighten the formulation to get better

linear programming relaxation bounds. Constraint (5) guarantees that each job must be produced

between its start day and end day. Constraint (6) ensures that no production can be performed before
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a job starts, and Constraint (7) that no production can be performed after a job ends. Constraint (8)

ensures that all propeller blades in each job should be manufactured. Due to limited storage space

and specific production requirements, two jobs of the same box type cannot be scheduled in parallel.

Constraints (9) and (10) ensure that there are no jobs in parallel for the same box type. Constraint

(9) makes sure that at most one job of the same box type can start at or before day d and is completed

after day d. Constraint (10) makes sure that we have no parallel production in a single day, if there

is a job that starts at or before day d − 1 and is completed at or after day d + 1, then there is no

other job of the same box type that can start and be completed at day d. Constraint (11) allows only

two jobs of the same box type to be started and completed in the same day. In addition, Constraint

(11) makes sure that, in the completion date d of job j, only one job extra of the same box type can

be scheduled. Constraint (12) ensures that one and only one combination is chosen in each day.

Constraint (13) guarantees that the number of blades of a given box type produced in a given day has

to be lower than or equal to the available capacity. Constraint (14) determines the completion times,

and Constraint (15) the tardiness.

3.3. Avoid orders scheduled too early

Due to limited storage space both at the foundry and at its customer sites, it may sometimes be

necessary to limit the number of days an order can be produced ahead of its due date. To ensure

that no jobs are scheduled too early, the following constraint can be included in the new time indexed

formulation:

ci ≥ DDi − earlyi, i = 1, . . . , N (18)

where earlyi is the number of days job i can be scheduled ahead of its due date (DDi). Constraint

(18) cannot be included in the mathematical model of Non̊as and Olsen (2005) because the completion

date is accurate only for tardy jobs (jobs with a positive tardiness). The completion date in Non̊as

and Olsen (2005) is only determined by one larger than or equal to expression:

ci ≥ j(βi,j − βi,j+1), j = 1, . . . , D − 1, i = 1, . . . , N.

This is in contrast to the new model, where Constraint (14) forces the completion dates to be accurate.

It is not straightforward to force the completion dates in Non̊as and Olsen (2005) to be accurate by

including a similar constraint.

3.4. Valid inequalities

To reduce the times required to solve the new time indexed formulation, we also propose and test

three different valid inequalities which rely on the following arguments:

1. A job i cannot end before it starts. If a job i is scheduled from or in day j, i.e. sij = 1, then

the job has to be completed at a day k where k ≥ j. We then have:∑d
j=1 eij −

∑d
j=1 sij ≤ 0, i = 1, . . . , N, d = 1, . . . , D (end)
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2. The number of propeller blades scheduled for job i in day j, i ∈ Jb, has to be lower than or

equal to the capacity of box type b at day j. If maxcapb is the maximum allowed capacity for

box-type b, the second valid inequality can be written:

δij ≤ maxcapb, for all jobs i ∈ Jb (box)

where maxcapb = maxk=1,...,KCOMBk
b , b = 1, . . . , B.

3. If mincapb and maxcapb are, respectively, the minimum number and maximum number of boxes

available per day for a job i of box type b, the total number of days necessary to produce job i is

limited from below by Oi/maxcapb days and from above by Oi/mincapb days. This is formalized

in the two following constraints:∑D
d=1 eid −

∑D
d=1 sid ≤ dOi/mincapbe, ∀i ∈ Jb, b = 1, ...B (mm)∑D

d=1 eid −
∑D

d=1 sid ≥ bOi/maxcapbc, ∀i ∈ Jb, b = 1, ...B

where mincapb = mink=1,...,KCOMBk
b and maxcapb = maxk=1,...,KCOMBk

b , b = 1, . . . , B.

4. Multiobjective problem formulation

In addition to minimizing total tardiness, the manufacturer would like to avoid jobs with an

extremely long tardiness, that would make customers unhappy and might impact future demands.

Minimizing total tardiness and minimizing maximum tardiness can be conflicting objectives, so finding

a formulation were both are optimized is not possible. Non̊as and Olsen (2005) suggest to balance the

two goals in their heuristic solution approach by either:

1. Penalizing jobs with a tardiness above an upper limit, or

2. Minimizing the sum of the square of the tardiness.

In the first approach, the foundry has to find a suitable upper limit on the tardiness and an

appropriate penalty for jobs with a tardiness above this limit. There was no discussion, or advice

given, on how to find these values. Here, we suggest to balance the two goals in the new time indexed

formulation by implementing one of the following extensions to the basic formulation.

1) A new constraint that limits the tardiness for each job i:

minimize
∑N

i=1 ti

s.t. ti ≤ kT , i = 1, . . . , N

Constraints (2) to (16),

where T is a parameter specific for the problem instance considered and k is a positive value

larger than or equal to 1 that emphasizes the importance of a low maximum tardiness.

2) A new objective function that minimizes the weighted sum of the total tardiness and maximum

tardiness:
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minimize
∑N

i=1 ti + ktmax

s.t. ti ≤ tmax, i = 1, . . . , N

Constraints (2) to (16),

where tmax is a decision variable and k is a positive parameter that illustrates the importance

of a low maximum tardiness compared to a low total tardiness.

3) Implicitly include both criteria in the objective function and add upper bounds on the individual

tardiness to reduce solution time:

minimize
∑N

i=1 t
2
i

s.t. ti ≤ kT , i = 1, . . . , N

Constraints (2) to (16),

where T is a parameter specific for the problem instance considered and k is a positive value

larger than or equal to 1 that emphasizes the importance of a low maximum tardiness. Note

that most standard solvers, such as IBM ILOG CPLEX which is used in our computational

experiments, can now handle quadratic objective functions if the constraints are linear.

The parameter T = tmax where tmax is determined by solving the problem,

minimize tmax

s.t. ti ≤ tmax, i = 1, . . . , N

Constraints (2) to (16).

In the next section, the performance of the three extensions are analyzed and compared to the

basic case of minimizing total tardiness. Both solution times and values are reported. The values of

k are chosen to illustrate how the solution values change when the different extensions are added to

the basic formulation. Section 6 includes a more detailed discussion on how to find appropriate values

for the parameter k depending on the priorities of the factory. In addition to the three extensions

proposed above, we also briefly discuss the effect of including an upper bound on the tardiness in

Extension 2 (ti ≤ kT , i = 1, . . . , N).

An alternative to Extension 2 could be to minimize the sum of the relative deviations from the

minimum total tardiness and the minimum maximum tardiness. However, that requires solving the

problem both for maximum tardiness and for total tardiness, and would thus increase the solution time

significantly, since finding the minimum total tardiness is time consuming. In addition, the relative

deviation may not be the right measure as minimizing total tardiness and avoiding large maximum

tardiness are the major goals.
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5. Computational experiments and analysis

In this section, we first present the significant reduction in solution time obtained with the new

time indexed formulation without the valid inequalities. Second, we study which valid inequalities to

add to the new time indexed formulation to further improve the solution times. Finally, we present

the performance of the different extensions related to the balance between the total tardiness and

maximum tardiness.

We consider both the case where there are no restrictions on how early a job can be scheduled and

the case where there are limitations on how many days an order can be scheduled ahead of its due

date. For the last case, only results for the new model are reported. As pointed out in Section 3.3, it

is not straightforward to include lower bounds on the completion dates in the old formulation.

We report results for:

• The basic mathematical model where the objective is to minimize total tardiness,

• The extension where the objective is to minimize total tardiness given restrictions on the maxi-

mum tardiness (Extension 1, k = 1 and k = 1.5),

• The extension where the objective is to minimize the sum of the maximum tardiness and total

tardiness (Extension 2, k = 1),

• The extension where the objective is to minimize the sum of the square of the tardiness subject

to an upper bound on the maximum tardiness (Extension 3, k = 1.5).

We consider two different sets of problem instances, both generated from the set of problem

instances in Non̊as and Olsen (2005). The problem instances in the two sets differ in the length of the

time horizon, the usage rate of the capacity, and how balanced the demand is over the different box

types. For the instances in the first problem set (Set 1), we have a time horizon of around 32 days and

a very high usage rate of the available capacity. The number of jobs for an instance varies between 16

and 23, while the number of days varies between 30 and 34. Compared to the first set, the instances

in the second set have a lower usage rate relative to the time horizon, a more unbalanced usage of the

different box types, and a longer time horizon (around 57 days). The size of the problem instances

ranges from 43 to 70 days and from 14 to 30 jobs. To give an idea of which type of problems instances

we consider in the two problem sets, Tables B5 through B8 provide the specific data for one problem

instance from each problem set. Tables B1 through B4 provide an overview of the usage rates for

Sets 1 and 2, and the minimum and maximum order sizes for the different box types. The problem

instances are solved using AMPL (IBM ILOG CPLEX 12.9) on a Dell computer with an Intel Core

i5-8500T CPU @2.10GHz processor. We used a time limit of 2,500 seconds for each instance. “TL”

indicates that optimality is not proven within the time limit of 2,500 seconds. The notation d1.5T e
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means that 1.5T is rounded up to the closest integer. We have 22 problem instances in Set 1 and

16 problem instances in Set 2. When comparing the new and the old mathematical models, we do

not include the lower bound on the completion time (Constraint (18)) in the new model. However,

Constraint (18) is later included when we analyze the effect of limited storage capacity on the solution

time and solution values.

5.1. Improvements in solution times

We here present the average solution times for the two data sets for the basic case of minimizing

total tardiness and for the three different extensions to the basic case. We also present the number

of instances not solved to optimality within the time limit for each extension. The average solution

times are calculated based on the time limit for these instances. The individual solution times are

given in Appendix A. For Extension 1 and Extension 3, the average solution time to find the minimal

maximum value T is not included in the solution time reported in the tables. The average solution

time to find T is however given explicitly in the text above each table.

Note that, since they are calculated based on the time limit for one or more instances, the average

solution times are lower bounds of the real average solution times which take the real solution times

of all instances into account..

5.1.1. Instances from Set 1

The average solution times for the instances in Set 1 are given for the new and the old models in

the first two rows in Table 3. The minimum and maximum solution times for the instances are given

in the next two rows, while the two last rows show the number of problems not solved to optimality

for each extension. Note that the average solution times for the new model are significantly lower than

the average solution times for the old model. The difference in average solution times is particularly

large for the Basic case and for Extension 2 (i.e., for the formulations with no bounds on the individual

tardiness). For Extension 2, the old model only solves 4 out of 22 instances to optimality within the

time limit, while the new model solves 21 of 22 instances to optimality. The average solution time to

determine T is 191 seconds with the new formulation and 236 seconds with the old formulation, see

Appendix A (Table A8) for the individual solution times.

Basic case Extension 1 k=1, k=1.5 Extension 2 Extension 3

MILP min
∑
ti min

∑
ti min

∑
ti min

∑
ti + tmax min

∑
t2i

model ti ≤ T ti ≤ d1.5T e ti ≤ tmax ti ≤ d1.5T e
Aver. time New 398 160 213 474 2073

Old 2143 238 659 2286 2314
Min, Max New [32, TL] [2, 2495] [5, TL] [69, TL] [2, TL]

Old [27, TL] [1, TL] [0, TL] [93, TL] [0, TL]
Not solved New 1 0 1 1 16
within TL Old 15 1 3 18 20

Table 3. Overview of solution times for Set 1.
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We observe further that, for both models, the average solution time decreases from the Basic

case to Extension 1 (k=1, k=1.5) as the upper bounds on (ti, i, . . . , N) get tighter, as expected

due to a smaller feasible region. However, for the individual problem instances, we note that the

solution times vary depending on how hard it is to get a schedule that satisfies the requirement

on the maximum tardiness (see Appendix A for individual solution times). The average solution

time significantly increases from Extension 1 (k=1.5), which minimizes a linear objective function,

to Extension 3 (k=1.5), where a quadratic objective function is minimized, which is also expected

due to a more complex objective function. Extending the Basic case by using both criteria in

the objective function (Extension 2) did not result in any significant change in the average solution

time. If we also limit the tardiness in Extension 2, the average solution time for the new model is

reduced to 236 seconds by adding the constraint (ti ≤ d1.5T e, i = 1, . . . , N) and to 350 seconds when

adding a less tight constraint (ti ≤ 2T, i = 1, . . . , N). However, when adding the strongest constraint

(ti ≤ d1.5T e, i = 1, . . . , N) to Extension 2, the upper bound on the tardiness becomes binding in

three instances. When the constraint is less tight, (ti ≤ 2T, i = 1, . . . , N), the upper bound becomes

binding for at least one job in one instance. With a larger weight k = 2 on the maximum tardiness

in Extension 2 (min
∑N

i=1 ti + 2tmax), the average solution time increases from 474 to 609 seconds.

One instance is not solved to optimality within the time limit. If we further restrict the maximum

tardiness to be lower than d1.5T e, the average solution time is reduced to 262. No upper bounds are

binding. The individual solutions and the solution times can be found in Appendix A, see Tables A1,

A4 and A7. Adding the valid inequalities proposed in Section 3.4 to the Basic case, and the extensions

to the Basic case, do not significant impact the average solution times for Set 1, see Section 5.4 for

more details.

5.1.2. Instances from Set 2

The average solution times for the problem instances from Set 2 can be found in the first two rows

of Table 4. The next two rows show the minimum and maximum solution times, while the two last

rows show the number of instances not solved to optimality within the time limit. We see also here

that the new time indexed formulation is superior compared to the formulation proposed by Non̊as and

Olsen (2005) for the Basic case, Extension 1 and Extension 2. For Extension 3, the old formulation

performs best. However, if the valid inequality (end) is added, the new time indexed formulation

also performs best for Extension 3, see Section 5.4. The average solution time to optimize T is

respectively 114 seconds for the new formulation and 303 seconds for the old formulation. Using the

old formulation, one instance is not solved to optimality within the time limit.
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Basic case Extension 1 k=1, k=1.5 Extension 2 Extension 3

MILP min
∑
ti min

∑
ti min

∑
ti min

∑
ti + tmax min

∑
t2i

model ti ≤ T ti ≤ d1.5T e ti ≤ tmax ti ≤ d1.5T e
Aver. time New 366 44 77 694 1551

Old 1218 159 429 1473 1478
Min, Max New [9, TL] [3, 366] [3, 410] [9, TL] [4, TL]

Old [4, TL] [0, 842] [0, TL] [5, TL] [1, TL]
Not solved New 2 0 0 2 9
within TL Old 5 0 2 7 7

Table 4. Overview of solution times for Set 2.

For Set 2, as for Set 1, the average solution time for the new formulation is significantly reduced

from the Basic case to the case where we have added upper bounds on how tardy a job can be

(Extension 1), and is significantly increased from Extension 1 (k=1.5) to the case with a quadratic

objective function (Extension 3, k=1.5). For Extension 1, note that the average solution time

decreases as the upper bound on the maximum tardiness decreases. For the individual problem

instances, however, we also observe that the solution times vary depending on how hard it is to get

a schedule that satisfies the requirement on the maximum tardiness (see Appendix A for individual

solution times). If, in Extension 2, the tardiness is constrained to be lower than or equal to 1.5 times

the minimal maximum tardiness, the average solution time for the new formulation decreases from 694

to 308 seconds, the upper bound on ti, i = 1, . . . , N , is not binding for any of the problem instances.

All instances are then solved to optimality within the time limit. If we have a larger weight on the

maximum tardiness in Extension 2 (i.e, min
∑N

i=1 ti + 2tmax), the average solution time increases from

694 to 718 seconds. However, if the constraint ti ≤ d1.5T e, ∀i, is also added, the average solution time

is reduced to 316 with only one instance not solved to optimality within the time limit. No upper

bounds are binding. Individual solutions and solution times can be found in Appendix A.

If the valid inequality (end) is added to Extension 3, and the valid inequality (mm) is added to the

Basic case and Extension 2, the average solution times for instances in Set 2 are significantly reduced.

For the Basic case and Extension 2, all instances in Set 2 are solved to optimality within the time

limit. For Extension 3, three more instances are solved to optimality within the time limit, i.e. one

more instance than with the old model, see Section 5.4 and Appendix C for the individual results.

5.2. Performance of the different extensions

We now present the performance of the different extensions to our model with regards to the

balance between total tardiness and maximum tardiness. We consider instances from Set 1 and Set 2

and report how much the total tardiness and maximum tardiness change if we implement one of the

extensions instead of solving the basic model. An instance is marked with “TL” if optimality was not

reached (or proved) within the time limit for either the basic model or the considered extension. An

instance is marked with a “*” if there are multiple solutions to the basic model. The reduction in

tmax may then be larger than or lower than the solution reported in the tables.
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The actual values of the maximum tardiness and total tardiness are given in Appendix A.

5.2.1. Instances from Set 1

We first present results in Tables 5-8 that indicate how much the solution values change for problem

instances in Set 1. The first row in the tables gives the reduction on the maximal tardiness, while the

second row gives the increase of the total tardiness. If we extend the basic formulation (Basic case) to

only accept solutions with tardiness lower than or equal to its minimal maximal value (Extension 1,

k = 1), we see from Table 5 that the increase in total tardiness varies a lot, from the instances where

the increase in total tardiness is significant relative to the decrease in maximum tardiness (instances

4, 7, 8, 11, 14), to the instances where the increase in total tardiness is minor relative to the decrease

in maximum tardiness (instances 19, 20). The increase in total tardiness is huge for instance 14. A

large order is here placed in front of many small orders with tight due dates in order to satisfy the

tight upper bound on the individual tardiness.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

tmax -16 -2 -7 -4 -7 -1 -4 -2 -6 0 -2 -2 -7 -13 -1* TL -2 -2 -4 -6 -2 -4∑
ti 12 2 6 10 8 2 8 10 7 0 6 2 5 40 0* TL 1 4 1 2 1 4

Table 5. Changes in maximum tardiness and total tardiness, min
∑N

i=1 ti s.t. ti ≤ T , i = 1, . . . , N .

If the restriction on the maximum tardiness is less tight (Extension 1, k = 1.5), the deviation from

the basic case will be lower both for the maximum tardiness and the total tardiness (see Table 6). In

particular, the increase in total tardiness for instance 14 is lower due to a looser upper bound on the

individual tardiness.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

tmax -13 -1* -4 -1 -3 0 0 0 -3 0 0 -1* -6 -9 0 TL 0 0 -3 -6 0 -3*∑
ti 3 0* 1 2 2 0 0 0 5 0 0 0* 1 20 0 TL 0 0 1 2 0 0*

Table 6. Changes in maximum tardiness and total tardiness, min
∑N

i=1 ti, s.t. ti ≤ d1.5T e,

i = 1, . . . , N .

If the basic formulation is extended to minimize the sum of the total tardiness and maximum

tardiness (Extension 2, k = 1), we get a good balance between both criteria in general, and we always

get the lowest maximum tardiness for equal value of the total tardiness (see Table 7). If we compare

the results from Table 7 (min
∑N

i=1 ti + tmax), with the results from Table 6 (min
∑N

i=1 ti, ti ≤ d1.5T e),

we see that we get a larger reduction in maximum tardiness for the same increase in total tardiness

for the same instances (5 ,15, 19). For instance 14, note that we get the same production plan as for

the basic case (see Appendix A for the real values).
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

tmax -13 -1* -4 0 -6 0 0 0 0 0 -1 -1 -6 0 -1* TL -2 -1* -4 -6 -2 -3*∑
ti 3 0* 1 0 2 0 0 0 0 0 1 0 1 0 0* TL 1 0* 1 2 1 0*

Table 7. Changes in maximum tardiness and total tardiness, min
∑N

i=1 ti + tmax.

If the basic formulation is extended by considering a quadratic objective function with upper

bounds on the tardiness (Extension 3, k = 1.5), we may get a relatively large increase of the total

tardiness for the reduction of the maximum tardiness (see Table 8, instances 7 and 9). The reason is

that the quadratic objective function focuses on reducing the tardiness for all jobs with a relatively

large tardiness at the expense of a larger total tardiness. The quadratic objective may also result in

solutions with a really low maximum tardiness, for instance in Set 1, tmax = T for four instances (3,

9, 10, 20).

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

tmax TL TL -7 TL -6 TL -2 0 -6 0 TL TL TL TL TL TL TL TL -3 -6 TL TL∑
ti TL TL 9 TL 2 TL 9 0 10 0 TL TL TL TL TL TL TL TL 1 2 TL TL

Table 8. Changes in maximum tardiness and total tardiness, min
∑N

i=1 t
2
i , ti ≤ d1.5T e, i = 1, . . . , N .

The performance of the different extensions can be summarized very well by looking at instance 1.

If the basic model is extended to include tight upper bounds on the maximum tardiness (Extension

1, ti ≤ T ) we get a large decrease in maximum tardiness and a corresponding large increase in

total tardiness. When the upper bound on the tardiness is less tight (Extension 1, ti ≤ d1.5T e),

the changes in the maximum tardiness and the total tardiness get smaller. By taking into account

both the maximum tardiness and total tardiness in the objective function (Extension 2, k=1), we get

a solution where the maximum tardiness is reduced compared to (Extension 1, ti ≤ d1.5T e) while

the total tardiness is unchanged. And at last, using a quadratic objective function (Extension 3,

ti ≤ d1.5T e), we get a maximum tardiness that is equal to its minimal value and a total tardiness

that is larger than the total tardiness for all the other extensions.

5.2.2. Instances from Set 2

We now look at how the total tardiness and maximum tardiness change when we consider problem

instances from Set 2, that is for problem instances that generate schedules with relatively few tardy

jobs and with spare capacity.

Table 9 presents how much the total tardiness increases from the Basic case when the maximum

tardiness is constrained by its minimum value (Extension 1, k = 1). Note that the increase in total

tardiness relative to the decrease in maximum tardiness varies from a relatively small increase in total

tardiness (instance 8), to a relatively large increase in total tardiness (instance 14). The increase of
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the total tardiness is largest for instance 14. A large order is here scheduled before three small orders

with tight due dates in order to satisfy the tight upper bound on the individual tardiness.

For seven of the instances, we obtain the same total tardiness as for the basic case. This is due to

excess capacity in the optimal schedules.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

tmax 0 0 -12 -1 0 0 -4 -8 -3 -3 0 -3 0 -4 -3 -3*∑
ti 0 0 13 3 0 0 4 2 4 19 0 9 0 19 2 0*

Table 9. Changes in maximum tardiness and total tardiness, min
∑N

i=1 ti, ti ≤ T , i = 1, . . . , N .

If we accept a larger value of maximum tardiness (Extension 1, k = 1.5), both the reduction in

maximum tardiness and the increase in total tardiness can be smaller (instances 3, 9, 10). Note from

Table 10 that, for most of the instances, the same solution as for the basic case is obtained. This is

mainly due to a small number of tardy jobs and more capacity than needed for the current set of jobs.

The upper bound on the maximum tardiness is only binding for a few of the instances.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

tmax 0 0 -9 0 0 0 0 0 -2* -1* 0 0 0 0 0 -3*∑
ti 0 0 4 0 0 0 0 0 0* 0* 0 0 0 0 0 0*

Table 10. Changes in maximum tardiness and total tardiness, min
∑N

i=1 ti, ti ≤ d1.5T e, i = 1, . . . , N .

If the basic case is extended to minimize the sum of the total tardiness and maximum tardiness

(Extension 2), we will in general get a lower maximum tardiness at the expence of an increased total

tardiness. However, note that, from Table 11, most of the instances terminate with the same total

tardiness and maximum tardiness as for the basic case of minimizing total tardiness. The exceptions

are Instances 3, 7 and 8. Instances 9, 10, 15 and 16 terminate with the same total tardiness but

with a lower maximum tardiness (multiple optimal solutions in the basic case). As for Extension

1 (k = 1.5), the results are the same as the ones obtained in the Basic case, mainly due to a small

number of tardy jobs and more capacity than needed for the current set of jobs. Note that Extension

2 (min
∑N

i=1 ti + tmax) will, in contrast to Extension 1 (min
∑N

i=1 ti, ti ≤ kT , i = 1, . . . , N),

always terminate with the lowest maximum tardiness for a given total tardiness, since the maximum

tardiness is included in the objective function.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

tmax 0 0 -9 0 0 0 -4 -7 -2* -1* 0 0 0 0 -2* -3*∑
ti 0 0 4 0 0 0 4 1 0* 0* 0 0 0 0 0* 0*

Table 11. Changes in maximum tardiness and total tardiness, min
∑N

i=1 ti + tmax.

If the Basic case is extended to include a quadratic objective function (Extension 2, k = 1.5), note

that, again, the same solution as for the Basic case is obtained for most of the instances, see Table

12. For some instances, there is a small increase of the total tardiness for a larger decrease of the

maximum tardiness. The upper bound on the tardiness is not binding for any of the instances.
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

tmax 0 0 TL 0 0 TL -1 TL -2 TL 0 0 0 TL -3 -3∑
ti 0 0 TL 1 0 TL 1 TL 0 TL 0 3 0 TL 2 0

Table 12. Changes in maximum tardiness and total tardiness, min
∑N

i=1 t
2
i , ti ≤ d1.5T e.

For most of the problem instances in Set 2, the values of the total tardiness and maximum tardiness

are approximately equal regardless of which extension is used. This is mainly due to a small number

of tardy jobs and more capacity than needed for the current set of jobs.

5.3. Avoid jobs scheduled too early

In this section, we analyze how the solution time and the solution quality (total tardiness and

maximum tardiness) change when we include restrictions on how many days a job can be scheduled

ahead of its due date. We only report results for the new mathematical model. As discussed earlier,

the completion dates in the old formulation are only accurate for tardy jobs, and Constraint (18)

cannot easily be included in the old formulation. Since the effect of adding restrictions on completion

dates has a larger impact on the solution values for instances with tight schedules, we present data

only for the first problem set (Set 1). The average solution times when we include Constraint (18)

with parameter earlyi = 3, i = 1, . . . , 22, in the Basic case and the three suggested extensions are

presented in the first row in Table 13. In the second row, the minimum and maximum solution times

for the instances are given, while the last row shows the number of instances not solved to optimality

within the time limit.

Basic case Extension 1 k=1, k=1.5 Extension 2 Extension 3

MILP min
∑
ti min

∑
ti min

∑
ti min

∑
ti+tmax min

∑
t2i

model ti ≤ T ti ≤ d1.5T e ti ≤ tmax ti ≤ d1.5T e
Avg. solution time 124 13 32 227 663

Min, Max [4, 1529] [1, 83] [2, 297] [2, TL] [2, TL]
Not solved within TL 0 0 0 1 3

Table 13. Average solution times for the instances in Set 1, ci ≥ DDi − 3, i = 1, . . . , 22.

Note that when constraint ci ≥ DDi − 3,∀i, is added, the average solution times decrease for all

the extensions and more instances are solved to optimality within the time limit (see Appendix A

for individual solution times). This is expected due to a smaller feasible region. Note also that,

when Constraint ci ≥ DDi − 3, ∀i, is added, the total tardiness increases for all but three instances

(Instances 11 and 22, Extension 1 (k=1), and Instance 7, Extension 3), and the maximum tardiness

increases for all but seven instances (Instances 1 and 9, Extension 2, and Instances 5, 9, 13, 19 and 22,

Base case), see Appendix A, Table A11. The maximum tardiness may decrease since the opportunity

to push small jobs in front of larger jobs to minimize total tardiness is reduced. The change in total

tardiness and maximum tardiness when constraint ci ≥ DDi − 3,∀i, is added to (Extension 2, k = 1)

is given in Table 14. We see that the total tardiness increases for all instances, while the change in
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the maximum tardiness is negative for some instances and positive for other instances. For the real

values of the maximal and total tardiness, see the 6th column in Tables A4 and A5.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

tmax -2 1 1 1 0 0 0 0 -6 0 0 3 1 1 1 TL 1 4 0 1 3 0∑
ti 5 3 4 2 4 5 1 1 8 0 2 8 1 9 3 TL 5 15 1 2 8 3

Table 14: Changes in the solution values. Set 1, Extension 2, adding ci ≥ DDi − 3, ∀i.

The performance of the three extensions relative to each other follows the same pattern as for the

case where no restrictions on completion dates are considered. In Appendix A, we present how much

the total tardiness and maximum tardiness change from the basic case for each of the three extensions

when constraint ci ≥ DDi − 3,∀i, is added.

If the valid inequality (end) is added to Extension 3, and the valid inequality (mm) is added to

the Basic case and Extension 2, the average solution times for the instances in Set 1 are significantly

reduced. For Extension 2, all the instances are solved to optimality within the time limit and, for

Extension 3, one additional instance is solved to optimality within the time limit, see Section 5.4 and

Appendix C for individual results.

5.4. Solution times with valid inequalities

This section presents and discusses, for both data sets, the average solution times when the valid

inequalities presented in Section 3.4 are added to the Basic case and the three extensions to the Basic

case. The minimum and maximum solution times are also presented, and the number of instances not

solved to optimality within the time limit. The average solution times are again calculated based on

the time limit for these instances.

Tables 15 and 16 show the average solution times for the instances in Set 1, for respectively the

case without and the case with constraints on how early a job can be scheduled. Table 17 shows

the average solution times for the instances in Set 2. The individual solution times can be found in

Appendix C. The first three rows in each table present the average solution times for the specified

data set when the valid inequality specified in the second column is added to the Basic case and the

three extensions to the Basic case. The next three rows specify the minimum and maximum solution

times. The last three rows give the number of instances not solved to optimality within the time limit

for each valid inequality.
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Basic case Extension 1 k=1, k=1.5 Extension 2 Extension 3

MILP min
∑
ti min

∑
ti min

∑
ti min

∑
ti + tmax min

∑
t2i

add on ti ≤ T ti ≤ d1.5T e ti ≤ tmax ti ≤ d1.5T e
Aver. Time (end) 416 193 202 584 2014

(box) 377 158 218 482 2073
(mm) 413 87 210 488 2128

Min, Max (end) [54, TL] [2, TL] [3, TL] [65, TL] [2, TL]
(box) [33, TL] [2, 2360] [1, TL] [69, TL] [2, TL]
(mm) [14, TL] [2, 823] [2, TL] [61, TL] [2, TL]

Not solved (end) 1 1 1 2 16
within TL (box) 1 0 1 1 16

(mm) 1 0 1 1 18

Table 15. Overview of solution times for Set 1, when including valid inequalities

Basic case Extension 1 k=1, k=1.5 Extension 2 Extension 3

MILP min
∑
ti min

∑
ti min

∑
ti min

∑
ti + tmax min

∑
t2i

add on ti ≤ T ti ≤ d1.5T e ti ≤ tmax ti ≤ d1.5T e
Aver. Time (end) 171 11 35 214 668

(box) 126 13 33 227 664
(mm) 68 10 30 154 652

Min, Max (end) [3, 2372] [1, 55] [2, 311] [3, TL] [2, TL]
(box) [5, 1539] [1, 82] [2, 297] [2, TL] [2, TL]
(mm) [5, 589] [1, 39] [2, 206] [5, 1658] [1, TL]

Not solved (end) 0 0 0 1 2
within TL (box) 0 0 0 1 3

(mm) 0 0 0 0 2

Table 16. Overview of solution times for Set 1, when including ci ≥ DDi− 3, ∀i and valid inequalities

Basic case Extension 1 k=1, k=1.5 Extension 2 Extension 3

MILP min
∑
ti min

∑
ti min

∑
ti min

∑
ti + tmax min

∑
t2i

add on ti ≤ T ti ≤ d1.5T e ti ≤ tmax ti ≤ d1.5T e
Aver. Time (end) 612 38 107 714 1268

(box) 615 31 77 715 1554
(mm) 259 46 72 313 1665

Min, Max (end) [7, TL] [4, 176] [4, 543 ] [8, TL] [5, TL]
(box) [8, TL] [4, 135] [4, 470 ] [9, TL] [3, TL]
(mm) [9, 898] [5, 281] [4, 300 ] [7, 1472] [4, TL]

Not solved (end) 2 0 0 4 6
within TL (box) 2 0 0 3 9

(mm) 0 0 0 0 10

Table 17. Overview of solution times for Set 2, when including valid inequalities.

The results in Tables 15, 16 and 17 suggest to add the valid inequality (end) to Extension 3 and

the valid inequality (mm) to both the Basic case and to Extension 2. We see from the three tables

that adding the valid inequality (end) to Extension 3 have, in general, a positive effect on the average

solution times for both Sets 1 and 2. For Set 2, the decrease of the average solution time is significant

when the valid inequality (end) is added to Extension 3, from 1551 seconds to 1268 seconds. Moreover,

three additional instances are solved to optimality within the time limit. For Set 1, adding the valid
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inequality (end) to Extension 3 (without and with ci ≥ DDi − 3, ∀i) have no impact on the average

solution time, but one additional instance is solved to optimality within the time limit for the case

with bounds on how early a job can be scheduled (i.e., ci ≥ DDi − 3, ∀i).

We see further that adding the valid inequality (mm) to the Base case and Extension 2 have a

positive effect on the average solution times for both Sets 1 and 2. For Set 2, the reduction of the

average solution time is significant and all instances are also solved to optimality within the time

limit. The same apply for Set 1 for the case with bounds on how early a job can be scheduled ( i.e.,

ci ≥ DDi − 3,∀i). Adding the valid inequality (mm) to the Basic case and Extension 2 results in

significantly reduced average solution times, and one additional instance is also solved to optimality

within the time limit for Extension 2. For Set 1 when there is no bound on how early a job can be

scheduled, adding the inequality (mm) to the Base case and Extension 2 have no effect on the average

solution times.

Except for the cases discussed above, the valid inequalities (end), (box) and (mm) have a minor

or negative effect on the average solution times for the new time indexed formulations and for both

data sets.

6. Suggested scheduling procedure

We have outlined a new time indexed formulation that can solve an industrial scheduling problem

within a reasonable time frame. From the numerical studies, we see that the solution time for the

new formulation is significantly lower than the solution time for an older formulation. When limited

storage capacity is included (restrictions on how many days an order can be completed before its due

date) the solution time for the new model decreases further. The huge improvement in solution time

makes it possible to solve problem instances with up to around 30 days and around 23 individual jobs.

Three different variants of the model are proposed to find a production plan with a good balance

between the total tardiness and maximum tardiness in a reasonable time. Extension 1 balances the

maximum tardiness and total tardiness by imposing an upper bound on the tardiness. A large upper

bound focuses on minimizing the total tardiness, while a smaller upper bound focuses on keeping a

small maximum tardiness. Extension 2 balances the maximum tardiness and the total tardiness by

minimizing a weighted sum of both criteria. The lower the weight on the maximum tardiness, the

higher the total tardiness and the larger the maximum tardiness. Extension 3 balances the maximum

tardiness and total tardiness by minimizing the sum of the square of the tardiness. The quadratic

objective function reduces the tardiness for all jobs with a relatively large tardiness at the expense of

a larger total tardiness.

For Extension 1, we propose that ti ≤ kT where T is equal to {min tmax, s.t. ti ≤ tmax}. To find

the appropriate value of k, the foundry should consider the value of T , how important it is to reduce

the total tardiness from Extension 1 (k = 1), and the maximum delay the customer can accept in the
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current market. For instances where we observe small values for T and for Extension 1 (k = 1), the

foundry can iteratively increase k from 1 until a reasonable balance is achieved. An alternative is to

solve Extension 1 for k = 1 and k = 1.5 and, based on the results, decide on a new k. To find the

right weight k for the maximum tardiness in Extension 2 (min
∑N

i=1 ti + kTmax) the foundry could

take into account the value of T , the total tardiness from Extension 1 (k = 1), and what increase

in maximum tardiness the foundry is ready to accept for a unit decrease in total tardiness. If it is

appropriate that a one unit increase in the maximal tardiness is offset by at least a one unit decrease

in the total tardiness, the weight of the maximum tardiness should at least be equal to 1. If a larger

decrease in total tardiness is expected, the weight should be larger than 1. For Extension 3, we

propose that the upper bound on the tardiness is based on the parameter T (ti ≤ kT ). The upper

bound on the tardiness in Extension 3 should be as tight as possible to reduce solution times, but

large enough to avoid that the constraint becomes binding. If the main focus of the foundry is to

minimize the total tardiness while keeping the tardiness below a well defined upper limit, we suggest

that the foundry uses Extension 1 (min
∑N

i=1 ti, s.t. ti ≤ kT ) to find a suitable production schedule.

If it is difficult to find a well defined upper limit and if it is important not only to minimize the total

tardiness but also the tardiness for the most tardy job, we suggest that the foundry uses Extension 2

(min
∑N

i=1 ti +ktmax). A higher relative weight on the maximum tardiness will specify the importance

of keeping the maximum tardiness small. To reduce solution times, the tardiness should also here be

constrained by an upper bound (ti ≤ 2T ). If the main focus of the company is to reduce the tardiness

for the most tardy jobs, we suggest that the company uses Extension 3 (min
∑N

i=1 t
2
i , s.t. ti ≤ kT ),

where k is chosen based on T in order to reduce solution times. This approach should be used when

the company is more concerned about the duration of the tardiness than the total tardiness. That is

when they would like to avoid very tardy jobs and prefer a larger total tardiness generated from more

jobs but less tardy jobs.

From the numerical examples, we see that we generally find a good balance between the maximum

tardiness and the total tardiness by letting k = 1.5 in Extension 1 and Extension 3, and by letting

k = 1 in Extension 2. The schedules obtained with Extension 1 (k = 1.5) and Extension 2 (k = 1) will,

compared to the schedules obtained with Extension 1 (k = 1) and Extension 3 (k = 1.5), have fewer

tardy jobs but with a larger tardiness. Compared to the other alternatives, the schedules obtained

with Extension 3 (k = 1.5) will have more jobs that are tardy, but fewer jobs with a large tardiness.

To find the right balance between the maximum tardiness and the total tardiness, we recommend

that the company compares the production schedule from Extension 1 (k = 1 and k = 1.5) and

Extension 2 (s.t. ti ≤ 2T ) and implement the schedule which best fits the market conditions or

customer preferences. The schedule from Extension 3 (k = 1.5), should not be considered due to its

large solution time, and because the proposed schedule is often similar to the schedule generated for

one of the other extensions. An exception would be if there is an instance where the most important
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objective is to reduce the number of jobs with a large tardiness.

Based on the different characteristics of the schedules obtained with Extension 1 (k = 1 and

k = 1.5) and Extension 2 (k = 1), we recommend the following solution procedure for the foundry.

1. Solve the basic model with the objective of finding the parameter T (T = min tmax, st ti ≤ tmax),

2. Solve Extension 1 (k = 1) to find the production schedule with the minimum total tardiness

considering that ti ≤ T ,

3. Solve Extension 1 (k = 1.5) and Extension 2 (s.t. ti ≤ 2T ) to find alternative production

schedules,

4. Compare the production schedules from Step 2 and Step 3 and implement the production sched-

ule that best fits the current market conditions or customer needs.

The willingness of the customers to wait will in general change according to the market conditions,

i.e. it will be higher when the capacity in the market is lower than the market demand.

We propose to use a rolling horizon process where the solution procedure is run once a week taking

into account a planning horizon of four weeks. A detailed scheduling horizon of four weeks is suitable

due to the uncertainty the company faces, such as emergency orders and the update of due dates.

For Set 1, with a high capacity usage rate and many late jobs, the new formulation can solve

scheduling problems on a horizon of about one month. For Set 2, where the usage rate is lower than

in Set 1, the new formulation can solve scheduling problems on a longer time horizon. The maximum

time horizon in which the new formulation can be solved, within a reasonable computational time,

depends on the number and types of jobs to be scheduled, the distribution of due dates and the

capacity usage rate. In general, the solution time increases with the number of days, the number of

jobs, the number of box types that are used, the usage rate and the number of tardy jobs.

7. Operational considerations

For the jobs scheduled to start in the first week, job specific materials and equipment have to be

available at the right time for the jobs to start. The foundry will from time to time meet challenges

as how to deal with orders that cannot be processed due to unavailable equipment and scheduling of

emergency orders in a currently fully booked schedule. The first problem can be solved by adding

a new constraint to the mathematical model that specifies the earliest start date for a job. The

second problem can be solved by setting a high priority and an early due date for the order. The

emergency order should be scheduled at the first available day given the set of orders currently being

processed and the set of resources (i.e. combinations) currently available, since the foundry does not

allow interruptions in the current processing of the orders. In the following subsections, we extend the

mathematical formulation to take these issues into account. First, we allow for jobs to have different

weights, then we make it possible to specify an earliest starting date of a job.
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7.1. Take into account jobs with different weights

Both in the short term and more long term, the foundry would like to have the opportunity to

specify that it is more important for some jobs to be scheduled according to their due dates than

others. To specify that some jobs are more important than others, as it usually done in scheduling

problems, job specific weights can be added to the tardiness in the objective function:

minimize
∑N

i=1witi (19)

The higher the value of wi, the higher the priority of the order. If the company wants to insert an

express job in the production plan, the priority of the job should be set very high.

7.2. Postpone the start date of a job

To postpone production of an order, the start date of the job can be ensured using the following

constraint:

si ≥ ri, i = 1, . . . , N (20)

where ri specifies the point in time (usually called release dates in scheduling problems) where drawings

and other equipment are available to process job i.

8. Conclusions

We proposed a novel time indexed formulation for the scheduling problem of a foundry producing

propellers. The objective for the foundry is to find a production plan that minimizes both total

tardiness and maximum tardiness, while taking into account capacity restrictions on labor, tools and

space. Non̊as and Olsen (2005) have previously proposed a mathematical model for this problem

considering the objective of minimizing total tardiness. The formulation could, however, not solve

realistic sized scheduling problems to optimality. We have extended the work of Non̊as and Olsen

(2005) in several ways. First, we have proposed a new and more efficient mathematical formulation

that makes it possible to solve industrial sized instances within a reasonable time. Numerical results

are presented that show the huge decrease in the solution time obtained with the new time indexed

formulation. Further, we have extended the mathematical model to take into account not only the

total tardiness but also the maximum tardiness. Different types of objectives and constraints are

suggested based on how the company values a low total tardiness compared to a low maximum

tardiness. We have also taken into account that there is limited storage capacity at the foundry and

at their customers. Finally, we suggest extensions to handle emergency orders and forced deviations

in the plan due for instance to missing equipment.

Further, we illustrate how the solution values change for different types of objectives and con-

straints. If the main focus of the foundry is to minimize the total tardiness while keeping the tardiness
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for the most tardy job below a given upper limit, we suggest to use a mathematical model that mini-

mizes total tardiness given an upper bound on the maximum tardiness. If it is important not only to

minimize the total tardiness but also the tardiness for the most tardy job, we suggest that the foundry

finds a production plan that minimizes a weighted sum of total tardiness and maximum tardiness. If

the main focus of the company is to reduce the tardiness for the most tardy jobs, we suggest that

the company solves the given problem instance using a quadratic objective function. This solution

should be used when the company is more concerned about the duration of the tardiness then the total

tardiness. That is when they would like to avoid very tardy jobs and prefer a larger total tardiness

generated from more but less tardy jobs. To keep the solution time low, the mathematical model

should have upper bounds both on total tardiness and maximum tardiness.
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Samà, M., D’Ariano, A., D’Ariano, P., Pacciarelli, D., 2017. Scheduling models for optimal aircraft

traffic control at busy airports: Tardiness, priorities, equity and violation considerations. Omega

67, 81–98.

Sousa, J. P., Wolsey, L. A., 1992. A time indexed formulation of non-preemptive single machine

scheduling problems. Mathematical programming 54 (1), 353–367.

Teixeira, R. F., Fernandes, F. C. F., Pereira, N. A., 2010. Binary integer programming formulations

for scheduling in market-driven foundries. Computers & Industrial Engineering 59 (3), 425–435.

van den Akker, J., Hurkens, C. A., Savelsbergh, M. W., 2000. Time-indexed formulations for machine

scheduling problems: Column generation. INFORMS Journal on Computing 12 (2), 111–124.

van den Akker, J. M., Hoogeveen, J. A., van de Velde, S. L., 1999. Parallel machine scheduling by

column generation. Operations Research 47 (6), 862–872.

Velez, S., Dong, Y., Maravelias, C. T., 2017. Changeover formulations for discrete-time mixed-integer

programming scheduling models. European Journal of Operational Research 260 (3), 949–963.

27



Appendix A

Tables A1, A2 and A3 specify the individual solution times for Set 1 (without and with ci ≥

DDi − 3) and Set 2. The instance number and the problem size are given in the first three columns.

An instance not solved to optimality within the time limit of 2,500 seconds is indicated by “TL”. If

CPLEX returns a non-optimal solution for an instance within the time limit of 2,500 seconds, this is

also indicated by “TL”. The notation d1.5T e means that 1.5T is rounded up to the closest integer.

Both the new and old models are solved using AMPL (IBM ILOG CPLEX 12.9).

Basic case Extension 1 k=1, k=1.5 Extension 2 Extension 3

min
∑
ti min

∑
ti min

∑
ti min

∑
ti + tmax min

∑
t2i

Size ti ≤ T ti ≤ d1.5T e ti ≤ tmax ti ≤ d1.5T e
N D New Old New Old New Old New Old New Old

1 19 34 121 TL 28 231 30 604 246 TL TL TL
2 17 34 53 1535 26 15 11 44 120 1530 TL TL
3 18 33 179 TL 23 27 48 528 213 TL 1008 TL
4 19 32 83 TL 149 168 70 333 350 TL TL TL
5 16 33 240 TL 26 110 95 2323 168 1203 1970 TL
6 23 33 907 TL 77 107 146 463 283 TL TL TL
7 18 33 185 TL 50 210 58 808 529 TL 1966 TL
8 20 34 116 822 27 12 51 121 97 TL TL TL
9 19 34 125 2127 5 2 50 29 144 TL TL TL

10 23 33 32 27 2 1 2 0 69 93 2 0
11 20 32 856 TL 47 431 130 618 790 TL TL TL
12 20 32 100 621 77 79 85 73 338 TL TL TL
13 20 30 136 TL 44 14 51 104 436 2001 TL TL
14 21 34 426 2495 23 91 324 TL 449 TL TL TL
15 20 34 285 1639 28 11 43 122 708 TL TL TL
16 23 34 TL TL 138 TL TL TL TL TL TL TL
17 20 34 213 TL 40 30 63 186 420 TL TL TL
18 21 34 469 TL 2495 632 546 TL 511 TL TL TL
19 23 32 544 TL 23 6 53 82 422 TL 566 TL
20 18 32 342 TL 5 5 31 58 232 TL 87 896
21 18 33 241 TL 114 106 111 360 318 TL TL TL
22 23 30 593 TL 81 446 186 72 1053 TL TL TL

Average 398 2143 160 238 213 659 474 2286 2073 2314

Table A1. Individual solution times for Set 1, for the new and old models.
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Basic case Extension 1 k=1, k=1.5 Extension 2 Extension 3

min
∑
ti min

∑
ti min

∑
ti min

∑
ti + tmax min

∑
t2i

Size ti ≤ T ti ≤ d1.5T e ti ≤ tmax ti ≤ d1.5T e
N D New New New New New

1 19 34 47 17 27 133 620
2 17 34 7 1 3 7 9
3 18 33 57 4 27 243 146
4 19 32 38 34 28 100 558
5 16 33 77 7 21 87 65
6 23 33 65 16 22 179 815
7 18 33 28 13 24 70 402
8 20 34 28 2 6 27 43
9 19 34 35 3 13 48 204
10 23 33 4 2 2 2 2
11 20 32 160 22 49 251 579
12 20 32 27 4 7 41 258
13 20 30 69 3 12 115 416
14 21 34 43 6 42 210 1866
15 20 34 50 3 18 108 341
16 23 34 1529 83 297 TL TL
17 20 34 66 5 19 86 443
18 21 34 56 27 39 155 TL
19 23 32 63 3 14 114 27
20 18 32 40 3 6 52 74
21 18 33 15 6 7 44 224
22 23 30 221 18 28 423 TL

Average 124 13 32 227 663

Table A2. Individual solution times for Set 1, for the new model, ci≥DDi − 3.

Basic case Extension 1 k=1, k=1.5 Extension 2 Extension 3

min
∑
ti min

∑
ti min

∑
ti min

∑
ti + tmax min

∑
t2i

Size ti ≤ T ti ≤ d1.5T e ti ≤ tmax ti ≤ d1.5T e
N D New Old New Old New Old New Old New Old

1 20 50 22 287 7 7 14 9 50 263 71 221
2 15 45 12 12 4 0 3 1 12 5 4 1
3 26 60 TL TL 366 391 140 1189 TL TL TL TL
4 25 53 21 71 11 6 9 11 27 2345 TL 1834
5 21 70 155 284 9 3 10 6 153 393 886 373
6 27 47 336 2468 24 26 39 105 263 TL TL TL
7 25 70 679 1679 22 36 45 228 785 TL TL 2413
8 24 62 1649 TL 87 484 410 TL 2162 TL TL TL
9 14 55 53 64 3 4 8 26 69 79 71 504

10 23 65 TL TL 57 842 290 TL TL TL TL TL
11 22 55 57 150 7 2 9 6 67 106 1118 243
12 25 62 652 TL 14 9 32 149 981 TL TL TL
13 16 43 9 4 4 1 4 0 9 5 17 2
14 30 70 1121 TL 67 727 189 99 1248 TL TL TL
15 19 65 86 80 6 5 8 11 69 696 125 TL
16 20 70 273 1852 13 1 19 14 206 2144 TL 563

Average 3666 1218 44 159 77 429 694 1473 1551 1478
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Table A3. Individual solution times for Set 2, for the new and old models.

Tables A4, A5 and A6 present the total tardiness (
∑
ti) and the maximum tardiness (tmax) for

the different extensions of the new time indexed formulation. “TL” indicates that optimality is not

proved within the time limit of 2,500 seconds. ti and tmax are marked with end, respectively mm, if

an optimal solution is found within the time limit by including the valid inequality (end), respectively

(mm). The notation d1.5T e means that 1.5T is rounded up to the closest integer.

Basic case Extension 1 k=1, k=1.5 Extension 2 Extension 3

Min
∑
ti Min

∑
ti Min

∑
ti Min

∑
ti+tmax Min

∑
T 2
i

Size ti ≤ T ti ≤ d1.5T e s.t. ti ≤ tmax ti ≤ d1.5T e
N D

∑
ti tmax

∑
ti tmax

∑
ti tmax

∑
ti tmax

∑
ti tmax

1 19 34 34 24 46 8 37 11 37 11 TL TL
2 17 34 4 4 6 2 4 3 4 3 TL TL
3 18 33 42 15 48 8 43 11 43 11 51 8
4 19 32 14 9 24 5 16 8 14 9 TL TL
5 16 33 29 15 37 8 31 12 31 9 31 9
6 23 33 10 4 12 3 10 4 10 4 TL TL
7 18 33 21 11 29 7 21 11 21 11 30 9
8 20 34 12 8 22 6 12 8 12 8 12end 8end

9 19 34 16 12 23 6 21 9 16 12 26end 6end

10 23 33 0 0 0 0 0 0 0 0 0 0
11 20 32 18 5 24 3 18 5 19 4 TL TL
12 20 32 4 4 6 2 4 3 4 3 TL TL
13 20 30 23 12 28 5 24 6 24 6 TL TL
14 21 34 20 20 60 7 40 11 20 20 TL TL
15 20 34 26 6 26 5 26 6 26 5 TL TL
16 23 34 TL TL 59 7 TL TL TL TL TL TL
17 20 34 18 6 19 4 18 6 19 4 TL TL
18 21 34 11 5 15 3 11 5 11 4 TL TL
19 23 32 13 7 14 3 14 4 14 3 14 4
20 18 32 25 10 27 4 27 4 27 4 27 4
21 18 33 12 6 13 4 12 6 13 4 TL TL
22 23 30 10 6 14 2 10 3 10 3 TL TL

Table A4. Individual solution values for Set 1.
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Basic case Extension 1 k=1, k=1.5 Extension 2 Extension 3

min
∑
ti min

∑
ti min

∑
ti min

∑
ti + tmax min

∑
t2i

Size ti ≤ T ti ≤ d1.5T e ti ≤ tmax ti ≤ d1.5T e
N D

∑
ti tmax

∑
ti tmax

∑
ti tmax

∑
ti tmax

∑
ti tmax

1 19 34 35 24 48 8 39 12 42 9 49 9
2 17 34 7 4 7 4 7 4 7 4 7 4
3 18 33 44 15 53 8 47 12 47 12 54 8
4 19 32 16 10 25 6 18 9 16 10 23 7
5 16 33 32 13 40 8 33 12 35 9 36 9
6 23 33 14 5 17 3 14 5 15 4 17 4
7 18 33 22 11 30 7 22 11 22 11 29 10
8 20 34 13 8 22 6 13 8 13 8 13 8
9 19 34 20 11 24 6 23 9 24 6 28 6

10 23 33 0 0 0 0 0 0 0 0 0 0
11 20 32 20 5 21 4 20 5 21 4 21 4
12 20 32 12 6 21 5 12 6 12 6 12 6
13 20 30 25 7 28 5 25 7 25 7 28 6
14 21 34 29 21 64 7 44 11 29 21 49 10
15 20 34 29 6 30 5 29 6 29 6 31 5
16 23 34 49 17 69 7 55 10 50mm 14mm TL TL
17 20 34 23 9 24 5 24 8 24 5 25 5
18 21 34 26 10 27 7 26 9 26 8 TL TL
19 23 32 14 4 15 3 14 4 15 3 14 4
20 18 32 26 10 29 5 28 8 29 5 29 5
21 18 33 20 9 22 6 20 9 21 7 22 6
22 23 30 13 3 13 3 13 3 13 3 14end 3end

Table A5. Individual solution values for Set 1, with limits on storage capacity, ci≥DDi − 3.

Basic case Extension 1 k=1, k=1.5 Extension 2 Extension 3

Size min
∑
ti min

∑
ti min

∑
ti min

∑
ti + tmax min

∑
t2i

ti ≤ T ti ≤ d1.5T e ti ≤ tmax ti ≤ d1.5T e
N D

∑
ti tmax

∑
ti tmax

∑
ti tmax

∑
ti tmax

∑
ti tmax

1 20 50 2 2 2 2 2 2 2 2 2 2
2 15 45 0 0 0 0 0 0 0 0 0 0
3 26 60 33mm 19mm 46 7 37 10 37mm 10mm TL TL
4 25 53 13 7 16 6 13 7 13 7 14 7
5 21 70 4 2 4 2 4 2 4 2 4 2
6 27 47 5 4 5 4 5 4 5 4 TL TL
7 25 70 28 14 32 10 28 14 32 10 29 13
8 24 62 67 23 69 15 67 23 68 16 TL TL
9 14 55 25 11 29 8 25 9 25 9 25 9
10 23 65 40mm 13mm 59 10 40 12 40mm 12mm TL TL
11 22 55 7 5 7 5 7 5 7 5 7 5
12 25 62 40 13 49 10 40 13 40 13 43end 13end

13 16 43 10 9 10 9 10 9 10 9 10 9
14 30 70 16 16 35 12 16 16 16 16 TL TL
15 19 65 14 10 16 7 14 10 14 8 16 7
16 20 70 7 6 7 3 7 3 7 3 7end 3end

Table A6. Individual solution values for Set 2.
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Table A7 presents the individual solutions for Set 1 for the new mathematical model with Extension

2 (k = 1 and k = 2) and an upper bound on the tardiness. The first columns show the instance number

and problem size, and the next two columns the individual solutions when Extension 2 (k = 1) is

extended with upper bounds on the tardiness (ti ≤ 1.5T and ti ≤ 2T ). The two last columns present

the individual solutions for Extension 2 (k = 2) with and without upper bounds on the tardiness. The

columns “new′′ indicate the computational times for the new mathematical model. “TL” indicates

that optimality is not proved within the time limit of 2,500 seconds.

Extension 2

Size min
∑
ti + tmax min

∑
ti + tmax min

∑
ti + 2tmax min

∑
ti + 2tmax

ti ≤ tmax ti ≤ tmax ti ≤ tmax ti ≤ tmax

ti ≤ d1.5T e ti ≤ 2T ti ≤ d1.5T e
N D

∑
ti tmax new

∑
ti tmax new

∑
ti tmax new

∑
ti tmax new

1 19 34 37 11 40 37 11 160 41 9 810 37 11 118
2 17 34 4 3 27 4 3 50 4 3 86 6 2 29
3 18 33 43 11 58 43 11 106 48 8 324 48 8 69
4 19 32 16 8 200 14 9 132 20 6 622 20 6 191
5 16 33 31 9 104 31 9 424 31 9 241 31 9 125
6 23 33 10 4 301 10 4 455 10 4 561 10 4 288
7 18 33 21 11 72 21 11 370 27 8 359 29 7 117
8 20 34 12 8 47 12 8 90 12 8 175 12 8 68
9 19 34 22 7 51 16 12 124 23 6 82 23 6 41
10 23 33 0 0 2 0 0 2 0 0 48 0 0 2
11 20 32 18 5 341 18 5 500 19 4 1875 19 4 425
12 20 32 4 3 102 4 3 112 6 2 226 6 2 97
13 20 30 24 6 66 24 6 90 24 6 697 24 6 48
14 21 34 40 11 182 34 14 665 20 20 1809 41 10 487
15 20 34 26 5 61 26 5 123 26 5 325 26 5 59
16 23 34 TL TL TL TL TL TL TL TL TL TL TL TL
17 20 34 19 4 136 19 4 166 19 4 642 19 4 104
18 21 34 11 4 497 11 4 851 11 4 640 11 4 612
19 23 32 14 3 60 14 3 95 14 3 267 14 3 40
20 18 32 27 4 41 27 4 66 27 4 231 27 4 48
21 18 33 13 4 175 13 4 382 13 4 309 13 4 144
22 23 30 10 3 102 10 3 210 10 3 557 10 3 156

Average 236 350 609 262

Table A7. Individual solutions for Set 1, Extension 2: Upper bounds on ti and different weights on

tmax.

Table A8 presents the total tardiness and the maximum tardiness obtained when the maximum

tardiness is minimized for each instance in Set 1, without and with limited storage capacity (ci ≤

DDi−3). The column new and old represent the solution times. Again, “TL” indicates that optimality

is not proved within the time limit of 2,500 seconds.
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Size min tmax min tmax

ti ≤ tmax ti ≤ tmax

ci ≤ DDi − 3
N D

∑
ti T new old

∑
ti T new

1 19 34 152 8 37 14 152 8 21
2 17 34 34 2 46 57 68 4 15
3 18 33 144 8 53 27 144 8 15
4 19 32 95 5 63 106 114 6 40
5 16 33 128 8 54 18 128 8 307
6 23 33 63 3 135 463 63 3 27
7 18 33 126 7 22 37 126 7 15
8 20 34 120 6 48 78 120 6 27
9 19 34 114 6 16 15 114 6 6
10 23 33 0 0 25 3 0 0 5
11 20 32 60 3 575 794 80 4 39
12 20 32 40 2 33 221 100 5 18
13 20 30 100 5 80 45 100 5 29
14 21 34 147 7 51 91 147 7 28
15 20 34 100 5 41 25 100 5 21
16 23 34 161 7 196 579 161 7 136
17 20 34 80 4 87 34 100 5 42
18 21 34 63 3 TL TL 147 7 58
19 23 32 69 3 36 11 69 3 35
20 18 32 72 4 12 11 90 5 12
21 18 33 72 4 36 54 108 6 38
22 23 30 46 2 64 11 69 3 75

Average 191 236 46

Table A8. Individual solutions for Set 1, when solving for T .

Table A9 shows the solutions and the solution times first for Set 2, Extension 2 (k=1) with upper

bounds on ti, and then for Extension 2 (k=2) with and without upper bounds on ti, ti ≤ d1.5T e,

i = 1, . . . , N , using the new formulation. For Extension 2 (k=2), with and without upper bounds on

ti, Column “mm” refers to the solution time for the new time indexed formulation when the valid

inequality (mm) is added.
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Extension 2

Size min
∑
ti + tmax min

∑
ti + 2tmax min

∑
ti + 2tmax

ti ≤ tmax ti ≤ tmax ti ≤ tmax

ti ≤ d1.5T e ti ≤ d1.5T e
N D

∑
ti tmax new

∑
ti tmax new mm

∑
ti tmax new mm

1 20 50 2 2 8 2 2 47 15 2 2 7 15
2 15 45 0 0 4 0 0 13 9 0 0 4 5
3 26 60 37 10 393 37 10 TL 2372 37 10 992 1438
4 25 53 13 7 13 13 7 28 55 13 7 14 16
5 21 70 4 2 12 4 2 278 47 4 2 13 16
6 27 47 5 4 21 5 4 265 166 5 4 38 38
7 25 70 32 10 97 32 10 437 249 32 10 141 113
8 24 62 68 16 1510 69 15 TL 879 69 15 TL 734
9 14 55 25 9 17 25 9 50 32 25 9 14 14
10 23 65 40 12 2432 40 12 TL 1184 40 12 1016 369
11 22 55 7 5 14 7 5 54 15 7 5 12 11
12 25 62 40 13 158 42 12 1428 273 42 12 106 102
13 16 43 10 9 6 10 9 7 7 10 9 5 5
14 30 70 16 16 205 16 16 1161 496 16 16 138 82
15 19 65 14 8 9 14 8 56 105 14 8 13 15
16 20 70 7 3 24 7 3 141 71 7 3 29 14

Average 308 718 373 316 187

Table A9. Individual solutions for Set 2, Extension 2 (k=1, k=2) with and without upper bounds on

ti, and without and with the valid inequality (mm).

Table A10 shows the value of T and the solution times in seconds used to find T for each instance

in Set 2 using both the new and the old formulations.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

T 2 0 7 6 2 4 10 15 8 10 5 10 9 12 7 3
New sec 24 13 182 30 119 219 137 470 18 183 21 83 7 185 27 107
Old sec 26 19 313 30 143 203 79 TL 2 243 53 442 3 610 24 151

Table A10. Individual solutions for Set 2.

Table A11 reports, for each instance in Set 1, how much the total tardiness and the maximum

tardiness increase when the basic mathematical model is extended to include limited storage capacity

(ci ≥ DDi − 3). The results are reported for the Basic case and the four extensions.
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Basic case Extension 1 k=1, k=1.5 Extension 2 Extension 3

min
∑
ti min

∑
ti min

∑
ti min

∑
ti + tmax min

∑
t2i

Size ti ≤ T ti ≤ d1.5T e ti ≤ tmax ti ≤ d1.5T e
N D

∑
ti tmax

∑
ti tmax

∑
ti tmax

∑
ti tmax

∑
ti tmax

1 19 34 1 0 2 0 2 1 5 -2 TL TL
2 17 34 3 0 1 2 3 1 3 1 TL TL
3 18 33 2 0 5 0 4 1 4 1 3 0
4 19 32 2 1 1 1 2 1 2 1 TL TL
5 16 33 3 -2 3 0 2 0 4 0 5 0
6 23 33 4 1 5 0 4 1 5 0 TL TL
7 18 33 1 0 1 0 1 0 1 0 -1 1
8 20 34 1 0 0 0 1 0 1 0 1 0
9 19 34 4 -1 1 0 2 0 8 -6 2 0

10 23 33 0 0 0 0 0 0 0 0 0 0
11 20 32 2 0 -3 1 2 0 2 0 TL TL
12 20 32 8 2 15 3 8 3 8 3 TL TL
13 20 30 2 -5 0 0 1 1 1 1 TL TL
14 21 34 9 1 4 0 4 0 9 1 TL TL
15 20 34 3 0 4 0 3 0 3 1 TL TL
16 23 34 TL TL 10 0 TL TL TL TL TL TL
17 20 34 5 3 5 1 6 2 5 1 TL TL
18 21 34 15 5 12 4 15 4 15 4 TL TL
19 23 32 1 -3 1 0 0 0 1 0 0 0
20 18 32 1 0 2 1 1 4 2 1 2 1
21 18 33 8 3 9 2 8 3 8 3 TL TL
22 23 30 3 -3 -1 1 3 0 3 0 TL TL

Table A11: Changes in the solution values, Set1. The mathematical model extended with

ci ≥ DDi − 3,∀i.

Appendix B

Tables B1 and B2 provide an overview of the production capacity and production requirements

(in days) of the instances in Sets 1 and 2. The first column shows the problem size. Then, the second

column gives the number of empty days in the production schedule (using Extension 1, k = 1.5),

followed by the estimates (in days) of the production capacity requirements for each box type. The

last columns show the average estimated capacity requirement and the smallest and largest estimated

capacity requirements. The estimated number of production days required for box type b is calculated

based on the box type combination abc = (2, 0.9, 1, 0.7, 0.4), which is the average of all the box type

combinations in Table 2. For a given problem instance, the estimated capacity for box type b is equal

to the total demand for box type b divided by abc[b].
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Ext. 1 (k = 1.5) Estimate of necessary production capacity (in days)
Size Days with Box Box Box Box Box Summary
N D no production type 1 type 2 type 3 type 4 type 5 avg min max

1 19 34 3 31 34 30 0 45 28 0 45
2 17 34 2 19 43 35 20 45 32 19 45
3 18 34 3 17 20 48 21 50 31 17 50
4 19 33 3 23 33 17 29 35 27 17 35
5 16 32 2 20 23 24 29 45 28 20 45
6 23 33 3 16 37 39 29 33 30 16 39
7 18 33 2 19 42 14 13 48 27 13 48
8 20 34 1 31 22 34 29 40 31 22 40
9 19 34 4 9 28 28 30 55 30 9 55
10 23 33 3 15 40 29 20 38 28 15 40
11 20 32 3 12 33 13 37 43 28 12 43
12 20 32 4 11 40 42 47 0 28 0 47
13 20 30 4 16 23 27 39 23 25 16 39
14 21 34 2 31 48 14 0 35 25 0 48
15 20 34 2 26 29 0 64 30 30 0 64
16 23 34 1 17 43 16 33 43 30 16 43
17 20 34 5 27 20 33 26 43 30 20 43
18 21 34 4 14 38 26 39 33 30 14 39
19 23 32 3 22 54 35 0 20 26 0 54
20 18 32 3 17 20 9 57 28 26 9 57
21 18 33 3 15 23 38 40 33 30 15 40
22 23 30 4 25 20 42 24 23 27 20 42

Table B1. Set 1: Days with no production (Extension 1, k = 1.5), and estimates of necessary

capacity for each box type.

Ext. 1 (k = 1.5) Estimate of necessary production capacity (in days)
Size Days with Box Box Box Box Box Summary
N D no production type 1 type 2 type 3 type 4 type 5 avg min max

1 20 50 1 4 24 33 64 70 39 4 70
2 15 45 6 0 69 48 27 23 33 0 69
3 26 60 10 25 13 50 96 0 37 0 96
4 25 53 0 39 14 16 40 60 34 14 60
5 21 70 12 24 0 105 11 63 41 0 105
6 27 47 0 18 76 55 27 43 44 18 76
7 25 70 16 40 36 0 96 78 50 0 96
8 24 62 5 17 20 86 31 120 55 17 120
9 14 55 9 20 6 5 24 110 33 5 110
10 23 65 5 26 52 14 30 108 46 14 108
11 22 55 5 45 54 14 0 48 32 0 54
12 25 62 6 26 53 0 96 30 41 0 96
13 16 43 6 27 0 43 9 28 21 0 43
14 30 70 20 27 106 72 0 38 48 0 106
15 19 65 9 15 18 9 67 65 35 9 67
16 20 70 12 3 32 57 89 33 43 3 89

Table B2. Set 2: Days with no production (Extension 1, k = 1.5), and estimates of necessary

capacity for each box type.
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Tables B3 and B4 present, for each problem instance in both sets, the minimum and maximum

order sizes (number of propeller blades) for each box type.

Size Type 1 Type 2 Type 3 Type 4 Type 5

1 19 34 [ 5, 14] [ 5, 12] [5,13 ] [ 0, 0] [ 5, 8 ]
2 17 34 [ 3, 17] [ 5, 21] [5,17 ] [ 7, 7] [ 4, 14]
3 18 34 [ 4, 25] [ 5, 7] [6,12 ] [ 6, 9] [ 3, 7 ]
4 19 33 [ 3, 13] [ 3, 16] [5,12 ] [ 5, 5] [ 5, 9 ]
5 16 32 [ 5, 24] [ 4, 12] [5,14 ] [ 6, 14] [ 3, 5 ]
6 23 33 [ 5, 13] [ 4, 8] [5,12 ] [ 5, 8] [ 3, 5 ]
7 18 33 [ 5, 12] [ 5, 14] [3,6 ] [ 4, 5] [ 5, 8 ]
8 20 34 [ 5, 18] [ 5, 9] [5,12 ] [ 8, 12] [ 3, 8 ]
9 19 34 [ 3, 1 ] [ 3, 8] [5,7 ] [ 5, 16] [ 4, 8 ]
10 23 33 [ 5, 8 ] [ 3, 7] [3,6 ] [ 5, 9] [ 5, 5 ]
11 20 32 [ 4, 5 ] [ 3, 8] [5,8 ] [ 5, 6] [ 5, 7 ]
12 20 32 [ 5, 9 ] [ 3, 10] [5,15 ] [ 5, 11] [ 0, 0]
13 20 30 [ 5, 8 ] [ 3, 8] [5,8 ] [ 3, 8] [ 4, 5 ]
14 21 34 [ 3, 16] [ 3, 12] [3,6 ] [ 0, 0]] [ 4, 10]
15 20 34 [ 4, 15] [ 4, 10] [0,0] [ 4, 11] [ 4, 8 ]
16 23 34 [ 3, 11] [ 3, 11] [2,10] [ 3, 9] [ 3, 5 ]
17 20 34 [ 3, 17] [ 6, 12] [5,12 ] [ 2, 12] [ 6, 11]
18 21 34 [ 5, 14] [ 3, 12] [4,8 ] [ 3, 7 ] [ 3, 5 ]
19 23 32 [ 3, 9 ] [ 4, 12] [3,1 ] [ 0, 0]] [ 8, 8 ]
20 18 32 [ 5, 11] [ 4, 5] [4,5 ] [ 4, 9 ] [ 5, 6 ]
21 18 33 [ 5, 12] [ 4, 12] [5,14 ] [ 4, 8 ] [ 6, 7 ]
22 23 30 [ 5, 19] [ 3, 5] [3,6 ] [ 7, 10] [ 4, 5 ]

Table B3. For each instance in Set 1, minimum and maximum order sizes for each box type.

Size Type 1 Type 2 Type 3 Type 4 Type 5
N D [min,max] [min,max] [min,max] [min,max] [min,max]

1 20 50 [ 7, 7] [ 3, 19] [ 4, 17] [ 2, 11] [ 2, 11]
2 15 45 [ 0, 0] [ 5, 17] [ 8, 21] [ 8, 11] [ 4, 5]
3 26 60 [ 3, 14] [ 5, 7] [ 4, 21] [ 2, 13] [ 0, 0]
4 25 53 [ 3, 19] [ 5, 8] [ 2, 5] [ 3, 8] [ 7, 17]
5 21 70 [ 2, 18] [ 0, 0] [ 5, 25] [ 8, 8] [ 3, 17]
6 27 47 [ 5, 13] [ 4, 20] [ 4, 19] [ 6, 13] [ 3, 9]
7 25 70 [ 2, 22] [ 5, 21] [ 0, 0] [ 5, 15] [ 5, 13]
8 24 62 [ 4, 25] [ 5, 7] [ 5, 23] [ 5, 11] [ 5, 17]
9 14 55 [ 5, 24] [ 5, 5] [ 5, 5] [ 3, 14] [ 3, 14]
10 23 65 [ 4, 22] [ 5, 16] [ 3, 6] [ 4, 12] [ 4, 17]
11 22 55 [ 3, 24] [ 3, 18] [ 3, 6] [ 0, 0] [ 4, 15]
12 25 62 [ 4, 15] [ 4, 22] [ 0, 0] [ 4, 11] [12, 12]
13 16 43 [ 3, 17] [ 0, 0] [ 5, 22] [ 2, 4] [11, 11]
14 30 70 [ 3, 9] [ 4, 21] [ 3, 20] [ 0, 0] [15, 15]
15 19 65 [ 5, 11] [ 2, 5] [ 4, 5] [ 4, 12] [ 5, 15]
16 20 70 [ 5, 5] [ 4, 20] [ 5, 19] [ 3, 16] [ 6, 7]

Table B4. For each instance in Set 2, minimum and maximum order sizes for each box type.

Tables B5 and B7 present the parameters and the completion dates for respectively instance 3 in

Set 1 and instance 12 in Set 2 (using Extension 1, k = 1.5). Table B5 also presents the completion
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dates for (Extension 1, k = 1.5, ci <= DDi − 3). Tables B6 and B8 provide the schedule for instance

3 in Set 1 and for instance 12 in Set 2 (using Extension 1, k = 1.5). For each day d we present which

box combination to use, which jobs to produced and the unused box capacity for day d.

Set 1, Instance 3: Parameters

Box type 1 Box type 2 Box type 3 Box type 4 Box type 5
Job i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Oi 4 5 25 7 5 6 6 8 12 8 6 8 9 6 5 5 7 3
DDi 2 8 27 5 12 25 5 5 9 12 18 28 6 14 11 15 20 25

Extension 1, k = 1.5: Completion dates, tardiness and days too early

ci 1 6 27 5 11 17 9 5 19 13 24 28 7 21 12 17 31 24
ti 0 0 0 0 0 0 4 0 10 1 6 0 1 7 1 2 11 0

ci-DDi 1 2 0 0 1 8 0 0 0 0 0 0 0 0 0 0 0 1

Extension 1, k = 1.5, ci ≤ DDi − 3 : Completion dates, tardiness and days too early

ci 1 6 25 5 12 28 9 5 19 13 24 28 7 21 12 17 32 24
ti 0 0 0 0 0 3 4 0 10 1 6 0 1 7 1 2 12 0

ci-DDi 1 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

Table B5. Instance 3, Set 1: Parameters and output data for each job i (Extension 1, k=1.5 and

Extension 1, k=1.5, ci ≤ DDi-3).
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Day Box combination Scheduled jobs Spare capacity,
d b=1 b=2 b=3 b=4 b=5 b=1 b=2 b=3 b=4 b=5 b=1 b=2 b=3 b=4 b=5

1 5 0 0 2 0 1 13 1 0 0 0 0
2 0 2 2 1 0 4 8 13 0 1 0 0 0
3 0 2 2 1 0 4 8 13 0 0 0 0 0
4 0 2 2 1 0 4 8 13 0 0 0 0 0
5 0 2 2 1 0 4 8 13 0 0 0 0 0
6 5 0 0 2 0 2 13 0 0 0 0 0
7 0 2 2 1 0 5 7 13 0 1 0 0 0
8 0 1 2 0 1 5 7 15 0 0 0 0 0
9 0 1 2 0 1 5 7 15 0 0 0 0 0
10 0 1 2 0 1 5 10 15 0 0 0 0 0
11 0 1 2 0 1 5 10 15 0 0 0 0 0
12 0 1 2 0 1 6 10 15 0 0 0 0 0
13 0 1 2 0 1 6 10 16 0 0 0 0 0
14 0 1 2 0 1 6 9 16 0 0 0 0 0
15 0 1 2 0 1 6 9 16 0 0 0 0 0
16 0 1 2 0 1 6 9 16 0 0 0 0 0
17 0 1 2 0 1 6 9 16 0 0 0 0 0
18 2 0 2 1 0 3 9 14 1 0 0 0 0
19 2 0 2 1 0 3 9 14 0 0 0 0 0
20 5 0 0 2 0 3 14 0 0 0 0 0
21 5 0 0 2 0 3 14 0 0 0 0 0
22 2 0 2 0 1 3 11 18 0 0 0 0 0
23 2 0 2 0 1 3 11 18 0 0 0 0 0
24 2 0 2 0 1 3 11 18 0 0 0 0 0
25 2 0 2 0 1 3 12 17 0 0 0 0 0
26 2 0 2 0 1 3 12 17 0 0 0 0 0
27 2 0 2 0 1 3 12 17 0 0 0 0 0
28 0 1 2 0 1 12 17 0 1 0 0 0
29 2 0 2 0 1 17 2 0 2 0 0
30 2 0 2 0 1 17 2 0 2 0 0
31 0 1 2 0 1 17 0 1 2 0 0
32 0 1 2 0 1 0 1 2 0 1
33 0 1 2 0 1 0 1 2 0 1
34 7 0 0 0 0 7 0 0 0 0

Table B6. Set 1, Instance 3 ( Extension 1, k=1.5): For each day, we present which box combination

to use, which jobs to produce, and the unused capacity of each box type.

Set 2, Instance 12: Parameters

Box type 1 Box type 2 Box type 4 Box type 5
Job i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
Oi 9 5 5 5 15 4 8 4 22 8 4 5 5 7 5 11 7 4 6 7 6 5 5 4 12
DDi 8 23 30 41 41 51 59 4 8 31 36 46 60 3 5 12 19 35 46 47 50 55 5ci7 60 8

Extension 1, k = 1.5: Completion dates and tardiness

ci 2 20 30 34 41 24 54 6 20 29 35 33 60 5 10 25 17 29 38 47 41 43 50 58 14
ti 0 0 0 0 0 0 0 2 12 0 0 0 0 2 5 13 0 0 0 0 0 0 0 0 6

Table B7. Set 2, Instance 12: Parameters and output data for each job i ( Extension 1, k=1.5)
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Day Box combination used, Scheduled jobs Spare capacity,
d b=1 b=2 b=3 b=4 b=5 b=1 b=2 b=3 b=4 b=5 b=1 b=2 b=3 b=4 b=5

1 5 0 0 2 0 1 14 0 0 0 0 0
2 4 0 0 2 0 1 14 1 0 0 0 0
3 0 1 0 1 1 8 14 25 0 0 0 0 0
4 0 1 0 1 1 8 14 25 0 0 0 0 0
5 0 1 0 1 1 8 14 25 0 0 0 0 0
6 0 1 0 1 1 8 15 25 0 0 0 0 0
7 0 1 0 1 1 9 15 25 0 0 0 0 0
8 0 1 0 1 1 9 15 25 0 0 0 0 0
9 0 1 0 1 1 9 15 25 0 0 0 0 0
10 0 1 0 1 1 9 15 25 0 0 0 0 0
11 0 1 0 1 1 9 17 25 0 0 0 0 0
12 0 1 0 1 1 9 17 25 0 0 0 0 0
13 0 1 0 1 1 9 17 25 0 0 0 0 0
14 0 1 0 1 1 9 17 25 0 0 0 0 0
15 0 2 0 1 0 9 17 2 0 0 0 0
16 0 2 0 1 0 9 17 2 0 0 0 0
17 1 2 0 1 0 2 9 17 1 0 0 0 0
18 1 3 0 0 0 2 9 0 0 2 0 0
19 1 3 0 0 0 2 9 0 0 2 0 0
20 2 2 0 1 0 2 9 16 0 0 0 0 0
21 0 0 0 2 0 16 5 0 0 0 0
22 1 0 0 2 0 6 16 4 0 0 0 0
23 1 0 0 2 0 6 16 4 0 0 0 0
24 2 0 0 2 0 6 16 3 0 0 0 0
25 0 0 0 2 0 16 5 0 0 0 0
26 0 2 0 1 0 10 18 2 0 0 0 0
27 0 2 0 1 0 10 18 2 0 0 0 0
28 0 2 0 1 0 10 18 2 0 0 0 0
29 0 2 0 1 0 10 18 2 0 0 0 0
30 5 0 0 0 0 3 0 0 0 2 0
31 0 0 0 0 0 5 0 0 2 0
32 2 2 0 0 0 4 12 0 0 0 1 0
33 1 3 0 0 0 4 12 0 0 2 0 0
34 2 2 0 0 0 4 11 0 0 0 1 0
35 0 2 0 1 0 11 19 2 0 0 0 0
36 0 0 0 2 0 19 5 0 0 0 0
37 0 0 0 2 0 19 5 0 0 0 0
38 0 0 0 2 0 19/21 5 0 0 0 0
39 5 0 0 2 0 5 21 0 0 0 0 0
40 5 0 0 2 0 5 21 0 0 0 0 0
41 5 0 0 2 0 5 21/22 0 0 0 0 0
42 0 0 0 2 0 22 5 0 0 0 0
43 0 0 0 2 0 22 5 0 0 0 0
44 0 0 0 2 0 20 5 0 0 0 0
45 0 0 0 1 0 20 5 0 0 1 0
46 0 0 0 2 0 20 5 0 0 0 0
47 0 0 0 2 0 20 5 0 0 0 0
48 0 0 0 2 0 23 5 0 0 0 0
49 0 0 0 2 0 23 5 0 0 0 0
50 0 0 0 1 0 23 5 0 0 1 0
51 0 0 0 0 0 5 0 0 2 0
52 0 0 0 0 0 5 0 0 2 0
53 3 0 0 0 0 7 2 0 0 2 0
54 5 0 0 0 0 7 0 0 0 2 0
55 0 0 0 0 0 1 3 2 0 0
56 0 0 0 2 0 24 5 0 0 0 0
57 0 0 0 1 0 24 5 0 0 1 0
58 0 0 0 1 0 24 5 0 0 1 0
59 0 3 0 0 0 13 1 0 2 0 0
60 0 2 0 0 0 13 1 1 2 0 0
61 0 0 0 0 0 5 0 0 2 0
62 0 0 0 0 0 5 0 0 2 0
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Table B8 Set 2, Instance 12 ( Extension 1 k=1.5): For each day, we present which box combination to use, which jobs
to produce, and the unused capacity of each box type.

Appendix C

Tables C1, C2 and C3 specify the individual solution times for Set 1 (without and with ci ≥ DDi−3)

and Set 2 (without ci ≥ DDi − 3), for the new time indexed formulation when the different valid

inequalities are added to the Basic case and the extensions to the Basic case.

Tables C1, C2 and C3 give for, each problem instance, the average solution time for the Basic case

and for each of the extensions to the Basic case, when the valid inequalities (end), (box) and (mm) are

added. An instance not solved to optimality within the time limit of 2,500 seconds is indicated by

“TL”. When Extension 3 returns a non optimal solution within the time limit of 2,500 seconds, this

is also indicated by “TL”. The notation d1.5T e means that 1.5T is rounded up to the closest integer.

Base case Extension 1 k=1, k=1.5 Extension 2 Extension 3

min
∑

ti min
∑

ti min
∑

ti min
∑

ti + tmax min
∑

t2i
ti ≤ T ti ≤ d1.5T e ti ≤ tmax ti ≤ d1.5T e

Nr end box mm end box mm end box mm end box mm end box mm

1 113 124 72 28 43 25 27 34 22 275 246 162 TL TL TL
2 65 96 51 12 26 15 44 44 28 124 113 65 TL TL TL
3 126 178 188 23 26 23 36 44 48 185 214 243 1274 1012 1097
4 103 88 111 184 149 93 70 86 114 468 352 293 TL TL TL
5 251 212 306 32 24 49 105 72 74 88 237 165 TL 1971 TL
6 1027 606 668 95 75 89 85 211 99 1230 718 553 TL TL TL
7 158 184 100 26 54 50 58 68 65 241 532 164 TL 1963 TL
8 111 118 130 22 20 19 46 64 28 118 97 125 1213 TL TL
9 96 125 163 7 6 9 44 50 45 210 144 109 1251 TL TL
10 54 33 14 2 2 2 3 1 2 65 69 61 2 2 2
11 612 859 496 146 46 84 201 132 129 2502 780 1434 TL TL TL
12 109 100 155 42 77 42 79 86 121 307 338 388 TL TL TL
13 149 181 187 32 43 15 60 57 92 173 282 328 TL TL TL
14 136 426 221 28 38 44 95 115 132 226 451 458 TL TL TL
15 175 287 406 17 30 27 57 62 45 218 706 141 TL TL TL
16 2518 2510 2514 829 136 265 TL TL TL TL TL TL TL TL TL
17 485 283 448 52 39 43 57 63 93 673 521 891 TL TL TL
18 1344 468 1268 2503 2360 823 589 663 602 1775 505 801 TL TL TL
19 694 534 398 11 24 9 56 54 67 386 473 295 389 564 606
20 132 339 173 9 4 4 36 31 39 140 233 111 170 88 102
21 237 240 317 73 169 109 83 172 117 338 320 455 TL TL TL
22 452 292 691 73 82 65 92 186 158 575 748 993 TL TL TL

Average 416 377 413 193 158 87 202 218 210 584 482 488 2014 2073 2128

Table C1. Individual solution times for Set 1, when the valid inequalities are added to the Basic case and its extensions
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Base case Extension 1 k=1, k=1.5 Extension 2 Extension 3

min
∑

ti min
∑

ti min
∑

ti min
∑

ti + tmax min
∑

t2i
ti ≤ T ti ≤ d1.5T e ti ≤ tmax ti ≤ d1.5T e

Nr end box mm end box mm end box mm end box mm end box mm

1 40 49 23 17 16 12 23 27 24 149 134 49 568 617 559
2 4 8 5 2 2 1 3 3 2 9 7 7 8 7 6
3 41 58 58 3 3 4 32 29 27 176 243 152 312 145 248
4 51 41 36 26 34 23 31 28 20 117 101 88 743 558 531
5 79 83 51 4 7 6 26 21 35 88 87 57 45 64 251
6 112 69 69 22 15 26 33 21 19 207 179 130 1073 816 598
7 36 29 34 18 13 14 24 25 12 94 70 80 807 401 412
8 12 29 21 4 3 3 4 6 4 14 27 20 40 43 47
9 27 36 12 3 3 3 9 13 7 53 48 32 161 204 181
10 3 5 5 1 1 2 2 2 2 3 2 5 2 2 1
11 179 165 113 24 23 13 53 48 91 275 250 352 1291 579 622
12 23 28 15 6 3 4 10 13 8 46 42 24 242 257 165
13 44 72 51 3 3 3 19 12 12 135 115 35 709 414 656
14 97 44 46 6 7 5 43 42 40 201 209 125 1988 1875 2118
15 136 52 38 3 3 4 17 18 20 72 108 68 347 350 152
16 2372 1539 589 55 82 39 311 297 206 TL TL 1658 TL TL TL
17 107 65 46 4 5 5 22 19 14 111 87 64 637 441 1245
18 52 57 53 26 27 24 38 39 50 93 155 114 TL TL TL
19 79 62 91 3 3 2 16 13 17 81 114 67 33 26 31
20 51 40 37 3 3 4 17 7 14 57 52 53 111 74 85
21 26 16 13 5 6 6 7 6 11 34 44 19 160 224 141
22 182 219 83 13 19 16 39 28 31 182 423 179 863 TL 1282

Average 171 126 68 11 13 10 35 33 30 214 227 154 668 664 652

Table C2. Individual solution times for Set 1, when the valid inequalities are added to the Basic case and its
extensions, ci≥DDi − 3, ∀i.

Base case Extension 1 k=1, k=1.5 Extension 2 Extension 3

min
∑

ti min
∑

ti min
∑

ti min
∑

ti + tmax min
∑

t2i
ti ≤ T ti ≤ d1.5T e ti ≤ tmax ti ≤ d1.5T e

Nr end box mm end box mm end box mm end box mm end box mm

1 34 21 15 5 7 7 10 10 11 67 57 15 61 71 565
2 20 11 9 4 4 5 5 4 4 34 12 9 5 3 4
3 982 TL 754 176 135 281 342 100 178 TL TL 1472 TL TL TL
4 48 22 32 9 11 13 10 10 11 38 27 45 1147 TL 513
5 157 151 138 10 14 18 11 13 35 295 152 44 806 903 TL
6 260 323 44 31 15 26 39 30 28 326 260 97 TL TL TL
7 590 646 144 46 20 35 108 46 41 909 779 246 TL TL TL
8 TL 1468 894 74 82 94 444 315 300 TL TL 1139 TL TL TL
9 55 51 23 5 4 5 7 7 6 75 69 47 175 71 191
10 TL TL 898 116 106 117 543 470 231 TL TL 1091 TL TL TL
11 140 56 27 15 9 12 12 18 11 151 65 53 506 1145 TL
12 1192 654 803 17 17 16 34 32 55 TL 978 277 1588 TL TL
13 7 8 9 4 4 5 4 5 4 8 9 7 32 19 46
14 1006 1083 214 103 52 83 115 153 216 1230 1239 350 TL TL TL
15 68 81 60 8 9 10 10 8 6 63 69 74 195 127 286
16 219 261 84 12 14 10 15 14 14 213 204 41 745 TL TL

Average 612 615 259 38 31 46 107 77 72 714 715 313 1268 1554 1665

Table C3. Individual solution times for Set 2, when the valid inequalities are added to the Basic case and its extensions.
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