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Abstract

Process monitoring is a critical activity in manufacturing industries. A wide variety of data-driven ap-
proaches have been developed and employed for fault detection and fault diagnosis. Analyzing the existing
process monitoring schemes, prediction accuracy of the process status is usually the primary focus while
the explanation (diagnosis) of a detected fault is relegated to a secondary role. In this paper, an interpretable
unsupervised machine learning model based on Bayesian Networks (BN) is proposed to be the fundamental
model supporting the process monitoring scheme. The proposed methodology is aligned with the recent
efforts of eXplanatory Artificial Intelligence (XAI) for knowledge induction and decision making, now
brought to the scope of advanced process monitoring. A BN is capable of combining data-driven induction
with existing domain knowledge about the process and to display the underlying causal interactions of a
process system in an easily interpretable graphical form. The proposed fault detection scheme consists of
two levels of monitoring. In the first level, a global index is computed and monitored to detect any devia-
tion from normal operation conditions. In the second level, two local indices are proposed to examine the
fine structure of the fault, once it is signaled at the first level. These local indices support the diagnosis
of the fault, and are based on the individual unconditional and conditional distributions of the monitored
variables. A new labeling procedure is also proposed to narrow down the search and identify the fault type.
Unlike many existing diagnosis methods that require access to faulty data (supervised diagnosis methods),
the proposed diagnosis methodology belongs to the class that only requires data under normal conditions
(unsupervised diagnosis methods). The effectiveness of the proposed monitoring scheme is demonstrated
and validated through simulated datasets and an industrial dataset from semiconductor manufacturing.
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1. Introduction

In today’s highly complex manufacturing processes, a variety of process monitoring systems are em-
ployed that leverage the large amounts of available process data, to rapidly detect and correct deviations
from Normal Operating Conditions (NOC). The standard implementation of a process monitoring scheme
consists of two phases. The first phase aims at assessing the stability of the process (Phase I analysis – sta-
bility assessment), using a reference dataset sufficiently representative from the process under NOC. If the
process is declared to be stable at the end of Phase I, then Phase II takes place (Phase II – implementation
of the monitoring scheme), where the focus is now to rapidly detect any abnormality or fault in the system
(stage 1) and then proceed with its diagnosis (stage 2) in order to identify and isolate the root case. The first
stage is also known as fault detection, while the second stage is often referred as fault diagnosis.

The objective of this paper is to explore the potential of Bayesian Networks to process monitoring, ex-
tending their current detection capabilities, complemented with more in-depth and systematic diagnosis and
analysis tools. The proposed approach considers a causal structure using both process data and domain
knowledge provided by Subject-matter-experts (SMEs). This hybrid causal model is then used for both fault
detection and fault diagnosis. The diagnosis outcome can be displayed in a graphical form, which clearly
depicts the fault location, greatly facilitating interpretation. Apart from the interpretability, the proposed
process monitoring approach proves to be competitive against conventional multivariate methods operating
under the same assumptions, while offering several advantages in terms of interpretation and causal diag-
nosis. The proposed approach can work with either data-rich or data-poor situations. Many of the more
complex methods highly rely on large amounts of training data to obtain a high accuracy, such as deep
learning approaches. However, such data volume may not always be available in practice. This is usually
the case of process data. For instance, the collected data of a specific product can be sparse in a high-mix
low-volume production line, or the data from a new launched product can be of limited size. Furthermore,
most diagnosis approaches based on BNs require past faulty observations to extract the faulty patterns (su-
pervised diagnosis techniques), heavily depending on the existence of such information which is not always
available. By contrast, the proposed approach only requires NOC data to establish the structure, define the
control limits and conduct fault diagnosis (i.e., is an unsupervised diagnosis technique).

This article is organized as follows. Section 2 gives an overview of the existing literature on fault
detection and monitoring approaches. Theoretical background on Bayesian networks is briefly provided
in Section 3. In Section 4, the details of the proposed BN-based monitoring scheme are introduced and
explained. In Section 5, two case studies (one simulated and another industrial from a semiconductor fab-
rication facility) are then investigated to validate the performance of the proposed approach, both in terms
of accuracy and interpretability. Finally, the main contributions of this article are summarized in Section 6,
together with perspectives of future work.

2. Related background

2.1. A brief overview of fault detection and diagnosis

A large number of univariate and multivariate Statistical Process Control (SPC) approaches have been
developed to detect process/operation/sensor upsets (Nomikos and MacGregor, 1995; Reis and Saraiva,
2006; Qin, 2014; Rato et al., 2016, 2020; Reis et al., 2021). For high-dimensional systems, Statistic Pro-
cess Control based on Principal Component Analysis (PCA), PCA-SPC, is the most well-known and widely
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applied methodology (MacGregor and Kourti, 1995; Rato et al., 2016; Reis, 2019). PCA-SPC is a state-
of-the-art monitoring technique for large-scale linear and static systems, that estimates and monitors the
manifold structure of data in an efficient way, by decomposing the variability in two parts: variability in
the PCA subspace and the residual variability. The two monitoring statistics of PCA-SPC are the Squared
Prediction Error (SPE) and the Hotelling’s T 2 statistics of the PCA scores (Jackson and Mudholkar, 1979;
Hotelling, 1947). The SPE monitors the residual variability, while the Hotelling’s T 2 monitors the in-plane
variability (or structured variability). Together with their associated control limits, these statistics are di-
rectly involved in the detection stage to monitor whether any observations are out of control (ooc). More
reviews and discussions regarding PCA-based monitoring methods can be found in the literature (MacGre-
gor and Kourti, 1995; Qin, 2012; Reis et al., 2019). Several methods incorporating other machine learning
algorithms have also been proposed in the literature, such as K-Nearest Neighbor (He and Wang, 2007), one-
class support vector machines (Mahadevan and Shah, 2009), and artificial neural networks (Samanta et al.,
2003). In recent years, deep learning approaches have also been used for fault detection (Lv et al., 2016;
Zhang et al., 2018; Sun et al., 2020). If the past faulty observations are available, deep neural networks can
be used to extract fault patterns including complex nonlinear dynamics (Siegel et al., 2018). Convolutional
neural networks were also proposed to further consider both spatial and temporal effects (Wu and Zhao,
2018; Ge et al., 2021).

In general, fault detection methods aim to compress the multivariate data into a small number of features
or monitoring indices that still capture the overall variability patterns. Once a fault is detected through these
indices, the next step is to identify the root cause so that the necessary corrective actions can take place and
the process malfunction is repaired. One of the popular diagnostic approaches for a PCA-based monitoring
method is the contribution plot, which provides potential connections between the out-of-control signal
on a control chart and the original variables that may have caused it (Miller et al., 1998; Alcala and Qin,
2011). However, it is well-known that this method suffers from the smearing-out problem (Van den Kerkhof
et al., 2013; Reis et al., 2019). This means that, if a variable is faulty, the contributions will also involve
other variables highly correlated with the faulty one, even though they are perfectly fine. To overcome the
smearing-out problem, several methodologies were proposed. If a sufficiently rich historical dataset with
fault labels are available, a more conclusive diagnosis can be sometimes obtained. For instance, Raich and
Çinar (1997) proposed a PCA-based discriminant framework, where a similarity index is used to associate
abnormal observations to faulty clusters. Many supervised learning approaches have been investigated as
well, such as Fisher Discriminant Analysis (Chiang et al., 2015), support vector machine (Widodo and
Yang, 2007), neural networks (Venkatasubramanian and Chan, 1989). Alternatively, structured approaches
have also been proposed (Bauer and Thornhill, 2008; Rato and Reis, 2015b,a, 2017; Reis et al., 2019).
Other diagnostic models based purely on prior knowledge have been also extensively studied but will not be
discussed in this paper, as they follow a different rational. A more comprehensive review can be found in
the literature (see e.g., Venkatasubramanian et al. (2003); Li et al. (2020)).

Analyzing closely the existing literature, it is possible to verify that a wide range of data-driven ap-
proaches has been developed and applied in many different fields, including for process monitoring, that
are strongly oriented towards maximal accuracy, but neglect the process structure of existing knowledge
of the underlying casual connectivity. However, many applications require both accuracy and explanatory
capabilities, to ensure a correct interpretation of the situation and to take the right corrective actions. The
scope of this problem goes beyond industrial processes, affecting also the medical domain (Holzinger et al.,
2017), judgments involving human rights (Rudin, 2019), and decisions in safety-critical tasks (Varshney and
Alemzadeh, 2017). Therefore, the increasing demand for interpretability has driven more attention to what
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is now known as, eXplainable Artificial Intelligence (XAI) (Guidotti et al., 2018; Gilpin et al., 2018; Arrieta
et al., 2020). More discussion regarding the definitions of interpretability or explainability can be found in
the literature (Doshi-Velez and Kim, 2017; Gilpin et al., 2018; Murdoch et al., 2019; Arrieta et al., 2020). In
brief terms, an explainable AI system does not aim to only learn the patterns from data, but also to provide
human-understandable results. A variety of XAI approaches have been discussed in recent works (Guidotti
et al., 2018; Gilpin et al., 2018). The categories of various explainable ML approaches are, according to the
systematization proposed by Guidotti et al. (2018), referred as: black-box explanation and transparent-box
design. The first category provides post-hoc explanations for a black-box ML approach by incorporating
other interpretable models, such as local classification models to check if a feature (or an object) exists in
an image (Ribeiro et al., 2016). The second category adopts inherent transparent models, such as regression
models, decision trees, or Bayesian networks, etc. (Arrieta et al., 2020), to provide an explanation to the
pattern observed.

2.2. Interpretable approaches for fault detection and diagnosis

Enhancing the interpretability of data-driven manufacturing solutions certainly helps the progress of In-
dustry 4.0, with more intelligent and informative systems. Following the taxonomy of Guidotti et al. (2018),
let us now examine and analyze more closely the existing process monitoring approaches regarding their
interpretability. Classic multivariate approaches, such as PCA, and PLS, have been widely implemented
in process monitoring and proved their effectiveness in fault detection. Nevertheless, relationships found
in data are non-causal, and the results are often lacking interpretation. These approaches usually require
incorporating other techniques, such as contribution plots or Signed Directed Graph, to give more diagno-
sis insights (Qin et al., 2001; Vedam and Venkatasubramanian, 1999). This analysis flow from detection
to diagnosis is similar to the post-hoc explanation approach. In recent years, instead of detection-oriented
approaches, several methodologies incorporating causal connections have been developed to address their
diagnosis capability (Reis and Gins, 2017). Chiang et al. (2015) proposed two indicators, modified distance
and modified causal dependency, incorporating a causal map to identify unknown, known, and multiple
faults. Yang et al. (2012) employed a Signed Directed Graph and determined the propagation path based on
the signs of arcs and the signs of nodes. Bayesian Network (BN) is also one of the popular methods among
these causal approaches (Cai et al., 2017). Yang and Lee (2012) considered a Bayesian network based on
several discretized sensor variables, and these variables consist of different states: normal, warning, or error.
By entering quality data in the evidence node, the faults can be isolated by analyzing the posterior probabili-
ties of other nodes. Mori et al. (2014) developed a process monitoring scheme based on Bayesian networks,
where the final structure is determined by several sub-networks and may include close loops. A likelihood
index was employed for detection, and the propagation path is determined by the approximate integration
of conditional probabilities. Conditional Gaussian networks have also been employed to improve the effi-
ciency of fault diagnosis (Verron et al., 2010; Lou et al., 2020). Lou et al. (2020) used a discrete variable to
represent the status of a process, including: normal operation, known fault types occurred in the past, and
unknown faults. The posterior probability of the status is computed in real-time, for each new incoming
observation. By comparing the value with the statistical limit, a fault type can thus be proposed.

Analyzing the available literature, there is a lack of approaches with the flexibility to integrate both
existing knowledge and data induced knowledge, in a unique and coherent framework. Bayesian Networks
offer this possibility, together with a clear probabilistic interpretation of its outcomes. These features are
explored in this work, but first we provide a short introduction to its structure, estimation algorithms and
properties.

4



3. Bayesian networks

In this paper, Bayesian Networks (BN) are employed as a foundation of the proposed process monitoring
method. This section aims to provide the theoretical background on BN, including a general terminology, a
description of the learning procedure, and some relevant properties.

3.1. Basics

A Bayesian network is a probabilistic model expressing the conditional dependencies of a set of variables
through a Directed Acyclic Graph (DAG) (Pearl, 2014). Let X = [X1,X2, . . . ,Xm] be a data matrix with n
samples and m variables. The graph, denoted by G = (V,E), is composed of a set V = {V1,V2, . . . ,Vm} of
nodes and a set E of arcs. Each node Vk ∈V represents the random variables Xk in X, k ∈ {1,2, . . . ,m}. An
arc e ∈ E describes the cause-effect relationships existing between variables as an asymmetric dependency.
The mapping notations used in this paper are summarized in Appendix A. The absence of an arc implies
the existence of conditional independence between the corresponding variables. An example is shown in
Figure 1, where X1 is a parent node of X3 and X3 is a child node of X1. This dependency can be described as
X1 causes X3 while X3 cannot cause X1.

X1 X2

X3 X4

X5

Figure 1: An illustration of a simple Bayesian network

A Bayesian network satisfies the Markov condition: each node is conditionally independent of its non-
descendants, given its parents. Due to the Markov condition, the joint probability can be expressed in a
product form: p(X1,X2, . . . ,Xm) = ∏

m
k=1 p(Xk|Xpa(k)), where Xpa(k) is the set of parent nodes of Xk and

p(Xk|Xpa(k)) is the conditional probability of Xk given Xpa(k).
In this paper, we assume that all variables follow Gaussian distributions, and relationships among vari-

ables are linear. The linear hypothesis can be expanded after its performance is established and the benefits
confirmed against benchmark methods operating under the same frame of assumptions. Still, linearity is
expected to work well under small/moderate deviations from the nominal operation, where non-linearity, if
present, does not dominate the shape of the response surface. Any node can be thus expressed via a multiple
linear regression model involving its causal parents (see Figure 2), which greatly simplifies the associated
computations.

X1 X2

X3 X3 = β0 +β1X1 +β2X2

X1 ∼ N (µ1,σ1) X2 ∼ N (µ2,σ2)

Figure 2: An example of a Gaussian Bayesian network and the local distribution of each node
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3.2. Structure learning

Learning the structure of Bayesian networks can be a complex and computationally intensive because
the cardinality of the set of possible networks is usually enormous. There are two main categories of ap-
proaches for learning the graphical structure from data: constraint-based and score-based (Scutari, 2009).
Constraint-based algorithms identify the conditional independencies of all variables through statistical tests
that determine if an arc exists or not. The procedure starts with a fully connected undirected graph, and
then determines the conditional independencies of each pair of variables given a subset of other variables.
Many algorithms have been proposed, such as inductive causation algorithm (Verma and Pearl, 1992), PC
algorithm which is named after its inventors (Spirtes et al., 2000), and glow-shrink algorithm (Margaritis,
2003). The outcomes of constraint-based algorithms are affected by the testing order, and some algorithms
can be inefficient when dealing with a large number of variables (Margaritis, 2003).

Score-based algorithms firstly score each possible graphical structure based on how well it describes the
observed data, and the structure with the highest score is selected. Many scoring methods are available for
structure learning (Campos, 2006). In this paper, the Akaike Information Criterion (AIC) is chosen as the
score function:

scoreAIC(G,X) = log(L̂)−dG (1)

where L̂ = p(X|G, θ̂G) is the maximum value of the likelihood function, θ̂G is the maximum likelihood
estimate and dG is the model complexity.

The objective of the score-based algorithms is to find an optimal structure that maximizes the score.
In the case of Gaussian Bayesian Networks, the model complexity is the number of estimated coefficients.
However, finding an optimal structure is known to be NP-hard Chickering (2002). The standard approach
to solve this problem is to perform a heuristic search. Many heuristic search algorithms have been proposed
for leaning the BN structure (Chickering, 2002; Elidan et al., 2002), but some are complicated and hard to
implement. The simplest search algorithm – Hill Climbing (HC), can be a practical choice in terms of the
trade-off between effectiveness and efficiency (Teyssier and Koller, 2012).

In addition to identifying the arcs from data, the algorithm also provides the flexibility to integrate pre-
defined directions on specific arcs. Based on the domain knowledge, the arcs that present known causalities
can be defined as a whitelist, and the arcs that present infeasible causalities will be defined as a blacklist
(Scutari, 2009; Yang et al., 2020). During the structure learning procedure, any movement against either
whitelist or blacklist will be viewed as a violation.

3.3. Properties of DAGs

Reachability in graph theory refers to the ability to go from one node to another node through a path.
Assuming a pair of nodes (Vi,Vj), Vi can reach Vj if there exists a path that starts with Vi and ends with Vj,
denoted by Vi ≺Vj. Let R = {Vi ≺Vj} be the set of relations on V , where (Vi,Vj) ∈V ×V . R indicates the
reachability relation of G. Topological sorting of graph G is to find a permutation TG of V according to the
precedence relation R. For each pair of nodes (Vi,Vj) ∈ V ×V , if Vi ≺ Vj ∈ R, then Vi must precede Vj in
TG (Knuth and Addison-Wesley, 1997), i.e. Vi is the ancestor of Vj. Any DAG has at least one permutation
TG by topological sorting. The topological sorting problem is essentially equivalent to arranging the nodes
of a directed graph into a straight line, so that for any node Vk ∈V the ancestors of Vk must be in front of Vk

in TG.
In this work, the proposed diagnosis procedure follows the order in a topologically sorted permutation.

Hence, the information of the ancestor can be taken into account when abnormal nodes are analyzed.
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4. Process monitoring based on Bayesian Networks

In this paper, we propose a novel process monitoring scheme based on Bayesian Networks (BN). Before
introducing the details of the approach, an overview is provided in Figure 3. The proposed approach is based
on an interpretable machine learning model dedicated to understanding and interpreting the outcomes of the
monitoring methodology. By modeling the process system with a BN, the connections among variables are
established and can be visualized in a graphical form (see Figure 3 (a)). As causal relations defined by SME
can be included in the structure construction, we can be sure that the dependencies are also fully consistent
with the existing domain knowledge.

In what follows, the details of the proposed metrics are introduced in Section 4.1. In Section 4.2,
different types of faults are discussed and are presented in a network form. The analysis based on the
local metrics is covered as well. The proposed BN-based online monitoring procedure is consolidated in
Section 4.3 (see Figure 3 (b) and (c)).

Figure 3: Process monitoring method based on Bayesian networks

4.1. BN-based monitoring metrics

Let X = [X1,X2, . . . ,Xm] be a data matrix with n samples and m variables. Each variable Xk presents
a process variable (or sensor variable) in a process system, k = {1,2, . . . ,m}. As explained in Section 3,
the relations between the variables in X can be presented by a Bayesian network G. A process system
modeled by G can be monitored through the proposed metrics. Note that the granularities of these metrics
can be determined by setting up the desired batch size. Let us define nb as the size of the batch, and X
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can be rewritten as X =


X1
X2
...

XB

, where Xb ∈ Rnb×m, b = {1,2, . . . ,B}. The metrics are computed for each

Xb ∈ Rnb×m, b ∈ {1,2, . . . ,B}. In the rest of this paper, an individual mode refers to a monitoring scheme
when nb = 1, and a batch mode implies that nb > 1. The local metrics are firstly introduced, as the global
metric is simply a summation of the local metrics.

Unconditional local likelihood index Lu
k . As mentioned in Section 3, we assume all the variables follow

Gaussian distribution in this study. The unconditional log-likelihood of variable Xk of batch b is defined as:

Lu
k,b(µ̂k, σ̂k;Xb) =−nb

2
ln(2π)+

nb

2
ln(σ̂k

2)− 1
2σ̂k

nb

∑
i=1

(xik − σ̂k)
2 (2)

where µ̂k is the sample mean of Xk and σ̂k is the sample standard deviation of Xk based on a reference
dataset. In the rest of this paper, the unconditional local likelihood refers to the unconditional log-likelihood
of a variable. A low value of Lu

k,bnew
of a new batch bnew indicates that the current process variable is different

from the original distribution. Note that the unconditional local likelihood index is independent of the BN
structure, as the causalities between variables are not taken into account.

Conditional local likelihood index Lc
k. Suppose the distribution of variable Xk is affected by its parents

Xpa(k). To evaluate the local change that excludes the effects of parents, we propose a conditional local
likelihood index Lc

k, which examines the conditional distribution of Xk instead of the original distribution.
As described in Section 3, any node in G can be expressed as a linear regression model involving its causal
parents Xk = αk +Xpa(k)βk + εk, where Xpa(k) is the matrix of parent variables and εk is the error term. The
conditional distribution of Xk|Xpa(k) is equivalent to the distribution of εk. The conditional log-likelihood
index of Xk of batch b, i.e. log the likelihood of εk of batch b, can be written as:

Lc
k,b(θ̂Xk|Xpa(k)

;Xb) = Lc
k,b(µ̂εk, σ̂εk;Xb) =−nb

2
ln(2π)+

nb

2
ln(σ̂2

εk)−
1

2σ̂εk

nb

∑
i=1

(εik − µ̂εk)
2 (3)

where εik is the residual of sample i in batch b, µ̂εk and σ̂εk are the estimated statistics of εk of the reference
dataset. In this paper, we use the unconditional local likelihood to represent the unconditional log-likelihood
of a variable. Since Lc

k excludes the effects caused by causal parents, a low likelihood implies that the
underlying model has changed, either αk or βk, and such change leads to large εik.

Global likelihood index Lg. The global index measures the overall stability of a process by looking at the
joint distribution of a network G. As the joint distribution of G can be decomposed into the local distribution
of individual variables, the likelihood function can be expressed as the product of local likelihood. The
global likelihood index of batch b is defined as the sum of the log local likelihood function:

Lg
b(θG;Xb) =

m

∑
k=1

Lc
k,b

(
θ̂Xk|Xpa(k)

;Xb

)
(4)

The global likelihood index Lg
b can be used to check if the new batch b is similar to the reference data and if

the underlying model can be well presented by G. By doing so, the task of monitoring multiple variables in
a process system can be simplified to monitoring a single index.
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Control limits for statistics. Statistical control charts are derived to monitor the statistics: Lu
k , Lc

k, and Lg.
The control limits of these three metrics are obtained following the same procedure. The procedure consists
of applying κ-fold cross-validation to avoid over-optimistic limits, that eventually lead to inflated false alarm
rates. In each iteration, training data from κ − 1 folds are used for learning parameters, and the likelihood
metric L is computed in the κth left-out fold, where L = {Lu

k ,L
c
k,L

g}. Assume there are Bk batches in the
κth left-out fold. After all iterations, κ ×Bk metrics are collected ℓ= [L1,L2, . . . ,Lκ×Bk ], and set ℓ is used to
determine the control limits.

To establish the appropriate control limits for anomaly detection, kernel density estimation (Silverman,
1986), a non-parametric method, is employed to estimate the probability density function of each likelihood
index, Lu

k , Lc
k, and Lg. The kernel density estimation of L is defined as:

f̂KDE =
1
nh

κ×Bk

∑
j=1

K
(L− ℓ j

h

)
(5)

where K represents the kernel function and h is bandwidth. The control limits can be determined by∫ LCL
−∞

f̂KDE(ℓ)dx, where α is the pre-defined Type I error. As high likelihood implies that the new batch
is close to the reference distribution, only Lower Control Limit (LCL) is needed for fault detection. The
control limits of the metrics, Lu

k , Lc
k, and Lg, are denoted by hu

k , hc
k, and hg, respectively.

4.2. Types of faults: Network representation

In general, the detected faults can be further categorized into two main groups: (i) process faults: an
anomaly induced by a change in the process, or (ii) sensor faults: a bias due to incorrect readings from a
faulty sensor. In this section, the emerging patterns in a network for these faults are discussed. To simplify
the illustration, a simple linear system presented by a BN is used to discuss the different types of faults
(see Figure 4). The unconditional local distribution of variable Xk is denoted by f u

Xk
and conditional local

distribution of variable Xk is denoted by f c
Xk

. The parameters have been estimated from a historical dataset.

X1 X2

X3

X4
X1 = α1 + ε1

X2 = α2 +β2X1 + ε2
X3 = α3 +β3X2 + ε3

X4 = α4 +β4X2 + ε4

Figure 4: An example of a linear process system represented by a Bayesian network

Ideally, a manufacturing process should remain stable, under a state of statistical process control. How-
ever, various factors during manufacturing may affect the stability of a process and lead to abnormal changes.
These causes can be aging components, disparate material suppliers, or inconsistent operations. Such
changes in the process can be captured by leveraging extensive sensor readings, where the readings may
perform either a slow drift, a rapid shift, or a growing dispersion. In this study, we focus on three types of
faults, namely a correlation change in the process (emulating a process fault, as variables are expected to
lose their normal operating conditions associations in these circumstances), a step change due to an opera-
tion perturbation, and a sensor bias due to a malfunctioning sensor.

Process fault: Correlation change. Assume that the correlation between nodes X1 and X2 has changed from
β2 to β ′

2 over a period of time. Suppose the distribution of X1 remains the same, but a change in β2 alters the
center and spread of the distribution of X2, i.e. f ′X2

, fX2 , as illustrated in Figure 5. In this context, for a new
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batch b, the unconditional local likelihood index Lu
2,b of X2 (10) will be lower than the level of its normal

condition, i.e. Lu
2,b < hu

2 if the magnitude is significant. Since the conditional local likelihood index Lc
b2,b

is computed based on the residuals εb2 according to (11), given an outdated parameter β2, one can expect
a low Lc

b,2 as well. In this paper, we use different colors to visualize an abnormal (faulty) node. A node
filled-in yellow indicates that its unconditional likelihood is below the threshold, i.e., Lu

k,b < hu
k . A node

highlighted with a red rim indicates that its conditional likelihood is below the threshold, i.e., Lc
k,b < hc

k (see
Figure 5). The control limits hu

k and hc
k are obtained through formula (5). In other words, a yellow node

without a red rim means that the given variable has a significantly different value than at the original level,
but by removing the influence of its parent, this variable has no other additional anomaly. On the other hand,
a yellow node with a red rim means that this variable is abnormal and such anomalies are not inherited from
its parent.

X1 X2

X3

X4

X2 = α2 +β2X1 + ε2
X3 = α3 +β3X2 + ε3

X4 = α4 +β4X2 + ε4

f ′X2
, fX2

Lu
k,b < hu

k

Lc
k,b < hc

k

Figure 5: Likelihood indices of batch b given a perturbation in the relationship between nodes X1 and X2

Such change also affects the distributions of descendants of X2, X3, and X4, and leads to low Lu
3,b and

Lu
b,4. But the changing magnitudes of Lu

3,b and Lu
4,b depends on their association with X2. For instance, a

significant change in X2 may only cause an insignificant decreasing in Lu
3,b if β3 is small. However, the

conditional indices, Lc
3,b and Lc

4,b, should remain at their ordinary level if the parameters are the same.

X1 X2

X3

X4

X1 = α ′
1 + ε1 X2 = α2 +β2X1 + ε2

X3 = α3 +β3X2 + ε3

X4 = α4 +β4X2 + ε4

f ′X2
, fX2

Lu
k,b < hu

k

Lc
k,b < hc

k

Figure 6: Likelihood indices of batch b given a step-change in node X1

Operation perturbation: Step-change. Suppose that a step change has occurred in X1, where α ′
1 = α1 +δ .

Consequently, one can expect that there will be a shift in the distribution of X1 as shown in Figure 6. Similar
to a correlation change, such process change will propagate to the descendants of X1. Assume the impacts
caused by X1 are significant for all the descendants. For a new batch b, its unconditional local likelihood
indices of the descendants of X1 are abnormal (see Figure 6). Nevertheless, since the models of descendants
are not changed, their conditional local likelihood indices should exhibit regular, i.e. Lc

k,b > hc
k. In this work,

we assume that a step-change only occurred in the root nodes, which are responsible for injecting variability
and drifting in the system.
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Sensor fault. To monitor the stability of the process, we highly rely on the massive sensor reading data.
However, a malfunctioning sensor will give a misleading result. A process monitoring mechanism should
take into account the case of incorrect sensor readings. In this faulty scenario, we assume the sensor of
process variable X2 is not functioning, and its readings present a bias with the magnitude δ , while the actual
underlying process remains at the normal level. In this case, both Lu

2,b and Lc
2,b of batch b show abnormal

as these indices are computed based on the incorrect sensor readings (see Figure 7). The unconditional
local likelihood Lu

b of its descendants should stay normal because the actual distribution of X2 is the same.
However, index Lc

b of descendants of X2 can be irregular because the effects from parents are computed
incorrectly. In other words, an unfilled node with a red rim indicates that the variable is normal, but the
sensor reading of its parents may be faulty.

X1 X2

X3

X4

X1 = α1 + ε1 X2 = δ +α2 +β2X1 + ε2
X3 = α3 +β3X2 + ε3

X4 = α4 +β4X2 + ε4

Lu
k,b < hu

k

Lc
k,b < hc

k

Figure 7: Likelihood indices of batch b given a sensor bias in X1

In brief terms, changes in process or disturbances caused by operations, are propagated to the descen-
dants and can be observed by looking at the node marked in yellow (see Figures 5-6). On the other hand,
the impact of a sensor bias will only show up in the root cause node as shown in Figure 7. The conditional
distribution alarm, marked by a red rim, aims to narrow the suspicious region by excluding the abnormal
nodes caused by their parents. By analyzing these local likelihood indices, together with a graphic visual-
ization, we are able to spot the faulty region and get more information about the occurred fault. A diagnosis
approach based on this information is introduced in the next section.

4.3. Online monitoring

With a learned BN and the proposed metrics, the proposed BN-based process monitoring can be im-
plemeted online. The global likelihood index Lg (4), is used for fault detection (Level 1 - detection), and
the other two local metrics (2)-(3) are used for targeting the root cause (Level 2 - diagnosis). The flow chart
of online detection and diagnosis is shown in Figure 8. Details of each step are described in the following
subsections.

4.3.1. Level 1: Fault Detection
As discussed in Section 4.1, the global likelihood index Lg is used to monitor the overall stability of a

process system. The proposed process monitoring procedure starts with a global screening by the following
two steps.

1. Computing Lg
b for a new batch b.

2. Comparing Lg
b with threshold hg according to formula (5).

If Lg
b < hg, batch b is tagged as an abnormal batch, and the next diagnosis procedure is triggered.

11



Figure 8: Flow chart of online detection and diagnosis
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4.3.2. Level 2: Fault Diagnosis
Anomaly screening by local likelihood indices. After a fault is detected in batch b, the local distribution
of all variable Xk, k = {1,2, . . . ,m}, are assessed based on their local metrics, namely: unconditional local
likelihood index Lu

k,b and conditional local likelihood index Lc
k,b. By comparing these metrics with the

corresponding control limits hu
k , hc

k, one obtain a set of abnormal variables Xabn. For each variable Xk ∈Xabn,
Lu

k,b < hu
k and Lc

k,b < hc
k. The goal of this step is to quickly filter out the set of abnormal variables, as shown

in the first graph in Figure 3 (c). In the next paragraph, we describe the labeling process in detail.

Root cause isolation by labeling. In this paper, we aim to bring further diagnosis insights by labeling the
abnormal variables so that the result of the analysis can be linked to the repairing action. The labeling
procedure involves m′ iterations, which correspond to the number of variables in Xabn. In each iteration, the
abnormal variables in Xabn are analyzed by checking their parents and children. At the end of each iteration,
these abnormal variables are labeled with the suspicious faulty type.

Two assumptions are made to simplify the labeling procedure:

• If a pair of connected nodes is marked as abnormal, we assume the fault has occurred in the parent,
and the abnormality has been propagated to the children.

• Multiple faults are not considered, i.e. only one type of fault is assumed to occur in a node.

The sequence is following the order of topological sorting TG (see Section 3). Let T
′

G be a topological
sorted list, which only contains a set of abnormal variables Xabn. The iteration starts with the first variable in
T ′

G. The labeling rules to be applied in each iteration are shown in the sub-flow chart outlined by the dotted
line in Figure 8.

• Xk is not a root node: If node Xk is not a root node, i.e. a node with parents, the approach checks if the
anomaly in Xk is a consequence of its abnormal parents. If any variable in Xpa(k) has been diagnosed,
the type of fault of Xk will be labeled with the same type as its parents. However, if the states of Xpa(k)

are normal, the algorithm checks the metrics of its children Xch(k), to get more information.

As referred in Section 4.2, a process change in correlation between Xk and its parent will have an
impact on the distribution of variable Xk and possibly on its descendants. Therefore, for any Xc ∈
Xch(k), if Lu

c,b < hu
c , we conjecture a correlation change has occurred between Xk and its parent.

If none of the unconditional distribution of Xch(k) is abnormal, the next rule is to check the conditional
distribution of Xch(k). If the sensor of Xk is malfunctioning, in other words, the reading of Xk is
not reliable, the unconditional distribution of Xch(k) should stay in their normal state, while their
conditional distribution may be perturbed because the conditional distribution takes into account the
incorrect sensor information. Thus, for any Xc ∈Xch(k), if Lc

b,c < hc
c, we conjecture a sensor bias in Xk.

For other scenarios, such as when Xch(k) = /0, or both Lu
c,b and Lc

c,b are within control limits, the label
would be: correlation change/sensor bias.

• Xk is a root node: If Xk is a root node, the metrics of Xch(k) are used to gauge the faulty type of Xk (see
Figure 8). Assume there is a step change in Xk, and such change will alter the distribution of Xch(k).
Consequently, for any Xc in Xch(k), if Lu

c,b < hu
c , we conjecture a step change has occurred in Xk. Note

that the difference between a step change and a correlation change is that a step change only occurred
in a root node, while a correlation change is defined as the correlation with parents (see Section 4.2).

If none of the unconditional distribution of Xch(k) is abnormal, the next rule is to check the conditional
distribution of Xch(k). If the sensor of Xk is malfunctioning, the unconditional distribution of Xch(k)

13



should stay in the normal state, while their conditional distribution may present irregular. Thus, for
any Xc in Xch(k), if Lc

c,b < hc
c, we conjecture a sensor bias in Xk. For other scenarios, such as Xch(k) = /0,

or both Lu
c,b and Lc

c,b are within control limits, the label suggested is: step-change/sensor bias.

After the labeling procedure, a set of variables with possible faulty types is obtained. By removing those
labeled by their parents, we can get a smaller set of abnormal variables denoted by Xlabel (see Figure 3).
Reducing the suspicious area shall improve the quality of diagnosis and speed up the time of recovering
from the fault. More supporting results can be referred as well for troubleshooting by labeling the isolated
variables with the type of fault. However, we suggest analyzing these labels only when the data is sufficient.
For instance, when the batch size is set to be greater than 30, the labeling procedure is conducted based on
more evidence and can produce more reliable results.

5. Numerical experiments

The effectiveness of the proposed framework is evaluated with respect to the Principal Component Anal-
ysis (PCA) (see Appendix B) on two case studies. Note that the underlying data generating mechanism used
in the numerical simulations refers to a linear and static system. Therefore, in these conditions, PCA-based
statistical process monitoring is a suitable benchmark method, with many successful applications reported
in the literature involving high-dimensional systems, including industrial applications (in fact, PCA-based
process monitoring is one of rare cases of high-dimensional monitoring approaches being applied in indus-
try). The first case study is based on a simulated dataset, with the goal of consolidating the properties of
the proposed framework. With an explicit structure and several pre-defined faults, the performance of the
proposed method can be examined without any ambiguity in a simulated scenario, opposite to what happens
in the analysis of industrial data, where the root cause and the fault starting time are not always known,
or are uncertain. The second case study is conducted on an industrial example, where we can assess the
performance of monitoring methodologies in real-world environments, dealing with limited resources and
information.

5.1. Case Study 1: A simulated linear system

This case study aims to test the effectiveness of the proposed detection and diagnosis method by intro-
ducing different types of faults. To eliminate the bias caused by an unknown causal structure, we assume
that the structure is known, i.e. the structure learning was conducted successfully, and is therefore skipped.

Data description. A causal network proposed by Tamada et al. (2003) was adopted. This network consists
of 16 nodes (i.e., variables). The causal relations among these variables are presented in Figure 9, where εi is
a white noise sequence with a signal-to-noise ratio of 10 dB. The network equations also contain parameters
used to generate three different faulty scenarios (Table 1), λ and δi. Under NOC, the multiplicative factor
λ is set to be 1, and offset factors δi are set to be 0. As mentioned before (see Section 4.2), the fault types
simulated are the following: a change in correlation between two variables (as a result of some abnormal
changes in the system); a drifting in the operational conditions (due to a changes in some process inputs, e.g.,
raw materials, environmental conditions, inlet streams, etc.); a bias in the sensor (due to some malfunction
in the measuring device).
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X8 X9

X10 X11 X1

X16 X2 X3 X4 X5 X6 X7

X12 X13 X14 X15

X1 = δ1 +1.2λX8 +0.8X9 + ε1
X2 = 0.6X1 + ε2
X3 = 0.05+0.22X1 + ε3
X4 = 1+0.4X1 + ε4
X5 = 0.062+0.16X1 + ε5
X6 = 0.6X1 + ε6
X7 = 0.7X1 + ε7
X8 = δ8 + ε8
X9 = ε9
X10 = 1+0.4X8 + ε10
X11 = 0.56+0.15X8 + ε11
X12 = 0.8X16 +0.51X3 + ε12
X13 = 1.3X3 + ε13
X14 = 1+0.4X3 + ε14
X15 = 0.028+1.3X8 + ε15
X16 = ε16

Figure 9: Causal network and its relationships (Tamada et al., 2003)

Based on the definition described in Figure 9, a synthetic dataset with 1,000 samples is generated and
denoted as Xtrain. The dataset Xtrain is considered as the reference NOC data and is used to learn the PCA
model and BN model parameters for the monitoring schemes.

Table 1: Generated datasets with induced faults

Set Induced fault Modified factor Change in descendants
Xtest

1 Process: Correlation change between X1 and X8 λ ′ = 2 True
Xtest

2 Operation: Step change in X8 δ ′
8 = 2 True

Xtest
3 Sensor: Reading bias of X1 δ ′

1 = 2 False
Xtest

4 - - -

To assess the capabilities of the proposed process monitoring scheme, a set of testing data Dtest =

{Xtest
1 ,Xtest

2 ,Xtest
3 ,Xtest

4 } were generated based on the settings provided in Table 1. Each dataset in Dtest

corresponds to a 1,000× 16 matrix. An artificial fault in Xtest
1 is introduced by changing the correlation

between X1 and X8. The multiplicative factor λ ′ for the modified variable X ′
1 is set to 2 instead of 1, and

the descendants of X1 are generated based on X ′
1. Similarly, a step change is inserted in the dataset Xtest

2

by setting the offset factor δ ′
8 to be 2, and its descendants are generated based on X ′

8. Dataset Xtest
3 is used

to simulate a sensor bias in X1. Hence, the sensor readings is expressed by X ′
1 = δ ′

1 +1.2λX8 +0.8X9 + ε1,
where δ ′

1 = 2. The descendants of X1 are not affected because the underlying structure remains the same
(only the measurement was affected, not the true underlying state). Thus, the values of descendants are
simulated based on X1. The last dataset Xtest

4 applies the same setting as Xtrain and represents the process
under NOC. In this study, only single faults were simulated. This is the most common situation under
the reasonable assumption of independent process/operation/sensor faults, where the occurrence of a single
event is much more likely than the simultaneous occurrence of multiple (rather rare) events.

General settings. In this study, we compare the proposed approach with the conventional PCA approach.
Both monitoring schemes and their control charts are constructed based on the same data splitting procedure.
The training set Xtrain is used to build the model. The control limits are obtained by 10-fold cross-validation
of Xtrain. Note that the control limits can also be established using an independent validation set if data is
sufficient.
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Evaluation: Individual mode. The effectiveness of fault detection is assessed based on the sensitivity ex-
pressed in terms of True Positive Rate (TPR), and specificity expressed in terms of True Negative Rate
(TNR). The first three testing sets are used to assess the sensitivity of different monitoring schemes. The
results are displayed in Table 2. The performances of T 2 and Lg are similar in detecting the process change
in correlation and the step change, i.e. Xtest

1 and Xtest
2 . The control charts for detecting the correlation change

are shown in Figure 10. For detecting the sensor bias in Xtest
3 , both Q and Lg control charts show high sen-

sitivity. The specificity is evaluated through Xtest
4 , where it is possible to verify that the three control charts

are very close to the theoretical value of the false alarm rate, which corresponds to the significance level
established for the control limits (0.01).

Table 2: Fault detection ability

Evaluation PCA-T 2 (%) PCA-Q (%) BN-Lg (%)

Sensitivity (TPR)

Xtest
1 14.7 5.8 14.1

Xtest
2 6.2 0.8 5.9

Xtest
3 11.0 100.0 100.0

mean 10.6 35.0 40.0
Specificity (TNR) Xtest

4 99.1 99.3 98.9

Figure 10: Control charts for the process change in correlation. The two datasets, Xtrain and Xtest
1 , are split by the dashed line, and

the red points indicate the observations signaled as out-of-control: (a) T 2 control chart; (b) Q control chart; (c) Lg control chart.

Once an abnormal observation is detected, the next step is to isolate the faulty variables. Among the
detected abnormal observations (or batch), the correct isolation rate is computed as the percentage of the
observations, where the faulty variables are successfully isolated by different methods. As shown in Table 3,
although the correct isolation rate of DCQ

k in Xtest
1 outperforms the other two methods, the sample size

is relatively small. The proposed approach shows a better performance in Xtest
2 in terms of the number

of detected observations, being close to T 2. The results of Xtest
3 shows that DCQ

k produces the highest
correct isolation rate among the three approaches. It is not straightforward however to establish which
approach exhibits the best performance. However, it is possible to conclude that the proposed method is
very competitive when compared to the classic PCA approach.

Table 3: The performance of fault diagnosis: Correct isolation rate (# of ooc observations)

Correct isolation rate (%) (# of ooc observations) DCT 2

k DCQ
k Lu

k ,L
c
k

Xtest
1 14.3 (147) 51.7 (58) 45.4 (141)

Xtest
2 21.0 (62) 0.0 (8) 69.5 (59)

Xtest
3 0.0 (110) 6.3 (1) 5.6 (1)
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Figure 11: Isolated faults for each observation based on: (a) Contributions of T 2, (b) Contributions of Q, (c) Diagnosis based on Lu
k

and Lc
k. A red point represents a correctly identified faulty variable, and gray points represent other signaled variables.

The ideal monitoring should be capable of identifying the root cause, or at least providing a reduced set
of variables that could be involved in the fault mechanism. As shown in Figure 11, the proposed approach
produces a significantly lower number of signaled variables. The induced process faults in Xtest

1 and the
operation disturbances in Xtest

2 suffer from the smearing-out effect, propagating the anomaly to other relevant
variables. In this context, the number of signaled variables based on the contribution plot is very large.

Evaluation: Batch mode. The proposed BN-based monitoring scheme can also monitor the process by
batch, i.e., processing sets of observations, instead of individual observation. Batch mode monitoring can
be more efficient for monitoring high sampling rate processes. Based on the same datasets, we assess the
effectiveness of batch mode monitoring by setting the batch size to nb = 30. Instead of calculating the
likelihood metrics for each sample, 33 values are computed for both the training set and all the testing sets,
representing the state of each batch. The control charts of Lg in batch mode are presented in Figure 12. As
shown in Table 4, batch mode performs well in terms of both sensitivity and specificity.

Table 4: The performance of detection under batch mode

Evaluation Lg (%)

Sensitivity
Xtest

1 87.9
Xtest

2 84.8
Xtest

3 100.0
Specificity Xtest

4 100.0

By visualizing the causal structure with the proposed indices, the state of each variable can be clearly
presented. Figure 13(a) presents the diagnosis results of an abnormal batch of Xtest

1 . The correlation between
X1 and X8 has been changed, which leads to changes in the distribution of X1 and its descendants, i.e.,
Lu

k,b < hu
k (see those nodes marked in yellow). Based on the conditional local likelihood index, it is possible

to check the distribution of residuals, excluding the effects caused by parents. Since the Lc
c,b of descendants
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Figure 12: Control chart of Lg in batch mode

of X1 are all under control, this implies that the changes in their distributions are caused by X1. Similarly, a
step-change in X8 is propagated to its descendant distributions, as shown in Figure 13(b). By looking at the
conditional index, the variable X8 can be identified as the root cause (see the red rim). Figure 13(c) presents
the results of a sensor bias in X1. Since the underlying process remains the same as NOC, only X1 with
inaccurate sensor readings shows a change in its unconditional distribution. The incorrect sensor readings
were taken into account for computing the Lc

k,c of the descendants of X1, which result in the anomalies in
their conditional distributions (see nodes with red rim).

X8 X9

X10 X11 X1

X16 X2 X3 X4 X5 X6 X7

X12 X13 X14 X15

(a) Xtest
1 (batch 5)

X8 X9

X10 X11 X1

X16 X2 X3 X4 X5 X6 X7

X12 X13 X14 X15

(b) Xtest
2 (batch 12)

X8 X9

X10 X11 X1

X16 X2 X3 X4 X5 X6 X7

X12 X13 X14 X15

(c) Xtest
3 (batch 19)

Figure 13: Diagnosis results based on the BN structure

A causal structure with the information of likelihood indices provides an overview of the affected re-
gions. By employing the labeling procedure described in Section 4.3, the suspicious root causes and the
possible fault types can be identified. The correct isolation rates are summarized in Table 5. The perfor-
mance of batch mode is better than that of individual mode (Table 3), as the metrics of batch mode are based
on more evidence, i.e., sets of observations. The batch mode also illustrates its effectiveness in terms of the
number of isolated variables, as shown in Figure 14.

Table 5: The performance of fault diagnosis: Correct isolation rate

Dataset Correct isolation rate (%) (#of ooc batch)
Xtest

1 96.6 (29)
Xtest

2 100.0 (28)
Xtest

3 78.8 (33)

Furthermore, the labeling procedure can provide more information about possible types of faults by
checking the children of a given faulty variable. As shown in Table 6, the proposed approach successfully
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Figure 14: Isolated faults of each batch. A red point represents a correctly identified faulty variable, and gray points represent other
signaled variables

labels the faulty variable with the corresponding root cause for most batches. This information can help
reducing the investigation time.

Table 6: Results of the labeling procedure

Dataset Induced fault # of batches correctly labeled fault type
Xtest

1 Process: Correlation change between X1 and X8 32 labeled C in X1
Xtest

2 Operation: Step change in X8 32 labeled S in X8
Xtest

3 Sensor: Reading bias of X1 32 labeled B in X1

5.2. Case Study 2: Etching Process in Semiconductor Manufacturing

In this section, a case study conducted on real data from a semiconductor manufacturing plant, was
used to assess the capability of the proposed approach. The previous case study examined the effectiveness
of BN-monitoring in both individual mode and batch mode, and in this case study the individual mode is
adopted due to limitations in the number of samples available.

Data description. The dataset is collected from the LAM 9600 plasma etching process at Texas Instrument
Inc (Wise et al., 1999; He and Wang, 2007). The data consists of 107 normal wafers and 20 faulty wafers
from three experiments, and 19 sensor reading variables (see Appendix D). The process consists of six steps,
such as gas flow stabilization, etching on different layers (He and Wang, 2007). As the focus in this case
study is fault analysis instead of selecting important features, we only consider the data points from one of
the main steps, namely etch of the aluminum layer (i.e. step4). Other studies in the literature focus on the
detection accuracy by considering more process steps.

Three experiments {29,31,33} were performed and the faults are intentionally induced by changing the
settings of different controllable variables (see Table 7). These experiments aim to simulate the scenario of
sensor failure, which means that the sensors fail to detect the changes in the process. To generate a faulty
wafer, the set-point of a controllable variable was changed during the experiment. After the experiment, the
data collected from the controllable variable was manually reset to the same level as its normal baseline.
Therefore, the values of controllable variables would appear normal, while other relevant variables might
exhibit abnormal. More details about these experiments can be found in study of Wise et al. (1999).

General settings. As experiments were run at different time periods, February, March, and April, respec-
tively, the process drift and changes on covariance among variables can be observed (Wise et al., 1999; He
and Wang, 2007). To obtain the optimized models, both PCA and BN are constructed for each experiment.
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Table 7: Description of experiments

Experiment # of normal wafers # of faulty wafers Fault description

Exp29 34 9
TCP (+50), RF (-12), RF (+10), Pr (+3), TCP
(+10), BCl3 (+5), Pr (-2), Cl2 (-5), He Chuck

(unknown)

Exp31 36 5 TCP (+30), Cl2 (+5), BCl3 (-5), Pr (+2), TCP
(-20)

Exp33 37 6 TCP (-15), Cl2 (-10), RF (-12), BCl3 (+10), Pr
(+1), TCP (+20)

The effectiveness of monitoring methods was evaluated by their sensitivity and specificity, i.e., True
Positive Rate (TPR) and True Negative Rate (TNR). Thus, five normal wafers of each experiment are ex-
cluded from the learning process and are used for testing. Let Dtrain = {Xtrain

29 ,Xtrain
31 ,Xtrain

33 } be a set of
training data used for learning the structure of the Bayesian network, and Dtest = {Xtest

29 ,Xtest
31 ,Xtest

33 } is a set
of testing data consists of both normal wafers and faulty wafers.

Figure 15: The fitted conditional linear Gaussian Bayesian network. The categorical variable is labeled as exp.

BN modeling. Typically, the interactions among process variables do not change in a short period. Hence,
we assume that the BNs of each experiment share the same structure. To learn a general BN structure under
limited training data, the Conditional Linear Gaussian Bayesian Network (CLGBN) is considered (Lauritzen
and Wermuth, 1989; Scutari, 2009) (see Appendix C). With a joint dataset XCLGBN = [Xtrain,Z], where
Xtrain = [Xtrain

29 ,Xtrain
31 ,Xtrain

33 ], and Z is a vector corresponding to the categorical variable, which indicates the
experiment ID, an CLGBN model is obtained though the hill climbing algorithm (see Figure 15) available
in bnlearn (R package) (Scutari, 2009). The blacklist provided by SMEs is listed in Appendix D. The
causal connections of CLGBN are kept as the general structure G = (V,E), except the categorical variable
and its arcs are removed. The parameters of the three BNs, θ G

29,θ
G
31, and θ G

33, are learned based on the
corresponding experimental data given the general structure G. In this case study, the CLGBN model is
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considered as a workaround for learning the global structure given such limited historical dataset. Authors
suggest that practitioners can determine the appropriate model depending on the available resources, such
as type of variables or size of dataset.

Figure 16: Isolated faults for each wafer based on: (a) Contributions of T 2, (b) Contributions of Q statistics, (c) Diagnosis based
on the Lu

k and Lc
k. In each experiment, the first five wafers are normal wafers. A red point represents a correctly identified faulty

variable, and gray points represent other signaled variables.

Evaluation. Control limits for each monitoring statistic were obtained as described in Section 4.1. The
results obtained were compared with those from PCA-based monitoring method, and are shown in Table 8.
The Q statistic and the global likelihood index Lg show equally high sensitivities, while the detection rate of
T 2 is relatively low. As shown in Table 8, T 2 outperforms the other metrics in terms of specificity.

Table 8: Fault detection ability

Dataset Sensitivity (%) Specificity (%)
PCA-T 2 PCA-Q BN-Lg PCA-T 2 PCA-Q BN-Lg

Xtest
2 9 4/9 8/9 8/9 5/5 3/5 4/5

Xtest
3 1 4/5 4/5 4/5 5/5 3/5 5/5

Xtest
3 3 5/6 6/6 6/6 5/5 4/5 4/5

Overall 13/20 18/20 18/20 15/15 10/15 13/15

The performance of a monitoring method is evaluated by checking if the root cause variables are suc-
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Figure 17: Isolated faults of each wafer based on different methods: (a) Contributions of Q statistics; (b) Lu
k and Lc

k with the labeling
procedure

cessfully isolated. For example, in the case of a faulty wafer with an induced fault, where the set-point of
TCP power was changed by 50, we expect the variables related to TCP to be identified.

As shown in Table 9, all methods successfully target the root cause for 14 wafers among 20 faulty
wafers. However, by looking at the number of identified variables (see Figure 16), the variables identified
based on likelihood metrics are much less than the variables identified by other two approaches.

Table 9: Fault diagnosis. The last three columns represent the number of wafers successfully diagnosed by different methods: T 2,
Q, Lu

k and Lc
k.

Dataset # of faulty wafers DCT 2

k DCQ
k Lu

k ,L
c
k

Xtest
29 9 6 6 6

Xtest
31 5 4 4 4

Xtest
33 6 4 4 4

Overall 20 14 14 14

The diagnosis results of the 11th wafer of Xtest
33 are shown in Figure 17. Based on the contribution plot

of Q statistics, four variables are identified (see Figure 17 (a)). As illustrated in Section 4.3, the proposed
diagnosis procedure consists of two steps, where the set of abnormal variables is first extracted based on
likelihood metrics Lu

k and Lc
k, and then a labeling process is conducted to identify the fault type. In this

case, four abnormal variables are identified by likelihood metrics (see the node marked in yellow with a
red rim). After the labeling procedure, the size of the identified variables is reduced to 1 because the other
three variables are descendants of TCP Tuner (see Figure 17 (b)). With a causal structure, the efficiency of
troubleshooting can be improved by checking the information provided by neighbor nodes.

As referred in Section 4.3, we suggest to analyze the labeling results only when the data is sufficient,
e.g. nb > 1. In this case study, since the sample size is small, the individual mode has been carried out.
Besides, the dataset is collected from designed experiments with manual induced faults, where this type of
fault is not common. Thus, only the isolation of the variable is discussed.
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5.3. Discussion

In this paper, we present a new process monitoring based on BN and a structured analysis of the in-
formation available in its nodes, and compare it with PCA-based statistical process control. Analyzing the
results from the two case studies presented in the previous section, we can further analyze the differences
between the two approaches. Normally, a PCA-based approach requires two indices for fault detection, the
T 2 statistic and Q statistic, which are two complementary indices used to monitor the PCA subspace and
residual subspace, respectively. The PCA subspace represents existing correlations among variables, while
the residual subspace represents unstructured variation. Therefore, in the first case study, T 2 could capture
a correlation change and a step change, and Q was able to detect the sensor bias (see Table 2). In the second
case study, in the sensor fault case, the Q statistic could also catch these anomaly slightly better than T 2 (see
Table 8). The idea of the proposed global likelihood index is similar to monitoring correlations and residu-
als, but in the local sense, i.e., looking at direct associations between variables. The index is computed based
on a causal structure, which considers the direct correlations among variables. By adding up the conditional
local likelihood, the summarized index can also reflect the anomalies which cannot be explained by their
parents, i.e., detecting higher residual. In this case, we can use a single global likelihood index to provide
similar performance as the two indices of PCA (see Table 2 and Table 8).

After detecting the abnormal observations, the PCA-based approach uses Diagonal Contributions (DC)
to spot the faulty variables, and the BN-based approach combines two local likelihood indices to find the
faulty variables. Although the correct isolation rates were similar for both approaches (see Table 3 and
Table 9), the proposed approach produces a significantly lower number of signaled variables (false positives)
as shown in Figure 11 and Figure 17. This is because many process faults suffer from the smearing-out
effect, propagating the anomaly to other relevant variables (thus resulting in a high rate of false positives).
The proposed conditional local likelihood eliminates the effects caused by parents and therefore it can
discover the root cause more efficiently.

6. Conclusions and future perspectives

In this paper, we explore the use of Bayesian Networks to improve the diagnostic capabilities, while
maintaining the detection accuracy of state-of-the-art methods. We propose a new process monitoring
scheme based on an interpretable machine learning model and evaluate it on several simulated and real
case studies. As a BN describes a process in a structured way, the interactions between process variables
can be easily incorporated and illustrated. Given the flexibility of combining existing knowledge, the diag-
nosis result can better reflect the physical meaning. Three metrics are employed for online monitoring. A
global likelihood index is adopted to monitor the overall system (level 1 - detection), and two local likeli-
hood indices are used to check the changes in local distributions (level 2 - diagnosis). These statistics are
instrumental for diagnosing the type of root cause and their location, through a new labeling procedure. The
granularities of these metrics can be determined by practitioners depending on the sample frequency of a
process, which is also a novel approach in process monitoring. A process with a high sampling rate can
be monitored in a batch way so that the indices can provide more precise information with more evidence.
Furthermore, unlike many fault diagnosis models that require historical dataset with fault labels to provide
better interpretability, the proposed method only requires NOC data to build the structure. In this context,
the scope of monitoring is not limited to or conditioned by the previous faulty patterns.

Through the simulated case study, we demonstrate the detection rate and correct isolation rate of a BN-
based monitoring scheme in an individual mode are similar to the performance of the classic PCA approach.
And the BN-based method can isolate a smaller number of variables in the diagnostic phase. The experiment
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of a batch mode further shows a significant improvement in both detection and diagnosis. Besides, through
the labeling procedure, the identified variables are correctly labeled with the fault type, which provides
more information for the subsequent troubleshooting and repairing stages. An industrial example was also
considered to compare the two process monitoring approaches on a real dataset. The result shows that both
approaches have similar performance in detection rate and correct isolation rate. By looking at the number
of isolated variables, the BN-based approach again outperforms the PCA-based approach.

The effectiveness of the proposed BN-based process monitoring has been illustrated in both fault detec-
tion and fault diagnosis. Nevertheless, some factors should be taken into account before implementation.
Since a Bayesian network is a directed acyclic graph (Pearl, 2014), it cannot be used to model a closed-loop
control system, such as the classic well-known Tennessee Eastman Process (Downs and Vogel, 1993). Other
possible network structures for a closed-loop system should be investigated in future study. Besides, an ideal
BN should be compatible with the physical laws, so we highly recommend to include the SMEs during the
development stage.

To demonstrate the capabilities of the proposed BN-based monitoring scheme, we have used a linear
stationary system. There are several remaining aspects to be investigated in the future. For instance, the
next logical step is to extend the proposed approach to a non-linear system or non-stationary system. The
performance of a large network should be studied as well. Since the global likelihood is calculated by sum-
ming the local likelihood, a single index may not be sufficient in monitoring large systems. Decomposing
a large network into several communities can be one of the possible solutions (Clauset et al., 2004). It may
improve the diagnosis efficiency as well as by early targeting faulty regions. Furthermore, only one induced
fault is designed in the simulation cases and the industrial case. Future studies should also include the sce-
nario of multiple faults and other types of faults, such as gradual drifts. In this paper, we demonstrate that a
BN-based process monitoring approach is able to improve the interpretability of fault diagnosis compare to
the traditional approach. Although some limitations and remaining issues needed further investigation, we
believe this is an interesting direction towards eXplanatory Artificial Intelligence.
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Appendix A. Notations

Table A.10: Notations

Indexes and parameters:
n Number of samples
m Number of variables
B Number of batches in X
nb Batch size
X n×m data matrix
Σ Covariance matrix of X
p Number of retained principal components
T n× p matrix of PCA score
P m× p matrix of PCA loadings
E n×m residual matrix
T 2 T 2 statistic of Hotelling
Q Squared Prediction Error (SPE), also known as Q statistics
DCindex

k Contribution of variable k for index statistic, index ∈ {T 2,Q}
G(V,E) Graph defined by a set of nodes V and a set of arcs E
V Set of nodes, where Vk corresponds to variables Xk ∈ X
ei j ∈ E Arc from node Vi (i.e., variable Xi) to node Vj (i.e. variable X j)
Xpa(k) Set parent nodes (i.e., variables) of variable Xk
Xch(k) Set child nodes (i.e., variables) of variable Xk
θG Parameters of graph G
TG Topological sorted permutation of graph G
Xb nb ×m data matrix of batch b
Lu

k,b Unconditional local likelihood of variable Xk of batch b
Lc

k,b Conditional local likelihood of variable Xk of batch b
Lg

b Global likelihood of batch b
hu

k Control limit of Lu
k

hu
k Control limit of Lc

k
hg Control limit of Lg

Xabn Set of abnormal variables for which Lu
k,b < hu

k and Lc
k,b < hc

k, ∀Xk ∈ Xabn

Xlabel Set of abnormal variables after applying the labeling procedure

Appendix B. Principal Component Analysis and its application in process monitoring

Principal Component Analysis (PCA) is a popular multivariate method that has been widely adopted for
process monitoring. The objective of PCA is to reduce the number of variables by projecting data into a
lower dimension space that explains most of the original information. Let X be a data matrix with n samples
and m variables (usually preprocessed, namely centered and possibly also scaled so that all variables have
zero mean and unit variance). The covariance matrix of X is denoted by ΣΣΣ. PCA transforms the original
variables into new orthogonal variables, by decomposing X as follows:

X = TPT +E (B.1)

where T is an n by p matrix of scores, P is an m by p matrix of loadings, p is the number of retained principal
components, and E is an n by m residual matrix. The columns of P are the eigenvectors of ΣΣΣ associated with
the p largest eigenvalues, and the remaining eigenvectors are denoted by P̃ ∈ Rm×(m−p). By applying PCA,
the original data is decomposed into two complementary spaces: the PCA subspace TPT , and the residual
subspace E = T̃P̃PT , where T̃ = P̃T X. Two complementary statistics are often employed to monitor the
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variance in these two spaces, namely the Hotelling’s T 2 statistic of the scores and the Squared Prediction
Error (SPE).

The Hotelling’s T 2 monitors the variance in the PCA subspace and is computed as:

T 2 = xT PΛΛΛ
−1
p PT x (B.2)

where x ∈ Rm is a sample vector and ΛΛΛ ∈ Rp×p is a diagonal matrix with the first p eigenvalues in the main
diagonal. The upper control limit (UCL) of T 2 is defined as follows:

UCL(T 2) =
p(n−1)(n+1)

n2 −np
Fα,p,n−p (B.3)

where Fα,p,n−p is the upper α percentile of distribution F with the degree of freedom p and n− p.
The variation in the complementary residual space is monitored by SPE of residuals e ∈ Rm, which is

also known as the Q statistic,
Q = eT e = xT P̃P̃T x (B.4)

The UCL of the Q statistic is defined as:

UCL(Q) = θ1

(
zα

√
2θ2h2

0

θ1
+1+

θ2h0(h0 −1)
θ 2

1

) 1
h0

(B.5)

with θi = ∑
m
j=p+1 λ i

j, i ∈ {1,2,3} and h0 = 1− 2θ1θ3
3θ 2

2
, where λ j is jth eigenvalue and zα is the upper α

percentile of the standard normal distribution.
Fault detection can be done by monitoring T 2 and Q statistics. Once a fault is detected, the contribution

charts can be used to isolate the variables that may be connected to it. Many approaches have been developed
to define T 2 contribution (Nomikos and MacGregor, 1995; Westerhuis et al., 2000; Qin et al., 2001). In this
paper, the Diagonal Contributions (DC) proposed by Qin is employed (Alcala and Qin, 2011). The general
DC of variable k for the T 2 and Q statistics is calculated as:

DCindex
k = xT

ξkξ
T
k Mindex

ξkξ
T
k xxx (B.6)

where MT 2
= PΛΛΛ

−1
p PT and MQ = P̃P̃T . ξk is the kth column of the identity matrix, denoted by ξk =

[0, . . . ,1, . . . ,0]T .
Since DCindex

k has a quadratic form, its distribution can be approximated by gkχ2(hk) distribution (Box
1954). The control limits of DCindex

k can be obtained for a given significance level α (Alcala and Qin, 2011).
Parameters g and h are calculated as:

gk =
tr{Sξkξ T

k Mindex
ξkξ T

k }2

tr{SSSξkξ T
k Mindex

ξkξ T
k }

= SSSξkξ
T
k Mindex

ξkξ
T
k (B.7)

hk =
tr{Sξkξ T

k Mindex
ξkξ T

k }2

tr{Sξkξ T
k Mindex

ξkξ T
k }

= 1 (B.8)

Note that many researchers have pointed out that using control limits to identify the significant variables
may mislead the diagnosis result because of the smearing out effect, that leads to an increased contribution
of variables unrelated with the fault (Westerhuis et al., 2000; Van den Kerkhof et al., 2013). Nevertheless, a
contribution plot with control limits is still one of the most common approaches for conducting PCA-based
diagnosis. In this paper, the metrics introduced above are employed as a benchmark for comparison. More
details and extensions of PCA-based monitoring schemes can be found in the literature (Qin, 2012).
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Appendix C. Conditional linear Gaussian Bayesian network

Conditional Linear Gaussian Bayesian Network (CLGBN) is a hybrid BN which consists of discrete and
continuous variables, where the continuous ones cannot be the parents of the discrete ones (Lauritzen and
Wermuth, 1989). The local distribution of the continuous variables Xk given its parents Xpa(k) = Xpa(k),D ∪
Xpa(k),C is defined as a conditional Gaussian distribution:

f (Xk|Xpa(k)) = N
(

α(Xpa(k),D)+β (Xpa(k),C)
T

σ
2(Xpa(k),D)

)
(C.1)

where Xpa(k),C is the matrix of continuous parent variables, Xpa(k),D is the matrix of discrete parent variables,
and α and β are the coefficients of the linear regression model of Xk given its continuous parents. This model
can be different depending on the values of its discrete parents Xpa(k),D.

Appendix D. Blacklist

Existing domain knowledge can be included in BN structure learning by incorporating an association
matrix A defined by SMEs. Each element ai, j ∈ A specifies the infeasible causality between variables Xi

and X j. Hence, if Xi cannot cause X j, then ai, j = 1. Other elements not specified will be learned from data.
The association matrix considered in the framework of Case Study 2 is provided in Table D.11.

Table D.11: Blacklist
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BCl3Flow 1 1 1 1 1 1 1
Cl2Flow 1 1 1 1 1 1 1
RFBtmPwr 1 1 1 1 1 1
RFBtmRflPwr 1 1 1 1 1 1
EndptA 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
HePress 1 1 1 1 1 1 1 1
Pressure 1 1 1 1 1 1
RFTuner 1 1 1 1 1 1
RFLoad 1 1 1 1 1 1
RFPhaseErr 1 1 1 1 1 1
RFPwr 1 1 1 1 1
RFImpedance 1 1 1 1 1 1
TCPTuner 1 1 1 1 1 1
TCPPhaseErr 1 1 1 1 1 1
TCPImpedance 1 1 1 1 1 1
TCPTopPwr 1 1 1 1 1
TCPRflPwr 1 1 1 1 1 1
TCPLoad 1 1 1 1 1 1
VatValve 1 1 1 1 1 1
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