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Abstract

We investigate whether a class of trend models, which decompose a time series into
an underlying trend and transitory component, with various error term structures
can improve upon the forecast performance of commonly used time series models
when forecasting CPI inflation in Australia. The main result is that trend mod-
els tend to provide more accurate point and density forecasts at medium to long
forecasting horizons compared to conventional autoregressive and Phillips curve
models. The best medium-term point forecasts come from a trend model with
stochastic volatility in the transitory component and that with a moving average
component, while long-run point forecasts are better made by trend models with
stochastic volatilities and a moving average component. In a full sample study, we
also find that trend models can capture various dynamics in periods of significance
to the Australian economy which conventional models cannot. This includes the
dramatic reduction in inflation when the RBA adopted inflation targeting, a one-off
10 per cent Goods and Services Tax inflationary episode in 2000, and then gradually
decline in inflation since 2014.
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1 Introduction

Increases in the general price level of goods and services, known as inflation, affect the
decisions of households, firms and governments making it one of the most important
macroeconomic indicators. Since inflation can be affected by monetary policy, a central
objective of many central banks around the world is to maintain a stable rate of inflation
thereby achieving stable macroeconomic outcomes. For instance, in the early 1990s, the
Reserve Bank of Australia (RBA) formulated an explicit inflation target of 2–3 per cent,
on average, over the medium term, making it one of the early adopters of the inflation
targeting framework (Dixon and Lim, 2004). Since then, Australian CPI inflation has
typically ranged between 0-6 per cent in any given quarter. The Australian experience has
shown that inflation is difficult to fine-tune within a narrow band. As a result, obtaining
accurate inflation forecasts is critical in making correct policy decisions.

Despite being an early adopter of inflation targeting, the literature on forecasting Aus-
tralian inflation is relatively sparse (see, e.g., Beechey and Österholm, 2010; Garnier et al.,
2015; Cross and Poon, 2016; Zhang and Nguyen, 2020, and references therein). Moreover,
none of these papers has investigated whether explicit modeling of the underlying trend
can enhance forecast performance. This is surprising since fluctuations in the trend, as
opposed to period-to-period fluctuations, are more in line with the RBA’s definition of
a medium-term inflation target. With this potential shortcoming in mind, our objective
in this paper is to determine whether a class of trend models with various error term
structures can improve upon commonly used models in the literature.

To this end, we provide the first systematic study on forecasting Australia inflation us-
ing time-varying trend models with various specifications for flexible error structures.1

In trend models, the time series is decomposed into an underlying trend and transitory
component. In the literature on forecasting US CPI inflation, it has been shown that
allowing for time-varying volatility in both components enhances overall forecast perfor-
mance (Stock and Watson, 2007). Zhang et al. (2020) have also shown that models with
stochastic volatility and various flexible innovations in the error terms can provide com-
petitive forecasts for G7 economies. Since this is the first paper to consider such models
for the Australian economy, we consider a trend model with stochastic volatility in the
measurement equation (Trend-SV), a trend model with a moving average and stochastic
volatility (Trend-SV-MA) (Chan, 2013), and also revisit the trend model with stochastic
volatility in both the measurement equation and the state equation (Trend-2SV) (Stock
and Watson, 2007). Set in this manner we can learn which model features best forecast
inflation in Australia. In addition to these models, we also consider more convention-
ally used autoregressive (AR) and Phillips curve (PC) models, along with a combination
based forecast. AR models have been shown to provide competitive forecasts of Aus-
tralian inflation Cross and Poon (2016) and are therefore a natural benchmark for our
analysis. PC models, which incorporate additional information from the unemployment

1Such models have also been referred to as unobserved components models or trend-cycle models in
the broader literature on inflation modeling (e.g., Stock and Watson, 2007; Chan, 2013).
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rate, achieved remarkable forecasting performance in the U.S. from 1984 to 1996, and
remain an important candidate model for US inflation forecasts (e.g., Staiger, Stock,
and Watson, 1997; Brayton, Roberts, and Williams, 1999; Garratt, Mitchell, Vahey, and
Wakerly, 2011). Such models have also been shown to be useful when forecasting infla-
tion (Robinson et al., 2003) and modeling of other macroeconomic variables in Australia
(Gruen et al., 2005).2

To remain consistent with Australia’s adoption of inflation targeting, our forecast eval-
uation sample ranges from 1993Q3-2019Q4.3 Our results show that trend models with
stochastic volatility consistently performs well across medium to long forecast horizons in
both point and density forecasts. More specifically, we find that Trend-SV forecasts well
at medium to long horizons in point forecast and almost all forecast horizons in density
forecasts, while Trend-2SV-MA and Trend-SV-MA have the best forecasting performance
on longer horizons in point forecasts. In both point and density forecast analysis, we also
find that the trend models can better predict underlying changes in the inflation dynam-
ics as compared to the AR and PC models. In fact, in the parameter estimation section,
trend models have already shown that they can capture the dramatic decrease in the
underlying trend of inflation when the inflation targeting policy was implemented, a one-
off 10 per cent Goods and Services Tax inflationary episode in 2000, and then gradually
decline in inflation since 2014.

The remainder of the paper proceeds as follows. Section 2 describes the specifications of
the trend models. Section 3 presents the simulation methods of the parameters, followed
by the studies of parameter estimation. Section 4 discusses the forecast results of all the
competing models for the recursive forecast, combination forecast, and rolling window
forecast. Section 5 concludes.

2 Trend Models and Other Competing Models

The models used in this paper for forecasting Australia’s inflation can be divided into
three groups. In the first instance, we introduce the trend model group, which is specified
by the underlying trend of inflation and time-varying parameters. There are then two
groups of competing models: The autoregressive model (AR) group and the Phillips
curve (PC) group. Since PCs are often estimated using levels or first differences, we
further split the PC group into two subgroups. The first subgroup specifies PCs in terms

2Gruen et al. (2005) examine Australian GDP data, and Phillips curve models present good forecasting
performance on the output gap of Australia by using the Australian Real-Time Macroeconomics Database
at the University of Melbourne. They conclude that reasonably reliable output gap estimates can be
obtained in real-time despite the well-known problems of data revisions and endpoint problems in real-
time data.

3As discussed in Cross (2019), the formal announcement of an explicit inflation target was made in
1996, however, reference to a target was made in official RBA speeches in August of 1992 and 1993. With
this in mind, we start the forecast evaluation period in 1993Q3, however, the results are also robust to
starting the forecast evaluation sample in 1992Q3.
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of the inflation and the unemployment rate (PC group), and the second subgroup uses
their first differences (PCd group). The following sections provide details of the model
specifications in each group.

2.1 The Trend Model Group

2.1.1 Trend

The first model is a trend model with a Gaussian distributed error term (Trend) and
constant variance, which is defined as:

yt = τt + εyt , εyt ∼ N (0, σ2
y), (1)

τt = τt−1 + ετt , ετt ∼ N (0, σ2
τ ), (2)

where the error terms εyt and ετt are respectively serially uncorrelated and assumed to
follow independent and identically distributed (iid) Gaussian distributions. Equation (1)
is known as the measurement equation, in which τt is the underlying trend. Equation (2)
is the state equation that we specify as a random walk.

2.1.2 Trend-SV

The trend model can be extended by allowing the measurement equation to have stochas-
tic volatility (Trend-SV):

yt = τt + εyt , εyt ∼ N (0, eht), (3)

τt = τt−1 + ετt , ετt ∼ N (0, σ2
τ ), (4)

ht = ht−1 + εht , εht ∼ N (0, σ2
h), (5)

where εyt , ε
τ
t and εht are respectively serially uncorrelated iid Gaussian distributed error

terms. The difference between the Trend model and the Trend-SV model is that the
latter specifies stochastic volatility in the measurement equation (3). This has the effect
of allowing the magnitude of the error variance to change over time. As in the case of
the Trend model, the state equation for the Trend-SV model (4) is a random walk with
a constant error term.
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2.1.3 Trend-2SV

Following Stock and Watson (2007), the Trend-SV model can be further generalized to
have stochastic volatility in the state equation (Trend-2SV):

yt = τt + εyt , εyt ∼ N (0, eht), (6)

τt = τt−1 + ετt , ετt ∼ N (0, egt), (7)

ht = ht−1 + εht , εht ∼ N (0, σ2
h), (8)

gt = gt−1 + εgt , εgt ∼ N (0, σ2
g), (9)

where the error terms εyt , ε
τ
t , ε

h
t and εgt are respectively serially uncorrelated iid Gaussian

distributed error terms. The difference between the Trend-SV model and the Trend-2SV
model is that the latter specifies stochastic volatility in the state equation (7). This has
the effect of allowing the trend error variance to change over time.

2.1.4 Trend-SV-MA

Following Chan (2013), we also consider a version of the Trend-SV model in which the
measurement equation has moving average (MA) errors (Trend-SV-MA):

yt = τt + εyt , (10)

τt = τt−1 + ετt , ετt ∼ N (0, σ2
τ ), (11)

εyt = ut + ψ1ut−1 + · · ·+ ψqut−q, ut ∼ N (0, eht), (12)

ht = ht−1 + εht , εht ∼ N (0, σ2
h), (13)

where ε2y has an MA process, and σ2
τ is the variance of the underlying trend of inflation.

The inclusion of the MA term is designed to capture any serial dependence in the ob-
servations. Following Chan (2013) and Zhang et al. (2020), we set the order of moving
average component to be one for simplicity.

2.1.5 Trend-2SV-MA

The last trend model allows for stochastic volatility in the state equation of the Trend-
SV-MA model (Trend-2SV-MA):

yt = τt + εyt , (14)

τt = τt−1 + ετt , ετt ∼ N (0, egt), (15)

εyt = ut + ψ1ut−1 + · · ·+ ψqut−q, ut ∼ N (0, eht), (16)

ht = ht−1 + εht , εht ∼ N (0, σ2
h). (17)

where the error terms εyt , ε
τ
t , ε

h
t and εgt are serially uncorrelated and independent of each

other, and ε2y has an MA process. In practice, the order of moving average component is
again set to be one.
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2.2 The AR Group

In addition to trend-models, we consider four AR models. This includes the standard AR
with homoscedastic Gaussian distributed errors (AR), an AR with stochastic volatility
(AR-SV), an AR with an MA process (AR-MA), and an AR with both stochastic volatility
and an MA process (AR-SV-MA).

2.2.1 The Benchmark AR model

The AR model is defined as:

yt = a0 +

p∑
i=1

aiyt−i + εt, εt ∼ N (0, σ2).

When conducting the forecasting exercise, the k-step ahead forecast inflation of the AR
model can be calculated by

ykt+k − yt = ak0 + ap(A)∆yt + εkt ,

where ap(A) denotes the polynomials in lag operator A and εkt is the k-step ahead forecast
error. Following Stock and Watson (2007), we use the Akaike Information Criterion
(AIC), and also the Hannan-Quinn information criterion (HQC) to determine the values
of p for benchmark models in the forecasting exercises. Based on the results of AIC and
HQC, the optimal lag lengths of AR model is one, and the results are reported in the
first row of Table 1.

Table 1: Akaike Information Criterion (AIC) and Hannan-Quinn Information Criterion
(HQC) for AR(p) Models and PC(p,q) and PCd(p,q) Models in 1993Q3-2019Q4.

AIC HQC

AR 1 1
PC (4,4) (4,4)
PCd (3,4) (3,4)

2.3 Phillips Curve Models

2.3.1 Phillips Curve I

Following Stock and Watson (1999, 2007) we use a non-accelerating inflation rate of the
unemployment (NAIRU) Phillips curve (PC), which is defined by:

yt =

p∑
i=1

b1i∆yt−i +

q∑
j=0

(b2j(Ut−j − U) + εt, εt ∼ N (0, σ2),
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where Ut denotes the unemployment rate at date t and U is the non-accelerating inflation
rate of unemployment (NAIRU) which is assumed to be time invariant. The parameters
p and q respectively denote the lag lengths of inflation and the unemployment rate in the
PC. The k-step ahead forecast inflation of the PC is obtained as follows:

ykt+k − yt = bk1(B)yt + bk2(B)(Ut − U) + εkt , (18)

where bk1(B) and bk2(B) denote the polynomials in lag operator B, respectively.

Let bk0 = −bk2(B)U ; then, Equation (18) can be rewritten as Equation (19) with a constant
term bk0:

ykt+k − yt = bk0 + bk1(B)∆yt + bk2(B)Ut + εkt . (19)

This Phillips curve with an unemployment rate level is a conventional Phillips curve
model. The transformed Equation (19) can describe the unemployment rate directly for
the inflation forecast. It is denoted as PC(p, q), where p is the lag length of the first
differential of inflation and q is the lag length of the unemployment rate. As with the
AR model, the lag lengths p and q are determined by the AIC and HQC. The results are
p = 4 and q = 4 and are reported in the second row of Table 1.

Along with the conventional PC model, we also consider PC models with SV, with MA,
and with SV-MA (PC-SV, PC-MA, and PC-SV-MA) as competing models. The specifi-
cations of these models are the same as those in the trend model group. For simplicity,
the lag lengths of inflation and the unemployment rate in these models are both four in
the forecasting time period to consistent with PC.

2.3.2 Phillips Curve II

Phillips curve II is specified by an assumption that autoregressive distributed lags (ADL)
exist in both the inflation and unemployment rates, as also explored by Stock and Watson
(2007). This type of Phillips curve is represented as PCd(p, q). The expression of PCd
model with Gaussian distributions in error terms is below:

yt =

p∑
i=1

c1iyt−i +

q∑
j=1

c2j∆Ut−i + εt, εt ∼ N (0, σ2),

where both the inflation and unemployment rates are assumed to be integrated of order
one I(1) and the stationary predictors ∆yt and ∆Ut are included in the model. The k-step
ahead forecast inflation of Phillips curve II is as follows:

ykt+k − yt = ck1 + ck2(B)∆yt + ck3(B)∆Ut + εkt ,

Consistent with the AR and PC models, the lag lengths p and q of PCd are determined
by the AIC and HQC in the third row of Table 1. The optimal lag lengths of PCd are
p = 3 and q = 4 in 1993Q3-2019Q4.
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As in the case of the PC models, we also consider PCd model variants with SV, with
MA, and with SV-MA (PCd-SV, PCd-MA, and PCd-SV-MA) as competing models.
The specifications of these models are the same as the corresponding trend models. For
simplicity, the lag lengths of inflation and the unemployment rate in these models are
consistent with PCd.

3 Estimation

3.1 Data

In the present paper, we use the quarterly consumer price index (CPI) and the unem-
ployment rates (the percentage of the labor force 15 years and over) of Australia from
1978Q3 to 2019Q4 for parameter estimation, which are released by the Reserve Bank of
Australia (RBA). Both of these macroeconomic variables are seasonally adjusted. The
CPI inflation rate is calculated by the following formula:

yt = 400 ∗ log(CPIt/CPIt−1).

The quarterly CPI inflation, unemployment rate, and their first differences are respec-
tively plotted in Figures 1 and 2. Figure 1 shows that while inflation tends to be more
volatile than the unemployment rate, both series have gradually decreased since the RBA
adopted inflation targeting in 1993. This latter result has been attributed to good mon-
etary policy by the RBA (Cross, 2019).

1980 1985 1990 1995 2000 2005 2010 2015
-5

0

5

10

15

20
CPI Inflation

1980 1985 1990 1995 2000 2005 2010 2015
-2

0

2

4

6

8

10

12
The Unemployment Rate

Figure 1: CPI inflation and the unemployment rates.
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Figure 2: The first differences of CPI inflation and the unemployment rates.

3.2 Priors and Simulation Method

All models are estimated using a Bayesian paradigm with Markov chain Monte Carlo
(MCMC) algorithms: Gibbs sampling and Metropolis-Hastings. Following Chan and
Jeliazkov (2009), the latent states are efficiently sampled using a precision-based sampler
as opposed to conventional Kalman of particle filters. The key idea is that the states can
be efficiently drawn from the conditional posterior distribution by applying block-banded
and sparse matrix algorithms on the precision matrix of that distribution. In this section,
we provide details of parameter estimation setup for trend models.

3.2.1 Initial Values and Priors

Where appropriate, the initial values of τ, h and g in the trend models are assumed to
follow Gaussian distributions:

τ1 ∼ N (τ0, σ
2
0τ ), h1 ∼ N (h0, σ

2
0h), g1 ∼ N (g0, σ

2
0g),

where τ0 = h0 = g0 = 0 and σ2
0τ = σ2

0h = σ2
0g = 5 are set following (e.g., Chan, 2013;

Stock and Watson, 2007; Zhang, Chan, and Cross, 2020). Therefore, the initial values
of these two parameters are distributed with mean 0 and variance 5. Considering the
properties of the growth rates for macroeconomic time series, the prior distribution is
around 0 and large prior variances are used within (-5, 5), thus, the initial values are
reasonable and relatively non-informative.
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The priors of σ2
τ , σ

2
h, and σ2

g are assumed to be independent and follow inverse-gamma
distributions:

σ2
y ∼ IG(νy, Sy), σ2

τ ∼ IG(ντ , Sτ ), σ2
h ∼ IG(νh, Sh), σ2

g ∼ IG(νg, Sg).

Based on suggestions from previous studies on inflation by trend models (e.g., Chan,
2013; Stock and Watson, 2007), we set the hyperparameters to νy = ντ = νh = νg =
10, Sy = 9, Sτ = 0.18, and Sh = Sg = 0.45 . These prior values imply relatively noninfor-
mative values for the shape parameters ν of the inverse-gamma distribution. The scale
parameters mean that Eσ2

y = 1,Eσ2
τ = 0.1412 and Eσ2

h = Eσ2
g = 0.2242; thus, the state

transition is reasonably smooth and the results are comparable to those in the literature.

Finally, the moving average order in the trend models with MA variants is set to be one
for simplicity (Chan, 2013). The MA coefficient is assumed to be a normal prior which
is constrained within (−1, 1) for the MA process invertibility:

ψ ∼ N (ψ0, σ
2
0ψ),

where we set ψ0 = 0 and σ2
0ψ = 1.

3.2.2 Posterior Simulation Method

The simulation of draws from the posterior distribution is conducted using MCMC meth-
ods, and the related Bayesian inference is similar to that of Chan (2013) and Zhang
(2019). Specifically, the posteriors of the trend models are sampled cyclically in the
following sequence:

For the Trend model:

1. p(τ |y, σ2
y , σ

2
τ ),

2. p(σ2
y, σ

2
τ | τ ) = p(σ2

y | τ )p(σ2
τ | τ ).

For the Trend-SV model:

1. p(τ |y,h, σ2
h, σ

2
τ ),

2. p(h |y, τ , σ2
h, σ

2
τ ),

3. p(σ2
h, σ

2
τ | τ ,h) = p(σ2

h |h)p(σ2
τ | τ ).

For the Trend-2SV model:

1. p(τ |y,h,g, σ2
h, σ

2
g),
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2. p(h,g |y, τ , σ2
h, σ

2
g) = p(h |y, τ , σ2

h)p(g |y, τ , σ2
g),

3. p(σ2
h, σ

2
g |h,g) = p(σ2

h |h)p(σ2
g |g).

For the Trend-SV-MA model:

1. p(τ |y,h, ψ, σ2
τ ),

2. p(h |y, τ , ψ, σ2
h),

3. p(ψ, σ2
τ , σ

2
h |y, τ ,h) = p(ψ |y, τ ,h)p(σ2

h |h)p(σ2
τ | τ ).

For the Trend-2SV-MA model:

1. p(τ |y,h,g, ψ, σ2
h, σ

2
g),

2. p(h,g |y, τ , ψ, σ2
h, σ

2
g) = p(h |y, τ , ψ, σ2

h)p(g |y, τ , ψ, σ2
g),

3. p(ψ, σ2
g , σ

2
h |y, τ ,h,g) = p(ψ |y, τ ,h,g)p(σ2

h |h)p(σ2
g |g).

3.3 Posterior Estimation

Before forecasting, we present estimates of the stochastic volatility parameters and mov-
ing average coefficient over the full sample: 1978Q2-2019Q4. All of the estimates are
based on 50,000 draws from the posterior distribution after discarding the first 5,000
draws as a burn-in.

3.3.1 Posterior Estimates of SV Parameters

Figure 3 presents posterior means and credible intervals of the stochastic volatility pa-
rameters h and g obtained under Trend-SV and Trend-2SV, while Figure 4 presents a
similar figure under Trend-SV-MA and Trend-2SV-MA. In both figures, we observe that
the latter models produce smoother estimates of h, which allow for an extra time-varying
variance parameter g to explain the volatility of inflation in Australia. Given that h
and g are from exponential functions, which are monotonically increasing functions, the
values of h and g change substantially over the sample period. This indicates that the SV
models capture the presence of volatility clustering within the inflation series and that
the inclusion of SV in the trend models may lead to improved forecast performance over
a model variant with constant variance.

It is also interesting to note that the curves of h and g vary over time. During the early
1990s, the peak of h under Trend-2SV-MA is lower than that under Trend-SV-MA, while
the value of g channeling the volatility of underlying trend from the state equation of
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Trend-2SV-MA also reaches a peak in that time period. However, h begins to increase
from 2005 under both models, while g is stable around those years. As discussed in Cross
(2019), the increase in volatility in the early 2000s is likely due to the commencement
of Australia’s resource boom, while the reduction in volatility in the 2010s follows the
decline of the boom.4
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Figure 3: Posterior estimates and quantiles for SV parameter h and g under Trend-SV
and Trend-2SV.

4For a discussion of the resource boom and its effects on the Australian economy see Sheehan and
Gregory (2013).
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Figure 4: Posterior estimates and quantiles of SV parameter h and g under Trend-SV-MA
and Trend-2SV-MA.

3.3.2 Posterior distributions of MA coefficients

The marginal density estimates for the MA coefficient p(ψ|y) under Trend-SV-MA and
Trend-2SV-MA are shown in Figure 5. Both values of ψ are concentrated around 0.2 and
the mass is away from 0, which suggests that the MA specification is unlikely to be 0
in these two trend models. Specifically, under Trend-SV-MA, ψ has a higher probability
and more concentrated around its mean than that under Trend-2SV-MA. It indicates
that moving average components share more weight in channeling the volatility of the
inflation when there is no stochastic volatility parameter in the state equation.
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Figure 5: Posterior distribution of MA coefficients under Trend-SV-MA and Trend-2SV-
MA.

4 Forecast Results

In this section, we first discuss the forecast method used in the main analysis, including
forecast horizons, the evaluation period, and accuracy metrics. We then present the
results from each of the individual models, followed by a combination forecast and a
robustness check with a rolling window method in place of the expanding window.

4.1 Forecast Method

To conduct the forecasts, we use a pseudo-out-of-sample forecast method and conduct the
forecasts from 1993Q3-2019Q4. Let T0 = 2004Q4, then the forecasts are first calculated
at time T0+1 and compared with the actual data at time T0+1. We then step to T0+2,
T0+3, and so on, until we reach the end of the sample. The forecast horizons used are one-
quarter ahead, one-year ahead, two-year ahead, and three-year ahead forecasts, denoted
k = 1, 4, 8 and 12. Set in this manner we are able to compare short, medium, and long-
run forecasts from each of the competing models. Since the PC group does not have an
iterative formula for the unemployment rate, we use a direct forecasting methodology for
all models.

The forecast performance is evaluated in terms of two metrics. Point forecasts are eval-
uated using the relative mean square forecast error (MSFE) and density forecasts are
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evaluated using the relative average log predictive likelihood (ALPL).

When calculating the MSFE of a model, the forecast ŷT0+t+k−1 is evaluated by averaging
all the posterior means E(yT0+t+k−1 |y1:T0+t) at T0 + t. Then, the forecasting error is
calculated by e2

T0+t+k−1 = y0
T0+t+k−1 −E(yT0+t+k−1 |y1:T0+t). The MSFE is calculated as:

MSFE =
1

T − T0− k + 1

T−T0−k+1∑
t=1

e2
T0+t+k−1.

The relative MSFE reports the ratio of the MSFE between a candidate model and the
benchmark. Set in this manner, a value that is smaller than one indicates that the
related candidate model has better forecasting performance than the benchmark, while
a value that is larger than one means that the competing model has worse forecasting
performance than the benchmark.

The predictive likelihood p(ŷT0+t+k−1 = yT0+t+k−1 |y1:T0+t) is used to evaluate the density
forecast performance and is given by:

ALPL =
1

T − T0− k + 1

T−T0−k+1∑
t=1

log p(ŷT0+t+k−1 = yT0+t+k−1 |y1:T0+t).

When the observed data with falls into a higher probability density region of the pos-
terior predictive distribution, the estimated parameters, which are conditional on the
observed data yT0+t+k−1, will produce a larger predictive likelihood value. The relative
ALPL reports the difference of the ALPL between a candidate model and the benchmark.
This means that a positive relative ALPL value suggests that the candidate model has
better performance than the benchmark, while a negative ALPL value indicates that the
benchmark forecasts better.

For forecast accuracy comparison, we use a one-sided sign test of equal predictive accuracy
of Diebold and Mariano (1995). When the competing models are all nested, test statistics
introduced by Clark and McCracken (2001) can be used and interpreted in a Bayesian
manner.5 Since models are allocated into four groups and are not all nested, we do not
report test results of nested models. The rejection of equal forecast accuracy relative
to the benchmark at credible level 0.05 and 0.10 are denoted by one and two asterisks,
respectively, and reported in the result tables below.

Considering that the inflation targeting framework was implemented by the RBA in early
1990s (Macfarlane, 1999), Stevens (1999) suggests that mid-1993 is the time at which the
medium-term inflation target was explicitly articulated by the RBA. This time point is
widely accepted as the beginning of conducting a new monetary policy, so we report the
forecasting results from sample 1993Q3-2019Q4. The forecasts are estimated recursively
by expanding the window for parameter estimation. The first 6 points are separated
for lags and the following 40-time points are used as the initial data for the parameter
estimation. Thus, the forecasting period is 2005Q1 to 2019Q4.

5In the Bayesian interpretation of probability, the word credibility is used in place of the classical
notion of statistical significance. For a textbook reference, see Koop (2003).
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4.2 Recursive Forecast Results

We present the results across three sub-sections. First, we present the average results
for the full evaluation period. Second, we look at how the point forecast performance of
each model has evolved. Finally, we look at how the density forecast performance of each
model has evolved over time.

4.2.1 Average Forecast Results

The forecast results for the time period 1993Q3-2019Q4, thereby reflecting the period in
which Australia had an inflation target, are reported in Table 2. In the table, the relative
MSFE results are reported in the left column and the relative ALPL results are in the
right column. Both metrics use the AR model as a benchmark. In terms of point forecasts,
we observe that the trend model group generally outperforms the AR and PC groups at
medium to long-run horizons. The density forecast results are less definitive, however,
the Trend-SV, Trend-2SV, and Trend-2SV-MA also have superior forecast performance
than the benchmark on short to medium runs.

For the trend group, Trend-SV and Trend-SV-MA with SV in the measurement equation
outperform other trend models, suggesting the underlying trend inflation captured by
Trend-SV and Trend-SV-MA accurately depicts the persistence of inflation than other
trend models. For AR, PC, and PCd groups, models with SV or SV-MA also forecast
better than models with Gaussian distribution or just MA specification in most cases.
Taken together, these forecast results show that models with SV or SV-MA provide better
point and density forecasts than their counterparts for inflation in the inflation targeting
period.

When comparing models in the AR and PC groups to the benchmark, we find that only
the AR-SV-MA can outperform the benchmark on a one-quarter ahead point forecast.
Moreover, None of the relative MSFE and the relative ALPL of competing models in
these two groups is better than those of the benchmark on three-year ahead forecasts.
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Table 2: Recursive forecast results for all groups, 1993Q3–2019Q4

Relative MSFE Relative ALPL

k=1 k=4 k=8 k=12 k=1 k=4 k=8 k=12

AR 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00

AR-SV 1.00 1.00* 1.00 1.00 0.05 0.03 -0.01 -0.04
AR-MA 1.01 1.03** 1.05 1.04 -0.03 -0.05** -0.06** -0.06*
AR-SV-MA 0.99 1.00** 1.00 1.00 0.05 0.04 0.00 -0.03

Trend 1.11 0.95 0.92 0.97 -0.15** -0.14** -0.18** -0.23**
Trend-SV 1.11 0.94 0.92 0.98 0.03 0.07 0.03 -0.03
Trend-2SV 1.17 0.99 0.92 0.99 0.02* 0.05 -0.02 -0.11
Trend-SV-MA 1.11 0.94 0.93 0.97 0.01 0.04 0.02 -0.02
Trend-2SV-MA 1.10 0.98 0.91 0.97 -0.06** -0.07** -0.12** -0.18**

PC 1.43** 1.16 1.53** 1.28 -0.12** -0.04 -0.11** -0.08
PC-SV 1.22* 1.10 1.38 1.08 0.01* 0.08 -0.03 -0.01
PC-MA 1.42** 1.17 1.47* 1.25 -0.13** -0.09** -0.15** -0.14**
PC-SV-MA 1.22* 1.11 1.39 1.07 0.01* 0.07 -0.03 -0.01

PCd 1.42** 1.11 1.36 1.10 -0.12** -0.04 -0.08 -0.04
PCd-SV 1.31** 1.22 1.41 1.08 -0.03** 0.04 -0.07 -0.02
PCd-MA 1.42** 1.10 1.32 1.06 -0.13** -0.09* -0.12** -0.11**
PCd-SV-MA 1.30** 1.19 1.37 1.05 -0.02** 0.05 0.06 -0.01

Notes: Bold entries are the smallest relative MSFE or the largest relative ALPL for the corresponding
horizons. ** and * indicates rejection of equal forecast accuracy relative to AR model at significance
level 0.05 and 0.10, respectively, when using an asymptotic test in Diebold and Mariano (1995).

4.2.2 Point Forecast Results Over Time

To give a closer examination of the point performance of all the competing models, in
Figure 6 we present recursively computed MSFEs of the one-year ahead point forecasts
across for the remaining models from 2006Q1-2019Q4. We see that the MSFEs of all the
models increased from 2006 to 2009 due to the Global Financial crisis and then gradually
decreased to the end of the sample. This indicates that all of the models capture the
flexible specification of the inflation target in Australia during the first few years, but
fail to predict that the inflation decreased substantially with the onset of the Global
Financial Crisis on long-run forecasts. Once the Australian economy recovered gradually,
the MSFEs decline smoothly. A possible mechanism is that when the demand pressures
from the real economy were eased, inflation declined, and the MSFEs raised to a platform
with a sustained delayed response from model-based forecasts.
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Figure 6: MSFEs of one-year ahead forecast under all the competing models on a recursive
basis.

While trend models struggle to outperform AR models at the one-step-ahead horizon,
they generally provide superior forecast performance at medium to long runs horizons. To
investigate why this is the case, we plot the actual inflation time series and one-year ahead
point forecasts in Figure 7. The competing models are allocated by groups to facilitate
a model comparison. The main insight is that the forecasts from models in the trend
group adjust rapidly to abrupt jumps in the actual inflation series. It is also important
to note that forecasts from models with SV and SV-MA specifications (especially Trend-
SV and Trend-SV-MA) are relatively close to the actual value. This ability to adapt to
abrupt changes potentially explains why Trend-SV and Trend-SV-MA can outperform
other models in the medium to long runs forecast exercise.
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Figure 7: Actual inflation time series and one-year ahead point forecast under all the
competing models.

Specifically, the Reserve Bank of Australia has undershot the inflation target and the
inflation rate is under its lower bound of 2 per cent since 2014. The results in Figure 7
show that models with an underlying trend specification capture this feature and have
smoother forecasts for inflation. The MSFEs of all the models have similar performance
and all the values fall back below 1 by the end of the sample.

4.2.3 Density Forecast Results Over Time

To give a closer examination of the density performance of all the competing models, in
Figure 8 we present recursively computed ALPLs of the one-year ahead density forecasts
across the remaining models from 2006Q1-2019Q4. We find that when actual inflation
either drops or rises dramatically, e.g. Global Financial Crisis in 2008, none of the
competing models can have the consistent forecasting performance as before, coming
with large absolute log-likelihood values. However, it is worth noting that trend models
with flexible error specifications have less volatility and are generally smoother.
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Figure 8: Log likelihood of one-year ahead forecasts under all the competing models on
a recursive basis.

The primary reason for considering density forecasts in addition to point forecasts is that
they can provide a summary of the forecast uncertainty in the posterior predictive density.
They can therefore be used to examine tail risks in macroeconomic outcomes (Carriero
et al., 2020). To have a closer look at the conditional density forecasts from each model at
a certain time point, in Figure 9 we plot the conditional predictive distributions for each
model in 2016Q2. As mentioned before, inflation fell steadily and maintained a low level
since 2014, and this quarter is typical of this period. The figure highlights the fact that
trend models tend to have heavier tails than the AR and PC models. This allows them
to place a much higher probability weight on inflation values that fail within the tails of
the distribution. The fact that each model has the same error structure highlights the
benefits of specifying a flexible trend component when forecasting Australian inflation.
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Figure 9: Conditional density forecasts in 2016Q2 on one-year ahead forecast horizon
under all the competing models.

4.3 Combination Forecast

In this section, we conduct a forecasting analysis by combining the forecasting results
in each group. Specifically, the forecasting results are combined by both equal weight
(EW) and time-varying weight (TVW) methods for the entire sample period. Following
(Zhang, 2019), the window width is set to be twenty quarters in the time-varying weight
combination forecast. The results for both equal weight and time-varying weight fore-
casting results for AR group, trend group, PC, and PCd groups, respectively, are shown
in Table 3.

Overall, the best point combination performance is given by the AR group at short-run
forecasts and the trend group on medium to long runs. The AR group also has superior
density forecasts at one quarter ahead, one year ahead, and three-year ahead forecast
horizons. It is also notable that the forecast performance of PC and PCd groups greatly
improves on the individual models, with both their point and density forecast results
being closer to those of the benchmark. Finally, it is worth noting that the relatively
close performance between the equal weight and time-varying weight forecasts is also
consistent with the similar forecast results on US inflation data in Zhang (2019).
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Table 3: Combination forecast results for all groups

Relative MSFE Relative ALPL

k=1 k=4 k=8 k=12 k=1 k=4 k=8 k=12

AR 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00

AR-EW 1.00 1.00 1.18 0.98* 0.03 0.04 -0.01 0.02
AR-TVW 1.00 1.00 1.18 0.98* 0.03 0.04 0.00 0.03

Trend-EW 1.08 0.91 0.97 0.85 -0.01 -0.01 -0.07 -0.10
Trend-TVW 1.08 0.91 0.97 0.85 -0.01 0.01 -0.07 -0.09

PC-EW 1.19 1.28 1.55 1.07 -0.02 -0.01 -0.05 -0.01
PC-TVW 1.20 1.29 1.55 1.06 -0.01 0.00 -0.04 0.00

PCd-EW 1.29** 1.36 1.33 0.97 -0.05** -0.03 -0.02 0.00
PCd-TVW 1.29** 1.36 1.32 0.96 -0.04** -0.02 -0.02 0.00

Notes: See the notes to Table 2.

4.4 Rolling Window Forecast

As a sensitivity analysis, we also conducted forecasts using a rolling window approach to
examine whether or not the trend model group still maintains better forecasting perfor-
mance on medium to long runs. Unlike the expanding window approach used in our main
analysis, this method fixes the parameter estimation period to a certain number of time
period, in our case 40-quarters (i.e. 10 years). The relative MSFE and ALPL metrics are
reported in Tables 4 for the forecasting sample period 1993Q3-2019Q4.

The results confirm our main finding that trend models generally provide superior point
forecasts at medium and long-run horizons. Interestingly, in contrast to our main results,
the PC and PCd groups now outperform the AR models and trend models on the one-
year ahead point forecast. However, the benchmark is hard to beat in terms of density
forecast. In summary, the results of the rolling window forecast method indicate that the
trend model group is less influenced by the change of information available for estimation.
Generally, trend models can provide better point forecast performance than other groups.
Models with SV and SV-MA specifications have better forecasting performance than those
without them, which are the same as the findings in the recursive forecast.
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Table 4: Rolling window forecast results for all groups, 1993Q3–2019Q4

Relative MSFE Relative ALPL

k=1 k=4 k=8 k=12 k=1 k=4 k=8 k=12

AR 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00

AR-SV 1.00 1.00 1.00** 1.00 0.00 -0.04 -0.07 -0.10
AR-MA 1.01 0.99 1.02 1.00 -0.03 -0.04 -0.05* -0.06
AR-SV-MA 1.05* 1.00 1.00* 1.00 -0.01 -0.04 -0.08 -0.11

Trend 1.05 0.95 0.88** 0.91* -0.24** -0.25** -0.26** -0.30**
Trend-SV 1.06 0.94 0.87** 0.92 -0.03 0.00 -0.01 -0.07
Trend-2SV 1.13 0.99 0.92 0.89 -0.07* -0.09 -0.15** -0.24**
Trend-SV-MA 1.13 0.96 0.90* 0.92 -0.09* -0.06 -0.04* -0.08**
Trend-2SV-MA 1.16 0.98 0.90 0.90 -0.18** -0.22** -0.25** -0.32**

PC 1.25 0.95 1.19 1.28 -0.06 0.00 -0.08** -0.13
PC-SV 1.10 0.94 0.94* 0.98 -0.02 0.01 -0.01 -0.08
PC-MA 1.25 0.95 1.13 1.25 -0.11 -0.10 -0.17** -0.22**
PC-SV-MA 1.11 0.93 0.95 0.98 -0.03 0.01 -0.01 -0.07

PCd 1.33 0.94 1.23* 1.22** -0.11* -0.02 -0.10* -0.11**
PCd-SV 1.17* 0.93 0.99 1.08 -0.08* 0.00 -0.08 -0.11
PCd-MA 1.31* 0.90 1.19 1.22* -0.13* -0.09 -0.17** -0.19**
PCd-SV-MA 1.15* 0.92 0.99 1.06 -0.07* 0.00 -0.07 -0.10

Notes: See the notes to Table 2.

5 Concluding Remarks

In this paper, we have compared the forecast accuracy of trend models against commonly
used autoregressive and Phillips curve models when forecasting the CPI inflation rate in
Australia. Overall, the results showed that while autoregressive models are tough to beat
at the one-step-ahead forecast horizon, trend models generally provide superior point and
density forecasts at medium to long-run forecast horizons. The best medium-term point
forecasts come from a trend model with stochastic volatility in the transitory component
and that with a moving average component, while long-run point forecasts are better
made by trend models with stochastic volatilities and a moving average component.
These improvements were found to be robust to both expanding and rolling window
forecast methodologies.

In an in-sample analysis, we also found that trend models can capture various dynamics
in periods of significance which the AR and PC models cannot. This includes the dra-
matic reduction in inflation when the RBA adopted inflation targeting, a one-off 10 per
cent Goods and Services Tax inflationary episode in 2000, and then gradually decline in
inflation since 2014. Taken together, our results suggest that policymakers would benefit
from adopting trend models when forecasting inflation in Australia.
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