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1 Introduction

A fundamental contribution of Sargent and Sims (1977) was the illustration that two unobserved

factors can be successful in summarizing the information in a large number of macroeconomic

variables, an approach they coined “measurement without theory”. Since this early application

of factor analysis, empirical investigations relying on this class of models have evolved tremen-

dously,1 as has our understanding of various statistical estimation approaches to factor models and

their properties.2 During the prolonged period of stability in macroeconomic volatility known as

the Great Moderation (ca. 1982 - 2007), constant parameter factor models have experienced good

fit. After the Great Recession shock of 2007-2009 factor models that feature structural breaks,

stochastic volatility and other flexible extensions have emerged in the literature.3 More recently,

several authors suggest that modeling each quantile of the distribution of macroeconomic data – a

statistical procedure widely known as quantile regression (Koenker, 2005) – can be more beneficial

for inference and forecasting.4 The argument in favor of quantile models is that different predictor

variables and model features might be relevant for explaining each quantile of the distribution of

a series. Therefore, it is no surprise that papers such as Ando and Bai (2020), Chen et al. (2021)

(hereafter CDG) and Clark et al. (2021) attempt to estimate quantile factor models that deal with

the econometric problem of allowing different factors to characterize each quantile of n comoving

economic variables observed over T time periods.

The purpose of this paper is to contribute to this important, emerging literature in economet-

rics, by proposing a new probabilistic quantile factor analysis methodology. Our motivation and

starting point is the specification of CDG, which provides the benchmark for characterizing com-

1For example, the factor model has become the ground for characterizing international business cycle comovements
(Kose et al., 2003; Müller et al., 2022); for modeling mixed frequency macro data (Mariano and Murasawa, 2003);
and for structural VAR analysis (Bernanke et al., 2005), among numerous other applications.

2See for instance, Stock and Watson (2002).
3Bates et al. (2013); Koop and Korobilis (2014).
4Most notably this point was made in Adrian et al. (2019), but see also Gaglianone and Lima (2012), Iacopini et al.

(2022), Korobilis (2017) and López-Salido and Loria (2019).
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plex, asymmetric distributions of unobserved factors. For a T ×n panel x of n variables observed

over T time periods, the quantile factor model is of the form x = f(τ)λ
′
(τ)+u(τ), where f(τ) is the

T × r matrix of factors, r� n, λ(τ) is an n× r loadings matrix, and τ ∈ (0,1) denotes the quantile

level. CDG propose an iterative procedure that can be viewed as a generalization of principal com-

ponent analysis (PCA) to the case of a check function loss (while PCA minimizes a quadratic loss

function). These authors allow for different number factors to affect different quantiles by means

of testing using information criteria. We argue that by explicitly working with a probabilistic set-

ting, likelihood penalization can be incorporated naturally, which can be an important feature for

accurate estimation and regularization of extreme quantiles. In monthly or quarterly macroeco-

nomic time series, for example, extreme quantiles may correspond to a fairly small proportion of

the observed periods, making unrestricted estimation of quantile factors imprecise.

In order to deal with estimation in a computationally efficient manner, we build on the statistical

machine learning literature and derive a variational Bayes algorithm for a parametric quantile factor

analysis model based on an asymmetric Laplace likelihood. This contribution is an extension of

the factor analysis model of Ghahramani and Beal (1999), and provides a much faster alternative

to the flexible probabilistic model of Ando and Bai (2020) that relies on computationally intensive

Markov chain Monte Carlo (MCMC) methods.5 In order to regularize the likelihood, the sparse

Bayesian learning prior of Tipping (2001) is adopted, which is found to provide excellent numerical

performance. Both features make the proposed parametric framework especially suitable for large

scale applications and real-time empirical investigation that can inform macroeconomic policy

decisions. The numerical performance of the variational algorithm is evaluated using synthetic

data experiments. The simulation design features flexible disturbance terms, ranging from heavy-

tailed to skewed bimodal distributions.6 By performing numerical comparisons to the loss-based

5See Blei et al. (2017) for a review of the properties and benefits of variational Bayes inference.
6Additional simulations provided in the online supplement, follow the design of CDG and assume autocorrelated

errors.
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quantile factor estimator of CDG it is established that the probabilistic quantile factor methodology

recovers at least as accurately, in the vast majority of cases, the true factors especially in the tails of

the distribution. In addition, the performance of the probabilistic estimator with shrinkage prior is

more robust to changes in the size of the information set whereas the performance of the loss-based

estimator declines as the number of variables increases. This result also highlights the applicability

of our proposed framework in large-scale modeling settings.

We illustrate how the proposed methodology opens up new avenues for empirical research, by

means of a novel approach to extracting macroeconomic indexes. In particular, quantile factors are

extracted from nine disaggregated categories that comprise the (aggregate) economic policy un-

certainty (EPU) index for the US developed by Baker et al. (2016). These individual categories of

uncertainty (e.g. monetary policy, fiscal policy, regulation) are utilized in order to approximate the

full distribution of aggregate economic policy uncertainty by means of quantile factors. The focus

is on 10th, 50th and 90th percentile factors, which are interpreted as “low”, “medium” and “high”

uncertainty indexes. We perform quantitative exercises based on vector autoregressions (VARs) in

order to contrast the information in these three uncertainty indexes with the “mean” EPU index of

Baker et al. (2016) that is used extensively in empirical macro research. We first produce forecasts

of U.S. industrial production, inflation, and the Fed funds rate in order to investigate the ability

of the uncertainty measures to be early warning indicators for some key variables in the economy.

Compared to aggregate EPU, we find that quantile-specific factors provide forecast performance

gains for industrial production and the Fed funds rate, while their performance is on par for infla-

tion. In the case of industrial production, the 90th percentile high-uncertainty factor is the driver

behind the performance gains, suggesting that industrial production forecasts benefit from captur-

ing spells of high uncertainty more accurately. In contrast, the performance gains for Fed funds

rate forecasts can primarily be attributed to the 10th percentile factor, suggesting that downside

risks to uncertainty affect the FED’s decision making. At a second stage, we evaluate the impulse
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response functions of industrial production (the rough monthly proxy for output) to an uncertainty

shock. Our impulse response function analysis reveals that there is significant heterogeneity in the

response of industrial production to uncertainty shocks, depending on whether the shock originates

in the center or the tails of the uncertainty distribution. Although a low-uncertainty shock is not

contractionary, a shock to median or high uncertainty leads to a marked contraction of economic

output. These results suggest that economic aggregates react asymmetrically to uncertainty spells,

a feature that is hidden when only considering aggregate, average uncertainty.7

The remainder of this paper is organized as follows. Section 2 introduces the probabilistic

quantile factor analysis framework and sketches the key steps of the variational Bayes estimation

algorithm. In the same section we illustrate the numerical properties of the proposed algorithm

using simulated data generated from factor structures with very flexible distributions. We also

highlight straigthforward extensions to time-varying parameters and stochastic volatility that are

trivial to handle in a likelihood-based setting. Section 3 is dedicated to using our setting in order

to extract novel indicators of economic policy uncertainty and evaluate their relevance for macroe-

conometric analysis. Section 4 concludes the paper.

2 Methodology

Let xit denote variable i = 1, . . . ,n observed over period t = 1, . . . ,T . Our starting point is a factor

model decomposition, for each conditional quantile τ ∈ (0,1) of xit , of the form

Q(τ)

(
xit |λi,(τ),ft,(τ)

)
= λ′i,(τ)ft,(τ), (1)

7See Aastveit et al. (2017), Berger et al. (2020), Caldara et al. (2016) and Gambetti et al. (2022) for empirical
studies that also argue about the possible asymmetric effects of uncertainty in different modeling settings.
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where λi,(τ) and ft,(τ) are r×1 vectors with r� n the number of unobserved factors that is allowed

to vary across quantile levels.8 The above equation admits the following regression form

xit = λ
′
i,(τ)ft,(τ)+uit,(τ), (2)

where uit,(τ) is a quantile-dependent idiosyncratic error. In line with the exact factor model as-

sumptions the uit,(τ) are uncorrelated across variables i, implying that only the common component

λ′i,(τ)ft,(τ) captures comovements of the variables xit , at each quantile level τ .

In the factor analysis model of the conditional mean of xit , estimation can be implemented

either by maximizing the likelihood (Bishop, 1999; Ghahramani and Beal, 1999) or by minimizing

a quadratic loss-function (Stock and Watson, 2002).9 When moving to quantile factor models,

Chen et al. (2021) propose to obtain the optimal parameter values forλi,(τ) and ft,(τ) by minimizing

the expected loss of u under the check function ρτ(u) = uit,(τ)
(
τ− I{uit,(τ) ≤ 0}

)
where I is the

indicator function (see Koenker, 2005, pp. 5-6). In this paper we propose a variational Bayes

estimation algorithm for probabilistic quantile factor models, that builds on the legacy of factor

analysis models as utilized in the statistical machine learning literature.

2.1 Likelihood-based Representation and Priors

A probabilistic approach to quantile factor analysis requires to replace loss-based estimation with

an equivalent likelihood-based problem. Similar to least squares estimation which is equivalent to

a regression with Gaussian error, it can be shown (Yu and Moyeed, 2001) that quantile regression

8As in CDG we can write r = r(τ) to denote this feature, but we don’t do so for notational simplicity. In this section
we assume that all quantiles have the same number of factors, but the regularization features of our likelihood-based
approach mean that empirically different numbers of factors may affect each quantile of xit .

9The latter approach results in principal component estimates of ft,(τ) and least squares estimates of λi,(τ).
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estimates can be recovered as the maximum of the following asymmetric Laplace likelihood

AL(τ)(uit,(τ);0,σi,(τ)) =
τ(τ−1)

σi,(τ)
exp

{
− 1

σi,(τ)
ρτ

(
uit,(τ)

)}
, (3)

where σi,(τ) is a scale parameter and ρτ(•) is the check function defined previously. The asymmet-

ric Laplace distribution permits a location-scale mixture of normals representation, such that the

AL distributed variate u can equivalently be written as

uit,(τ) = σi,(τ)
1−2τ

1− τ
zit,(τ)+σi,(τ)

√
2zit,(τ)

τ (1− τ)
vit , (4)

where zit,(τ) ∼ Exp(1) and vit ∼ N(0,1). By defining the quantities zi,(τ) =
[
zi1,(τ), ...,ziT,(τ)

]′,
z(τ)=

[
z1,(τ), ...,zn,(τ)

]
,σ(τ)=

[
σ1,(τ), ...,σn,(τ)

]
and f(τ)=

[
f1,(τ), ...,fT,(τ)

]′ the likelihood func-

tion of the quantile factor model – conditional on zi and the quantile level τ – can thus be written

as

p
(
x|λ(τ),f(τ),z(τ),σ(τ)

)
=

n

∏
i=1

T

∏
t=1

N
(
λ′i,(τ)ft,(τ)+σi,(τ)

1−2τ

1− τ
zit,(τ),

2σi,(τ)

τ(1− τ)
zit,(τ)

)
. (5)

Given that this transformed likelihood is conditionally normal and independent for each quantile

level τ , inference is markedly simplified.

One practical benefit of likelihood-based analysis of the quantile factor model is that regu-

larization is easily incorporated via a penalized likelihood. Following Bishop (1999) and others

and we regularize the likelihood by means of Bayesian prior distributions. In particular, for the

loadings matrix we adopt the sparse Bayesian learning prior of Tipping (2001) which takes the

form

λ(τ)|α(τ) ∼
n

∏
i=1

r

∏
j=1

N
(

0,α−1
i j,(τ)

)
, α(τ) ∼

n

∏
i=1

r

∏
j=1

G(a,b) , (6)

where α(τ) =
[
α11,(τ), ...,αi j,(τ)

]
. In practice, in all our calculations using synthetic and real data,
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we follow Tipping (2001) and set a = b = 0.0001 such that the gamma distribution approximates

the uniform distribution. The prior for the scale parameter has prior σ(τ) ∼∏
n
i=1 G(c,d). The re-

maining two latent variables, namely f(τ) and z, by definition have priors f(τ)∼∏
T
t=1 Nr (0r×1,Ir)

and z(τ) ∼∏
n
i=1 ∏

T
t=1 Exp(1), respectively. Therefore, the joint prior can be factorized as follows

p
(
λ(τ),f(τ),z(τ),σ(τ),α(τ)

)
= p

(
λ(τ)|α(τ)

)
p
(
α(τ)

)
p
(
f(τ)
)

p
(
z(τ)
)

p
(
σ(τ)

)
, (7)

where the individual densities are provided above.

2.2 Variational Bayes Inference

Posterior inference in the quantile factor model can be approximated using various methods, most

notably Markov chain Monte Carlo (MCMC); see for example the Gibbs sampler of Ando and Bai

(2020). Due to the fact that MCMC is notoriously cumbersome in high dimensional applications,

we propose a novel variational Bayes approach that builds on previous works of Ghahramani and

Beal (1999), Bishop (1999), and Tipping and Bishop (1999) for probabilistic PCA and factor

analysis instead. Unlike MCMC that relies on sequential sampling using thousands of iterations,

variational Bayes inference is substantially faster and simpler as it reduces to an optimization

problem that can be approximated using only a few iterations (see Blei et al., 2017, for an accessible

introduction to variational Bayes). At the same time, we show in the following that the variational

Bayes algorithm derived in this subsection incorporates model selection (specifically, selection of

the number of quantile factors), and it can be trivially extended to nonlinear settings.

For a family of tractable densities q
(
θ(τ)
)
∈ Q, we want to find a density q? that best ap-

proximates the intractable posterior p(θ(τ)|x), where θ(τ) =
(
λ(τ),f(τ),z(τ),σ(τ)

)
are the model
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parameters and latent variables.10 That is, we seek to minimize the following loss

q?
(
θ(τ)
)
= argmin

q∈Q
DKL

(
q
(
θ(τ)
)
||p(θ(τ)|x)

)
, (8)

where DKL =
∫
Θ q
(
θ(τ)
)

log
{

q(θ(τ))
p(θ(τ)|x)

}
dθ denotes the Kullbach-Leibler (KL) divergence and Θ

is the support of θ.11 Given the need to optimize over a family of distribution functions q, the

solution to this problem requires application of variational calculus. By using the definition of the

KL divergence and Bayes theorem, the quantity DKL above can be written as (Blei et al., 2017)

DKL
(
q
(
θ(τ)
)
||p(θ(τ)|x)

)
= E

[
logq

(
θ(τ)
)]
−E

[
log p

(
θ(τ)|x

)]
, (9)

= E
[
logq

(
θ(τ)
)]
−E

[
log p

(
x|θ(τ)

)]
−

E
[
log p

(
θ(τ)
)]

+E [log p(x)] , (10)

where all expectations are w.r.t. the variational density q
(
θ(τ)
)
. The last term is the marginal

likelihood and it can neither be calculated analytically, nor does it involve the parameters of interest

θ(τ). Therefore, it is sufficient to minimize the first three terms on the right-hand side of equation

(10), or equivalently maximize their negative value, which is known as the evidence lower bound

(ELBO)

ELBO = E
[
log p

(
x|θ(τ)

)]
+E

[
log p

(
θ(τ)
)]
−E

[
logq

(
θ(τ)
)]
. (11)

From this point, optimization is typically simplified by factorizing the variational posterior into

groups of independent densities, an assumption known in physics as mean-field inference. Differ-

ent factorizations are possible, but for the quantile factor model we follow Lim et al. (2020) and

10For notational simplicity, in this subsection we ignore the parameter α(τ) that shows up only in the prior of λ(τ)

and focus on parameters that show up in the likelihood function. That is, we proceed as if α(τ) was fixed/known, a
case that would result in a ridge-regression posterior median for λ(τ). The Appendix shows full derivations under the
sparse Bayesian learning prior, i.e. when α(τ) is a random variable.

11The KL divergence is an information-theoretic measure of promixity of densities. However, notice that the densi-
ties q and p are defined in different spaces, such that the measure DKL is not a true KL divergence.
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Bishop (1999) and assume the following partitioning of the joint variational posterior of θ

q
(
θ(τ)
)
≡ q

(
λ(τ),f(τ),z(τ),σ(τ)

)
(12)

= q
(
λ(τ)

)
q
(
f(τ)
)

q
(
z(τ)
)

q
(
σ(τ)

)
(13)

Under this scheme, it can be shown using calculus of variations that maximization of the ELBO

is achieved by calculating for each of the four partitions the expectation (w.r.t. all other three

partitions) of the log-joint density log p
(
θ(τ),x

)
. The need to update each partition of the parame-

ters conditional on all others calls for an iterative scheme (similar to the EM algorithm) known as

Coordinate Ascent Variational Inference (CAVI).

Algorithm 1 Variational Bayes Quantile Factor Analysis (VBQFA)

Initialize λ(τ),f(τ),z(τ),σ(τ), set ELBO(0) =−1000, and c = 1e−6 the tolerance.

r = 1

while |ELBO(r)−ELBO(r−1)|> c do

for τ ∈ (0,1) do

Update q
(
θ(τ)
)

by sequentially calculating

1: q
(
f(τ)
)

∝ exp
{
Eq(λ(τ),z(τ),σ(τ))

[
log p

(
θ(τ),x

)]}
2: q

(
λ(τ)

)
∝ exp

{
Eq(f(τ),z(τ),σ(τ))

[
log p

(
θ(τ),x

)]}
3: q

(
z(τ)
)

∝ exp
{
Eq(f(τ),λ(τ),σ(τ))

[
log p

(
θ(τ),x

)]}
4: q

(
σ(τ)

)
∝ exp

{
Eq(f(τ),λ(τ),z(τ))

[
log p

(
θ(τ),x

)]}
end for

r = r+1

end while

The quantities in steps 1-4 of the algorithm above may not necessarily be simple and tractable.

However, notice that these conditional expectations mean that we evaluate the p
(
θ(τ),x

)
condi-
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tional on fixing the values of three out of the four blocks of parameters at a time. Therefore, this

algorithm ends up depending on quantities that are similar to the conditional posteriors derived in

Gibbs sampler algorithms, which are typically simple densities. For example, in step 1, by fixing

the values of λ(τ),z(τ),σ(τ) to their expectations reduces the log joint density to an expression

involving a quadratic term in the parameter of interest f(τ). By further taking the exponential of

this term, the variational density q
(
f(τ)
)

simply becomes proportional to the normal distribution,

with posterior mean and variance identical to the formulas we would derive for a Gibbs sampler

algorithm. In step two, we fix f(τ) to its posterior mean and proceed to update λ(τ). Therefore,

even if some derivations seem cumbersome, the final algorithm outlined above has a very simple

structure that should seem natural to end users who are familiar with the Gibbs sampler.12 The

online supplement provides detailed derivations.

2.3 Numerical Precision of the new Estimator

We next report results of synthetic data experiments that illustrate the performance of the proposed

probabilistic estimator (VBQFA) in recovering factors that are generated from flexible error dis-

tributions. In our primary experiments we follow the benchmark setting of CDG that imposes the

same factor structure for each quantile of the distribution of the synthetic time series xt .13 In order

to perform a more broad exploration compared to CDG, we consider a series of six flexible dis-

tributions that feature fat-tails, skewness and bimodalities. The generative model for the synthetic

12Notice, however, that instead of repeated sampling using Monte Carlo the algorithm above iterates over expecta-
tions (posterior means and variances) until convergence. Variational Bayes would typically iterate the same amount of
times as an EM algorithm, i.e. anywhere between 5-500 iterations (depending on the size of the problem).

13In the online supplement we report Monte Carlo results under an alternative scheme considered by Chen et al.
(2021), namely the case of dependent idiosyncratic normal and Student t errors. In this scenario, our algorithm and
the algorithm of CDG provide numerically identical performance.
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data takes the following form

xit =
3

∑
j=1

λ ji f jt +uit , (14)

f jt = 0.8 f jt−1 + ε jt , j = 1,2,3, (15)

where λ ji and ε jt are independent draws from a N(0,1) distribution, and uit is generated from the

following distributions

M1 Heavy-tailed: t3(0,1)

M2 Kurtotic: 2/3N(0,12)+1/3N(0,(1/10)2)

M3 Outlier : 1/10N(0,12)+9/10N(0,(1/10)2)

M4 Bimodal : 1/2N(−1,(2/3)2)+1/2N(1,(2/3)2)

M5 Bimodal, separate modes: 1/2N(−3/2,(1/2)2)+1/2N(3/2,(1/2)2)

M6 Skewed bimodal: 3/4N(−43/100,12)+1/4N(107/100,(1/3)2)

Cases M1-M6 are considered in several quantile regression papers in the statistics literature (see for

example the simulation design of Lim et al., 2020). For reference, the online supplement provides

visual comparison of the shapes of the flexible distributions outlined above. We generate 1000

datasets for all combinations of T = 50,100,200 and n = 50,100,200. As equation (1) implies,

the true number of factors is fixed to r = 3.

Figure 1 illustrates the results of the simulation exercise. For each DGP the individual pan-

els show the trace R2 of the multivariate regression of the estimated factors onto the simulated

factors for the proposed VBQFA model and the benchmark model developed by CDG.14 For the

14Following Stock and Watson (2002), the trace R2 is given by R2
f̂ ,f

= Êtr(f̂ ′P f f̂)/Êtr(f̂ ′f̂), where Ê is the

expectation opertator estimated as the average over Monte Carlo iterations, f̂ denotes the estimated factors, f denotes
the true generated factors, and P f = f(f

′f)−1f ′. We generalize this measure in order to obtain its value for each

11



heavy-tailed (M1), kurtotic (M2), and outlier distribution (M3) two important observations emerge.

While the VBQFA model and the CDG model perform equally well at the median, the VBQFA

outperforms the CDG model at the 25th and 75th percentile level. Across DGPs the trace R2 of

the VBQFA model lies between 93.5% and 100% and that of the CDG model between 80.5% and

100% in the tails of the distributions. In addition, while the performance of CDG declines as the

number of variables, N, increases, the VBQFA model’s performance is robust to changes in the

size of the information set. In most cases, the VBQFA’s performance improves in N and T leading

to performance gains across growing simulation sizes. The biggest contrast emerges for the bipo-

lar distribution with separated modes, M5. In this case the CDG model outperforms the proposed

VBQFA model at all quantile levels and the performance of the VBQFA declines slightly faster

in N and T than that of the CDG benchmark. The DGPs M4 and M6 represent in-between cases.

Both models perform similarly at the median, but the VBQFA (CDG) model dominates at the 0.75

(0.25) quantile level. In general, both models perform worse on this type of distribution with the

trace R2 of the VBQFA (CDG) model declining to 68.4% (68.8%) in the least favourable case.

The online supplement provides detailed tables with the numerical values of the trace R2 plotted

in Figure 1, as well as comparisons using alternative statistical accuracy metrics, and additional

robustness exercises.15

quantile level τ ∈ (0,1). As with all R2 measures, the trace R2 is bounded by one and higher values signify better
statistical fit.

15Depending on the case, the error distributions simulated in this exercise imply non-zero constants in the tails and
the median of the distributions. This implies potential misspecification of the estimation algorithm in CDG which does
not allow for a constant during estimation. As an additional robustness exercise, we follow the approach to estimation
on real data in CDG and standardize the simulated data before estimation with their algorithm. The overall conclusions
remain the same and lend further support to our proposed approach.
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Figure 1: The different panels depict the trace R2 of the multivariate regression of F onto F̂ for
the CDG, VBQFA, and KS1 quantile factor model for the different data generating processes M1
to M6. The x-axis displays the different Monte Carlo simulation settings, (N,T ), for the quantile
levels τ0.25, τ0.50, and τ0.75, respectively.
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2.4 Convergence of ELBO and Factor Selection

Iterating through steps of Algorithm 1 results in the maximization of the evidence lower bound

ELBO. As the ELBO is, by definition, a lower bound to the log-marginal likelihood, its value can

be used for model selection. Therefore, it would be interesting to find out not only how quickly

the ELBO convergences, but also whether it is a reliable measure for model selection. For that

reason we set up a small experiment and generate artificial data from a three-factor model (r = 3)

with Student-t errors (identical to model M1 of subsection 2.3), using T = 100 and n = 50. We

then proceed to estimate quantile factor models with one, two, three, four, five and six factors,

respectively.

Panel (a) of Figure 2 shows the estimates of the ELBO over 300 iterations for all six quantile

factor model estimates of the artificial data, when the true model in the DGP has r = 3 factors. In

all cases, after only a handful of iterations the ELBO convergences towards a fixed value. However,

when overfitting the model with four, five and six factors (solid lines) the ELBO values initially

fluctuate before converging to a fixed number. If we assume a fairly standard convergence criterion

(e.g. that the tolerance between two consecutive iterations is 0.0001), then in these three cases the

algorithm won’t convergence and it will have to terminate by reaching the maximum number of

allowed iterations (300 in the example of Figure 2). In contrast, when estimating the models with

one, two and three factors, convergence is very fast and smooth. Most importantly, we observe the

the estimated model with three factors achieves the highest value of the ELBO.

We repeat this experiment, but now we assume in the DGP that the true number of factors is

r = 6. Panel (b) of Figure 2 shows that now the estimated model with six factors is the best, which

is consistent with the DGP. We have also done various simulations for different T,n,r values, and

we found that the ELBO selects the correct number of factors in 98-100% of the cases. However,

we don’t report these results, as we consider factor selection using the ELBO not a particularly im-

portant issue. This is because researchers many times face a fixed number of factors, for example,
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as it is the case in our empirical exercise with a single uncertainty index, or when using factors

for structural analysis. Even when interested in forecasting a variable y, in-sample fit measures

for choosing factors are less important for two reasons. First, factor estimates are extracted from

data x without reference to the target variable y. Second, measures of out-of-sample performance

(e.g. mean squared forecast errors) are always more appropriate when forecasting compared to

in-sample measures.
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Figure 2: ELBO estimates when the true number of factors in the DGP is r = 3 (panel (a)) and
r = 6 (panel (b)).

2.5 Extensions to nonlinear Quantile Factor Analysis

A major benefit of using a probabilistic approach to quantile factor analysis is the ability to in-

corporate nonlinearities and other flexible modeling features that would otherwise be very costly

to incorporate using nonparametric methods. For example, in the context of quantile regressions,

Kim (2007) and Cai and Xu (2009) develop nonparametric methods for smoothly time-varying

coefficients. When performing quantile factor analysis using macroeconomic data, it is not hard to

imagine situations where the distribution of the data has shifted to such extend, that the loadings

in different quantile levels are subject to breaks. In the “mean” factor model breaks in the loadings

are conveniently represented using time-varying parameters (Stock and Watson, 2002), therefore,
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a similar specification for the quantile factor model would be

xit = λ′it,(τ)ft,(τ)+uit,(τ), (16)

λit,(τ) = λi,t−1,(τ)+ηit , (17)

where ηit ∼ Nr (0,V ) with V a diagonal covariance matrix. As shown in Koop and Korobilis

(ming) such time-varying parameter models can easily be transformed to an observationally equiv-

alent high-dimensional model with more parameters than observations that can be estimated with a

linear estimator. Therefore, as our proposed methodology already incorporates the sparse Bayesian

learning prior of Tipping (2001), it is able to handle the extension to time-varying parameters in a

straightforward fashion.

Similarly, another important feature for time series data is the presence of stochastic volatility,

and Gerlach et al. (2011) show how to incorporate this in a quantile regression model. Applying

this to our quantile factor analysis specification of equation (5) implies the following model

xit = λ′it,(τ)ft,(τ)+σit,(τ)
1−2τ

1− τ
zit,(τ)+σit,(τ)

√
2zit,(τ)

τ (1− τ)
vit , (18)

logσit,(τ) = logσi,t−1,(τ)+ξit , (19)

where ξit ∼ N(0,δ ) with δ a scalar variance parameter. This extension suggests that the variance

of each quantile of the data distribution has changed over time. Such more flexible structures may

be relevant for financial data, for example, quantile extensions to asset pricing factor models that

incorporate arbitrage pricing theory (APT) restrictions. From a computational perspective, this

extension can be handled fairly easily within the variational Bayes algorithm as shown in Koop

and Korobilis (ming).

Such nonlinear extensions seem very reasonable for modern macroeconomic and financial time

16



series data, however, their empirical performance is not warranted. While it is beneficial to estab-

lish that our probabilistic quantile factor analysis perspective can be trivially extended to more

complex settings, many times the flexibility does not mean better fit. In particular, when the fo-

cus lies on forecasting and out-of-sample projections, parsimonious models might be hard to beat.

Therefore, in the remainder of this paper we try to streamline our empirical evidence by focusing

only on the linear quantile factor analysis model. That is, we provide ample empirical evidence

that the proposed linear quantile factor estimator can be numerically superior to linear PCA and

the quantile factor estimator of CDG, leaving empirical exploration using nonlinear quantile factor

analysis as a topic for future research.

3 Uncertain Uncertainty Shocks

In this Section we use the quantile factor methodology to extract novel indicators of economic

policy uncertainty (EPU). We build on Baker et al. (2016) who construct a single index of economic

policy uncertainty for the US, based on textual analysis of millions of newspaper articles. As is the

case with most methodologies for constructing uncertainty indices,16 such measures of uncertainty

capture average effects of the underlying concept. On average, high uncertainty has been connected

with numerous adverse effects to the economy, that can also be long-lasting, see for example the

analysis in Jurado et al. (2015). However, historically there are numerous economic, financial and

political events that increase average uncertainty abruptly but do not materialize into widespread

recessions or other contractions of the economy.17 For that reason, various authors suggest that

16For example, Jurado et al. (2015) define uncertainty as the variance of the forecast error from forecasting using
a large panel of variables. They use this idea with macroeconomic and financial data in order to extract indexes of
macroeconomic and financial uncertainty, respectively.

17On the Black Monday of October 1987 the US stock markets fell by an extreme amount, which can be interpreted
as a volatility/uncertainty shock. However, this large shock never materialized into a recession or any other long-lasting
effects to the macroeconomy. The same is true for other key global events, for example, the 2016 Brexit referendum
in the UK increased political, stock market, and exchange rate uncertainty by a large amount, but didn’t result in an
immediate, measurable impact to GDP.
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there are two faces of uncertainty that can have diverse effects on macroeconomic aggregates.

Berger et al. (2020), Caldara et al. (2016), Gambetti et al. (2022) and Segal et al. (2015) are few of

many recent empirical studies that document an asymmetric effect of uncertainty shocks depending

on the modeling assumptions.

We build on these ideas and we utilize the quantile factor model methodology to measure

“low”, “medium”, and “high” uncertainty based on identifying quantiles of the EPU index of Baker

et al. (2016). We use data on nine disaggregated categories that are category-specific versions of

the aggregate EPU index, namely uncertainties around: monetary policy, fiscal policy, govern-

ment spending, health care, national security, entitlement programs, regulation, trade policy, and

sovereign debt & currency crises. Baker et al. (2016) construct these categorical EPU indices by

adding additional search terms to their definition of aggregate EPU. As such, aggregate EPU could

also be interpreted as a weighted average of the categorical indices with time-varying weights. In

their empirical exercise Baker et al. (2016) find that individual economic sectors are especially

attentive to their respective measures of economic policy uncertainty, suggesting that these might

capture relevant cross-sector heterogeneity. This provides additional motivation for considering

the entire distribution of categorical EPUs. We collect monthly observations on these nine indices

as well as the aggregate EPU index for the period 1985M1-2022M10.18 We estimate a probabilis-

tic quantile factor at three levels, τ = 0.1,0.5 and 0.9, and we do the same for the nonparametric

quantile factor using the methodology of CDG. For reference, we also estimate a simple principal

component from the nine series. In all three methods, the original data are standardized to have

zero mean and variance one, but no other transformation is applied to them as the series are used

in their observed levels, without removing outliers or doing further numerical adjustments.

Figure 3 has four panels that allow visual comparison of different estimates of economic policy

uncertainty. The top left panel shows the total EPU index of Baker et al. (2016) which (for compa-

18Data are available on the website https://www.policyuncertainty.com/categorical_epu.html.
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rability) has also been standardized to have zero mean and variance one. The top right panel shows

the simple PCA estimate from the nine disaggregated categorical EPU series. The aggregate EPU

and the PCA index are broadly similar, however, the PCA estimate has more pronounced peaks.

Next, the bottom left panel shows the 10%, 50% and 90% levels of the VBQFA quantile factor,

and the bottom right panel shows the three levels of the CDG quantile factor. Here there are more

marked differences between the series. Most importantly the 10% VBQFA factor has noticeably

less peaks compared to its CDG counterpart, especially during events of high materialized uncer-

tainty such as the 2020 pandemic. The higher-level factors are also different in the way they peak.

The 90% VBQFA factor has correctly estimated levels as it shows the 2020 pandemic to have by

far the highest uncertainty in-sample. However, this is not true for the CDG 90% factor which,

erratically, attains its highest value during the early 90s US recession and Gulf War.
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Figure 3: Aggregate EPU Index vs factor estimates using categorical EPU series: principal compo-
nent (top right panel); probabilistic quantile factor analysis (bottom left panel); loss-based quantile
factor analysis (bottom right panel)

Having established that the quantile factor estimates have noticeable differences with each

other, as well as the mean factor and total aggregate uncertainty, we proceed to evaluate the in-
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formational content of each series. We broadly follow Bloom (2009) and Jurado et al. (2015)

and use vector autoregressions (VARs) in order to evaluate the effects of uncertainty to a series

of macroeconomic variables. These authors use large VARs with either eight or 11 macroeco-

nomic and financial variables. To keep things simple, replicable, and transparent, our VARs follow

the tradition of simple New Keynesian models and include a measure of output (total industrial

production), a measure of prices (total consumer price index) and the (pre-zero lower bound era)

monetary policy tool (effective federal funds rate).19 Our macro data are from the Federal Reserve

Economic Data (FRED) database and have mnemonics INDPRO, CPIAUSL, and FEDFUNDS.

All series are observed at monthly frequency from 1985M1-2022M10. Other than taking growth

rates of output and prices (defined as the first difference of logarithms), we do not apply any other

transformation nor do we adjust for the large outliers observed during the 2020-21 period.

We explore the informational content of each of the uncertainty measures plotted in Figure 3 by

estimating eight VARs using the three macro variables augmented with each of the uncertainty se-

ries (original EPU index; PCA factor; quantile factors using CDG; quantile factors using VBQFA),

one at a time. In all specifications we use p = 12 lags and estimate the models with OLS. We pro-

duce forecasts for each of the three macro variables for up to h = 24 months ahead. All forecasts

are iterative pseudo-out-of-sample, where we use the last 60% of the observed sample to compute

forecast errors (forecast minus the realization). Table 6 shows the average of the squares of these

forecast errors, also known as mean squared forecast errors (MSFEs) for all eight specifications.

For comparability the forecast errors for each horizon and each model are relative to the forecast

errors generated by the VAR with uncertainty measured using total EPU, which explains why the

table only has seven columns (the benchmark VAR with total EPU is a column of ones). Relative

MSFE values lower than one for any horizon and any of the three forecasted macro variables, im-

19Bloom (2009) estimates larger-scale VARs that also include variables such as employment, wages, productivity
and stock prices. Additionally, variables are in log-levels and a HP filter is applied to each of them. In our case we
simply use annualized growth rates of industrial production and consumer price indexes, while the federal funds rate
is not transformed as it is already expressed in rate form.
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ply that the respective uncertainty indicator is more useful (in a predictive/out-of-sample fit sense)

than total EPU. For compactness we only present results for all short forecast horizons h = 1− 6

months, as well as the two longer h = 12,24 horizons.

The table reveals some interesting patterns. For industrial production, all uncertainty indexes

provide marginal predictability in the short-run. The “mean” factor ( f PCA) achieves gains of up to

4% versus the aggregate EPU. Looking at the quantile factors, it is not surprising that these fore-

cast gains are only replicated by their 90% factors, while the 10% and 50% factors are on par with

total EPU. This observation implies that quantile factors capture periods of high uncertainty (typi-

cally associated with recessions) much better than an average index, translating to higher forecast

performance gains. It is noticeable that the highest gains, up to almost 7%, are achieved by the

VBQFA 90% factor. Moving to CPI, the PCA estimate as well as the vast majority of the uncer-

tainty indexes give forecasting results equal to, or worse than, the VAR using the total EPU index.

There are only some small gains when using the 10% quantile factors, namely fCDG
0.1 and fV BQFA

0.1 .

Interestingly, the quantile factors seem to affect the interest rate - which is the conventional mone-

tary policy tool - the most. In particular, f PCA as well as the median and 90% factors (both VBQFA

and CDG) seem to improve over total EPU by a large margin, but the highest gains are observed

when looking at 10% quantile factors. This result suggests that, on average, low uncertainty events

affect the Fed’s decisions more so than high uncertainty. Again, the largest forecasting gains are

consistently observed by our VBQFA quantile factor, despite the fact that the CDG quantile factor

also performs very well.
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RMSFES OF INDUSTRIAL PRODUCTION RMSFES OF CPI INFLATION RMSFES OF FEDERAL FUNDS RATE

f PCA fCDG
0.1 fCDG

0.5 fCDG
0.9 fV BQFA

0.1 fV BQFA
0.5 fV BQFA

0.9 f PCA fCDG
0.1 fCDG

0.5 fCDG
0.9 fV BQFA

0.1 fV BQFA
0.5 fV BQFA

0.9 f PCA fCDG
0.1 fCDG

0.5 fCDG
0.9 fV BQFA

0.1 fV BQFA
0.5 fV BQFA

0.9

h = 1 0.965 0.996 0.981 0.978 0.993 0.988 0.953 1.001 0.972 1.006 1.014 0.982 0.996 1.024 0.921 0.891 0.919 0.939 0.871 0.939 0.935

h = 2 0.980 0.998 1.005 0.990 0.994 1.012 0.933 1.000 0.971 0.989 1.025 0.965 0.990 1.033 0.925 0.874 0.929 0.934 0.862 0.952 0.971

h = 3 0.961 0.971 0.970 0.968 0.960 0.974 0.952 1.012 0.994 1.008 1.053 0.992 1.004 1.037 0.937 0.883 0.946 0.936 0.868 0.977 1.001

h = 4 0.975 1.008 0.992 0.965 1.006 0.982 0.958 1.016 1.005 1.009 1.061 1.022 1.002 1.035 0.940 0.874 0.949 0.925 0.857 0.982 1.004

h = 5 1.012 1.038 1.028 1.000 1.052 1.017 0.975 1.016 1.002 1.009 1.048 1.019 0.994 1.030 0.947 0.882 0.958 0.921 0.863 0.984 1.006

h = 6 0.999 1.024 1.006 0.994 1.028 1.008 0.976 1.016 1.014 1.009 1.059 1.028 0.993 1.031 0.962 0.899 0.975 0.926 0.882 0.999 1.017

h = 12 1.008 1.026 1.019 0.999 1.021 1.006 0.992 1.003 1.021 1.009 1.000 1.028 1.000 0.982 1.002 0.979 1.013 0.950 0.925 1.013 1.029

h = 24 1.013 1.004 1.019 1.006 1.011 1.014 1.013 1.014 0.999 1.021 1.012 0.987 1.010 1.010 1.010 1.078 1.036 0.958 0.983 1.011 1.017

Table 1: The table displays the root mean squared forecast errors (rMSFE) for the PCA, the qPCA,
and the VBQFA model for industrial production, CPI inflation, and the Federal Funds rate and
forecast horizons 1 to 6, 12, and 24. rMSFE are given relative to the total EPU index.

Having established that the quantile factor estimated using our methodology has relevant in-

formation for macroeconomic aggregates, we proceed into an evaluation of the structural content

of the low, medium, and high uncertainty factors. Again, we estimate VAR(12) models using the

three macro variables and our three probabilistic quantile factors plus total EPU, but do so by

means of the bootstrap estimator of Kilian (1998). We estimate generalized impulse responses of

industrial production to a shock in uncertainty in each of the four VAR models.20 Figure 4 plots

the cumulative sum of these responses of industrial production at the 72 month horizon. In the

VAR where uncertainty is measured using EPU, shocks to IP are clearly contractionary. However,

when considering in turn each of the low, medium, and high uncertainty measures that correspond

to the 10%, 50%, and 90% factors, we see that low uncertainty is in fact not recessionary.

This empirical result complies with empirical observations in recent papers working with vari-

ous measures and empirical models involving uncertainty. Caldara et al. (2016) show that the nega-

tive impact of uncertainty shocks is amplified when financial conditions worsen. When measuring

the effects of monetary policy to the economy, Aastveit et al. (2017) document that a monetary pol-

icy shock’s effect to output are dampened during periods of high uncertainty. More recently, Berger

et al. (2020) measure shocks to realized volatility and identify uncertainty shocks as a by-product

20Of course, there is a large literature discussing identification of uncertainty shocks (see for example Caldara et al.,
2016), but using a more complex and subjective identification scheme is beyond the scope of this empirical illustration.
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Response of IP to EPU shock
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Figure 4: Impulse responses of industrial production to total EPU, and quantile factor uncertainty
shocks.

using a VAR identification scheme borrowed from the business cycles news literature. Using their

identification they find that contemporaneous realized volatility shocks are contractionary while

shocks that correspond to uncertainty about the future are not. They attribute this effect to the fact

that historically investors hedge realized volatility risk but not implied volatility. Finally, Gambetti

et al. (2022) also show that uncertainty shocks can be benign during periods of high disagreement

among consumers, while it has the usual contractionary effect to output during periods of high

agreement. As in these papers, here we record the empirical result that “low-quantile uncertainty”

may not be recessionary, while only “high uncertainty” is correlated with negative response of out-

put. Attempting to pin down the exact channel by which only some manifestations of uncertainty

are correlated with, or even cause recessions, is a very useful exercise that is beyond the scope of

this paper.
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4 Conclusion

We adopt probabilistic inference in the linear quantile factor analysis model. The model allows to

capture complex data distributions by modeling each percentile of that distribution using a separate

factor analysis model. We allow for penalization of loadings of each quantile factor by adopting a

hierarchical shrinkage prior. We propose a computational fast variational Bayes algorithm that we

also demonstrate using many synthetic and real data examples, to be numerically accurate. The

empirical illustration of measuring uncertainty shows the potential benefits of extracting latent

indices using quantile factor analysis, as our estimates outperform traditional averages and PCA in

providing accurate early warning signals for industrial production and the interest rate.
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Appendix to “Probabilistic Quantile Factor Analysis”

1 Variational Bayes inference in the quantile factor model

1.1 Linear quantile factor analysis

The linear quantile factor model is of the form

xit = λ
′
i,(τ)ft,(τ)+uit,(τ), uit,(τ) ∼ AL

(
0,σi,(τ),τ

)
, (1)

where AL(m,σ ,τ) denotes the univariate1 asymmetric Laplace density with location parameter m,

scale parameter σ , and asymmetry parameter τ . This distribution is of the form

uit,(τ) ∼
τ(1− τ)

σi,(τ)

[
e
(1−τ)

uit,(τ)
σi,(τ) I(uit,(τ) ≤ 0)+ e

−τ
uit,(τ)
σi,(τ) I(uit,(τ) > 0)

]
. (2)

The first step towards Bayesian inference is to rewrite the asymmetric Laplace likelihood as con-

ditionally Gaussian likelihood, because the latter greatly simplifies inference. Following Yu and

Moyeed (2001) the AL disturbance term can be written as a normal-exponential mixture of the

form

uit,(τ)|zit,(τ) ∼
1√

2πzit,(τ)σi,(τ)κ
2
2,(τ)

exp

{
−
(
xit−λi,(τ)f(τ)−κ1,(τ)zit,(τ)

)2

2zit,(τ)σi,(τ)κ
2
2,(τ)

}
exp

{
−

zit,(τ)

σi,(τ)

}
,

(3)

or more compactly uit |zit ∼ N(κ1,(τ)zit,(τ),κ
2
2,(τ)σi,(τ)zit,(τ)), zit,(τ) ∼ Exp(σi,(τ)), where Exp(•)

denotes the exponential distribution, κ1,(τ) =
1−2τ

τ(1−τ) and κ2
2,(τ) =

2
τ(1−τ) . This scale mixture of

1We assume that the uit,(τ) are uncorrelated across i, an assumption that is known as the exact factor model. In this
case the common component λi,(τ)ft,(τ) captures all correlations among the variables xit at the quantile level and uit,(τ)
captures idiosyncratic disturbances.
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normals representation gives rise to the following Bayesian quantile factor model

xit = λ
′
i,(τ)ft,(τ)+κ1,(τ)zit,(τ)+κ2,(τ)

√
σi,(τ)zit,(τ)uit , (4)

which is easier to work with because now vit ∼ N(0,1).

The prior for σi,(τ) is of the form σi,(τ)∼G−1(r0,s0), for the factors we assume f(τ)∼∏
T
t=1 Nr (0,I),

and by definition zit,(τ) ∼ Exp(σi,(τ)). The model is completed by defining the hierarchical struc-

ture implied by the sparse Bayesian learning shrinkage prior for λi j,(τ) for i = 1, . . . ,n and j =

1, ...,r, which is given by

λi j,(τ)|αi j,(τ) ∼ N(0,α−1
i j,(τ)), (5)

αi j,(τ) ∼ G(a,b) (6)

where a and b are a tuning parameters set by the user.

Consequently, based on the model likelihood in equation (4) and the equations of the prior, the

set of latent parameters is θ(τ) =
({
λi(τ),αi,(τ),σi,(τ)

}n
i=1 ,

{
ft,(τ),zt,(τ)

}T
t=1

)
. The joint prior is

p(θ(τ)), the data density is p(x|θ(τ)), and the parameter posterior is p(θ(τ)|x). Variational inference

requires the introduction of a family of approximating posterior functions q(θ(τ)|x), where the

optimal density q?(θ(τ)|x) is the one that maximizes the evidence lower bound (ELBO) L

q?(θ(τ)|x) = argmaxL = argmax
∫
θ(τ)∈Θ

q(θ(τ)|x) log

{
p(x|θ(τ))p(θ(τ))

q(θ(τ)|x)

}
dθ(τ), (7)

where the lower bound can be written compactly as

L = Eq(θ(τ)|x)
(
log p(x|θ(τ))

)
+Eq(θ(τ)|x)

(
log p(θ(τ))

)
−Eq(θ(τ)|x)

(
logq(θ(τ)|x)

)
, (8)
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for Eq(θ(τ)|x)(•) being the expectation function w.r.t. the variational posterior.

Using calculus of variations, it can be shown that the maximization above can be approximated

iteratively by partitioning the parameter set into M groups; see Blei et al. (2017) for details. Con-

sider the decomposition q(θ(τ)|x) = ∏
M
j=1 q(θ j,(τ)|x), then optimization of lower bound function

can be achieved by sequentially iterating over the densities

q(θ j,(τ)|x) ∝ expEq(θ(− j),(τ)|x)
(
log p(θ j,(τ)|θ(− j),(τ),x)

)
, (9)

where θ(− j),(τ) denotes all elements of θ(τ), excluding those in the jth group, j = 1, ...,M. There-

fore, the variational posterior can be obtained by calculating the variational expectation of the

conditional posterior densities.

A crucial question is how to decide on the partitioning of θ(τ) into the M groups, as this choice

affects the overall performance of variational Bayes procedures (see ?). Following Lim et al.

(2020) we assume the following factorization of the variational Bayes posterior density:

q(θ(τ)|x) =
n

∏
i=1

[
q(λi,(τ)|x)q(σi,(τ)|x)

r

∏
j=1

q(αi j,(τ)|x)
T

∏
t=1

q(zit,(τ)|x)

]
T

∏
t=1

q(ft,(τ)|x), (10)

which implies partial posterior independence between cerain groups of parameters. With the addi-

tional assumption that the parameter priors are (conditionally) independent,2 the joint prior can be

written as

p(θ(τ)) =
n

∏
i

p(λi,(τ)|αi,(τ))p(αi,(τ))p(zi,(τ))p(σi,(τ))p(f(τ)). (11)

In order to capitalize on these simplifications we need to insert equations (10) and (11) into the

formula for the variational lower bound L given in equation (8). Due to this being a lengthy formula

2The assumption of prior independence is sensible and used widely in Bayesian estimation. In contrast, the mean-
field assumption of posterior independence for groups of parameters may or may not be benign. The decomposition
of the variational posterior in equation (10) implies that, for example, that elements of regression parameters λi,(τ) are
correlated with each other but they are not correlated with σi,(τ). When forecasting is the purpose of inference, this
assumption allows for very fast inference with minimal loss of estimation precision.
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(but otherwise easy to derive as it depends on expectations of logarithms of standard densities) we

do not present it here. Instead, we focus on deriving expressions for the densities q(θ j,q|x), one at

a time for each j = 1, ...,M.

1. Update λi,(τ) for i = 1, ....,n from

q(λi,(τ)|x) = Nr(µ
λ

i,(τ),Σ
λ

i,(τ)), (12)

where Σλ

i,(τ) =

(
1

κ2
2,(τ)

∑
T
t=1E

(
ft,(τ)

)
E
(
ft,(τ)

)′E( 1
zit,(τ)

)
E
(

1
σi,(τ)

)
+α−1

i,(τ)

)−1

and

µλ

i,(τ) = Σλ

i,(τ)

(
1

κ2
2,(τ)

T

∑
t=1

E
(
ft,(τ)

)
xitE

(
1

zit,(τ)

)
E

(
1

σi,(τ)

)
−

κ1,(τ)

κ2
2,(τ)

E

(
1

σi,(τ)

)
T

∑
t=1

E
(
ft,(τ)

))
.

2. Update αi,(τ) for i = 1, ....,n from

q(αi,(τ)|x) = G−1
(

aα

(τ),b
α

i,(τ)

)
, (13)

where aα

(τ) = a+ 1
2 and bα

i,(τ) = b+ 1
2E
(

λ 2
i,(τ)

)
.

3. Update zit,(τ) for i = 1, ...,n and for t = 1, ...,T from

q(zit,(τ)|x) = IG
(

1
2
,ait,(τ),bit,(τ)

)
. (14)

where ait,(τ)=E
(

1
σi,(τ)

)(
2+

κ2
1,(τ)

κ2
2,(τ)

)
and bit,(τ)=E

(
1

σi,(τ)

) (xit−E(λi,(τ))E(ft,(τ)))
2
+E( ft,(τ))Σλ

i,(τ)E( ft,(τ))
′

κ2
2,(τ)

.

Here IG(•) is the three parameter Inverse Gaussian distribution.
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4. Update σi,(τ) for i = 1, ...,n from

q(σi,(τ)|x) = G−1(r(τ),si,(τ)), (15)

where r(τ) = r0 +3T and

si,(τ) = s0 +
T

∑
t=1

[
E

(
1

zit,(τ)

) ((
xit−E

(
λi,(τ)

)
E
(
ft,(τ)

))2
+E

(
ft,(τ)

)
Σλ

i,(τ)E
(
ft,(τ)

)′)
2κ2

2,(τ)

−κ1,(τ)
Xit−E

(
λi,(τ)

)
E
(
ft,(τ)

)
κ2

2,(τ)
+

(
1+

κ2
1,(τ)

2κ2
2,(τ)

)
E
(
zit,(τ)

)]

5. Update ft,(τ) for t = 1, ....,T from

q(ft,(τ)|x) = Nr(µ
f
t,(τ),Σ

f
t,(τ)), (16)

where Σ
f
t,(τ) =

(
1

κ2
2,(τ)

∑
n
i=1E

(
λi,(τ)

)
E
(
λi,(τ)

)′E( 1
zit,(τ)

)
E
(

1
σi,(τ)

)
+Ir

)−1

and

µ
f
t,(τ) = Σ

f
t,(τ)

(
1

κ2
2,(τ)

n

∑
i=1

E
(
λi,(τ)

)
xitE

(
1

zit,(τ)

)
E

(
1

σi,(τ)

)
−

κ1,(τ)

κ2
2,(τ)

n

∑
i=1

E

(
1

σi,(τ)

)
E
(
λi,(τ)

))
.

Also notice that the expectations of each parameter w.r.t. to the variational posterior are defined

as:

• E(λi,(τ)) = µ
λ

i,(τ),

• E(λ2
i,(τ)) =

(
µλ

i,(τ)

)2
+diag

(
Σλ

i,(τ)

)
,

• E(ft,(τ)) = µ
f
t,(τ),
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• E(f2
t,(τ)) =

(
µ

f
t,(τ)

)2
+diag

(
Σ

f
t,(τ)

)
,

• α−1
i,(τ) = diag

(
E
(

1
αi1,(τ)

)
, ...,E

(
1

αik,(τ)

))
,

• E
(

1
αi j,(τ)

)
=

aα

(τ)

bα

i,(τ)

• E
(

1
σi,(τ)

)
=

r(τ)
si,(τ)

,

• E(zit) =

√
bit,(τ)K3/2(

√
ait,(τ)bit,(τ))

√ait,(τ)K1/2(
√

ait,(τ)bit,(τ))
,

• E
(

1
zit

)
=
√ait,(τ)K3/2(

√
ait,(τ)bit,(τ))√

bit,(τ)K1/2(
√

ait,(τ)bit,(τ))
− 1

bit,(τ)
and Kp(•) is the Bessel function of order p.

It is evident from the formulas above that each parameter is dependent on the variational ex-

pectation of other parameters, such that update of all parameters cannot be achieved in one step.

However, parameter updates can be achieved sequentially, similar to the EM-algorithm that is used

to maximize likelihood functions. As with all iterative algorithms, it is important to ask whether

there are convergence guarantees, whether a global maximum of the ELBO can be achieved, and

how many iterations a typical run would require. Blei et al. (2017), who provide an excellent intro-

duction to these issues in general settings, note that different initialization of parameters will lead to

slightly different paths of the ELBO. Therefore, as is the case with all EM-type algorithms, achiev-

ing a global optimum is not always guaranteed. Additionally, in many cases the ELBO might not

converge to a fixed point, despite the fact that parameter updates from one iteration to the next are

minimal. Therefore, it is important to choose good initial conditions. For the quantile factor model

we initialize the factors to their PCA estimate, such that in step 1 of the algorithm we have during

the first iteration E
(
ft,(τ)

)
= f̂ pca

t . All other parameters are initialized to default values, i.e. they

are either vectors of zeros or ones (for mean estimates) or set to 10I (for variances/covariances).
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Online Supplement to “Probabilistic Quantile Factor Analysis”

1 Numerical evaluations using synthetic and real data

1.1 Factor models with flexible error distributions

We describe here in more detail the simulation exercise presented in the paper. The generative
model for the synthetic data takes the following form

xit =
3

∑
j=1

λ ji f jt +uit , (1)

f jt = 0.8 f jt−1 + ε jt , j = 1,2,3, (2)

where λ ji and ε jt are independent draws from a N(0,1) distribution, and uit is generated from the
following distributions

M1 Heavy-tailed: t3(0,1)

M2 Kurtotic: 2/3N(0,12)+1/3N(0,(1/10)2)

M3 Outlier : 1/10N(0,12)+9/10N(0,(1/10)2)

M4 Bimodal : 1/2N(−1,(2/3)2)+1/2N(1,(2/3)2)

M5 Bimodal, separate modes: 1/2N(−3/2,(1/2)2)+1/2N(3/2,(1/2)2)

M6 Skewed bimodal: 3/4N(−43/100,12)+1/4N(107/100,(1/3)2)

Cases M1-M6 are considered in several quantile regression papers in the statistics literature (see for
example the simulation design of Lim et al., 2020). For reference, Figure 1 shows the shapes of the
distributions outlined above. We generate 1000 datasets for all combinations of T = 50,100,200
and n = 50,100,200. As equation (1) implies, the true number of factors is fixed to r = 3.
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Figure 1: Histograms of error distributions used in the six model DGPs

(a) M1 (b) M2 (c) M3

(d) M4 (e) M5 (f) M6

Notes: The panels display histograms of the error distributions used in the data generating processes, M1 to M6. For
illustrative purposes these histograms are generated using 10,000 independent draws and 100 bins (while the DGPs
rely on T = 50,100,200).

Tables 1 and 2 present the numerical values of the trace R2 statistics used to produced the
summary figure in the main document. Tables 3 and 4 show the R2’s per factor, the exact way
this measure is defined in Chen et al. (2021). Finally, tables 5 and 6 present the mean squared
deviations, which are simply the average squared deviation between each factor estimate and the
true value of the factor. The detailed results confirm the summary picture drawn in the main paper,
that is, the probabilistic and loss-based estimators have identical performance in the median, but in
the tails the former is performing better in the vast majority of cases.
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Table 1: Simulation Results VBQFA; Trace R2

N = 50 100 200

T = 50 100 200 50 100 200 50 100 200

τ0.25 0.935 0.955 0.957 0.958 0.981 0.986 0.969 0.986 0.992
M1 τ0.50 0.977 0.990 0.995 0.981 0.992 0.996 0.984 0.993 0.997

τ0.75 0.939 0.959 0.966 0.956 0.976 0.984 0.962 0.981 0.989

τ0.25 0.985 0.992 0.995 0.987 0.994 0.997 0.988 0.995 0.998
M2 τ0.50 0.989 0.996 0.998 0.991 0.996 0.998 0.991 0.996 0.998

τ0.75 0.982 0.991 0.995 0.985 0.993 0.996 0.985 0.993 0.997

τ0.25 0.998 0.999 1.000 0.998 0.999 1.000 0.998 0.999 1.000
M3 τ0.50 0.998 0.999 1.000 0.998 0.999 1.000 0.999 0.999 1.000

τ0.75 0.997 0.999 0.999 0.998 0.999 0.999 0.998 0.999 0.999

τ0.25 0.743 0.723 0.684 0.744 0.729 0.709 0.741 0.716 0.704
M4 τ0.50 0.831 0.840 0.838 0.860 0.879 0.884 0.879 0.893 0.904

τ0.75 0.787 0.785 0.777 0.793 0.794 0.786 0.802 0.797 0.790

τ0.25 0.656 0.652 0.631 0.637 0.630 0.621 0.626 0.609 0.601
M5 τ0.50 0.674 0.677 0.670 0.671 0.675 0.674 0.672 0.666 0.671

τ0.75 0.671 0.672 0.665 0.655 0.652 0.643 0.645 0.631 0.624

τ0.25 0.890 0.891 0.879 0.913 0.922 0.927 0.924 0.932 0.938
M6 τ0.50 0.905 0.913 0.914 0.906 0.917 0.924 0.909 0.916 0.923

τ0.75 0.813 0.821 0.808 0.777 0.770 0.764 0.756 0.735 0.715

Notes: The table displays the trace R2 of the multivariate regression of F onto F̂ for the VBQFA quantile factor
model. The rows contain the trace R2 for the different data generating processes M1 to M6 and for the quantile levels

τ0.25, τ0.50, and τ0.75, respectively. The columns contain the different Monte Carlo simulation settings for N and T .
The trace R2 is given by R2

F̂ ,F = Êtr(F̂ ′PF F̂)/Êtr(F̂ ′F̂), where PF = F(F ′F)−1F ′.
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Table 2: Simulation Results CDG; Trace R2

N = 50 100 200

T = 50 100 200 50 100 200 50 100 200

τ0.25 0.880 0.905 0.912 0.841 0.848 0.864 0.809 0.816 0.807
M1 τ0.50 0.979 0.990 0.995 0.982 0.992 0.996 0.983 0.992 0.996

τ0.75 0.885 0.914 0.909 0.839 0.855 0.855 0.809 0.822 0.805

τ0.25 0.941 0.941 0.944 0.883 0.886 0.890 0.852 0.855 0.838
M2 τ0.50 0.990 0.995 0.997 0.991 0.996 0.998 0.991 0.996 0.998

τ0.75 0.944 0.942 0.950 0.875 0.890 0.895 0.862 0.848 0.841

τ0.25 0.944 0.949 0.951 0.890 0.889 0.888 0.869 0.867 0.848
M3 τ0.50 0.998 0.999 1.000 0.998 0.999 1.000 0.999 0.999 1.000

τ0.75 0.959 0.939 0.944 0.895 0.890 0.889 0.871 0.867 0.855

τ0.25 0.765 0.773 0.762 0.742 0.748 0.745 0.715 0.711 0.712
M4 τ0.50 0.830 0.844 0.839 0.864 0.883 0.888 0.889 0.904 0.919

τ0.75 0.759 0.769 0.768 0.739 0.748 0.740 0.712 0.717 0.712

τ0.25 0.709 0.712 0.706 0.695 0.697 0.698 0.680 0.681 0.684
M5 τ0.50 0.717 0.718 0.711 0.716 0.721 0.717 0.721 0.718 0.721

τ0.75 0.705 0.713 0.710 0.695 0.697 0.695 0.683 0.684 0.684

τ0.25 0.892 0.902 0.908 0.913 0.930 0.939 0.923 0.937 0.942
M6 τ0.50 0.895 0.910 0.906 0.903 0.918 0.925 0.912 0.926 0.932

τ0.75 0.759 0.771 0.763 0.716 0.719 0.715 0.688 0.691 0.689

Notes: The table displays the trace R2 of the multivariate regression of F onto F̂ for the CDG quantile factor model.
The rows contain the trace R2 for the different data generating processes M1 to M6 and for the quantile levels τ0.25,
τ0.50, and τ0.75, respectively. The columns contain the different Monte Carlo simulation settings for N and T . The

trace R2 is given by R2
F̂ ,F = Êtr(F̂ ′PF F̂)/Êtr(F̂ ′F̂), where PF = F(F ′F)−1F ′.
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1.2 Robustness exercise with standardized input data

The simulated non-standard error distributions imply non-zero constants in the tails and depending
on the distribution also in the median. The estimation algorithm of CDG, however, does not include
a constant and might hence be misspecified. In this section we follow the empirical applications in
CDG and standardize the data prior to estimation with the CDG algorithm as a robustness exercise.
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Figure 2: The different panels depict the trace R2 of the multivariate regression of F onto F̂ for
the CDG, VBQFA, and KS1 quantile factor model for the different data generating processes M1
to M6. The x-axis displays the different Monte Carlo simulation settings, (N,T ), for the quantile
levels τ0.25, τ0.50, and τ0.75, respectively. Compared to the figure in the body of the paper, the data
is standardized prior to estimation with CDG.
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1.3 Quantile factor estimation with dependent idiosyncratic errors

Here we replicate the exact Monte Carlo exercise of CDG by adding our proposed estimator of
quantile factors. Following these authors we consider the following data generating process

xit = λ1i f1t +λ2i f2t +(λ3i f3t)eit , (3)

eit = βeit + vit +ρ

i+J

∑
j=i−J, j 6=i

v jt (4)

f jt = 0.8 f jt−1 + ε jt , j = 1,2, (5)

f3t = |gt |, (6)

where λ1i,λ2i,ε1t ,ε2t ,gt are all independent draws from N(0,1) and λ3i ∼U [1,2]. The autoregres-
sive coefficient β captures the serial correlation of eit , while the parameters ρ and J capture the
cross-sectional correlations of eit . As in CDG we have three cases of models that generate our data

M2 Independent errors.: β = ρ = 0 and vit ∼ N(0,1)

M2 Independent errors with heavy tails: β = ρ = 0 and vit ∼ t3(0,1)

M3 Serially and cross-sectionally correlated errors: β = 0.2, ρ = 0.4, J = 3 and vit ∼ N(0,1)

This particular DGP is used in order to assess whether autocorrelation in the errors affects quantile
factor estimation. We use the exact settings in CDG, namely we generate 1000 artificial datasets
for each of M1, M2, M3, for n,T ∈ {50,100,200}, for τ ∈ {0.25,0.50,0.75}, and we fix r = 3 in all
estimations.1 Table 7 presents the R2s from regressing each of the three true factors to the quantile
factor estimates from the output CDG algorithm. That is, this table is equivalent to Table II in the
Appendix of CDG. Next Table 8 shows the R2s calculated using variational Bayes. Comparing the
two tables it is obvious that for the vast majority of cases the two algorithms give identical results.
Only for the median estimates of the third factor our algorithm achieves higher R2s, however, the
overall level of both algorithms is rather low as this third factors enters the DGP in a nonlinear way.
Overall, this simulation confirms once more the excellent numerical properties of our algorithm.

1CDG estimate the optimal number of factors, however, here we assume we know that we true number of factors
in order to allow a more clear numerical comparison, free of possible misspecification error, between our estimator
and theirs.
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Table 7: Simulation Results MCII, CDG, R2

(N,T) f1 f2 f3 f1 f2 f3 f1 f2 f3

M1 τ = 0.25 τ = 0.50 τ = 0.75

(50,50) 0.959 0.926 0.770 0.967 0.946 0.060 0.957 0.929 0.776
(50,100) 0.965 0.935 0.796 0.972 0.949 0.027 0.965 0.935 0.794
(50,200) 0.967 0.937 0.799 0.974 0.950 0.015 0.967 0.938 0.798

(100,50) 0.979 0.965 0.874 0.984 0.973 0.063 0.979 0.963 0.874
(100,100) 0.983 0.969 0.891 0.986 0.975 0.030 0.983 0.968 0.890
(100,200) 0.984 0.970 0.892 0.987 0.975 0.014 0.984 0.970 0.892

(200,50) 0.989 0.981 0.925 0.992 0.985 0.076 0.989 0.981 0.921
(200,100) 0.992 0.984 0.942 0.993 0.987 0.036 0.992 0.984 0.942
(200,200) 0.992 0.985 0.944 0.994 0.988 0.017 0.992 0.985 0.944

M2 τ = 0.25 τ = 0.50 τ = 0.75

(50,50) 0.923 0.871 0.708 0.957 0.929 0.065 0.927 0.874 0.713
(50,100) 0.942 0.892 0.747 0.962 0.933 0.033 0.941 0.892 0.752
(50,200) 0.946 0.895 0.760 0.966 0.935 0.013 0.945 0.895 0.758

(100,50) 0.964 0.934 0.834 0.979 0.964 0.068 0.965 0.936 0.844
(100,100) 0.974 0.947 0.864 0.983 0.968 0.030 0.973 0.945 0.863
(100,200) 0.974 0.951 0.869 0.984 0.969 0.015 0.975 0.951 0.868

(200,50) 0.982 0.960 0.901 0.989 0.980 0.078 0.982 0.965 0.899
(200,100) 0.987 0.974 0.926 0.992 0.984 0.036 0.987 0.974 0.926
(200,200) 0.988 0.976 0.932 0.992 0.985 0.019 0.988 0.977 0.932

M3 τ = 0.25 τ = 0.50 τ = 0.75

(50,50) 0.948 0.904 0.580 0.960 0.931 0.061 0.946 0.901 0.583
(50,100) 0.957 0.919 0.599 0.965 0.936 0.032 0.957 0.915 0.600
(50,200) 0.960 0.920 0.604 0.967 0.937 0.014 0.960 0.921 0.604

(100,50) 0.975 0.950 0.744 0.980 0.964 0.075 0.974 0.952 0.751
(100,100) 0.979 0.958 0.756 0.983 0.968 0.036 0.979 0.956 0.762
(100,200) 0.980 0.962 0.760 0.984 0.968 0.014 0.980 0.959 0.758

(200,50) 0.986 0.973 0.853 0.989 0.980 0.081 0.985 0.974 0.854
(200,100) 0.989 0.980 0.867 0.991 0.983 0.044 0.990 0.979 0.866
(200,200) 0.990 0.981 0.866 0.992 0.984 0.019 0.990 0.979 0.863

Notes: The table displays the adjusted R2 of the regression of the true factor, Fi,t , onto the estimated factors F̂·,t for the CDG quantile factor model.
The rows contain the adjusted R2 for the different data generating processes M1 to M3 and Monte Carlo simulation settings (N,T ). The columns

contain the results for the individual factors at the quantile levels τ0.25, τ0.50, and τ0.75, respectively.
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Table 8: Simulation Results MCII, VBQFA, R2

(N,T) f1 f2 f3 f1 f2 f3 f1 f2 f3

M1 τ = 0.25 τ = 0.50 τ = 0.75

(50,50) 0.954 0.925 0.785 0.961 0.934 0.092 0.946 0.912 0.752
(50,100) 0.963 0.931 0.806 0.968 0.942 0.047 0.960 0.926 0.793
(50,200) 0.966 0.936 0.809 0.972 0.946 0.021 0.965 0.933 0.800

(100,50) 0.980 0.968 0.891 0.984 0.973 0.115 0.979 0.966 0.871
(100,100) 0.984 0.971 0.897 0.987 0.975 0.066 0.983 0.970 0.892
(100,200) 0.985 0.972 0.897 0.988 0.976 0.034 0.985 0.971 0.894

(200,50) 0.991 0.984 0.931 0.993 0.987 0.144 0.990 0.983 0.919
(200,100) 0.992 0.985 0.945 0.993 0.988 0.082 0.992 0.985 0.943
(200,200) 0.993 0.986 0.947 0.994 0.988 0.041 0.993 0.986 0.946

M2 τ = 0.25 τ = 0.50 τ = 0.75

(50,50) 0.921 0.874 0.681 0.946 0.910 0.100 0.910 0.846 0.605
(50,100) 0.938 0.887 0.737 0.956 0.921 0.053 0.931 0.873 0.711
(50,200) 0.945 0.896 0.759 0.964 0.930 0.025 0.940 0.888 0.746

(100,50) 0.963 0.941 0.798 0.979 0.966 0.133 0.959 0.929 0.754
(100,100) 0.976 0.953 0.856 0.983 0.969 0.073 0.973 0.950 0.826
(100,200) 0.977 0.955 0.872 0.985 0.970 0.037 0.976 0.954 0.865

(200,50) 0.984 0.967 0.867 0.991 0.984 0.143 0.980 0.960 0.810
(200,100) 0.988 0.977 0.913 0.992 0.985 0.090 0.987 0.973 0.877
(200,200) 0.989 0.979 0.929 0.993 0.986 0.054 0.989 0.978 0.922

M3 τ = 0.25 τ = 0.50 τ = 0.75

(50,50) 0.944 0.907 0.598 0.948 0.913 0.080 0.935 0.892 0.557
(50,100) 0.952 0.913 0.611 0.956 0.918 0.038 0.949 0.905 0.598
(50,200) 0.957 0.917 0.613 0.960 0.924 0.016 0.955 0.914 0.604

(100,50) 0.976 0.957 0.761 0.980 0.965 0.116 0.974 0.954 0.749
(100,100) 0.979 0.962 0.762 0.982 0.968 0.053 0.978 0.961 0.763
(100,200) 0.981 0.964 0.765 0.984 0.969 0.024 0.981 0.962 0.760

(200,50) 0.988 0.979 0.864 0.990 0.983 0.138 0.987 0.977 0.859
(200,100) 0.990 0.981 0.870 0.992 0.984 0.071 0.990 0.981 0.866
(200,200) 0.991 0.982 0.869 0.992 0.985 0.031 0.990 0.982 0.864

Notes: The table displays the adjusted R2 of the regression of the true factor, Fi,t , onto the estimated factors F̂·,t for the VBQFA quantile factor
model. The rows contain the adjusted R2 for the different data generating processes M1 to M3 and Monte Carlo simulation settings (N,T ). The

columns contain the results for the individual factors at the quantile levels τ0.25, τ0.50, and τ0.75, respectively.
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1.4 FRED-QD factors

As additional evidence on the numerical properties of the new algorithm, we extract factors from
a large panel of macroeconomic variables for the U.S. In this exercise we use FRED-QD (https:
//research.stlouisfed.org/econ/mccracken/fred-databases/) that contains 246
macroeconomic and financial indicators observed quarterly for the period 1960Q1 to 2019Q4.2

Following ?, the raw data are transformed to stationarity and we do not extract factors from se-
ries that are high-level aggregates that are related by an identity to subaggregates. This leaves us
with a set of 101 subaggregate series to extract factors from. Figure 3 displays the quantile factors
extracted with our probabilistic quantile factor model together with the quantile factors extracted
using the nonparametric procedure of CDG as well as the conditional mean factors that are ex-
tracted using PCA. To simplify representation, we extract quantile factors for three quantile levels,
τ ∈ {0.1,0.5,0.9}, displayed in the columns of the figure and only show the first three factors
extracted with each estimation procedure, which are displayed in the rows.

The figure reveals some interesting patters. The first factor of both quantile factor models
largely follows the conditional mean factor at the 10% and 50% quantile level. Slight differences
emerge at the 90% quantile level. The first quantile factor extracted with the nonparametric pro-
cedure of CDG is markedly more volatile and appears to peak more often than both, the first PCA
and the first VBQFA quantile factor. Overall, the first factor extracted with our proposed proce-
dure seems to lie between the PCA factor and the CDG quantile factor. Generally, however, both
quantile factors move together with the conditional mean factor. This picture changes for the sec-
ond and third factor. At the 10% quantile level the second VBQFA quantile factor demonstrates
more pronounced peaks than the other two procedures throughout the 60s. During the 70s and
80s, however, the factor features three distinct troughs. During the great moderation, all factors
broadly move together. This picture is again disrupted during the great depression. The PCA factor
drops sharply in 2008Q2 while the two quantile factors show a more muted response. While the
PCA quickly recovers to higher levels, especially the VBQFA quantile factor remains at lower or
negative level until 2014Q1. At the median, all three factors generally move together, however, the
PCA factor again drops more sharply at the onset of the 2008 financial crisis and remains at slightly
lower levels thereafter. At the 90% level, the VBQFA quantile factor tends to move together with
the PCA factor throughout the first part of the sample, but has more pronounced peaks. During
the same period, the CDG quantile factor is less volatile and moves around lower levels. In the
second half of the sample up until the financial crisis, both quantile factors tend to move together
and seem to lead the cycle of the conditional mean factor. At the onset of the great depression,
the PCA factor again drops distinctly while the quantile factors only show a timid response. In the

2In this particular exercise, we specifically exclude post-2020 observations in order not to allow the vast outliers
observed during the pandemic to influence numerical comparisons with Chen et al. (2021).
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final part of the sample, the VBQFA quantile factor remains at lower levels compared to the other
two. For the third factor the CDG quantile factor moves at lower levels during the first part of the
sample and moves at higher levels than the other two factors since the great depression at the 10%
and 90% level. At the 50% quantile level the behaviour is reversed with the CDG quantile factor
being elevated before trending downwards throughout the second half of the sample. In contrast,
the VBQFA quantile factor moves together with the PCA factor in the first half of the sample, but
is significantly more volatile in the second half at all quantile levels. In addition, during the the
financial crisis the third VBQFA quantile factor is characterized by the most pronounced peak an
through compared to the other two.

Even though it is hard to draw general conclusions without considering the factor loadings as
well, these observations are nonetheless indicative of interesting features. First, quantile factors
extracted with either the VBQFA or the CDG approach seem to capture information that is not
already contained in the conditional mean factors. This seems to be the case specifically for the
tail factors. Second, in line with the previous exercise, both quantile factors also differ from one
another with the regularized VBQFA factors being less volatile on average, but peaking more
pronouncedly during specific sample periods.
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Figure 3: First three quantile factors from FRED-QD.
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