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We propose a novel mixed-frequency dynamic factor model with time-varying pa-
rameters and stochastic volatility for macroeconomic nowcasting and develop a fast
estimation algorithm. This enables us to generate forecast densities based on a large
space of factor models. We apply our framework to nowcast US GDP growth in real
time. Our results reveal that stochastic volatility seems to improve the accuracy of point
forecasts the most, compared to the constant-parameter factor model. These gains are
most prominent during unstable periods such as the Covid-19 pandemic. Finally, we
highlight indicators driving the US GDP growth forecasts and associated downside risks
in real time.
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Forecasters. This is an open access article under the CC BY license
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1. Introduction

The Covid-19 pandemic was accompanied by unusu-
lly large fluctuations in key macroeconomic indicators
nd thus poses new modeling challenges. At the same
ime, policymakers such as central banks require a ro-
ust assessment of the past, current, and future state of
conomic activity to conduct informed, forward-looking,
nd responsible monetary policy. Naturally, the recent
orecasting literature has been interested in exploring
odeling approaches that account for these extreme out-

iers and help robustify the performance of forecasting
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models in abnormal times (see e.g. Carriero et al., 2021,
2022; Lenza & Primiceri, 2020; Schorfheide & Song, 2021).

The macroeconomic forecasting literature considers
several additional modeling challenges. First, different
economic indicators are often released at asynchronous
dates, different frequencies, and with publication lags.
Against this backdrop, Mariano and Murasawa (2003) de-
velop a mixed-frequency dynamic factor model (MF-DFM)
that can handle such data characteristics. By formulating a
factor model, the authors also mitigate the risk of param-
eter proliferation, which might lead to higher computa-
tional demand and imprecise predictions when datasets
grow large. Other examples include Bańbura et al. (2013,
2010), Bańbura and Modugno (2014), and Giannone et al.
(2008).

Second, a changing economic environment can spark
changes in the economic transition mechanism, the co-
movement of variables, and the nature and heteroskedas-
ticity of exogenous shocks. Del Negro and Otrok (2008)
and more recently Marcellino et al. (2016) specify factor
models with time-varying parameters (TVP) and stochas-
tic volatility (SV) to reduce their vulnerability to structural
breaks. Examples in the forecasting literature include
rnational Institute of Forecasters. This is an open access article under
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Clark (2011), Clark and Ravazzolo (2015), D’Agostino et al.
(2013), and Marcellino et al. (2016). The authors find
that models with stochastic volatility (SV) provide more
accurate point and density forecasts than, e.g., constant-
parameter models. Similarly, the Covid-19 literature pro-
poses SV models to account for extreme data realiza-
tions (see e.g. Carriero et al., 2021). Compared to ho-
moskedastic VARs, the authors find that forecasts gener-
ated from SV VARs are less sensitive to outliers during the
pandemic.

Third, the same factors that drive parameter change
ight also alter the forecast performance of economic
redictors and forecasting models over time. In periods
f large, economy-wide disruptions—such as those ob-
erved during the pandemic—this might pose an addi-
ional modeling challenge. Evidence for the existence of
hese ‘‘pockets of predictability’’1 for a range of economic
ime series is provided by Byrne et al. (2018), Dangl
nd Halling (2012), Farmer et al. (2018), Koop and Ko-
obilis (2012), and Rossi (2013). A potential solution is
o use performance-based model averaging schemes that
llow forecast combinations to change dynamically. In
his context, Raftery et al. (2010) propose dynamic model
veraging (DMA), which is successfully applied by Koop
nd Korobilis (2011) and Onorante and Raftery (2016) in
he context of macroeconomic forecasting.

While the above-mentioned studies address some of
he challenges individually, a unified modeling approach
eems to be missing. Similarly, recent studies investi-
ate whether individual modeling choices lead to forecast
erformance gains during the pandemic, but do not en-
ompass TVPs, SV, and model averaging simultaneously.
he question of whether any combination of these three
echniques promises incremental forecast improvements,
specially during the pandemic, thus also remains unan-
wered. We seek to fill these gaps in the literature.
We propose a novel time-varying-parameter mixed-

requency dynamic factor model with stochastic volatility
TVP-MF-DFM-SV). Our model is fully integrated into a
ynamic model averaging framework for macroeconomic
owcasting. In doing so, we contribute to the nowcasting
iterature in various ways. First, we build a TVP-MF-DFM-
V that can efficiently deal with the properties of real-
ime data flow and time variation in the parameters,
s well as volatility. Regarding these characteristics, our
odel is closely related to that proposed by Thorsrud

2020). Instead of applying standard Bayesian techniques,
owever, we follow a different estimation strategy, which
eads to our second contribution. We develop a fast, dual
ne-step Kalman filter algorithm which only requires a
ingle iteration. Therefore, we extend the algorithm pro-
osed by Koop and Korobilis (2014) to account for mixed-
requency data. This algorithm enables us to estimate a
arge space of factor models in a reasonable amount of
ime. Third, we estimate our TVP-MF-DFM-SV in a unified
ynamic model averaging framework, where nowcasts
re based on many different model specifications. This
ramework also sheds light on the time-varying impor-
ance of the economic indicators and hence on the drivers

1 This terminology was introduced by Farmer et al. (2018).
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of forecasts and associated downside risks. This might be
of paramount interest to policymakers.

In our empirical analysis, we apply various specifi-
cations of the proposed TVP-MF-DFM-SV-DMA frame-
work to forecast quarterly GDP growth in the US. Our
recursive out-of-sample real-time forecasting exercise re-
veals valuable insights into the marginal benefits of time-
varying parameters, stochastic volatility, and dynamic
model averaging. Our results show that SV models pro-
vide marginal gains compared to the constant-parameter
benchmark in stable times. In a more volatile environ-
ment, SV models provide sizeable gains, while TVP-SV
models, and to a lesser extent TVP models, also pro-
vide performance improvements for some forecast hori-
zons. When paired with dynamic model averaging, further
forecast performance gains can be observed. In addition,
compared to fully Bayesian benchmarks, the results
demonstrate the competitiveness of our proposed fore-
casting model and the robustness of our approximate es-
timation algorithm. When highlighting which predictors
drive the downside risks associated with our GDP growth
forecasts, we find this exercise to produce intuitive re-
sults. For instance, during the Covid-19 pandemic interest
rates, CPI, consumer sentiment, new orders, and retail
sales emerge as dominant drivers. In contrast, during
the Great Recession stock prices and housing indicators
seem to be most strongly associated with downside risks.
Finally, we extract recession probabilities from our model
space and find that the model’s predictions largely match
the business-cycle turning points announced by the NBER.
Altogether, our approach offers a model that yields pre-
cise point forecasts in expansions and recessions along
with the variables that emerge as important drivers of
the US GDP growth forecast distribution across the model
space.

The remainder of this paper is organized as follows.
The next section introduces the econometric framework
and the estimation algorithm. Section 3 provides an
overview of the forecasting exercise and presents its re-
sults. The final section concludes.

2. Econometric methodology

In this paper, we utilize a novel mixed-frequency dy-
namic factor model with time-varying-parameters and
stochastic volatility in a dynamic model averaging frame-
work for nowcasting US GDP growth. Therefore, we first
briefly describe an MF-DFM, which is the point of
departure of our proposed factor model. Then, we in-
troduce the extensions of the baseline model, namely
time-varying parameters (TVPs) and stochastic volatility
(SV). Subsequently, we present the dynamic model av-
eraging (DMA) framework. Finally, we take the reader
through the proposed estimation algorithm.

2.1. MF-DFM

Throughout the following, upper-case letters indicate
matrices and lower-case letters indicate vectors. Further,
we adopt the convention that a superscript M (Q) in-
dicates model components that are related to monthly
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(quarterly) variables. Let xt denote the n-dimensional
zero-mean vector of stationary variables. We now assume
that, at monthly frequency, the economy linearly depends
on k latent factors, ft , that are common to all variables
contained in xt . This can be written as

xt = Λt · ft + ut , ut ∼ N(0, Vt ). (1)

The so-called common component (Λt · ft ) captures the
variability in the dependent variables that is due to the
common factors, whereas the idiosyncratic zero-mean
Gaussian disturbances, ut , account for the remaining vari-
ability. We assume the latter to satisfy E(ftut ) = 0 and to
be cross-sectionally and serially uncorrelated.2 To allow
for a possible interaction between the factors, we define
a dynamic process that is given by a pth-order VAR:

ft = Bt,1ft−1 + · · · + Bt,pft−p + εt , εt ∼ N(0,Qt ) (2)

where εt denotes serially uncorrelated zero-mean Gaus-
sian disturbances. Instead of extracting factors and using
them to augment univariate forecasting regressions, we
thus model the variables jointly in a multivariate system.
This should improve the identification of the variables’ co-
movements and thus benefit the forecasting results (see
Koop & Korobilis, 2014).

As pointed out above, economic indicators are usually
observed at different frequencies. While GDP, the key
indicator of interest in our forecasting exercise, is avail-
able at quarterly frequency, other macroeconomic indica-
tors such as industrial production and the unemployment
rate are observed on a monthly basis. This results in a
dataset, xt , consisting of mixed-frequency indicators. To
this end, we specify the factor model given in Eqs. (1)
and (2) at monthly frequency and define the relationship
that links the quarterly variables to their latent high-
frequency counterparts following Bańbura et al. (2013,
2010), and Mariano and Murasawa (2003). This relation-
ship critically hinges on whether the variables of interest
are stock or flow variables and on how they have been
transformed before entering the model. In case of a quar-
terly flow variable such as GDP, one has the accounting
identity

YQ
t = YM

t + YM
t−1 + YM

t−2, (3)

where YM
t denotes the unobserved monthly counterpart

of YQ
t during the respective quarter. After transforming

the observed YQ
t by applying log-differences one can de-

fine the partially observed monthly series:

yQt =

{
log(YQ

t ) − log(YQ
t−3), t = 3, 6, 9...

unobserved, otherwise,
(4)

where yQt is observed every third month and unobserved
during the first and second months of every quarter.
We can now apply the approximations in Mariano and
Murasawa (2003) and combine Eqs. (3) and (4), leading to

2 Bańbura and Modugno (2014) find that explicitly accounting for
serial correlation does not lead to consistent improvements in GDP
forecasts. Thus, we do not expect this simplification to influence our
results noticeably.
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the final aggregation scheme for the log-differenced flow
variable yQt :

yQt ≈ log(YQ
t ) − log(YQ

t−3)

≈

2∑
i=0

log
(
YM
t−i

)
−

2∑
i=0

log
(
YM
t−i−3

)
= yt + 2yt−1 + 3yt−2 + 2yt−3 + yt−4,

(5)

or t = (3, 6, 9...), where yt = ∆log(YM
t ). These ap-

roximations keep the constraints on the observational
elationship linear and allow us to cast the model into
linear state-space representation (see Bańbura et al.,
013).

.2. TVP-MF-DFM-SV

Having described the aggregation scheme and the base-
ine MF-DFM, we introduce time variation in the parame-
ers (TVPs), as well as in the variance–covariance matrices
SV). Considering the restrictions which the aggregation
cheme imposes on the structure of the factor model, we
ast the system into state-space form3:

xt = Htst + ut , ut ∼ N(0, Vt ) (6a)

st = Atst−1 + εt , εt ∼ N(0,Qt ) (6b)

λt = λt−1 + vt , vt ∼ N(0,Wt ) (6c)

t = βt−1 + ηt , ηt ∼ N(0, Rt ) (6d)

ith

t =
[
yMt yQt

]′
,

t =

[
ΛM

t 0 0 0 0 0(m×p−5)

ΛQ 2ΛQ 3ΛQ 2ΛQ ΛQ 0(q×p−5)

]
,

st =
[
ft ft−1 . . . ft−4 . . . ft−p+1

]′

ith Λ
Q
(q×k), Λ

M
(m×k), and

t =

⎡⎢⎢⎣
B1,t . . . Bp−1,t Bp,t
I . . . 0 0
...

. . .
...

...

0 . . . I 0

⎤⎥⎥⎦ , ut =

⎡⎢⎣u1,t
...

uN,t

⎤⎥⎦ ,

t =
[
et 0 . . .

]′
.

The vector of stationary variables, xt , consists of yMt
yQt ) denoting the m (q) variables that are originally ob-
erved at monthly (quarterly) frequency. The correspond-
ng loading matrices, ΛM

t and Λ
Q
t , are contained in Ht . The

tate vector is denoted by st and restricted to have at least
ive elements as implied by the aggregation scheme. Its
volution follows a dynamic process which is governed
y companion form matrix At . Finally, the zero-mean
aussian disturbances of the measurement and transition

3 We briefly introduce the Kalman filter and smoother equations in
Online Appendix B.1.
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equations are given by ut and εt , where Vt is diago-
al4 and Qt is singular with a non-singular block in the
pper-left corner.
In case of the above model, Eqs. (6c) and (6d) govern

he time variation in the factor loadings Λt and the pa-
ameter matrices of the dynamic factor process Bt,i, with
t = vec(Λt ) and βt = (vec(Bt,1)′, . . . , vec(Bt,p)′)′. We

assume that both vectors evolve as multivariate random
walks. Moreover, vt and ηt are serially uncorrelated and
feature the time-varying covariance matrices Wt and Rt .
All disturbance vectors are further assumed to evolve
independently.

In this setup, the innovations in Eq. (6a) are indepen-
dent across the variables in xt conditional on knowing
st . Together with the assumption that the loadings are
uncorrelated across variables, they can thus be sampled
equation-by-equation. This allows for the construction of
separate Kalman filter estimates of the factor loadings of
the monthly (λM

t ) and quarterly indicators (λQ ). Note that
the loading matrix of the quarterly variables, ΛQ , is static.
This is due to the fact that time variation in the loadings
and the aggregation scheme described by Eq. (5) are in
conflict with each other (see Thorsrud, 2020). Therefore,
the estimation of λQ is not straightforward. Relying on,
e.g., Bayesian regression requires knowledge of the vari-
ances, VQ

t . To estimate VQ
t as outlined below, however, we

require an estimate of λQ at every point in time. Thus, a
recursive method to estimate λQ is needed. Moreover, the
sequence of quarterly variables is only partially observed
and thus implies a dependent variable with many missing
values. To work around this problem, conditional on the
factors, we rotate the state space in Eq. (6a) and factor
out ΛQ . The relationship is now expressed as the product
of the quarterly loadings and a moving average of the
factors, such that

yQt = Λ
Q
t ·

4∑
i=0

ωift−i + ut , ut ∼ N(0, Vt )

ωi =

{
i + 1, for i = 0, 1, 2
6 − i − 1, for i = 3, 4.

(7)

We then manipulate Eq. (6c) to read λ
Q
t = λ

Q
t−1 and es-

timate the static quarterly loadings recursively by means
of a Kalman filter. As quarterly variables are only observed
in the last month of every quarter, they leave missing
observations in other months. Accordingly, an update of
the static parameter given the new information set occurs
whenever yQt is observed. When it is unobserved, we
simply do not update λQ . In our estimation framework,
which is described below, the implementation is particu-
larly simple by setting Wt = 0 for the quarterly variables.
Finally, as our smoothed estimate of λQ , we accept the
most recent update for all time periods.

4 This prevents the existence of a continuum of observationally
equivalent models which are defined by arbitrary factor dependen-
cies (see Nakajima & West, 2013). Since the algorithm employed in a
later section relies on principal component estimates as starting values
for the factors, the model is identified up to a sign rotation without
having to impose further restrictions on the loading matrix (see Koop
& Korobilis, 2014).
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Similarly, we estimate the VAR coefficients βt in the
transition equation by means of a Kalman filter and
smoother along similar lines to Koop and Korobilis (2014).
In doing so, we only accept non-explosive draws. The
Kalman filter recursions, as given in Online Appendix B.1,
then proceed as usual.

We now shift our focus to the time variation in the
variance–covariance matrices Vt , Qt , Wt , and Rt that are
introduced in Eqs. (6a)–(6d). In order to recursively es-
timate these matrices, we make use of simulation-free
variance discounting methods. Starting with Vt and Qt , we
follow Koop and Korobilis (2014) and use exponentially
weighted moving average (EWMA) estimators, given by

Vt = κ1Vt−1 + (1 − κ1) · diag(utu′

t ) (8a)

t (k) = κ2Qt−1(k) + (1 − κ2)ete′

t (8b)

here ui,t and ei,t are backed out according to Eqs. (6a)
nd (6b). With slight abuse of notation, Qt (k) denotes
he kth leading principal submatrix of Qt , and diag(utu′

t )
enotes the diagonal matrix of the variance–covariance
atrix of the residuals ut . We use the diagonal matrix

n Eq. (8a) to enforce the standard identifying constraint
pelled out above and use the kth leading principal sub-
atrix in Eq. (8b) to restrict the EWMA to the nonsingular
lock of Qt . The degree of time variation in Vt and Qt is

governed by the two decay parameters, κ1 and κ2, respec-
ively. As pointed out above, the mixed-frequency struc-
ure of our data introduces periodically missing values
n the quarterly variables. Thus, the residuals necessary
o compute the EWMA for VQ

t are only available at the
end of each quarter. We hence follow West and Harri-
son (1997), who provide suggestions on the treatment of
missing values in EWMA and only update when actual
data are available. Throughout the quarter, the EWMA
does not decay and remains at its value.5 This update lag,
however, results in slower time variation of VQ

t than VM
t ,

even given the same κ1. To compensate for this effect, in
our empirical exercise, we allow VQ

t and VM
t to change

at different rates and introduce the decay parameters κ
Q
1

and κM
1 . Finally, we follow Koop and Korobilis (2014) and

produce smoothed estimates of VQ
t , VM

t , and Qt .
Compared to standard approaches, this specification

of stochastic volatility is an unfortunate necessity that
one has to accept in order for the fast one-step algo-
rithm to work. Nonetheless, this compromise seems jus-
tifiable, because EWMA estimators produce minimum
mean-squared-error forecasts (see Muth, 1960) that are
equivalent to those produced by simple state-space or
ARIMA models (see Durbin & Koopman, 2012). In ad-
dition, as Koop and Korobilis (2014) point out, EWMA
estimators provide an accurate approximation of inte-
grated GARCH models and are thus in line with the
features of the macroeconomic VAR literature that usually
works with integrated stochastic volatility models (see
e.g. Primiceri, 2005). Despite relying on this rather simple
algorithm, this allows us to stay relatively close to the

5 Since the Kalman filters treat missing information similarly, this
also has the appeal of maintaining a consistent approach to the
treatment of missing data.
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standard methods. Nonetheless, in light of time periods
that are characterized by sudden spikes in volatility, such
as the Covid-19 pandemic or the global financial crisis,
this specification might seem somewhat restrictive. In our
empirical exercise, we thus update the forgetting factors
with every GDP release. In unstable times such as the
Covid-19 pandemic, this might result in a lower forgetting
factor, which translates to past observations receiving
a lower weight. Compared to more stable periods, this
allows volatility to spike more abruptly. At the same time,
if the forgetting factor is too flexible during stable periods,
this introduces noise, and the out-of-sample forecast-
ing performance might suffer. In this case, updating the
forgetting factors allows us to adopt a smoother transi-
tion in the model’s parameters. To lend support to this
idea, Figure D.1 in the Online Appendix displays the in-
sample volatility of the residual of GDP extracted from the
model space (introduced below). Both gradual changes
and considerable spikes in volatility (e.g. during the global
financial crisis or the Covid-19 pandemic) can indeed
be observed. This provides some empirical evidence in
support of this modeling choice.

For Wt and Rt , we use the forgetting-factor methods
escribed in Raftery et al. (2010) and Koop and Korobilis
2012). Thus, we estimate these matrices directly from the
espective state covariance matrix estimates provided by
he Kalman filter. From standard Kalman filter inference,
e know that λt and βt in Eqs. (6c) and (6d) are given by

λt |Data1:t−1 ∼ N(λt|t−1, Σλ
t|t−1) (9a)

βt |Data1:t−1 ∼ N(βt|t−1, Σ
β

t|t−1) (9b)

where by Eqs. (6c) and (6d)

Σλ
t|t−1 = Σλ

t−1|t−1 + Wt (10a)

Σ
β

t|t−1 = Σ
β

t−1|t−1 + Rt . (10b)

Following Raftery et al. (2010) and Koop and Korobilis
(2014), one can now define Wt = (κ−1

3 − 1)Σλ
t−1|t−1 and

Rt = (κ−1
4 −1)Σβ

t−1|t−1 to replace Eqs. (10a) and (10b) by

Σλ
t|t−1 = κ−1

3 Σλ
t−1|t−1 (11a)

Σ
β

t|t−1 = κ−1
4 Σ

β

t−1|t−1 (11b)

which introduces the forgetting factors κ3 and κ4, re-
spectively. Hence, the model is still a properly defined
state space, and the Kalman filters and smoothers pro-
ceed in standard fashion. The interpretation of the decay
parameters and forgetting factors is generally the same.
Lower values put lower weight on past observations and
thus allow for faster parameter change. A value of one
implies constant parameters. In our empirical application,
we use this feature to estimate nested baseline MF-DFM
model specifications. This allows us to assess the relative
gains of more complex models with time variation in the
parameters and the variance–covariance matrices within
a consistent framework.

2.3. Dynamic model averaging

While a specific model or some economic indicators

might predict GDP particularly well during phases of

1464
stable growth, they might lose predictive power e.g., in
times of economic crises, and vice versa. This seems
particularly intuitive in periods of large, economy-wide
disruptions such as those observed during the Covid-19
pandemic. More generally, the same factors that drive
parameter change, such as policy decisions, the demise
of industrial sectors, or technological advancement, might
alter the forecast performance of economic predictors
naturally over time. Ample evidence for the existence
of these ‘‘pockets of predictability’’ for various economic
time series is provided by Byrne et al. (2018), Dangl and
Halling (2012), Farmer et al. (2018), Koop and Korobilis
(2012) and Rossi (2013). Consequently, no single model
with a constant set of predictors can be expected to
beat all its competitors continuously, and variable choices
should be updated on a regular basis (see Banerjee et al.,
2005). In a factor model context, Boivin and Ng (2006)
and Bańbura and Modugno (2014) provide evidence that
changes in data heterogeneity also imply changes in the
overall factor structure. As a result, while more sparse
and homogenous data might require fewer factors, more
dense or heterogeneous data might require more factors.
At the same time, this suggests that the number of factors
and with it the factor structure evolve over time.

Against this backdrop, we estimate a multitude of
factor model specifications of different sizes and apply
forecast combination methods to generate point and cross-
sectional density forecasts. Specifically, we define

x(j)t = H (j)
t s(j)t + u(j)

t , u(j)
t ∼ N(0, V (j)

t ) (12a)

s(j)t = A(j)
t s(j)t−1 + ε

(j)
t , ε

(j)
t ∼ N(0,Q (j)

t ) (12b)

λ
(j)
t = λ

(j)
t−1 + v

(j)
t , v

(j)
t ∼ N(0,W (j)

t ) (12c)

β
(j)
t = β

(j)
t−1 + η

(j)
t , η

(j)
t ∼ N(0, R(j)

t ) (12d)

where superscript j ∈ [1, . . . ,M] denotes a single model
specification. Each of these models is uniquely identified
by the combination of variables and the number of factors.
In particular, we explore every possible variable combina-
tion for up to k̄ factors. This amounts to k̄·2n−k̄ forecasting
models in total.

In our suggested approach, we apply dynamic model
averaging (DMA) proposed by Raftery et al. (2010) to
produce forecast combinations. Briefly, DMA is a recur-
sive updating method that produces an estimate of how
applicable each model in the forecasting model space
is through time. This sets it apart from methods pro-
posed more recently—by, e.g., Elliott et al. (2013) and Kim
and Swanson (2014)—that largely ignore model instabil-
ity. The fact that all M models can be estimated indepen-
dently allows for a very simple and computationally fast
approximation that involves updating the models’ prob-
abilities individually at each point in time (see Raftery
et al., 2010).

In the general DMA framework, πt|t−1,j denotes the
probability that model j applies at time t , conditional on
the information set being valid through t − 1. Since it
is not reasonable to believe that this probability is inde-
pendent of the forecast horizon h, we extend the general
framework and define πt|t−1,j,h. Given that some variables

might be more informative for longer forecast horizons,
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while others are more suitable short-term predictors, this
allows for assigning forecast-horizon-specific weights to
the models. Lastly, it remains to be defined how the in-
dividual model probabilities evolve through time. Raftery
et al. (2010) propose the following approximations:

πt|t−1,j,h =
π

γ

t−1|t−1,j,h∑J
k=1 π

γ

t−1|t−1,k,h

(13a)

πt|t,j,h =
πt|t−1,j,hAFE−1

j (It |I1:t−h)∑J
k=1 πt|t−1,k,hAFE−1

k (It |I1:t−h)
(13b)

where Eqs. (13a) and (13b) are the prediction and the
update step, respectively, and γ ∈ [0, 1] is another for-
getting factor that controls the rate of time variation in
the individual model probabilities and thus model change.
A higher (lower) γ implies slower (faster) model change.
For γ = 1, the model probabilities are analogous to
those under Bayesian model averaging (BMA). In a more
general modeling approach, one would have to estimate
the transition matrix that governs the system directly. If
the model space grows large, however, the computational
demand implied by standard methods quickly becomes
prohibitive. The appeal of the proposed approximation
is that this can be avoided by specifying the transition
matrix indirectly through a forgetting factor. For more
details, we refer the interested reader to Online Appendix
B.2 and Raftery et al. (2010).

AFEj(It |I1:t−h) denotes the mean absolute deviation (AFE
of model j at time t given past information and serves as
a measure of fit. Note that the general framework utilizes
the predictive likelihood instead (see Koop & Korobilis,
2014). Since we are interested in point forecasts, however,
we deviate to keep the framework consistent. The model
probabilities thus evolve conditionally on the past point
forecast performance of the individual models at time t
and for forecast horizon h. The combined DMA forecasts
then arise as the model probability weighted average of
the M individual forecasts. Finally, we construct forecast
densities from the cross-section of the models’ point
forecasts. Our cross-sectional forecast densities are thus
distinct from classical simulated forecast densities.

Besides its practical advantages, DMA offers distinct
theoretical features that are appealing in our context. By
assigning weights to individual models based on their
past forecast performance and thus indirectly to the mod-
els’ parameters, DMA implies shrinkage. Especially in
larger models, this serves to counteract over-
parameterization (see Koop & Korobilis, 2011). In our
setup, where the model space contains variable as well as
factor combinations, shrinkage through DMA also helps to
address dynamics in the factor structure that are driven
by time variation or data heterogeneity. If a more homo-
geneous variable combination forecasts better with fewer
factors, DMA assigns a higher weight compared to the
same variable combination with more factors. Similarly,
if this relationship reverses over time, this change should
again be reflected in the DMA weights. Given that our
DMA weights are also horizon-specific, this even allows
for the case in which the required number of factors for
a given variable combination might depend on the length

of the forecast horizon. If fewer factors lead to superior
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forecast performance for longer forecast horizons, models
with fewer factors should in turn also be assigned larger
weights at longer horizons. Overall, DMA thus leaves it to
the data to decide which or how much of each model—
and thus the implied factor structure—is desirable at each
point in time.

2.4. Estimation algorithm

Models such as the TVP-DFM of Del Negro and Otrok
(2008) or the MF-DFM-SV proposed by Marcellino et al.
(2016) are usually estimated with Bayesian methods in-
volving Markov chain Monte Carlo (MCMC) algorithms,
such as Gibbs samplers. The obvious drawback of this
procedure is high computational demand. Adding to this,
the Kalman filters and multivariate stochastic volatility
models that are usually used to assess the conditional dis-
tributions of the time-varying parameters and covariance
matrices have to be re-estimated at each iteration of the
algorithm. The estimation of even a single TVP-MF-DFM-
SV by means of MCMC schemes is thus computationally
costly. When faced with a recursive forecasting exercise
on an expanding window of data or many different model
specifications, as is the case with the model averaging
techniques we employ in our empirical exercise, the com-
putational demand again multiplies and quickly becomes
prohibitive. In a real-world scenario, where a policymak-
ing institution cannot afford to wait several days or even
weeks for a forecast to be produced, this renders MCMC
schemes inapplicable in our setup.

Instead, for the parameter estimation of our model,
we develop a fast, dual one-step Kalman filter algorithm
that only requires one single iteration, building on the one
proposed by Koop and Korobilis (2014). The general idea
is to circumvent the need for recursive sampling by condi-
tioning on principal component estimates for the factors
during the estimation of the model parameters, and by re-
placing the multivariate stochastic volatility models that
are usually used for Vt , Qt , Wt , and Rt by the variance
discounting methods that are described above (see e.g.
Aguilar & West, 1998). These changes break up the re-
cursiveness of the Gibbs algorithm and thus allow for
simulation-free estimations of the time-varying param-
eters and factors using Kalman filters. The treatment of
missing observations is straightforward in this setting,
where we follow Mariano and Murasawa (2003). Essen-
tially, at every point in time, we induce the Kalman filter
to skip missing observations such that only the observed
variables affect the update of the state vector and its
variance. Each vintage for each model j, our estimation
algorithm evolves as follows:

(1) Initialization

(a) Initialize the forgetting factors via grid search
(b) Standardize the data
(c) Estimate the preliminary factors f PCt by the EM

algorithm.6

6 Considering the mixed-frequency structure of our data, we
estimate the preliminary factors from xt using the expectation-
maximization (EM) algorithm proposed by Stock and Watson
(2002b).
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(2) Parameter estimation

(a) Estimate Vt , Qt , Wt , and Rt using variance dis-
counting methods

(b) Estimate λM
t and βt conditional on Vt , Qt , Wt ,

Rt , and f PCt
(c) Estimate λQ conditional on Vt , Qt , Wt , Rt , and

f PCt

(3) Factor estimation

(a) Estimate ft conditional on the model parame-
ters

(4) Forecasting

(a) Generate forecasts based on estimated factors
and model parameters

(b) Calculate model weights for dynamic model
averaging

Every vintage, we initialize the forgetting factors via a
grid search and estimate preliminary principal component
factors by means of an EM algorithm. Conditioning on
principal component estimates that disregard the time
series structure of the system might be viewed as a po-
tential shortcoming of our procedure. The efficiency loss
induced by this choice might, however, be moderated
in light of the results in Bates et al. (2013) and Stock
and Watson (2002a). The authors demonstrate the robust-
ness of principal components analysis (PCA) under vari-
ous temporal instabilities, such as time-varying loadings
and serial correlation of the factors, as well as residuals
that are serially correlated, cross-correlated, and condi-
tionally heteroskedastic. The non-static forgetting factors
allow for an automatic adjustment of the speed of pa-
rameter change over time, which allows for more sudden
adjustments in e.g., unstable periods.

Subsequently, we estimate the variance–covariance
matrices using variance discounting methods. The model
parameters are estimated based on the initial factor es-
timates and forgetting factors using Kalman filters and
smoothers. Then, we estimate the factors conditional on
the model parameters and variance–covariance matrices
from the previous step. Finally, we generate forecasts for
each model j and apply DMA to combine the model-
specific predictions. The large computational gains of
our procedure naturally come at a cost. Compared to its
computationally demanding fully Bayesian counterparts,
parameter estimation uncertainty, especially regarding
the forgetting factors, is largely ignored. Given that our
primary focus is on forecasting, we accept this caveat
in order to develop a model that accounts for structural
breaks, time-variation in the volatilities, mixed frequen-
cies, and large information sets. To explore the extent to
which this choice and the value of the forgetting factors
in particular impact the forecast performance, we run a
robustness check in Section 3.

3. Forecasting exercise

3.1. Data

We use 19 monthly and quarterly indicators for now-
casting GDP in the US. In addition to the target variable
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of our forecasting exercise—namely, quarterly US GDP
growth—we include 18 monthly indicators selected from
the eight groups in McCracken and Ng (2016) and provide
timely information about the US economy. The data trans-
formations follow the recommendations provided by the
authors. Table 1 provides an overview.

Our dataset may appear somewhat small at the first
glance, although factor models are able to deal with many
more predictors. In this regard, however, Alvarez et al.
(2012) show for key US macroeconomic variables that a
small-scale factor model based on a set of representa-
tive indicators is able to outperform factor models con-
taining a large set instead. Similarly, Bańbura and Mod-
ugno (2014) construct a small dataset, including industrial
production, orders, retail sales, the unemployment rate,
economic sentiment, GDP, the prices of industrial raw
materials, stock prices, and the PMI, which is then ex-
tended with more disaggregated information to create
increasingly large datasets. In their work, the authors
demonstrate that a small factor model containing 14 vari-
ables can outperform a large model with 101 indica-
tors for nowcasting GDP in the euro area. In another
recent study, Duarte and Süssmuth (2018) start with 258
monthly indicators of Spanish GDP, which they reduce
to a set of 14 final predictors prior to estimation. The
final list of indicators includes subaggregates of industrial
production and manufacturing, consumer and industry
surveys, a financial index, and an employment indica-
tor. While the absence of well-known predictors such
as the PMI might be viewed as a caveat, our selected
variables nonetheless show a large degree of overlap with
the aforementioned studies and span a similarly wide
range of indicator groups.

From our dataset, we generate a large factor model
space. In order to ensure the continuity of GDP forecasts
and the minimum number of indicators necessary for
factor extraction, we include a tiny set of indicators—GDP,
industrial production, manufacturing and trade sales, per-
sonal income ex. transfer, and total nonfarm payrolls—in
every model specification.7 Then, we extend the fixed
set of variables with every possible combination of the
remaining 14 indicators in our dataset and specify models
with one, two, and three factors. This leads to 3 · 214

=

49,152 possible model specifications.

3.2. Initial conditions and starting values

Since our algorithm is not fully Bayesian, we set ini-
tial conditions rather than actual priors. Nonetheless, we
follow Thorsrud (2020) and choose relatively informative
initial values for the variances and uninformative initial
values for the remaining parameters.

f0 ∼ N(0, 10) (14a)

λM
0 ∼ N(0, 1 · In) (14b)

λ
Q
0 ∼ N(0, 1 · In) (14c)

7 Such indicators are commonly used to generate coincident indexes
for the US business cycle, see e.g. Mariano and Murasawa (2003)
and Stock and Watson (1991), among others.
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Table 1
Dataset.
Indicator Group Freq. Tra.

Real personal income ex. transfer Output and income M log diff.
Industrial production Output and income M log diff.
Capacity utilization Output and income M 1st diff.
Unemployment rate Labor market M 1st diff.
Initial claims Labor market M log diff.
Total nonfarm payrolls Labor market M log diff.
Housing starts Housing M logs
Housing permits Housing M logs
Real manu. and trade sales Cons., orders, and inventories M log diff.
Retail and food sales Cons., orders, and inventories M log diff.
New orders for capital goods Cons., orders, and inventories M log diff.
Consumer sentiment Cons., orders, and inventories M 1st diff.
Federal funds rate Interest and exchange rates M 1st diff.
3-month Treasury bill Interest and exchange rates M 1st diff.
10-year Treasury rate Interest and exchange rates M 1st diff.
Oil price Prices M 2nd log diff.
CPI Prices M 2nd log diff.
S&P 500 Stock market M log diff.

GDP Output Q log diff.

Notes: This tables gives an overview of indicators used in our study. The first and second columns display the indicator
and its group. The column ‘‘Freq.’’ denotes their frequency, which can be either monthly (M) or quarterly (Q). Data
transformations presented in the last column are defined as 1st, 2nd, and log differences, or as logs only. While the
monthly indicators are obtained from the FRED-MD introduced by McCracken and Ng (2016), quarterly GDP is retrieved
from the ALFRED.
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β0 ∼ N(µMin, σMin) (14d)

V0 ≡ 0.1 · In (14e)

Q0 ≡ 0.1 · Ik (14f)

π0|0,j,h =
1
J
, for j = 1, . . . , J (14g)

Min and σMin indicate a Minnesota-style initial parameter
istribution. Usually, the idea behind a Minnesota prior
s to express beliefs about the structure of the VAR for
he factor state equation, where more distant lags are
enalized more strongly. We assume that the factor VAR
ollows a relatively persistent AR(1) with a coefficient of
.9 as an initial condition for the respective Kalman Filter.
he variance is given by σMin = 0.1/r2 for the coefficient
n lag r , which corresponds to the choice of Koop and
orobilis (2014).
What remains is the specification of the forgetting

actors. To the best of our knowledge, such a model has
ot been estimated in this framework before, so we use a
elatively simple grid search to guide our choice. First, we
estrict the forgetting factors such that κM

1 and κ2, as well
s κ3 and κ4, change at the same rate. This seems reason-
ble, because both pairs are defined at the same frequency
nd govern the parameter change of similar components.
he decay parameter of the residual variances for quar-
erly variables κ

Q
1 , however, is allowed to change at its

wn rate, due to reasons discussed above. Thus, depend-
ng on the considered model class, our grid has up to
hree dimensions. In general, the decay parameters can
ake values in the following intervals:
M
1 , κ

Q
1 , κ2 ∈

{
0.60, 0.65, . . . , 0.95, 0.99

}
κ3, κ4 ∈

{
0.90, 0.91, . . . , 0.99

}
As an example, the TVP-MF-DFM-SV requires the full

hree-dimensional grid for all of the forgetting factors to
1467
e determined. By contrast, the MF-DFM specifications do
ot require a grid search, because the forgetting factors
re set to κM

1 = κ
Q
1 = κ2 = κ3 = κ4 = 1. For the TVP-MF-

FM model specification, we set κM
1 = κ

Q
1 = κ2 = 1

nd obtain κ3 and κ4 via grid search, whereas setting
3 = κ4 = 1 yields the MF-DFM-SV specification. For
ach model class, we evaluate the grid for one, two, and
hree factors in order not to favor any particular factor
pecification. In addition, we evaluate the grid points only
or the baseline model containing the full set of predictors,
esulting in three sets of forgetting factors per model
lass. This should produce a parameter specification that
s somewhat appropriate for all variables, while reducing
he computational demand at the same time. Based on
eal-time data, the grid search is repeated with every
DP release to allow the forgetting factors to adjust to
he economic environment. Given that our main interest
s in point nowcasts for GDP growth, we then adopt
he grid point that minimizes the average mean absolute
eviation (MAD) over the nowcast horizons.8 To explore
he extent to which the forecast performance results are
obust to the choice of optimization criterion, we report
he full set of results based on ‘‘RMSE optimal’’ forgetting
actors in the Online Appendix. Generally, the results are
ualitatively and quantitatively similar.
The forgetting factor γ that governs the model switch-

ng rate is not evaluated on a grid, and it is set to the value
.9, which implies that the forecast performance one year
go receives 65% of the weight. We set this as a slightly
ore aggressive value than Koop and Korobilis (2014) for

wo simple reasons. First, with increasing length of the
orecast horizon, more time has to pass until a forecast
an be evaluated and used to update the models’ weights.

8 For brevity, these results are not reported but are available from
the authors upon request.
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Second, the publication lags of the individual variables
do not only have to be taken into account when gener-
ating the forecasts but also have to be considered when
calculating the weights in real time. Since US GDP has
a publication lag of around 30 days, this also delays the
evaluations of the forecasts for the preceding quarter that
are needed to update the DMA weights. This additionally
adds considerable update lag. Our γ specification is thus
chosen to counteract these two effects.

3.3. Forecast evaluation results

We conduct a recursive out-of-sample forecasting ex-
ercise to predict quarterly US GDP growth in real time. To
this end, we utilize historical real-time data vintages from
the FRED-MD database and quarterly US GDP from AL-
FRED.9 Whenever we generate a forecast, our model thus
entirely relies on information that would have been avail-
able to forecasters at the time. While our initial estimation
sample spans the period from 1975M01 to 1999M12, we
compute recursive forecasts for the period 2000M01 to
2021M09. Due to the Covid-19 pandemic, main economic
indicators such as GDP have lately been characterized by
unusually large fluctuations. Naturally, recent forecast-
ing literature has been interested in exploring modeling
approaches that account for these extreme outliers and
help robustify the performance of forecasting models in
abnormal times more generally (see e.g. Carriero et al.,
2021, 2022; Lenza & Primiceri, 2020; Schorfheide & Song,
2021). In this context, we consider four nested model
classes—MF-DFM, TVP-MF-DFM, MF-DFM-SV, and TVP-
MF-DFM-SV—and thus different combinations of time-
varying parameters and stochastic volatility.10 In addi-
tion, we compute DMA forecasts for each model spec-
ification to shed some light on the additional benefits
of model averaging. To establish our pre-Covid-19 base-
line results, we first evaluate our forecasts for the period
from 2010M01 to 2019M12.11 Subsequently, we extend
the evaluation sample to 2021M09. The results for other
subsamples and the full out-of-sample period starting in
2000M1 are reported in the Online Appendix. In each
of the four model classes, the benchmark specification
is a stand-alone model with the full set of indicators. In
contrast, the combined forecasts are based on the entire
factor model space, consisting of the 49,152 individual
models for each model class.

Table 2 displays the forecast performance of our bench-
mark model specifications and of the DMA forecasts over
the evaluation period from 2010Q1 to 2019Q4. Through-
out, we use the first-release GDP data to evaluate the

9 See the FRED-MD introduced by McCracken and Ng (2016) for
monthly indicators and their historical vintages. For real GDP and its
real-time vintages, the reader is referred to ALFRED, Federal Reserve
Bank of St. Louis.
10 Note that we compute no-change forecasts for models allowing for
VP and/or SV, meaning that we compute the forecasts directly, con-
itional on the last estimate of such parameters, instead of simulating
heir paths.
11 Since DFMs as a nowcasting tool were first proposed by Giannone
t al. (2008), this sample also avoids concerns regarding an artificial
tate of the art.
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forecast performance. While we report the MADs for the
benchmark models in the upper panel, the MADs of the
DMA forecasts are given in the bottom panel.12 Finally,
the forecast horizons, h, are given as the distance to the
nd of the target quarter measured in months. Horizons
= 8, 7, 6, h = 5, 4, 3, and h = 2, 1, 0 correspond to

the two-quarter-ahead forecasts, the one-quarter-ahead
forecasts, and the nowcasts for the ongoing quarter that
are generated in the first, second, and last month of the
relevant quarter, respectively.13

Focusing on the stand-alone model specifications in
the upper panel, compared to the constant-parameter
model (MF-DFM), only the model variant with stochastic
volatility (MF-DFM-SV) offers slight forecast performance
gains. In contrast, the model with time-varying parame-
ters (TVP-MF-DFM) and the variant with time-varying pa-
rameters and stochastic volatility (TVP-MF-DFM-SV) suf-
fer performance losses for all forecast horizons. These
findings are similar to those obtained by Pettenuzzo and
Timmermann (2017) for point forecasts. Shifting atten-
tion to the bottom panel, we find that model averaging
improves the forecast performance of all models. The MF-
DFM-SV (DMA) slightly improves upon the forecasting
performance of the MF-DFM-SV for shorter forecasting
horizons and the nowcasting horizons. In addition, the
TVP-MF-DFM (DMA) and the TVP-MF-DFM-SV (DMA) im-
prove upon the TVP-MF-DFM and the TVP-MF-DFM-SV
substantially, also leading to marginal forecast perfor-
mance gains vis-à-vis the MF-DFM for selected forecast
horizons.14

After establishing our baseline results, we compare
our models’ performance to competitive external bench-
marks from the recent forecasting literature. To cover a
range of workhorse models, we select both a DFM and
a VAR with mixed-frequencies, TVP, and SV. Specifically,
we adopt the dynamic factor model in Antolin-Diaz et al.
(2017) adjusted for forecasting by Götz and Hauzenberger
(2021). Their model is characterized by mixed frequen-
cies, time-varying long-run trends, and stochastic volatil-
ity (MFTVTDFMSV). As a VAR benchmark, we rely on the
MF-VAR model with time-varying intercept and common
stochastic volatility (MFTVICSV) proposed by Götz and
Hauzenberger (2021). Both benchmarks thus share impor-
tant features with our proposed framework and offer a
similar degree of flexibility. In addition, while our model
relies on an approximate algorithm, both benchmarks are
estimated with fully Bayesian MCMC schemes, to shed
some light on the efficiency of our fast, approximate algo-
rithm. The MADs of both benchmark models from 2010Q1
to 2019Q4 are presented in Table 3. Starting with the
MFTVTDFMSV, we find that our baseline MF-DFM with

12 We focus on the MAD because it is more easily interpretable. The
full set of results with the RMSE is, however, reported in the Online
Appendix.
13 For the sake of brevity, we only show a table containing the mean
absolute deviations in levels. We present additional tables with MADs
relative to the (selected) benchmark models in Online Appendix C. Note
that the pattern described above remains unchanged.
14 The relative forecast performance of DMA forecasts compared
to their stand-alone benchmark specifications is presented in Online
Appendix C.
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Table 2
Mean absolute deviations until 2019Q4.
h = 2Q-ahead 1Q-ahead Nowcasts

8 7 6 5 4 3 2 1 0

MF-DFM 0.22 0.22 0.21 0.22 0.26 0.27 0.23 0.25 0.23
TVP-MF-DFM 0.28 0.27 0.25 0.26 0.29 0.28 0.26 0.27 0.23
MF-DFM-SV 0.21 0.21 0.19 0.21 0.24 0.25 0.22 0.24 0.23
TVP-MF-DFM-SV 0.28 0.27 0.26 0.27 0.30 0.29 0.25 0.27 0.24

MF-DFM (DMA) 0.22 0.22 0.21 0.22 0.28 0.28 0.22 0.27 0.24
TVP-MF-DFM (DMA) 0.23 0.23 0.21 0.25 0.30 0.28 0.24 0.28 0.24
MF-DFM-SV (DMA) 0.23 0.22 0.20 0.21 0.23 0.24 0.21 0.23 0.22
TVP-MF-DFM-SV (DMA) 0.22 0.26 0.23 0.22 0.26 0.27 0.24 0.21 0.24

Notes: This table presents mean absolute deviations (MADs) of selected model specifica-
tions over the entire evaluation sample from 2010Q1 to 2019Q4. While the top panel
denotes the MADs of the benchmark model specifications, the MADs of the combined
point forecasts are given in the bottom panel. The forecast horizon h is given as the
distance to the end of the reference quarter measured in months.
Table 3
External benchmark models until 2019Q4.
h = 2Q-ahead 1Q-ahead Nowcasts

8 7 6 5 4 3 2 1 0

MFTVTDFMSV 0.21 0.25 0.23 0.23 0.26 0.27 0.26 0.26 0.27
MFTVICSV 0.24 0.23 0.23 0.23 0.24 0.26 0.21 0.19 0.21

Notes: This table presents mean absolute deviations (MADs) of the MFTVTDFMSV proposed
by Antolin-Diaz et al. (2017) and the MFTVICSV proposed by Götz and Hauzenberger
(2021) over the entire evaluation sample from 2010Q1 to 2019Q4. The forecast horizon
h is given as the distance to the end of the reference quarter measured in months.
constant parameters, the MF-DFM-SV, and the MF-DFM-
SV (DMA) produce more precise forecasts for all but the
longest forecast horizon. For some forecast horizons, these
gains amount to roughly 20% in relative terms. In addition,
all model variants with time-varying parameters improve
upon the MFTVTDFMSV for some forecast horizons. Com-
pared to the MFTVICSV, our MF-DFM-SV and MF-DFM-SV
(DMA) generate more precise forecasts for the majority
of forecast horizons. While the stand-alone TVP-MF-DFM
and TVP-MF-DFM-SV models fall short of the benchmark
for all forecast horizons, model averaging leads to per-
formance gains for selected forecast horizons. Again, our
constant-parameter MF-DFM and MF-DFM (DMA) man-
age to improve on the fully flexible benchmark for some
forecast horizons. Note, however, that the benchmark
models have a slight advantage. In contrast to the dataset
used by Götz and Hauzenberger (2021), the FRED-MD
database does not contain data on the S&P 500 for the
ongoing months. The benchmark models thus rely on
slightly more timely information on financial variables.
Overall, these results demonstrate the competitiveness of
our proposed forecasting model and the robustness of our
approximate estimation algorithm.

Now we extend the sample of our evaluation period
to 2021Q3 and thus include the Covid-19 period. The
MADs are presented in Table 4. Compared to the baseline
sample, the MF-DFM-SV and the MF-DFM-SV (DMA) gen-
erate sizeable performance gains over the MF-DFM. On
average, the performance gains are about 12% and reach
roughly 40% in the most favorable case. In contrast to the
baseline sample, however, for a few forecast horizons, the
TVP and the TVP-SV model variants improve upon the
constant-parameter MF-DFM. Especially for the second
1469
nowcasting horizon, all models but the MF-DFM (DMA)
provide sizeable performance gains.

Overall, we can make a couple interesting observa-
tions. In stable times, SV model specifications provide mi-
nor forecast performance gains over constant-parameter
models. TVP and TVP-SV models only gain for some hori-
zons when combined with model averaging. When
including the Covid-19 pandemic, SV models provide size-
able gains, but TVP-SV and to a lesser extent TVP mod-
els also gain somewhat compared to the MF-DFM. The
gains thus seem mostly driven by stochastic volatility,
which is in line with, e.g., Carriero et al. (2021). When
paired with model averaging, forecast performance again
improves for all models compared to their respective
single-model variant. Given that the Covid-19 sample is
rather short, Tables C.5 and C.6 in the Online Appendix
repeat the exercise for the global financial crisis sample,
i.e. the period from 2000Q1 to 2007Q4 and 2000Q1 to
2009Q4, respectively. Overall, the results remain qualita-
tively similar, supporting the robustness of our findings.
To establish this robustness more broadly, Section C.3 in
the Online Appendix presents the full set of results using
the RMSE instead. Again, the results remain qualitatively
unchanged.

In light of these results, we focus on the MF-DFM-
SV (DMA) specification in the following and zoom into
its evolution over the first three quarters of 2020, which
were especially affected by the measures taken to con-
tain the COVID-19 pandemic. Fig. 1 illustrates the two-
and one-quarter-ahead forecasts, as well as the nowcasts,
made for 2020Q1 (left), 2020Q2 (middle), and 2020Q3
(right), together with the realized quarterly GDP growth.

Starting with the first quarter, the model is not able
to capture the drop in GDP growth. This is mainly due
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Table 4
Mean absolute deviations until 2021Q3.
h = 2Q-ahead 1Q-ahead nowcasts

8 7 6 5 4 3 2 1 0

MF-DFM 0.68 0.89 0.65 0.70 1.07 0.74 0.53 0.58 0.35
TVP-MF-DFM 1.21 0.81 0.92 1.47 1.08 0.98 0.78 0.44 0.35
MF-DFM-SV 0.65 0.68 0.63 0.65 0.79 0.76 0.51 0.38 0.36
TVP-MF-DFM-SV 0.70 0.76 0.70 0.73 0.90 0.83 0.55 0.44 0.37

MF-DFM (DMA) 0.67 1.02 0.64 0.69 1.14 0.74 0.59 0.60 0.39
TVP-MF-DFM (DMA) 0.76 0.80 0.77 0.78 0.87 0.95 0.62 0.47 0.39
MF-DFM-SV (DMA) 0.66 0.68 0.64 0.66 0.78 0.73 0.51 0.34 0.36
TVP-MF-DFM-SV (DMA) 0.65 0.71 0.67 0.69 0.78 0.76 0.54 0.36 0.39

Notes: This table presents MADs of selected model specifications over the entire evaluation
sample from 2010Q1 to 2021Q3. The forecast horizon h is given as the distance to the
end of the reference quarter measured in months.
Fig. 1. Cross-sectional forecast densities for GDP growth in 2020.
Notes: This figure plots cross-sectional densities of two- and one-quarter-ahead forecasts, as well as of nowcasts, for the GDP growth in the first
three quarters of 2020 obtained by the MF-DFM-SV model specifications. Blue and gray areas denote 68% and 95% bands, respectively, while the
black solid line displays the median forecasts. The black dot refers to the first release of the realized quarterly GDP growth.
to the publication lag of macroeconomic indicators, such
that the model only includes data up to February when
the last nowcast is made at the end of March. With
the inflow of data capturing the economic impact of the
policy response to the pandemic, however, the model is
able to adjust its nowcasts and forecasts from April on
immediately. While the model only slightly underesti-
mates the sharp drop in Q2, it falls short of the rapid
recovery recorded in the following quarter. Generally,
the model shows impressive flexibility in adjusting its
forecasts with the real-time data flow. The adjustments
amount to roughly 12 percentage points for both Q2 and
Q3 and illustrate the model’s ability to provide timely
and reliable nowcasts and forecasts over the quarters
impacted by the COVID-19 pandemic.

Note that the cross-sectional forecast densities illus-
rated in Fig. 1 may look somewhat narrow, especially
ompared to those obtained by, e.g., Bayesian and boot-
trapping methods. To explore this more formally, Figure
.9 in the Online Appendix shows PITs for the period cov-
ring the Covid-19 pandemic across all forecast horizons,
nd indeed shows signs of underdispersion. Generally, a
ight cross-sectional density indicates less disagreement
etween model specifications. The low level of forecast
isagreement in the model space may thus be driven by,
.g., the overlap of indicators within the model space.15

15 An additional source of underdispersion might originate from
parameter uncertainty (especially with regard to the forgetting factors)
being largely neglected in our approach.
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3.4. Behind the scene of the forecast density

Integrating the stand-alone benchmark specifications
into the dynamic model averaging framework enables
us to observe the cross-sectional density around point
forecasts for US GDP growth across the model space. In
this context, it is worth noting that the cross-sectional
densities are not restricted to be Gaussian and can thus
assume very flexible shapes. We start with the entire
cross-sectional density and then zoom into specific per-
centile ranges to shed light on the indicators that drive
nowcasts and forecasts in the left tail of the distribution.

Fig. 2 illustrates cross-sectional densities over the
49,152 MF-DFM-SV specifications for the three nowcast
horizons, h = 2, 1, 0, for the ongoing quarter from
2000Q3 to 2021Q3. While the black boxes show the
range between the 25th and 75th percentiles, the vertical
lines point to the density outside this range. Overall, the
estimated cross-sectional densities are able to demon-
strate forecast uncertainty reasonably well. For instance,
in more turbulent times, such as during recessions and
the pandemic, one can see that the variance of the fore-
cast distribution increases drastically, and with it forecast
disagreement. In contrast, between 2011 and 2019, where
the US economy was located on a relatively stable growth
path, the forecast distributions become heavily concen-
trated, and the models point in very similar directions.
On the one hand, this shows that the forecast distribu-

tions from our model pick up changes in the economic
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Fig. 2. Cross-sectional nowcast densities.
Notes: This figure displays the entire cross-sectional density over the each of three nowcast horizons generated by the 49,152 MF-DFM-SV
specifications at h = 2, 1, 0 for the ongoing quarter over the evaluation sample.
onditions relatively quickly and react in a way that is
easonable. On the other hand, the changes in forecast
isagreement might be useful for determining the risk
hat surrounds the economy at a given point in time and
hus for providing insightful information to forecasters
nd policymakers.
After having a close look at the entire cross-sectional

orecast density of the MF-DFM-SV specifications, we shift
ur focus to the inner workings of our suggested frame-
ork. Since factor models are based on latent and, hence,
nobserved components, they are typically hard to in-
erpret. Usually, it remains unclear why a factor model
ehaves a certain way or, in the context of forecasting,
ow forecasts are formed based on the model ingredients.
s Koop and Korobilis (2011, 2014) show, one can use the
pdated individual model probabilities to calculate the
mportance of the different variables over time through
he lens of DMA forecasts. Again, we extend the general
ramework by allowing Eq. (15) to depend on the forecast
orizon:
xi
t,h =

∑
k⊂xi

πt|t,j,h (15)

Fig. 3 illustrates the average importance of each ad-
itional variable in the three nowcasting horizons.16 In
he early 2000s, predictors such as housing, retail sales,
0Y treasury yields, the S&P500, and oil prices, seem to

16 Figures showing the average importance of selected indicators
over one- and two-quarter-ahead forecast horizons for the same period
of time can be found in Online Appendix D.
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contribute relatively more to the DMA nowcasts com-
pared to other indicators that receive rather balanced
weights of medium magnitude. However, this picture is
disrupted with the onset of the subprime mortgage cri-
sis and the Great Recession. While most variables sud-
denly lose most of their weight, capacity utilization, initial
claims, retail sales, new orders, and (to a lesser extent)
the S&P 500 experience increases in their relative weights
and thus their contribution to the DMA nowcasts. With
the onset of the Covid-19 pandemic, the picture again
changes and forecasts are predominantly driven by retail
sales, new orders, consumer sentiment, and interest rates.
In Online Appendix A, we also compute the expected
model size, following Koop and Korobilis (2011, 2014).
The chart shows considerable dynamics and indicates that
neither corner solution with either all additional variables
or no additional variables prevails. In conjunction with
the heatmap, this shows that the additional variables are
able to provide information that is not already conveyed
by the five indicators that are fixed. Interested readers
may also note that our measure of variable importance
can easily be constructed for subspaces of the model space
by summing up and re-scaling the weights appropriately.
For illustrative purposes, we thus provide a heatmap that
shows the average importance of the groups of variables
as defined in Table 1 (see Figure D.6 in Online Appendix
D). In addition, for readers more interested in coincidence
indicators, Online Appendix D provides a heatmap con-
structed based on the weights of the models with only
a single factor. In both cases, the overall results remain
qualitatively similar.
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Fig. 3. Indicator heatmap for nowcast horizons.
Notes: This figure displays the average importance of the additional indicators for the three nowcast horizons in our dataset throughout the evaluation
period. The heatmap is column-scaled, meaning that for each target quarter, the most (least) important indicator receives the hottest [yellow] (coldest
[blue]) color. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
After having looked at the entire forecast density, we
ow zoom into the bottom percentiles in order to high-
ight the indicators driving downside risks to US GDP
rowth forecasts.17 Instead of estimating the magnitude
f downside risks to GDP growth directly, as is mostly
one in existing studies, we extract this information from
ur cross-sectional forecast densities. In particular, we
ollect the individual model forecasts that fall within a
iven percentile of the cross-sectional forecast distribu-
ion and then re-scale our measure of variable importance
ccordingly. This way, our approach can deliver model-
onsistent forecasts for a given percentile of any indicator
ncluded in the dataset and is able to identify the drivers
f such forecasts at every forecast horizon. Fig. 4 visual-
zes the average importance of selected indicators in the
ottom 5% of the density for the three nowcast horizons
or US GDP growth.18

Starting with the early 2000s, the S&P 500 seems to
e the most important predictor of risks to GDP now-
asts, regaining importance during the Great Recession

17 The reader is referred to Adrian et al. (2019, 2018), Brownlees and
Souza (2020), Figueres and Jarociński (2020), IMF (2017), Loria et al.
(2019), Prasad et al. (2019), and Plagborg-Møller et al. (2020), among
others, for the growing literature on downside risks to GDP growth,
which is also referred to as growth at risk and vulnerable growth.
18 Figures D.4 and D.5 in Online Appendix D show the average
importance of selected indicators at the bottom 5% of the density over
the one- and two-quarter-ahead forecast horizons for the same period
of time.
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and the second quarter of 2020. In 2002 and 2003, the oil
price emerges as the most important driver of downside
risks, coinciding with two major oil supply disruptions
sparked by civil unrest in Venezuela and the 2003 Iraq
war (see Baumeister & Kilian, 2016). Around the Great
Recession, housing market and labor market indicators,
the S&P 500, consumer sentiment, retail sales, and the
3M T-bill rate experience sudden spikes in importance.
In contrast, during the Covid-19 pandemic, the left tail of
the forecast distribution is mostly driven by the federal
funds rate, the 3M T-bill rate, CPI, consumer sentiment,
new orders, and retail sales. Finally, Figures D.4 and D.5 in
Online Appendix D show that the federal funds rate and,
to a lesser extent, the 3M Treasury bills gain importance
for forecasting the left tail of GDP growth during the
periods from 2005–2007 and 2016–2019, which coincide
with recent interest rate increases in the US. Note that
these intuitive results are not driven by any structure
that we impose on the model. Rather, they seem to result
naturally from the cross-sectional forecast distributions
across models and hence provide tentative evidence for
the validity of the modeling approach.

A few words of caution are in order, however. Al-
though it is tempting to infer a causal relationship, es-
pecially when the changes in the models’ weights seem
reasonable, one must not do so. First of all, correlation
structures between predictors can change over time. This
holds true for indicators within and without the dataset.
Rather than being important per se at a given point in
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Fig. 4. Indicator heatmap at the bottom 5% of the cross-sectional density for nowcast horizons.
Notes: This figure displays the average importance of the additional indicators for the three nowcast horizons at the bottom 5% of the cross-sectional
density in our dataset throughout the evaluation period. The heatmap is column-scaled, meaning that for each target quarter the most (least)
important indicator receives the hottest [yellow] (coldest [blue]) color. (For interpretation of the references to colour in this figure legend, the reader
is referred to the web version of this article.)
time, a certain indicator might receive more weight be-
cause it proxies an actually important unobserved pre-
dictor. The patterns that emerge might thus be spurious.
Second, the weights used to produce these statistics are
generated conditionally on the forgetting factor γ , which
governs the dynamics of model switching. An increasingly
lower γ implies faster model switching, which is likely
to produce more erratic behavior in the expected model
size and a more blurry heatmap. In the extreme case,
the simple average, the heatmap will only feature one
single color, as the weights are identical throughout time
and across variables. These figures are thus to be under-
stood as a tool that sheds light on how a certain forecast
emerges. They provide the means to observe which and
how many variables influence the forecast the most from
the perspective of the model. This in turn allows the
forecaster to conduct reality checks to assess whether
the model places high weights on indicators that truly
seem to be important at the time. Given the usual black-
box character of factor models and forecasts generated by
their means, this provides additional transparency to the
forecaster.

Finally, our large factor model space enables us to
extract recession signals from the cross-sectional forecast
density. Specifically, we compute the percentage of model
specifications predicting non-positive GDP growth for the
ongoing quarter to obtain real-time recession probabili-
ties on a monthly basis. Fig. 5 illustrates recession proba-
bilities from the MF-DFM-SV specifications.
1473
During the considered period the US economy exhib-
ited three recessions announced by the NBER’s Business
Cycle Dating Committee. These periods are: March to
November 2001, December 2007 to June 2009, and Febru-
ary 2020 to April 2020, from peak to trough.19 Overall,
Fig. 5 shows that the estimated real-time recession proba-
bilities match up reasonably well with historical business-
cycle turning points (and related recessions). This also
lends support to recent studies, such as Stock and Watson
(2014) and Eraslan and Nöller (2020), emphasizing the
importance of large cross-sectional information for dating
business-cycle turning points.

4. Concluding remarks

In this paper, we proposed a novel TVP-MF-DFM-SV-
DMA nowcasting model that can efficiently deal with
the characteristics of real-time data flow, as well as pa-
rameter instability and time-varying volatility. Moreover,
we developed an algorithm optimized for fast estimation
that allowed us to integrate our TVP-MF-DFM-SV into a
dynamic model averaging framework. This enabled us to
generate forecast densities based on a large model space
which we used to obtain point forecasts and to shed light

19 The Committee’s announcements can be found at https:
//www.nber.org/research/business-cycle-dating/business-cycle-dating-
committee-announcements.

https://www.nber.org/research/business-cycle-dating/business-cycle-dating-committee-announcements
https://www.nber.org/research/business-cycle-dating/business-cycle-dating-committee-announcements
https://www.nber.org/research/business-cycle-dating/business-cycle-dating-committee-announcements
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Fig. 5. Recession probabilities and GDP growth.
Notes: This figure displays quarterly GDP growth (in logs, left axis) and monthly real-time recession probabilities (blue areas, right axis) calculated
as the percentage of model specifications predicting non-positive growth for the ongoing quarter. (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article.)
on the changing drivers of (downside risks to) US GDP
growth forecasts.

We put our suggested framework to the test in a re-
ursive out-of-sample real-time forecasting exercise. Our
esults revealed that SV models provide slight forecast
erformance gains compared to the constant-parameter
odel in stable times. Such gains remain absent for TVP
odel variants. After we established the performance of
ur model and the efficiency of our algorithm by compar-
ng it to competitive literature benchmarks, we extended
ur sample to the Covid-19 pandemic. In line with the
iterature, we found that SV is the dominant driver of fore-
ast performance gains during the pandemic. However,
or some forecast horizons, we also observed performance
ains derived from the TVP and TVP-SV models over the
onstant-parameter benchmark. In all cases, additional
orecast performance gains for some forecast horizons
ere derived from model averaging. In this context, we
lso showed how the DMA methodology can be used to
ssess which variables are most influential for a given
orecast, which provides additional transparency to the
orecaster. Overall, by providing considerable improve-
ents in forecast accuracy and additional transparency,
ur suggested framework is a useful complement to the
orecasting toolbox of policymakers.

This paper also opens up new avenues for further re-
earch in the nowcasting and model averaging literature.
uture work could continue exploring the value of the
nformational content of the cross-sectional forecast dis-
ributions. Moreover, our current framework could be ex-
ended to allow for different decay rates for each variable
1474
and different degrees of model change for each forecast
horizon. Such extensions of our framework, however, are
left for further research.
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