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Abstract
We analyze multiple-beliefs based efficiency measures in economies with risk 
and disagreement, including belief neutral efficiency and inefficiency, incomplete 
knowledge efficiency, efficiency based on unanimity, and utility aggregators that 
minimize Bergson welfare functions over multiple beliefs. We provide equivalence 
results under technical conditions that are satisfied in several work-horse economies, 
including the exchange economy and a standard economy with a linear production 
technology. We also provide several examples for which these measures differ. Our 
results show that the further away one gets from the standard exchange economy, 
the more the different multiple-beliefs based measures differ in the allocations they 
identify as efficient, in general. Consequently, the more important the choice of effi-
ciency measure becomes.

1  Introduction

Several recent studies analyze the challenges of using traditional welfare measures 
in markets with risk and disagreement, see Brunnermeier et al. (2014), Gayer et al. 
(2014), Blume et  al. (2018), and Heyerdahl-Larsen and Walden (2022). Briefly, 
when agents disagree, speculative trading motives may end up having a prominent 
role in determining the market outcome, especially in complete markets with severe 
disagreement. Such outcomes are—via the welfare theorems—efficient in the tradi-
tional sense, in that they maximize agents’ ex ante expected utilities. But, as these 
recent studies argue, there is something spurious with such an efficiency measure 
based on ex ante expected utilities, for which each agent’s expectation is based on 
his/her individual belief. Under disagreement, two risk averse agents who before 
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trading face no risk may end up speculating heavily against each other, both agree-
ing that one of them ex post will end up very poor, but both believing it will be the 
other agent. From the social planner’s perspective, these speculative trades takes the 
economy from one with no ex post allocation risk to one with significant risk, i.e., it 
moves in the opposite direction of what the risk sharing trades in financial markets 
achieve in an economy with agreement. Indeed, a major purpose of financial mar-
kets is to allow for such risk sharing.

The aforementioned studies propose alternatives to the traditional efficiency 
measure, that are similar in spirit but different in detail. Brunnermeier et al. (2014) 
define the concepts of belief neutral efficiency and inefficiency. These measures 
require the social planner to consider efficiency of an allocation for a whole set of 
beliefs, which includes individual agents’ beliefs. For each of these beliefs, effi-
ciency in the traditional sense—using a common belief across agents—is studied. 
Heyerdahl-Larsen and Walden (2022) introduce a similar measure, in this paper 
denoted incomplete knowledge efficiency, under the assumption that the social plan-
ner does not know which belief within the set is correct. Gayer et al. (2014) define 
unanimity Pareto dominance, which requires a reallocation to be an improvement 
under each agent’s belief. Blume et al. (2018) use a utility aggregator, e.g., minimiz-
ing a Bergson welfare function, over a whole set of admissible beliefs. Common 
for these novel multiple-beliefs based measures is that they, counter-factually, use 
common beliefs across agents when comparing allocations, but then take all agents’ 
individual beliefs into account, i.e., use a whole set of such common beliefs, when 
evaluating efficiency and dominance. We call such efficiency measures multiple-
beliefs based.

In this paper, we provide a systematic analysis and comparison of multiple-
beliefs based efficiency measures. As mentioned, these measures differ in the tech-
nical details of how they are defined. A general takeaway of our analysis is that the 
measures agree on the set of efficient allocations in some important special cases, 
but in general they differ. Belief neutral efficiency, belief neutral inefficiency, and 
incomplete knowledge efficiency, and the maximal solutions to the planner’s prob-
lem in Blume et  al. (2018) are equivalent in an exchange economy environment.1 
In an economy without disagreement, these measures also agree with the so-called 
U-efficiency, a concept closely related to the unanimity Pareto dominance concept 
introduced in Gayer et al. (2014). Incidentally, many of the examples provided in the 
aforementioned literature are for exchange economies, which could wrongly give the 
impression that the technical differences are not important.

The further away one moves from the exchange economy, the less the measures 
agree. The unanimity efficient set in general contains speculative outcomes, which 
the other measures do not. The set of belief neutral efficient allocations may be 
empty. Indeed, an empty belief neutral efficient set may be viewed as the generic 

1  In general, there may be a “gap" between belief neutral efficiency and inefficiency, i.e., there may be 
allocations that are neither belief neutrally inefficient, nor belief neutrally efficient. So these two concept 
are in general not equivalent.
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outcome in a production economy setting. The set of maximal solutions in Blume 
et al. (2018) can in general not be nested with respect to the other concepts.

Incomplete knowledge efficiency, and belief neutral efficiency and inefficiency, 
are equivalent however, under technical conditions. Specifically, convexity of the 
utility possibility set and the so-called reasonable belief set, together with a strict 
dominance condition on Pareto efficient allocations under agreement, ensure that 
the concepts are equivalent. These technical conditions are satisfied in several work-
horse production economies. We also provide several examples of economies in 
which these concepts differ, providing further intuition about why the technical dif-
ferences matter.

Finally, we provide an example that takes us even further away from the exchange 
economy setting, in which multiple-beliefs based measures arguably are not mean-
ingful. Altogether, our analysis highlights the challenges of using a multiple-beliefs 
based approach to define efficiency in economies with disagreement, but also show 
that these challenges are overcome in important special cases. Our results also raise 
interesting questions for future research.

Our general aim is not to evaluate or rank the different measures with respect 
to their usefulness, but rather to point out their similarities and differences, and to 
understand what drives these differences, and the implications in different economic 
environments. When we encounter environments in which the applicability of a spe-
cific measure is severely limited, we do point this out, however.

Our paper also relates to the literature on beliefs, efficiency, and portfolio choice. 
Dybvig (1988) studies portfolio efficiency with respect to expenditure minimization. 
Inefficient portfolios in his model are those that can be replicated in distribution by 
a less costly portfolio.2 In our framework, agents will always choose efficient portfo-
lios given their beliefs. Following Mongin (1995), see also Mongin (2016), a large 
body of literature has analyzed the general aggregation of agent preferences under 
heterogeneous beliefs, see, e.g., Gilboa et  al. (2004) and Fleurbaey (2010).3 This 
literature is outside the scope of our paper, which focuses on comparing the recently 
introduced multiple-beliefs based efficiency measures, as discussed above.

In the next section we introduce the model, and the different efficiency measures. 
In Sect. 3, we analyze and compare the different measures, and in Sect. 4 we discuss 
several examples, and draw some general conclusions from our analysis. All proofs 
are delegated to an Appendix.

2  Jouini and Kallal (2001) extend the framework of Dybvig (1988) to settings with frictions using risk 
neutral probabilities.
3  Bahel and Sprumont (2020) study the class of strategyproof social choice functions when agents have 
subjective expected utility. Similar to the literature mentioned above, we are not concerned with the 
incentive-compatibility issue.
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2 � Model

In this section we present the economic environment and formally define the various 
measures of efficiency.

Consider an economy with T ≥ 1 dates, T = {1, 2,… , T} , M ≥ 2 states, and 
N ≥ 2 agents.4 Agents agree on the state space Ω = {�m}m=1,…,M and the filtration 
F = (F0,F1,… ,FT ) , F0 = {�,Ω} , F ⊂ Ft+1 for all t, and FT = 2Ω , but disagree 
on the probability for different events. Specifically, agent n’s beliefs are captured 
by the probability measure, Qn ∶ FT → [0, 1] . We define qn

m
= Qn({�m}) and the 

M-vectors qn = (qn
1
, qn

2
,… , qn

M
) ∈ SM , n = 1,… ,N . Agents’ probability measures 

are equivalent, qn
m
> 0 ⇔ qn

′

m
> 0 , for all n, n′ . For simplicity, we disregard states 

all agents agree are impossible, so that qn
m
> 0 for all n and m, i.e., qn ∈ SM for all 

n. Here, SM is the M-dimensional open unit simplex, SM
def
={x ∈ ℝ

M
++

∶
∑

m xm = 1}.5 
Agents’ beliefs are then summarized in the tuple q = (q1, q2,… , qN) ∈

(
SM

)N . We 
denote the closure of SM by S̄M.

In the special case when qn = q ∈ SM for all n, this is an agreement economy. 
Whenever qn

m
≠ qn

′

m
 for some n, n′ , and m, we are in a disagreement economy. Agents 

are said to agree on events in FX ⊂ FT , if Qn(X) = Qn� (X) for all n, n′ , and events 
X ∈ FX . Moreover, agents are said to agree that FX and FY are independent, if FX 
and FY are independent under each agent’s beliefs.

There is one consumption good that agents derive utility from consuming, and 
a set of production technologies to choose from, with associated allocations of 
the good between agents. Specifically, the set of nonnegative adapted processes is 
L = {� ∶ T × Ω → ℝ

N
+
}.6 A nonempty compact set, A ⊂ L , denoted the set of fea-

sible allocations, determines the joint production and allocation of the consumption 
good among the agents. Here, for a ∈ A , at,m,n = (a(t,m))n represents the allocation 
to agent n of the good at time t in state m. We may view A as a subset of ℝT×M×N . 
We denote this economic environment, as defined above, the general economy.

We will mostly focus on economies that allow for transfers. We define the map-
ping P ∶ ℝ

T×M×N
+

→ ℝ
T×M
+

 , such that Xm,t = P(a) =
∑

n at,m,n , represents aggregate 
production for allocation a at time t in state m, and also the set AX = P(A) ⊂ ℝ

T×M
+

.

Definition 1  The economy is said to allow for transfers if a ∈ A for any a ∈ ℝ
T×M×N
+

 
such that P(a) ∈ AX,

A special case of an economy that allows for transfers is the exchange economy, 
in which aggregate production is fixed:

4  Setting T = 1 yields the static model as a special case.
5  The set ℝ++ denotes the set of strictly positive real numbers, whereas ℝ+ denotes the set of weakly 
positive real numbers.
6  The measure-theoretic term adapted means that the process is well-defined with respect to the infor-
mation available, at all points in time, see Duffie (2001), p. 21.
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Definition 2  An exchange economy is an economy that allows for transfers, in which 
aggregate production is a singleton, AX = {X}.

Typically, a Walrasian market clearing mechanism is also specified for the exchange 
economy, leading to equilibrium prices and allocations. This mechanism is unimpor-
tant for our analysis and results, so there is no need for us to expand on this mechanism 
here.

Agents are expected utility maximizers. Agent n’s expected utility under allocation a 
given probability vector q is

Here, we assume that each agent-, state-, and time-specific utility func-
tion, un

t,m
∶ ℝ+ → ℝ , is strictly increasing, continuously differentiable, and 

strictly concave. Moreover, each agent’s utility function, viewed as a process 
un ∶ T × Ω ×ℝ+ → ℝ is required to be adapted.

With each allocation, we associate the utility matrix, V = V(a) ∈ ℝ
M×N , through the 

mapping Vm,n = Un
m
(a), 1 ≤ m ≤ M, 1 ≤ n ≤ N , and define the utility possibility set 

(UPS), U = V(A) ⊂ ℝ
M×N . Since A is compact, so is U . An important class of econo-

mies, as we shall see, are those with convex utility possibility sets.

Condition 1  The utility possibility set, U , is convex.

The convexity condition for the utility possibility set is commonly imposed (see 
Mas-Colell et al. 1995). In an economy that allows for transfers, a sufficient condition 
for U to be convex is that the aggregate production set, AX is convex.

Condition 2  The aggregate production set, AX , is convex.

The UPS-frontier, G , consists of the elements in the utility possibility set that are not 
dominated, i.e., g ∈ G , if there is no h ∈ U , such that hm,n ≥ gm,n for all m and n with at 
least one inequality being strict. We will explicitly point out when additional assump-
tions are made about the aggregate production set and/or utility possibility set.

2.1 � Agreement

We first study the case when there is agreement, qn = q for all n, as a benchmark case. 
A social planner has a Bergson welfare function over feasible allocations, U(a|q, �) , 
defined by

(1)Un(a|qn) =
M∑

m=1

Un
m
(a)qn

m
, where Un

m
(a) =

T∑

t=1

un
t,m
(at,m,n).

(2)U(a|q, �) =
N∑

n=1

�nUn(a|q),
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where � ∈ SN are Pareto weights in the planner’s welfare function. Using the rules 
of matrix-vector multiplication, and denoting the transpose of the vector q by q′ , it 
then follows that

i.e., that given an allocation, a, the welfare function is a bilinear mapping on the pair 
of probability vector and the vector of Pareto weights.

If U(b|q, 𝜆) > U(a|q, 𝜆) for two allocations, a, b ∈ A , we write b >𝜆
q
a , and if 

U(b|q, �) ≥ U(a|q, �) , we write b ≥�
q
a . With this notation, Pareto dominance and 

efficiency (see Mas-Colell et al. 1995) under agreement can be defined as follows:

Definition 3  (Pareto dominance and efficiency)

	 (i)	 Allocation b Pareto dominates a given q, b ≻q a , if b >𝜆
q
a for all � ∈ SN.

	 (ii)	 Allocation b is not Pareto dominated by a given q, b ⪰q a , if b ≥�
q
a for some 

� ∈ SN.
	 (iii)	 Allocation b is Pareto efficient given q, if ∀a ∈ A ∶ b ⪰q a.

We denote by Eq the set of all Pareto efficient allocations given probability vector 
q. Define

Since A is compact, V(A) is also compact and Mq,� is nonempty. Also, Mq,𝜆 ⊂ Eq for 
any � ∈ SN , and thus Eq is nonempty.

An equivalent definition of b ≻q a is that b ≥�
q
a for all 𝜆 ∈ S̄N , with the inequal-

ity being strict for at least one such � . Also, an equivalent definition of allocation b 
being Pareto inefficient given q is that

2.2 � Disagreement

Under disagreement, agent n’s belief is denoted by qn . In line with assumptions 
made in Brunnermeier et  al. (2014) and Heyerdahl-Larsen and Walden (2022), a 
nonempty closed set, QR ⊂ SM of beliefs is viewed as “reasonable.” Although this 
reasonable belief set plays a very similar similar role in the definition in the two 
papers, the interpretation of what it represents is somewhat different. The measures 
in Brunnermeier et  al. (2014) (belief neutral efficiency and belief neutral, ineffi-
ciency, discussed later in this paper) are natural if the social planners can determine 
a q ∈ QR that is the correct belief.

The measure in Heyerdahl-Larsen and Walden (2022) is natural if the social 
planner cannot identify such a q, but instead views each q ∈ QR as possible. The 
efficiency concepts we study all take into account the welfare associated with all 

(3)U(a|q, �) = q�V(a)�,

(4)Mq,� = argmax
a∈A

q�V(a)�.

(5)∃a ∈ A,∀𝜆 ∈ SN ∶ a >𝜆
q
b.
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reasonable beliefs, in line with Brunnermeier et al. (2014), Gilboa et al. (2014), 
Gayer et al. (2014), and Heyerdahl-Larsen and Walden (2022). The special case 
for which qn = q for all n reduces to the agreement economy, in which case we 
assume that the planner’s reasonable beliefs set is QR = {q}.

We are agnostic about the choice of QR in the general case, and make as few 
assumptions as possible about this set. Brunnermeier et al. (2014) suggests using 
the convex hull of agents’ individual beliefs. Specifically, for a set X ⊂ ℝ

K , define 
CH(X) =

�∑K

k=1
𝜌kxk ∶ 𝜌 ∈ S̄K , xk ∈ X, 1 ≤ k ≤ K

�
 . The set suggested in Brunner-

meier et al. (2014) is then

This choice has several appealing properties, although other choices may be more 
appropriate in some situations. For example, the set of beliefs, QR = {q1,… , qN} , is 
an alternative candidate. Both of these choices satisfy the following condition:

Condition 3  For all n, qn ∈ QR.

We provide another example in Sect. 4 where a case could be made that neither 
the convex hull of beliefs or the set of beliefs is the right choice of QR . The only 
restriction on QR we impose is that the set contains a single element, QR = {q} if 
and only if agents agree, and qn = q for all 1 ≤ n ≤ N  . Thus, under disagreement, 
|QR| ≥ 2 . Later, we will impose restrictions on QR , which we will then explicitly 
point out.

We denote the efficiency concept used in Heyerdahl-Larsen and Walden (2022) 
Incomplete Knowledge efficiency, or simply IK-efficiency, since it is based on the 
assumption that the social planner has incomplete knowledge about the true prob-
abilities in the economy.

Following Heyerdahl-Larsen and Walden (2022):

Definition 4  (IK-dominance) Allocation b IK-dominates a with respect to Pareto 
weights � , b ≻𝜆 a , if:

From Definition 4 it follows that an allocation dominates another under this 
concept if, given Pareto weights, it is never strictly dominated under any rea-
sonable probability, and there exist a probability measure under which it strictly 
dominates the other allocation. We also define weak IK-dominance, a ⪰� b , if 
¬(b ≻𝜆 a) . Here, “ ¬ " is the logical negation symbol.

IK-efficiency is now defined as follows:

Definition 5  (IK-efficiency) Allocation a is IK-inefficient if ∀� ∈ SN ,∃b ∈ A : 
b ≻𝜆 a . Equivalently, a is IK-inefficient if

(6)QCH
R

= CH
({

q1, qn,… , qN
})

.

(∀q ∈ QR ∶ b ≥𝜆
q
a) and (∃q ∈ QR ∶ b >𝜆

q
a),
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where the inequality is strict for at least one q.

An allocation that is not IK-inefficient is called IK-efficient. We denote the set 
of IK-efficient allocations by IKE, and the set of IK-inefficient allocations is then 
IKEc = A ⧵ IKE . An IK-inefficient allocation is thus one for which whatever are 
the Pareto weights in the welfare function, there exists another allocation that is not 
dominated by the first regardless of q in the set of reasonable beliefs, and that domi-
nates the first for some reasonable q.

It is straightforward to verify that an equivalent definition for allocation a to be 
IK-efficient is that

i.e., that

An IK-inefficient allocation is operational for a planner who is not able to take a 
stand on which q is correct among the set of reasonable beliefs, in that whatever the 
planner’s Pareto weights are there is another allocation b that improves upon a with-
out taking a stand on q. The incomplete knowledge concept thus requires the social 
planner to have a well-defined � , but does not require that (s)he takes a stand on a 
unique q among the set of reasonable beliefs, QR.

Next, we introduce two concepts of belief neutral efficiency, based on Brunner-
meier et al. (2014). In our economic environment, belief neutral efficiency and inef-
ficiency are defined as follows:

Definition 6  (Belief neutral efficiency) 

•	 Allocation a is belief neutrally inefficient, a ∈ BNI , if ∀q ∈ QR,∃b ∈ A ∶ b ≻q a , 
i.e., if 

•	 Allocation a is belief neutrally efficient, a ∈ BNE , if ∀q ∈ QR,∀b ∈ A ∶ a ⪰q b , 
i.e., if 

In words, an allocation, a, is belief neutrally inefficient if for every reason-
able belief, q, there is another allocation, b, that is strictly better regardless of the 
Pareto weights, � . The set of belief neutrally inefficient allocations is in general a 
strict subset of the complement of the set of belief neutral efficient allocations, i.e., 
BNI ⊊ BNEc . There may thus be allocations that are neither belief neutrally efficient, 

(7)∀� ∈ SN ,∃b ∈ A,∀q ∈ QR ∶ b ≥�
q
a,

∃� ∈ SN ,∀b ∈ A ∶ a ⪰� b,

(8)∃𝜆 ∈ SN ,∀b ∈ A ∶ (∃q ∈ QR ∶ a >𝜆
q
b, or ∀q ∈ QR ∶ a ≥𝜆

q
b).

(9)∀q ∈ QR,∃b ∈ A,∀𝜆 ∈ SN ∶ b >𝜆
q
a.

(10)∀q ∈ QR,∀b ∈ A,∃� ∈ SN ∶ a ≥�
q
b.
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nor belief neutrally inefficient. To avoid the cumbersome terminology of allocations 
being “not belief neutrally inefficient,” we denote such allocations weakly belief neu-
trally efficient:

Definition 7  Allocation a is weakly belief neutrally efficient, a ∈ WBNE , if a ∉ BNI , 
i.e., if

We stress that the weakly belief neutral terminology is not used in Brunnermeier 
et al. (2014).

It immediately follows that equivalent definitions of WBNE and BNE are:

and therefore that BNE ⊂ WBNE.
Note that the roles of the Pareto weights, � , and probabilities, q, are in some sense 

dual in the definitions of IK-efficiency and belief neutral efficiency. Specifically, 
under the IK efficiency concept, the alternative allocation is allowed to vary with � 
but not q, whereas under belief neutral efficiency it is allowed to vary with q but not 
�.

Next, we define a concept that is related to the unanimity Pareto dominance con-
cept discussed in Gayer et al. (2014):

Definition 8  (U-efficiency)
Allocation a is U-inefficient if ∃b ∈ A,∀q ∈ QR ∶ b ≻q a, i.e., if

An allocation, a, that is not U-inefficient is called U-efficient, i.e.,

We denote the set of U-efficient allocations by UE. U-inefficiency is thus a strong 
form of inefficiency, since it requires the existence of a unique allocation that domi-
nates a current allocation, regardless of both Pareto weights, � ∈ SN , and probabili-
ties, q ∈ QR . This is in contrast to IK-inefficiency and belief neutral inefficiency, 
which both allow the alternative allocation to vary with one of these parameters. It 
follows that WBNE ⊂ UE , and IKE ⊂ UE.

Although U-efficiency has some similarity with the Unanimity Pareto concept 
introduced in Gayer et al. (2014), there are also differences: Gayer et al. (2014) focus 
on agents involved in a transaction, and require all those agents to be strictly better 
off. More importantly, theirs is a dominance concept that can be used an allocation 
with another, rather than an efficiency measure. Finally, their concept requires each 
agent to be better off given his or her own beliefs, for a reallocation to be identified 

(11)∃q ∈ QR,∀b ∈ A,∃� ∈ SN ∶ a ≥�
q
b.

(12)WBNE = ∪q∈QR
Eq,

(13)BNE = ∩q∈QR
Eq,

(14)∃b ∈ A,∀q ∈ QR,∀𝜆 ∈ SN ∶ b >𝜆
q
a.

(15)∀b ∈ A,∃q ∈ QR,∃� ∈ SN ∶ a ≥�
q
b.
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as an improvement, and is therefore somewhat different in spirit from the other 
measures, which all are based on using a common belief for all agents, among a 
set of reasonable beliefs. This final condition is also imposed in the definition of a 
related dominance concept discussed in Gayer et al. (2014), and also in Gilboa et al. 
(2014), namely so-called No-Betting Pareto Dominance. Gayer et al. (2014) discuss 
how their Pareto dominance concepts are related to belief neutral efficiency. Our 
focus is mainly on comparing efficiency measures.

We also introduce the set BCEST, following the analysis in Blume et al. (2018) 
and named after the authors’ initials, of maximal solutions with respect to the Berg-
son welfare function.7

Definition 9  The set BCEST is defined as:

where

This set contains all the outcomes a planner with the welfare function in Blume 
et  al. (2018) may view as optimal, depending on Pareto weights � , given that all 
allocations a ∈ A are implementable. We note that this measure is conservative with 
respect to the set of reasonable beliefs, being defined over the minimum over all 
such beliefs. It is easy to show that BCEST ⊂ UE.8

(16)BCEST = ∪�∈SN argmax
a∈A

W(a, �),

(17)W(a, �) = min
q∈QR

U(a|q, �).

Fig. 1   Venn diagram of relationship between the different concepts in the general economy. For visual 
clarity, the lines for the IKE and BCEST sets are dashed. These relations hold in the general economy, 
without further restrictions on the economic environment

7  We focus on the Bergson welfare formulation, while noting that Blume et  al. (2018) also allow for 
more general aggregators.
8  For a ∈ BCEST  , there exists � ∈ SN , such that for all b ∈ A , minq∈QR

U(b|q, �) ≤ minq∈QR
U(a|q, �) . 

Because of compactness, these minima are realized, so for some q∗ ∈ QR , minq∈QR
U(b|q, �) = U(b|q∗, �)
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The relationships between the different efficiency sets in the general economy are 
summarized in Fig. 1.

Finally, we introduce the concept of an Arrow optimum, a term used in Starr 
(1973). As discussed in that paper, an allocation is an Arrow optimum if it is Pareto 
efficient with respect to the expected utilities of agents, based on their own indi-
vidual beliefs.9 In our setting, the set of Arrow optima are identified by replacing the 
welfare function (2) by

where q = (q1, q2,… , qN) ∈
∏N

n=1
SM represents all agents’ beliefs. If 

U(b|𝜆, q) > U(a|𝜆, q) for two allocations, we then write b >𝜆
q
a , and if 

U(b|�, q) ≥ U(a|�, q) , we write b ≥�
q
a . The definition of Arrow dominance and 

Arrow optimum are then identical as in Definition 3 (i.e., holding for all � ∈ SN ), but 
with the single probability vector q replaced by the N-tuple of probability vectors, q, 
with each agent using his/her own belief. The set of Arrow optima, given beliefs q , 
is denoted by EA

q
 . A similar argument as for Eq implies that EA

q
 is nonempty.

Intuitively, Arrow optima, being based on agents’ individual beliefs, allow for 
speculative outcomes in which there is significant variation in allocations across 
states because of disagreement. This occurs because agents dismiss consumption in 
states they subjectively believe are very unlikely. For such speculative allocations, it 
is typically objectively known that many agents will end up with low consumption, 
since all agents’ beliefs cannot be correct, as discussed in Brunnermeier et al. 2014 
and Gilboa et  al. 2014.10 The efficiency measures introduced here—IK-efficiency, 
belief neutral efficiency (strong and weak), and U-efficiency measures—are all 
designed to rule out such allocations as being inefficient, by forcing the same prob-
ability measure to be used across agents when comparing allocations, although the 
measures differ on the specific details.

We have not included the set of Arrow optima in Fig. 1. This set may be quite dif-
ferent from the other efficiency sets, in general being neither a subset or a superset of 
any of the other sets, as shown in Proposition 2 and the following discussion, below.

(18)U(a|�,q) =
N∑

n=1

�nUn(a|qn),

9  Harris (1978) calls such an allocation ex ante efficient.
10  For example, two risk-averse agents who have drastically different beliefs about the probability for 
heads being the outcome of a coin toss may both prefer an allocation where, depending on the outcome 
of the coin toss, one agents gets all of the consumption good and the other agent starves, over one in 
which they share the good equally in both states.

≤ U(a|q∗, �). Equivalently, ∀b ∈ A,∃q∗ ∈ QR ∶ a ≥�
q∗

b , and therefore one sees from (14) that a is not 
UK-inefficient. So, BCEST ⊂ UE.

Footnote 8 (continued)
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3 � Comparing the different measures

Focusing first on the agreement economy, we have:

Proposition 1  In the agreement economy with probability vector q: 

	 (i)	 In general, IKE = BCEST ⊂ Eq = EA
q
= WBNE = BNE = UE.

	 (ii)	 If the economy allows for transfers and the utility possibility set is convex, then 
IKE = BCEST = EA

q
= EA

q
= WBNE = BNE = UE.

Thus, in economies that allow for transfers with convex utility possibility sets, 
the efficiency concepts are all identical in the agreement economy, whereas IKE and 
BCEST, may be strict subsets of the other efficiency sets otherwise.

We move on to the disagreement economy, in which qn ≠ qn
′ for at least two 

agents, and consequently |QR| ≥ 2 . Our first result shows that in general it is not 
be possible for U-efficiency to rule out all speculative allocations that are Arrow 
optima, whereas the other efficiency concepts typically do rule out such speculative 
allocations:

Proposition 2  In the disagreement economy: 

	 (i)	 If Condition 3 is satisfied, i..e., qn ∈ QR for all agents, then EA
q
⊂ UE.

	 (ii)	 Any Arrow optimum, a ∈ EA
q
 , in an economy that allows for transfers, in which 

two agents that disagree about the relative likelihood of two states to occur 
are allocated strictly positive amounts of the consumption goods in both those 
states at some time, is neither IK-efficient, nor weakly belief neutral efficient, 
i.e., a ∉ IKE ∪WBNE.

In economies in which the first welfare theorem holds, competitive equilibria are 
Arrow optima. The proposition implies that such speculative equilibria may be iden-
tified as U-efficient. Hence, whereas both IK-efficiency and weak belief neutral effi-
ciency are designed to rule out all speculative allocations, the U-efficiency criterion 
is not sufficiently strong to do so.11 Part (iii) of the proposition shows that both IKE 
and WBNE rule out all such speculative allocations.

A simple counterexample, where EA
q
⊄ UE , is the following: There are two 

allocations, A = {a, b} , two agents, and two states. Agent beliefs are defined 
by q1

1
= q2

2
= 0.9 . Allocation a is risk-free, U1(a|q) = U2(a|q) = 1 , for all 

q. Agent utilities under allocation b are U1(b|q) = 1.5q1 , U2(b|q) = 1.5q2 . 
The reasonable belief set is QR = {(q1, 1 − q1)

� ∶ 0.4 ≤ q1 ≤ 0.6} . 

11  Belief neutral inefficiency of Arrow optima—part (iii) of Proposition  2—actually follows from the 
analysis in Starr (1973), see Starr’s Corollary 3.1 on page 81.
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Now, �U1(a|q) + (1 − �)U2(a|q) = 1 regardless of q, whereas 
sup�∈S2 maxq∈QR

�U1(b|q) + (1 − �)U2(b|q) = 1.5 × 0.6 = 0.9 . So regardless of 
Pareto weights and reasonable beliefs, planner welfare is higher under a than b, and 
therefore UE = {a} . However, regardless of � , U(b|𝜆, q) = 1.35 > U(a|𝜆q) = 1 , so 
EA
q
= {b} . Thus, UE and EA

q
 are disjoint in this example.

It also follows almost immediately that in the environment of Gayer et al. (2014), 
allocations that belong to EA

q
 , or to UE as long as Condition 3 is satisfied, can not be 

Unanimity Pareto dominated by any reallocation, implying that the set of such Una-
nimity Pareto undominated allocations is large.12 Similarly, allocations that belong 
to EA

q
 cannot be No-Betting Pareto dominated by any reallocation.

We next relate WBNE and IKE. In general, these efficiency concepts differ (see 
examples in Sect.  4), but under additional conditions, that are satisfied in several 
work-horse models, they coincide. We introduce the following conditions:

Condition 4  The set of reasonable beliefs, QR , is convex.

Condition 5  Strict dominance condition: For any q ∈ QR and � ∈ SN , Mq,� defined 
in (4) is a singleton, |Mq,�| = 1.

The convexity condition for the set of reasonable beliefs is satisfied under the 
assumptions made in Brunnermeier et al. (2014), see Eq. (6). The strict dominance 
condition states that each allocation that maximizes q�V(a)� for a reasonable prob-
ability and associated vector, strictly dominates all other allocations, w.r.t. q and � . 
A sufficient condition for strict dominance is that the production set is convex and 
the planner’s problem strictly is concave, as shown in the following proposition:

Proposition 3  In an economy that allows for transfers, in which the aggregate pro-
duction set is convex, the strict dominance condition is satisfied.

We note that one way of ensuring convexity of the utility possibility set is by 
allowing for randomization, see Yaari (1981). Specifically, if the planner uses a 
randomization device to choose between allocations a1,… , aK with probabilities 
�1,… , �K , the associated utility matrix is 

∑K

k=1
�kV(ak) , which consequently belongs 

to U . This rationale for a convex utility possibility is of course more subtle in a 
setting with disagreement than in Yaari (1981), because agents need to objectively 
agree about the probabilities of the randomization device to ensure that new disa-
greement is not introduced in the process. If, however, such objective randomization 
is possible, convexity of the utility possibility set follows.

The following two results relate IKE and WBNE:

12  For allocation b to Unanimity Pareto dominate a in their environment, the allocation must both Arrow 
dominate and dominate with respect to U-efficiency under the reasonable belief set QR = {q1,… , qN} , 
according to their definition.
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Proposition 4  In an economy that allows for transfers, in which the utility possibility 
set and reasonable belief set are both convex, IKE ⊂ WBNE.

Proposition 5  In an economy that allows for transfers, in which the utility possibility 
set is convex, and in which the strict dominance condition is satisfied, WBNE ⊂ IKE.

Propositions 4 and 5 together show that in economies with transfers that satisfy 
Conditions  1, 4, and 5, IK-inefficiency and belief neutral inefficiency are equiva-
lent. Several standard work-horse models fall within this class of economies. For 
instance, the early production based asset pricing models in Brock (1979), Mehra 
and Prescott (1980) and Cox et al. (1985) have similar setups and form the basis for 
many of the general equilibrium models in the field of macro-finance. It also follows 
from (12) that both these efficiency sets are nonempty when these conditions are 
satisfied.

As suggested by (12,13), belief neutral efficiency puts substantially stronger 
restrictions on allocations than weak belief neutral efficiency, and we may there-
fore expect BNE to be a “small” set in many cases. Indeed, a belief neutral efficient 
allocation must be efficient for all reasonable q, as seen from (13). In economies for 
which the optimal aggregate production depends on q, BNE may therefore be empty. 
We have

Proposition 6  In an economy that allows for transfers and has a convex produc-
tion set (i.e., satisfies Condition 2), BNE is nonempty if and only if ∩q∈QR

P(Eq) is 
nonempty.

Proposition 6 shows that what determines whether BNE is nonempty in the pro-
duction economy with transfers is whether all agents can agree on what is an effi-
cient aggregate level of production. The necessity of the condition is trivial, and 
sufficiency follows from convexity of the production set, as shown in the proof of 
the proposition.

A straightforward example where Proposition 6 applies is the exchange economy, 
in which the production set is a singleton, and belief neutral efficiency and ineffi-
ciency, IK-efficiency, and the set BCEST are all equivalent. We have:

Proposition 7  In the exchange economy, 

	 (i)	 Eq = Eq� for all q, q� ∈ SM,
	 (ii)	 IKE = BCEST = WBNE = BNE.

It is reassuring for the use of multiple-beliefs based efficiency measures that 
the technical differences in how the measures are defined are unimportant in the 
exchange economy. However, as our previous results suggest, it would be incor-
rect to conclude that they do not matter in more general economic environments, 
that include production. In the next section, we provide several examples of such 
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settings, where the choice of measure does matter. Note also that in light of Proposi-
tion 2(ii), Proposition 7 implies that Arrow optima that contain speculation are not 
in any of the other efficiency sets, in the exchange economy.

We end this section with an example that shows how the exchange economy and 
production economy differ.

3.1 � An example

There is one date, M = 2 states and N = 2 agents, both of whom have square root 
utility, un(x) =

√
x , n = 1, 2 . Agent 1 believes the probability for state 1 to occur is 

q1
1
= p1 , and agent 2 believes it us q2

1
= p2 . Transfers are allowed, and initially we focus 

on the case where the aggregate production set is a singleton, i.e., on the exchange 
economy setting, There is half a unit in total of the consumption good in both states, so 
AX = {(1∕2, 1∕2)} . It follows that the social planner’s welfare function (2) in this case 
may be written as

Here, q = (q1, q2) is the common probability vector used for both agents, �1 = � 
represents the planner’s weight given to agent 1, and �2 = 1 − � the weight 
given to agent 2. Moreover, z1 and z2 define the shares of total consumption allo-
cated to agent 1 in states 1 and 2, respectively, corresponding to the alloca-
tion a = (a1,1, a2,1, a1,2, a2,2) = a(z1, z2)

def
=

1

2
(z1, z2, 1 − z1, 1 − z2) , where am,n 

represents agent n’s allocation in state m. So, z1 and z2 represent agent  1’s con-
sumption share in state 1 and 2, respectively. The set of feasible allocations is then 
A = {a(z1, z2) ∶ 0 ≤ z1 ≤ 1, 0 ≤ z2 ≤ 1}.

Given belief q and weight � , one verifies that this leads to the following optimal 
consumption shares

i.e., those shares that give each agent the same share across the two states.
One also verifies that the function Z is a strictly increasing bijection on the open unit 

interval, which implies that the efficient allocations are

So, in line with Proposition 7(a), Eq does not depend on beliefs. This is because the 
optimization of (19) is effectively carried out state-by-state, regardless of what the 
probabilities for those states are, leading to identical allocation rules in each state. 
From (12, 13), it moreover follows that WBNE = BNE = E , and from Propositions 4 
and 5 that IKE = WBNE , since Conditions 1–5 are satisfied. Finally, from (16,17) it 
follows that BCEST = E , because, as elaborated upon in the proof of Proposition 7, 

(19)U(�, q) =

�
1

2

�
�
√
z
1

q
1

+ (1 − �)
√
1 − z

1

q
1

+ �
√
z
2

(1 − q
1

) + (1 − �)
√
1 − z

2

(1 − q
1

)
�
.

(20)

z1 = z2 = Z(�), where ,

Z(�)
def
=

1

1 +
(

1

�
− 1

)2
,

Eq = E
def
={a(x, x) ∶ x ∈ (0, 1)}.
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the allocations that maximize W are exactly those in E, regardless of which q mini-
mizes U(a|q, �) in (17). These results are all in line with Proposition 7(b), showing 
that in the exchange economy restricting agent beliefs to be common in the plan-
ner’s problem resolves the issue of speculation, and that the specific assumptions 
for how to treat the multiple common beliefs in the reasonable belief set, where the 
efficiency measures differ, are irrelevant in this case.

Note that the set E is different from the set of Arrow optima EA
q
 , as defined in 

(18), when there is disagreement, p1 ≠ p2 . Specifically, the set of Arrow optima is 
defined by maximizing:

leading to the optimal consumption shares:

It is easily seen that z1 ≠ z2 when p1 ≠ p2 , so EA
q
 and E are completely disjoint when 

there is disagreement. The difference between the sets is that EA
q
 , being based on 

the two agents’ individual beliefs, leads to speculative reallocation so that agents 
consume more in the states they are relative optimistic about compared with the 
allocations identified in E, which rule out such speculation. In other words, all the 
efficiency measures succeed in ruling out the speculative Arrow optima and identify 
the nonspeculative set E.

We next study a variation of this example, which includes production. Spe-
cifically, the set-up is as before, but now with two linear production technolo-
gies: the first generates a unit of consumption (only) in state 1, per unit of cap-
ital invested, whereas the second generates a unit of consumption (only) in 
state 2. One unit of capital is available. If k is invested in the first technology 
and the remaining 1 − k in the second, together with the consumptions shares z1 
and z2 in states 1 and 2, respectively, this then implies the following allocation 
a(k, z1, z2)

def
=(kz1, (1 − k)z2, k(1 − z1), (1 − k)(1 − z2)) . The set of feasible alloca-

tions in this production economy is

Note that the exchange economy above corresponds to the special case for which 
k =

1

2
 is fixed.

To limit the number of parameters, we focus on the case when p1 = 1 − p2 = p , 
so that agent beliefs are symmetric in that agent 1’s belief about one state is the 

U =

�
1

2

�
�
√
z
1

p1 + (1 − �)
√
1 − z

1

p2 + �
√
z
2

(1 − p1)

+(1 − �)
√
z
2

(1 − p2)
�
, � ∈ (0, 1),

z1 =
1

1 +
(

1

�
− 1

)2(
p2

p1

)2
,

z2 =
1

1 +
(

1

�
− 1

)2(
1−p2

1−p1

)2
.

A = {a(k, z1, z2) ∶ 0 ≤ k ≤ 1, 0 ≤ z1 ≤ 1, 0 ≤ z2 ≤ 1}.
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same as agent 2’s belief about the other. Without loss of generality, we assume 
that p ≤

1

2
 . The social planner’s welfare can now be written as

One verifies that the optimal shares are the same as in the exchange economy, 
z1 = z2 = Z(�) , as defined in (20), independently of k and q1 , and that the optimal 
investment k is k = Z(q1) , regardless of � . As a consequence,

Now, given that agent beliefs are q1 = (p, 1 − p) and q2 = (1 − p, p) , and choosing 
the reasonable belief set to be the convex hull of individual beliefs, it follows that 
QR = {(q, 1 − q) ∶ q ∈ [p, 1 − p]}.

There is a major difference compared with the exchange economy here, in that 
beliefs matter for what is optimal aggregate outcomes. When q1 is higher, it is optimal 
to invest more in the first production technology, which produces in state 1. As a con-
sequence, Eq varies with q in this production economy. In other words, in addition to 
ruling out speculation, which is done in the same way regardless of q, Eq takes a stand 
on how to optimally allocate productive resources in this setting, which depends on q.

Since the function Z is strictly increasing, it follows immediately that Eq ∩ Eq� = � 
when q ≠ q′ , and therefore, via (13), that BNE = � . Indeed, it is clear from this 
example that BNE is empty because ∩q∈QR

P(Eq) = � , in line with Proposition 6. In 
this environment, BNE is therefore of limited use.

It is straightforward to verify that Conditions 1–5 are satisfied, so Propositions 4 
and 5 together with (12) imply

Finally, note from (17) that

which is realized for q = (1∕2, 1∕2) . This, in turn, implies that argmaxW is realized 
for k = 1

2
 , and thus via (16) that

So, BCEST is a strict subset of WBNE and IKE here, by forcing investments k = 1∕2 . 
In contrast, WBNE and IKE view all investments k ∈ [Z(p1), Z(1 − p1)] as efficient.

The planner’s approach when defined by BCEST is to look at the worst-case prob-
ability scenario among the set of reasonable beliefs, as shows in the minimization 
used to define W . This functional form has a similarity with the max–min ambiguity 

U(�, q) =�q
1

√
kz

1

+ (1 − �)q
1

√
k(1 − z

1

)

+ �(1 − q
1

)
√
(1 − k)z

2

+ (1 − �)(1 − q
1

)
√
(1 − k)(1 − z

2

)

=q
1

√
k
�
�
√
z
1

+ (1 − �)
√
1 − z

1

�
+ (1 − q

1

)
√
1 − k

�
�
√
z
2

+ (1 − �)
√
1 − z

2

�
.

Eq = {a(Z(q1), x, x) ∶ x ∈ (0, 1)}.

WBNE = IKE = ∪q∈QR
Eq.

W(a(k, x, x), �) = min
q∈QR

(q1

√
k + (1 − q1)

√
1 − k)(�

√
x + (1 − �)

√
1 − x)

=
1

2
(
√
k +

√
1 − k)(�

√
x + (1 − �)

√
1 − x)),

BCEST = E(1∕2,1∕2) = {a(1∕2, x, x) ∶ x ∈ (0, 1)}.
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aversion model of Gilboa and Schmeidler (1989), and it narrows down the set of effi-
cient allocations. Indeed, the planner ends up taking a strong stand on which belief in 
QR to use. In contrast, for WBNE and IKE the planner is unwilling to select a specific 
belief, viewing any allocation that is efficient under some reasonable belief as efficient. 
Which of these approaches is most appropriate will depend on the circumstances.

4 � Further discussion and examples

To further highlight the properties of these efficiency measures, and their differ-
ences, we study several examples. We first study an intertemporal (two date) produc-
tion economy with many states, that may be viewed as a work-horse model for which 
WBNE = IKE . We then move on to other examples, outside of the class of economies 
that satisfy Conditions 1–5. These examples, in line with Fig. 1, show how the subtle 
differences between how the efficiency measures are defined become more important 
when outside of the class of economies that satisfy Conditions 1–5.

4.1 � A general production economy in which WBNE = IKE

In Appendix C, we describe a general work-horse production economy that allows for 
transfers, which is a variation of the economy studied in Heyerdahl-Larsen and Walden 
(2022). Both the reasonable belief set and the aggregate production set are convex, and 
it therefore follows from

We consider a production economy with two dates, t = 1, 2 , that allows for trans-
fers. There are M possible states, and N > 1 agents, who disagree. The state is revealed 
at t = 2 , so we require that am,n,1 = am�,n,1 for 1 ≤ m,m′ ≤ M , for all a ∈ A . Moreo-
ver, we assume that agents have strictly concave utility, i.e., that the functions un

m,t
 are 

strictly concave for all n and m, t ∈ {1, 2} , and that Condition 4 is satisfied, i.e., that the 
set of reasonable beliefs is convex.

From Propositions  3–5, it follows that IK-efficiency and weak belief neutral effi-
ciency coincide in this economy,

When agents have power utility (constant relative risk aversion, with risk aversion 
coefficient not equal to one), BNE is typically empty,

Moreover, the conditions of Proposition  2 (i) and (ii) are satisfied, so all Arrow 
optima are U-efficient, as well as IK-inefficient and weakly belief neutrally 
inefficient.

IKE = WBNE.

BNE = �.
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4.2 � A production economy with non‑convex utility possibility set

There are two risk averse expected utility maximizing agents, three mutually exclu-
sive production technologies, one date, and two states. The expected utility of agent 
n ∈ {1, 2} is

where cn
m
 is the consumption of agent n in state m ∈ {1, 2} , and q is the probability 

for state 1. The first production technology is risk free and generates a total output 
of 2 units of the consumption good in either state. The second technology is risky, 
generating 18 units in state 1 and 0 units in state 2, as is the third technology which 
generates 18 units in state 2 and 0 in state 1. The economy neither permits transfers, 
nor objective randomization over events.

There are 4 possible allocations, captured by the set A = {a1, a2, a3, a4} . In allo-
cations ai , i = 1, 2, 3 , the consumption good is divided equally between the two 
agents, after choosing production technology i. In allocation a4 , the risk-free produc-
tion technology is used, as in allocation a1 , but agent 1 receives 1.9 in state 1 and 
agent two receives 0.1, whereas agent 2 receives 1.9 in state 2 and agent 1 receives 
0.1. The consumption by the two agents for different allocations and states is shown 
in Table 1. Allocation a4 thus allows for speculation.

The two agents disagree about the probability for state  1 to occur, q. Agent 1 
believes that the probability is q1 = 0.9 , whereas agent 2 believes it is q2 = 0.1 . The 
planner, not knowing which beliefs are correct, views any probability in the interval 
QR = [0.1, 0.9] as reasonable.

It is easy to verify that the only allocation that is not an Arrow optimum is a1 , 
which both agents agree is dominated by a4 , based on their different beliefs. Of 
course, both agents also agree that the welfare improvement is speculative, and that 
whatever the true q is, any allocation in which individual consumption shares vary 
across states can be improved upon by risk sharing. Thus, a4 is inefficient whenever 
the same q is used for both agents. This is the speculative inefficiency that is cap-
tured by the novel efficiency measures.

In Fig. 2, the right panel compares allocation a1 with a4 . The horizontal (black) 
line represents the (same) utility of the two agents under the risk free allocation a1 , 

(21)Un = q

√
cn
1
+ (1 − q)

√
cn
2
,

Table 1   Four allocations in economy with two agents and two states

Allocation a
1

 and a
4

 are based on investments in the risk-free technology, with equal ( a
1

 ) and unequal 
( a

4

 ) sharing between agents in the two states. Allocation a
2

 and a
3

 both have equal sharing, but invest in 
risky technologies that pay off in state 1 and 2, respectively

Allocation, a
1

a
2

a
3

a
4

agent 1 2 1 2 1 2 1 2

State 1 1 1 9 9 0 0 1.9 0.1
State 2 1 1 0 0 9 9 0.1 1.9
Ex ante utility 1 1 2.7 0.3 0.3 2.7 1.27 1.27
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whereas the sloped (blue) lines represent the utilities of the two agents under the 
risky allocation a4 . For low and high q’s, one of the agents is better off under a4 than 
under a1 , whereas the other is worse off, and for q close to 1

2
 both agents are worse 

off. Now, the reason one agent is better off for extreme q’s is exactly because of 
speculative redistributions. Regardless of q, allocation a4 is therefore inferior when 
using any measure that forces q to be the same for the two agents. What changes 
with q under allocation a4 is which one of the two agents reaps the benefits from 
speculation. The planner can therefore always improve upon a4.

It follows from the efficiency definitions in the previous section that a1 , a2 , and 
a3 are all IK-efficient ( IKE = {a1, a2, a3} ), that a1 and a4 are belief neutrally inef-
ficient ( WBNE = {a2, a3} ), that there are no belief neutrally efficient allocations 
( BNE = � ), that BCEST = {a1}

13, and that all four allocations are U-efficient 
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Fig. 2   Expected utilities of agents as a function of q. Left panel: comparing utilities of allocations a
1

 , a
2

 
and a

3

 . Right panel: comparing utilities of allocations a
1

 and a
4

13  In this example, a1 is the only maximal allocation regardless of which utility aggregator is used. For a 
general utility aggregator, Ŵ , Blume et al. (2018) require that Ŵ(U1,U2) ∈ [min(U1,U2), max(U1,U2)], 
and since U1 = U2 for allocations a2 and a3 , for all q ∈ QR , any such utility aggregator will rule out these 
two allocations as being dominated by a1 . For allocation a4 , U1(a4|0.5) = U2(a4|0.5) < U1,2(a1|q), for all 
q ∈ QR , so minq∈QR

Ŵ(U1(a4|q),U2(a4|q)) < minq∈QR
Ŵ(U1(a1|q),U2(a1|q)) and thus a4 is also domi-

nated by a1 . It therefore follows that any utility aggregator leads to the unique maximal allocation a1 in 
this example.
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( UE = {a1, a2, a3, a4} ). Also, it follows that Conditions 4 and 5 are satisfied, whereas 
Condition 1 is not. These results are robust to allowing for transfers between agents.

The results are consistent with our analysis in the previous section, in that 
BNE ⊊ WBNE ⊊ IKE ⊊ UE , with each inclusion being strict. Specifically, since the 
utility possibility set is not convex, it is possible for an allocation to be IK-efficient 
but not weakly belief neutrally efficient (allocation a1 in this example), since the 
conditions for Proposition 4 are not satisfied.

One can argue that a1 should be viewed as efficient in this example. As shown in 
the left panel of Fig. 2, a1 is dominated by some other allocation for every q ∈ QR , 
and is thereby belief neutrally inefficient. However, since the planner with incom-
plete knowledge about q cannot determine which allocation of a2 and a3 to choose 
over a1 , the allocation is still a reasonable one for the planner who has incomplete 
knowledge about q.

Note that the measure defined in (16,17) compares the worst case utilities associ-
ated with allocations a2 and a3 with the constant utility associated with a1 . These 
allocations are then ruled out even though each dominates a1 for some reasonable 
probabilities. As a consequence, only a1 belongs to BCEST. This will be the case 
even if the a1 line in the left panel of Fig. 2 is moved downward so that it is barely 
above the lines associated with a2 and a3 at the endpoints. The BCEST set is there-
fore based on a very conservative measure.

If objective randomization is possible, a1 no longer remains IK-efficient, because 
a randomization of a2 and a3 with equal probability leads to expected utility of 1.5 
for both agents in both states, regardless of q. In this case, it therefore follows that 
WBNE = IKE = {a2, a3} , in line with Propositions 4 and 5, since the utility possi-
bility set is convex, i.e., Condition  1 is satisfied when objective randomization is 
possible.

4.3 � A production economy with non‑convex reasonable belief set

The previous example explored an economy in which the utility possibility set was 
not convex. Here, we explore the consequences of having a non-convex reasonable 
belief set.

Consider a one-date economy with two agents and three mutually exclusive pro-
duction technologies that depend on the outcome of three tosses of a coin. If the 
outcome of the tosses is three tails, production technology a2 delivers one unit of 
utility to each agent, otherwise 0. If the outcome is three heads, production technol-
ogy a3 delivers one unit of utility to each agent, otherwise 0. If the outcome is nei-
ther 3 heads, nor 3 tails, production technology a4 delivers one unit of utility to each 
agent, otherwise 0. The two agents agree that the three tosses are independent and 
identically distributed, but not on the probability, p, for heads in each toss, believing 
it is p1 and p2 , respectively, where we assume that p1 < p2 . The economy allows for 
objective randomization, and the example is also robust to allowing for transfers.
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The above probability structure may be viewed as a stylized model for a process 
where the outcome depends on a sum of i.i.d. random variables. For instance, the 
three technologies could represent different types of seeds that a farmer can choose 
between. Let the states represent rain or sun. Seeds of type 2 (corresponding to a2 
above) require three days of sun, seeds of type 3 (corresponding to a3 ) require three 
days of rain and seeds of type 4 require at least one day of rain and one day of sun.14

Since agents agree on the i.i.d. nature of the coin tosses but disagree on p, it is 
natural for the planner to include all probability vectors for the states

on the form

for p ∈ [p1, p2] . Note that this corresponds to a view that either agent can be cor-
rect in his or her belief about the probability, and that probabilities in-between the 
agents’ individual beliefs about individual coin toss are also reasonable. The cor-
responding set QR is obviously not the convex hull of the two agents’ beliefs, which 
corresponds to

{ All heads , All tails , Both heads and tails }

(q1, q2, q3) = (p3, (1 − p)3, 1 − p3 − (1 − p)3),

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

p

U
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Fig. 3   Utilities associated with production technologies as a function of probability for heads, p. The 
curves show utilities for the risky technologies, a

2

− a
4

 , whereas the straight line represents utilities for 
the risk free technology, a

1

 . The dotted (red) straight line shows utilities from a randomization of the 
three risky technologies (colour figure online)

14  Similar situations arise naturally in biology and in physics. In epidemiology, the reproductive ratio 
represents the number of individuals infected by a single individual, which determines whether a virus 
spreads among the population. In nuclear physics, the radioactive decay rate of an atom’s nucleus deter-
mines the success of fission.
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In fact, it is easy to check that QR is not even convex.
The convex hull corresponds to the planner taking the view that there is some 

probability that agent 1 is correct about p, and that otherwise agent 2 is correct, but 
neglecting the possibility that some p in-between their beliefs for heads may actually 
be correct. The convex hull represents such mixtures of the two probability vectors.15

The utilities associated with the three technologies are shown in Fig.  3 (blue 
lines), as a function of p. In addition to the three risky technologies there is a risk-
free technology a1 that delivers a utility of 0.45 to all agents (the black straight line). 
We also show the utility of a randomization with equal probabilities for the three 
risky production technologies (as represented by the dotted red straight line).

One may argue that a1 should be viewed as efficient. Indeed, it is easy to check 
that a1 is IK-efficient, since it is above any other technology (including all randomi-
zations) for some p. However, a1 is belief neutral inefficient, since it is below some 
other technology for each p. This is consistent with Proposition 5, since Condition 4 
is not satisfied in this economy, i.e., the reasonable belief set is not convex.

4.4 � A production economy in which IKE ⊊ WBNE

Consider only allocations a2 and a3 in the example in Sect.  4.2, with reasonable 
belief set, QR = {(q1, 1 − q1) ∶ q1 ∈ [0.2, 0.5]} . Both allocations are efficient in the 
homogeneous beliefs economy with q1 = 0.5 , and both allocations therefore belong 
to WBNE. However, a3 is IK-inefficient, since it is dominated by a2 for all q in QR 
except when q = (0.5, 0.5) , and moreover does not dominate a2 for any q in QR . One 
could argue that excluding a3 from the set of efficient allocations in this example is 
indeed appropriate, but since WBNE = ∪q∈Q Eq , there is no possibility to exclude an 
allocation that belongs Eq for some q ∈ QR because it is inferior for some (all) other 
q� ∈ QR.

4.5 � A production economy in which IKE ⊊ BCEST

Consider a modification of the example in Sect. 4.2, in which there are two alloca-
tions in the production set: a3 and another allocation a5 that pays 0.32 in both states. 
Let the reasonable belief set as before be QR = {(q1, 1 − q1) ∶ q1 ∈ [0.1, 0.9]} . In 
this case, BCEST = {a3, a5} as both allocations yield utility of 0.3 for the worst case 
scenario of q = 0.1 . However, IKE = {a3} as allocation a5 is dominated by a3 for any 
0.1 < q ≤ 0.9.

(q1, q2, q3) ∈ CH
({

((p1)3, (1 − p1)3, 1 − (p1)3 − (1 − p1)3),

((p2)3, (1 − p2)3, 1 − (p2)3 − (1 − p2)3)
})

.

15  The problem described here of choosing an appropriate set, QR , is more generally related to that of 
defining appropriate sets in dynamic multiple priors models, as, e.g., analyzed in Epstein and Schneider 
(2003).
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4.6 � A production economy with an allocation that is BCEST but not WBNE nor IKE

Again, we modify the example in Sect. 4.2, this time by adding an additional alloca-
tion a6 in the aggregate production set. Allocation a6 pays 2 to each agent in state 2 

and 
�

1

0.9

�
1 − 0.1

√
(2)

��2

 in state 1. Again, the reasonable belief set is 
QR = {(q1, 1 − q1) ∶ q1 ∈ [0.1, 0.9]} . In this modified example, the expected utility 
when q = 0.9 is 1, which is the same as a1 . However, for every other q the utility of 
a6 is strictly higher than that of a1 . Hence, allocation a1 is no longer in IKE, as it is 
dominated by the new allocation a6 for some reasonable beliefs and never dominates 
that allocation. Moreover, neither a1 nor a6 belong to WBNE, since for each reasona-
ble q, either a2 or a3 or both dominate each of these allocations. Figure  7 in the 
Appendix shows the expected utilities in this modified example.

Allocation a1 belongs to BCEST, since the expected utility for both agents is the 
same under a6 as under a1 when q = 0.9 . Both a2 and a3 are inefficient according to 
BCEST, just as in the example in Sect. 4.2. Hence, we have that IKE =

{
a2, a3, a6

}
 , 

WBNE =
{
a2, a3

}
 , BCEST =

{
a1, a6

}
 for this modified example, so BCEST is dif-

ferent from both IKE and BNE and is, moreover, the only criteria that considers a1 as 
efficient.

4.7 � A limitation of multiple‑beliefs based efficiency measures

We conclude with an example that suggests that multiple beliefs-based efficiency 
measures—as BNE, WBNE, IKE, and UE all are—may not work well if one moves 
even further away from the standard economic environments.

There are two agents, one of whom susceptible to a flu-virus whereas the other 
is resistant. There is one very potent vaccine dose, that can be distributed to one of 
the two agents, or be discarded. The agents disagree about who is most likely to be 
susceptible. Agent i ∈ {1, 2} thinks the probability that (s)he is the susceptible one 
is zi < 1

2
 . The probability for an unvaccinated susceptible agent to catch the flu is 

0.9, and for an unvaccinated resistant agent it is 0.1, facts that both agents agree on. 
A vaccinated agent cannot catch the flu.

Both agents would like to avoid catching the flu, but also has a high ethical stand-
ard, so neither agent would ever consider taking the vaccine unless they are at least 
as likely to be susceptible as the other agent, i.e., if zi ≥ 1

2
 . Objective randomization 

is not possible.
Agent i’s utility when avoiding catching the flu, if unvaccinated or if vaccinated 

when zi ≥ 1

2
 , is 1. The agent’s utility associated with catching the flu is 0. Finally, an 

agent associates utility -1 with being vaccinated when zi < 0.5 , because of the ethi-
cal issue this creates. Both agents believe zi < 1

2
 , i = {1, 2} , so they disagree, since 

under agreement z1 + z2 = 1.
One verifies that under agreement, it is efficient for the planner to vaccinate 

the agent with the highest zi (or either one of the agents in the knife-edge case 
z1 = z2 =

1

2
 ). However, a vaccinated agent who believes zi < 1

2
 will actually be worse 
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off than if unvaccinated, regardless of whether (s)he comes down with the flu or not. 
One may therefore argue that the efficient outcome in this case is to dispose the vac-
cine dose, since neither agent wants to take it.16 The multiple-beliefs based measure 
is unable to capture this concern, since it will always base the welfare function on a 
probability measure for which z1 + z2 = 1.

The difference between this example and the previous ones is that beliefs here 
directly affect utilities. In contrast, in the previous examples, utility was derived 
from consumption and, crucially, ex post high consumption realizations were valued 
highly by agents regardless of their prior beliefs about the likelihood of such reali-
zations. It is unclear whether the beliefs-based efficiency measures analyzed in this 
paper can be applied within these type of economic environments.

A. Proofs

Proof of Proposition 1:  (i) It immediately follows from (12,13) that 
Eq = BNE = WBNE in the agreement economy. From (8) it follows that under 
agreement, an IK-efficient allocation, a satisfies

which is a stronger condition than (10), since � is allowed to depend on b in (10) but 
not in (22), so IKE ⊂ BNE . Also, we note that (8) implies that

in the agreement economy. Moreover, when QR = {q} , W(a, �) = q�V(a)�, so 
argmaxa∈AW(a, �) = Mq,� , and thus BCEST = ∪�∈SNMq,� = IKE.

Finally, (9) is obviously equivalent to (14) when QR = {q} , so WBNE = UE.
(ii) From (i), it is sufficient to show that Eq ⊂ IKE when the utility possi-

bility set is convex and the economy allows for transfers. Again, we note that 
IKE = ∪�∈SNMq,� in the agreement economy. Define Zq = {q�V(a) ∶ a ∈ A} , which 
is compact in ℝN , and convex when U is convex. Any Pareto efficient allocation 
given q, a ∈ Eq , must be associated with a za = q�V(a) on the boundary of Zq . By 
the supporting hyperplane theorem, z�

a
� = K , and z′� ≤ K for all z ∈ Zq , for some 

� ∈ RN and K ∈ ℝ . Moreover, since a is efficient, �n ≥ 0 , n = 1,… ,N , with at least 
one coefficient being strictly positive. This in turn implies that 𝜆 ∈ S̄N can be cho-
sen, and it then follows that

(22)∃� ∈ SN ,∀b ∈ A, a ≥�
q
b,

IKE = ∪�∈SNMq,�

Eq ⊂ ∪𝜆∈S̄NMq,𝜆.

16  We use the analogy of a virus and vaccine in this example, but there are many other situations where 
similar considerations may affect an agent’s utility, for example, as a charity recipient or selected winner 
of a prize. In our example, if it would be possible to educate the agents so that they agreed on who was 
most susceptible, or to convince them to side-step their ethical concerns in the interest of not wasting a 
viable vaccine dose, this would lead to a superior outcome. We do not consider such alternative possibili-
ties here, in line with the rest of the literature.



	 C. Heyerdahl‑Larsen, J. Walden 

1 3

To infer that

we show that given an allocation a ∈ Mq,� ∩ Eq for some 𝜆 ∈ S̄N on the boundary of 
the unit simplex, there exists a 𝜆̂ ∈ SN , such that a ∈ Mq,𝜆̂. This then implies

and Eq ⊂ IKE then immediately follows.
Assume a ∈ Eq ∩Mq,� , so that z�

a
� = K , for some 𝜆 ∈ S̄N , where �n = 0 for agents 

n ∈ B in the nonempty set B ⊂ {1, 2,… ,N} , 1 ≤ |B| ≤ N − 1 . Define � = mink∉B �
k, 

so that 0 < � ≤ 1 . Agents in B are then allocated zero units of the good at,m,n = 0 
when n ∈ B , since they have zero Pareto weight. Also, define

Because of the compactness of A and the continuous differentiability of the utility 
functions, it follows that 0 < 𝛾 ≤ 1 . Define 𝜆̂ ∈ SN , such that 𝜆̂n = �𝛾

N
 , for n ∈ B , and 

𝜆̂k =
(
1 −

|B|�𝛾
N

)
𝜆k for k ∉ B.

For n ∈ B , k ∉ B,

Thus,

for all t and m, and so

Eq ⊂ ∪𝜆∈SNMq,𝜆 = IKE,

Eq ∩ (∪𝜆∈S̄NMq,𝜆) ⊂ ∪𝜆∈SNMq,𝜆 = IKE,

� = max
t,m,n

un
t,m
(0),

� = inf
t,m,n,a∈A

un
t,m
(at,m,n),

� =
�

�
.

𝜆̂n

𝜆̂k
=

�𝛾

N(
1 −

|B|�𝛾
N

)
𝜆k

=
�

𝜆k
1

N
(
1 −

|B|�𝛾
N

)𝛾

≤
1

N − |B|�𝛾
𝛾

≤ 𝛾

𝜆̂n ≤ 𝛾𝜆̂k

≤
(un

t,m
)�(0)

(ukt,m)
�(at,m,n)

𝜆̂k,

(23)𝜆̂n(un
t,m
)�(0) < 𝜆̂k(un

t,m
)�(at,m,k),
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for all n ∈ B , and k ∉ B . As a consequence a ∈ Mq,𝜆̂ . Specifically, any positive allo-
cation to an agent in B, at any time, in any state, could by (23) be improved upon by 
allocating the good away from the agent to agent k. Such a transfer would be feasible 
since the economy allows for transfers.

Finally, if a ∈ Mq,� then it must be that a ∈ Mq,𝜆̂ , since z�𝜆̂ =
(
1 −

|B|�𝛾
N

)
z�𝜆 for 

any z ∈ ℝ
N such that zn = 0 for n ∈ B , and thus the same set of za ∈ Zq among such 

zs maximize z′
a
� and za𝜆̂ . This completes the proof. 	�  ◻

Proof of Proposition 2  (i) Assume a ∉ UE , in which case there exists a b such that 
for all � ∈ SN and q ∈ QR,

and thus a ∉ EA
q
 , so the result follows. Note that it is crucial that qk ∈ QR for 

k = 1, 2,… ,N for the argument.
(ii) Assume a ∈ EE

q
 , and (without loss of generality) that agents 1 and 2 disagree 

about the relative likelihood of states 1 and 2, such that q
1
1

q1
2

>
q2
1

q2
2

 , and that both agents 
are allocated strictly positive amounts of the good in both these states. Define the 
aggregate production X = P(a) , and note that the argument in Propositions  1 and 
part (ii) of this proposition above imply that a ∈ M

q,�|X = argmaxa∈A,P(a)=X∑
n

∑
m qn

m
[V(a)]m,n�

n , for some � ∈ SN (since the singleton AX = {X} is convex).
Because transfers are possible, the following F.O.C. for the allocation needs to be 

satisfied:

However, for any q ∈ QR , the same argument implies that for a ∈ Eq with strictly 
positive allocations to both agents in both states,

for some 𝜆̂ ∈ SN , so a ∉ Eq for any such q, since q
1
1

q1
2

>
q2
1

q2
2

 . Thus a ∉ WBNE.
Similarly, for all 𝜆̂ ∈ SN , the allocation a which satisfies (24) is improved upon by 

allocation b, in that b >𝜆̂
q
 , that redistributes between agents 1 and 2, such that (25) is 

satisfied for 𝜆̂
1

𝜆̂2
 similar to �

1

�2
 . If 𝜆̂

1

𝜆̂2
 is sufficiently large or small, an improvement is 

achieved by allocating the good completely to one of the agents in one or both of the 
two states states. It follows from (7) that a ∉ IKE . 	�  ◻

∑
n 𝜆

nUn(b�q) >
∑

n 𝜆
nUn(a�q) ⇒∑

n 𝜆
nUn(b�qk) >

∑
n 𝜆

nUn(a�qk), k = 1, 2,… ,N ⇒

Uk(b�qk) > Uk(a�qk), k = 1, 2,… ,N ⇒∑
n 𝜆̂

nUk(b�qk) >
∑

n 𝜆̂
nUn(a�qn), ∀𝜆̂ ∈ SN

(24)
q1
1
(u1

t,1
)�(at,1,1)

q1
2
(u1

t,2
)�(at,2,1)

=
q2
1
(u2

t,1
)�(at,1,2)

q2
2
(u2

t,2
)�(at,2,2)

=
�1

�2
.

(25)
(u1

t,1
)�(at,1,1)

(u1
t,2
)�(at,2,1)

=
(u2

t,1
)�(at,1,2)

(u2
t,2
)�(at,2,2)

=
𝜆̂1

𝜆̂2
,
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Proof of Proposition 3  Since the economy allows for transfers and the utility possibil-
ity set is convex, it follows from Proposition 1 that Eq = ∪�∈SNMq,� . Moreover, from 
(12),

If |Mq,�| = 1 for all q ∈ QR , and � ∈ SN , the strict dominance condition then fol-
lows immediately for all a ∈ Mq,𝜆 ⊂ WBNE (with the associated � and q defining the 
parameters in the dominance condition).

For a ∈ Mq,� , assume that Mq,� contains another element b ≠ a , i.e., 
that U(a|q, �) = U(b|q, �) . Since the aggregate production set is convex, 
c =

1

2
a +

1

2
b ∈ A . Moreover, from (3) and the strict concavity of agents’ utilities, it 

follows that U(⋅|q, �) is strictly concave over allocations, and thus

contradicting the assumption that a ∈ Mq,� . So, no such b ≠ a ∈ Eq,� exists, 
|Eq,�| = 1 , and the result therefore follows. 	�  ◻

Proof of Proposition 4  We show that a ∉ WBNE ⇒ a ∉ IKE . For an arbitrary 
� ∈ SN , define the mapping F� ∶ U → ℝ

M , by F�(V) = V� , and the set F� = F�(U) , 
which is a convex, compact, subset of ℝM , because of Condition 1 and the compact-
ness of the production set. Moreover, define fa = F�(V(a)) . Since a ∉ WBNE , it fol-
lows from (9) that

where s < 0 follows from the fact that the optimum is realized for some f ∗ , q∗ 
(because both QR and F� are compact).

It follows from Sion’s minmax theorem that

where the same, f ∗ , q∗ can be chosen for the maxmin and minmax problems, and 
thus that for all q ∈ QR,

i.e.,

for all q ∈ QR , for the allocation b∗ , such that b∗ = V(f∗) . This is, in turn, equivalent 
to b∗ ≥�

q
 for all q ∈ QR . Since � ∈ SN was arbitrary, it then follows that (7) is satis-

fied, and thus a ∉ IKE . 	�  ◻

Proof of Proposition 5  From (12) and Proposition 1, it follows that

WBNE = ∪q∈QR
Eq.

U(c|q, 𝜆) > 1

2
U(a|q, 𝜆) + 1

2
U(b|q, 𝜆) = U(a|q, 𝜆),

max
q∈QR

min
f∈F𝜆

q�(fa − f ) = s < 0,

min
f∈F�

max
q∈QR

q�(fa − f ) = s,

q�(fa − f ∗) ≤ s < 0,

q�V(b∗)𝜆 > q�V(a)𝜆,
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Consider a ∈ WBNE , and an associated q ∈ QR and � ∈ SN . Because of the strict 
dominance condition, it follows that ∀b ≠ a , a >𝜆

q
b . But this immediately implies 

(8) for � and q, where q does not even depend on b in this case, i.e., when a ∈ Mq,� is 
the only element in that set:

which immediately implies (8). 	�  ◻

Proof of Proposition 6  Necessity: From (13),

If a ∈ Eq for all q ∈ QR , then P(a) ∈ P(Eq) for all q ∈ QR . Thus, if ∩q∈QR
P(Eq) = � , 

then BNE = �.
Sufficiency: From (13) and Proposition 1, it follows that

where Mq,� = argmaxa∈A q�V(a)�.
We decompose the problem into aggregate production and allocation parts:

and focus on the optimization conditional on X. Specifically, we define:

The optimality condition for the conditional problem, MX
q,�

 , w.r.t. allocations across 
agents and states are:

across all t, and m, for all agents for which at,m,n > 0 , and

for all agents, states, and times such that at,m,n = 0 , where 𝜌t,m > 0 are the Lagrange 
multipliers that ensure that aggregate consumption is equal to aggregate production 
in each state, at each time. Here, we require the Lagrange multipliers to be adapted, 
when viewed as a process � ∶ T × Ω → ℝ+ . These conditions do not depend on q, 
which immediately implies 	�  ◻

Lemma 1  In an economy that allows for transfers, MX
q,�

 does not depend on q ∈ SN : 
MX

q,�
= MX

�
.

WBNE = ∪q∈QR
∪�∈SN Mq,�.

∀b ∈ A ∶ a >𝜆
q
b,

BNE = ∩q∈QR
Eq.

BNE = ∩q∈QR
∪�∈SN Mq,�,

(26)max
a∈A

q�V(a)� max
X∈AX

max
a∈A|P(a)=X

∑

n

�n
∑

t

∑

m

un
t,m
(at,m,n)qm,

MX
q,�

= argmax
a∈A|P(a)=X

∑

n

�n
∑

t

∑

m

un
t,m
(at,m,n)qm.

(27)�n(un
m,t
)�(at,m,n) = �t,m

(28)�n(un
t,m
)�(0) ≤ �t,m
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So, if X ∈ P(Eq) for all q ∈ QR , then for � ∈ SN , MX
q,𝜆

⊂ Mq,𝜆 for all q ∈ QR , and

Proof of Proposition 7:  (i) The result follows immediately from Lemma 1, and the 
fact that Eq = ∪�M

X
q,�

= ∪�M
X
�
 (since {X} = AX in the exchange economy), which 

does not depend on q.
(ii) From (i) and (12–13), it follows that BNE = WBNE.
Now, Mq,� = MX

�
 , i.e., Mq,� does not depend on q. So, since a ∈ WBNE ⇒ a ∈ MX

�
 

for some � ∈ SN , and a ∈ MX
�
⇒ ∀b ∈ A,∀q ∈ QR ∶ a ≥�

q
b , this implies that con-

dition (8) is satisfied, i.e., a ∈ IKE . Thus, WBNE ⊂ IKE.
For a ∉ WBNE , it follows that a ∉ MX

�
 for all � ∈ SN , i.e., 

∀𝜆 ∈ SN ,∃b ∈ A,∀q ∈ QR ∶ b >𝜆
q
a , which by (7) implies a ∉ IKE . So, 

IKE ⊂ WBNE , and thus IKE = WBNE.
Finally, we show that BCEST = WBNE . The result follows from the following 

lemma: 	�  ◻

Lemma 2  Consider a continuous function F ∶ A ×QR → ℝ , and define the sets 
Yq = argmaxa∈A F(a, q) , q ∈ Q . Also, define the set L = argmaxa∈A minq∈QR

F(a, q). 

Then, if Yq = Yq�
def
=Y  for all q, q� ∈ QR , it follows that L = Y .

Proof of Lemma 2  L ⊂ Y  : Assume s ∉ Y  , then F(y, q) > F(s, q) 
for all q, for some y ∈ Y  (Y is nonempty because of compact-
ness of A and continuity of F). Define q∗ = argminq∈Q F(y, q) . Then, 
F(y, q∗) = minq∈QR

F(y, q) > F(s, q∗) ≥ minq∈QR
F(s, q) , so s ∉ L , and thus L ⊂ Y .

Y ⊂ L : Note that L is nonempty (because of continuity and compactness), so 
there must exist an y ∈ Y ∩ L . Define z = minq∈QR

F(y, q). Now consider any y� ∈ Y  . 
Since Yq = Y  for all q ∈ QR , it follows that F(y, q) = F(y�, q) , for all q, and therefore 
z = minq∈QR

F(y�, q) , which in turn implies that y� ∈ L . So Y = L . 	�  ◻

Now, Lemma  2 applied to the function F�(a, q) = q�V(a)� , and 
L� = argmaxa∈A minq∈QR

F�(a, q)

where the middle equality follows from the fact that MX
q,�

= MX
�
 independently of q 

in the exchange economy, as implied by Lemma 1.
Thus, altogether, BCEST = IKE = WBNE = BNE.

B. Further discussion and comparison of results and proofs

The following list of definitions and conditions are introduced in the paper: 

BNE = ∩q∈QR
∪𝜆∈SN Mq,𝜆 ⊂ ∩q∈QR

MX
q,𝜆

= MX
𝜆
≠ �.

BCEST = ∪�∈SNL� = ∪�∈SNM
X
�
= WBNE,



1 3

On efficiency in disagreement economies﻿	

	A1.	 Economy allows for transfers, Definition 1.
	A2.	 Aggregate production set is singleton, AX = {X}.
	A3.	 Exchange economy, i.e., satisfies A1 and A2, Definition 2.
	A4.	 Utility possibility set is convex, Condition 1.
	A5.	 Aggregate production set is convex, Condition 2.
	A6.	 Agents agree, qn = q , q = 1, 2,… ,N.
	A7.	 Set of reasonable beliefs is convex hull of individual beliefs, QR = CH({qn}n).
	A8.	 Set of reasonable beliefs is convex, Condition 4.
	A9.	 Individual beliefs belong to set of reasonable beliefs, Condition 3.
	A10.	Strict dominance condition is satisfied, Condition 5.
	A11.	Agents get positive allocation in states they disagree about, condition in Proposi-

tion 2(ii).

The Venn diagram in Fig. 1 holds in general economies, without further assump-
tions. Figure 4 shows additional assumptions made in Propositions 1–7, as well as 
the relations between the different concepts in the list above.

Below, we provide a list of results and examples in the paper that show how 
the efficiency concepts are related in different economic environments under 
disagreement: 

	 1.	 In general: BNE ⊂ WBNE , Fig. 1.
	 2.	 In general: WBNE ∪ IKE ∪ BCEST ⊂ UE , Fig. 1.
	 3.	 Condition for: EA

q
⊂ UE , Proposition 2(i).

	 4.	 Condition for: Allocation a ∈ EA
q
, a ∉ (IKE ∪WBNE) , Proposition 2(ii).

	 5.	 Example: EA
q
∩ UE = � , page 13.

	 6.	 Condition for: IKE ⊂ WBNE , Proposition 4.
	 7.	 Condition for: WBNE ⊂ IKE , Proposition 5.

Fig. 4   Left: relations between definitions and conditions, A1–A11; A3 is equivalent to A1∧A2, A2 
implies A4, A1∧ A5 implies A4, A6 implies A7, A7 implies A8 and A9. Right: list of conditions needed 
in propositions
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	 8.	 Condition for: BNE = � , Proposition 6.
	 9.	 Exchange economy: IKE = BCEST = WBNE = BNE , Proposition 7(ii).
	10.	 Exchange economy: EA

q
∩ IKE = � , Proposition 7(iii).

	11.	 Exchange economy example: WBNE = BNE = IKE = BCEST  , page 16.
	12.	 Example: BCEST ⊊ (WBNE ∩ IKE) , production economy, page 18.
	13.	 Example: Standard production economy with WBNE = IKE and BNE = � , 

Sect. 4.1.
	14.	 Example: Production economy with non-convex utility possibility set: 

BNE ⊊ WBNE ⊊ IKE ⊊ UE  ,  BCEST ⊊ IKE  ,  and BCEST ∩WBNE = � , 
Sect. 4.2.

	15.	 Example: Production economy with non-convex reasonable belief set : 
WBNE ⊊ IKE (robust to randomization), Sect. 4.3.

	16.	 Example: IKE ⊊ WBNE , Sect. 4.4.
	17.	 Example: IKE ⊊ BCEST  , Sect. 4.5.
	18.	 Example: Allocation, a ∈ BCEST  , a ∉ WBNE , a ∉ IKE , Sect. 4.6.

In Fig. 5, we provide a conceptual figure that shows how the different examples and 
results, identified by the list above, relate to the Venn diagram in the main paper.

The list below provides an informal discussion about the proofs, with a focus 
on the intuition behind the results:

•	 Proposition 1: The result follows from the important property of the Pareto effi-
cient allocations in the agreement economy, Eq , that they are characterized by 
the union of all solutions to the Planner’s problem over SN : Eq = ∪�∈SNMq,� . This 
allows one to “build” the different efficiency sets from varying beliefs and Pareto 
weights. Some work goes into showing that the union of Pareto weights only 

3 5

6,7, 
15, 16

8

10

14, 17

12, 18

9,11
,13

4,10

Fig. 5   Conceptual figure, showing how examples and results relate to the Venn diagram in the main 
paper
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needs to be taken over the open unit simplex, SN , rather than over its closure, S̄N . 
Propositions 1(i) and (ii) then follow directly from the definitions of the different 
efficiency measures, and the fact that when there is only one reasonable belief 
(because of agreement), QR = {q} , the measures “collapse” in this dimension 
and are therefore significantly simplified. Technically, the standard set inclu-
sion result for from predicate calculus for Boolean functions F ∶ A × B → {F, T} 
(where A and B are nonempty) are used 

•	 Proposition 2: For (i), the result follows because the definition of UE requires an 
improvement for all q ∈ QR and � ∈ SN , for an allocation to be considered ineffi-
cient. This makes allocations in EA

q
 efficient, since they are efficient given individual 

agent beliefs, which per assumption belong to the set of reasonable beliefs. Condi-
tion (ii) highlight the fact that allocations in EA

q
 are speculative in the disagreement 

economy, and therefore deviate from allocations in agreement economies. For this 
to hold, disagreeing agents must actually be allocated the good, an assumption that 
is therefore made. Comparing part (i) with part (ii) of the proposition, the power of 
WBNE and IKE compared with UE is that since they only require “for all” in one of 
the dimensions q and � , they are able to rule out speculative allocations as inefficient. 
This is a main reason why they were developed.

•	 Proposition 3: The result follows from standard uniquness of minimum to 
this strictly concave maximization problem.

•	 Proposition 4: The result follows from the standard duality theory of solutions to 
max-min and min-max problems, as shown by Sion’s theorem (a generalization of 
the classical minmax theorem). The former problem characterizes WBNE solutions 
and the latter IKE solutions, per definition. Note that convexity of the reasonable 
belief set and the utility possibility set are needed for Sion’s theorem to apply.

•	 Proposition 5: The result is almost immediate, because of the simple characterization 
of elements in WBNE as being Pareto efficient in an agreement economy for a rea-
sonable q. Because of strict dominance, such allocations are unique conditioned on q 
and � , and therefore immediately satisfies the condition for IKE.

•	 Proposition 6: The result basically formalizes the intuition that BNE is too restrictive 
a concept for the set to be nonempty, whenever different beliefs lead to different opti-
mal aggregate production levels. Specifically, in economies with standard production 
sets that allow for transfers, given a level of aggregate production, BNE and WBNE 
agree on efficient allocations between agents. However, when different reasonable 
beliefs, qa and qb , lead to different optimal aggregate production levels, there is no 
way to satisfy the requirements of BNE. Indeed any efficient allocation conditioned 
on qa can be improved if qb is correct, by changing aggregate production, and vice 
versa. BNE is therefore empty.

•	 Proposition 7: Like in Proposition  1, where the efficiency concepts “col-
lapsed” in a production economy under agreement, they “collapse” here too, 
in an exchange economy under disagreement. Specifically, since all concepts 
are based on efficiency conditioned on a reasonable q that agents hypotheti-

∀x,∀y ∶ F(x, y) = T ⇒ ∃x∀y ∶ F(x, y) = T ⇒

∀y∃x ∶ F(x, y) = T ⇒ ∃x∃y ∶ F(x, y) = T .
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cally agree upon, and under such hypothetical agreement allocations actually 
do not depend on the actual q in the exchange economy, the result follows.

C. Supporting material for examples in Sect. 4

Section 4.1

We consider a version of the economy in Heyerdahl-Larsen and Walden (2022). Spe-
cifically, the production economy has two dates, t = 1, 2 , and it allows for transfers. 
There are M possible states, and N > 1 agents, who disagree. The state is revealed at 
t = 2 , so we require that am,n,1 = am�,n,1 for 1 ≤ m,m′ ≤ M , for all a ∈ A . Moreover, 
we assume that agents have strictly concave utility, i.e., that the functions un

m,t
 are 

strictly concave for all n and m, t ∈ {1, 2} , and that Condition 4 is satisfied, i.e., that 
the set of reasonable beliefs is convex.

There is one unit of a divisible and perishable good that can either be consumed 
at t = 1 or invested in a linear production technology. Each unit invested yields a ran-
dom, strictly positive, amount, R ∈ SM , at time t = 2 , at which point it is consumed. 
This leads to:

Definition 10  An allocation is feasible, a ∈ A , with aggregate investment, I ∈ [0, 1] , 
if 

	 (i)	 I = 1 −
∑N

n=1
a1,n,1,

	 (ii)	
∑N

n=1
am,n,2 ≤ IRm , m = 1,… ,M.

It follows that the aggregate production set, AX ⊂ ℝ
2×2 is convex, and there-

fore that Condition 1 is satisfied. From Propositions 3–5, IK-efficiency and weak 
belief neutral efficiency coincide in this economy,

This shows that there are interesting production economies in which these efficiency 
measures coincide.

Next, we study belief neutral efficiency. Consider the special but important case 
when all agents have separable power utility across states and time: un

m,t
(c) = �t

c1−�

1−�
 , 

for all n, m, and t, with � ≠ 1 , 𝜌 > 0 . In this case, BNE will typically be empty. Spe-
cifically, it is is well known that for any q that is common among all agents, a repre-
sentative agent formulation of the social planner’s problem exists, in which the util-
ity function of the representative agent is the same as for the individual agents, 
regardless of the planner’s Pareto weights, � ∈ SN . Optimal investments, I∗ therefore 
depend on q, but not on � , I∗ = I∗(q) in this planner’s problem. As long as there are 
multiple optimal investment level associated with the set of reasonable beliefs, 
I∗(q) ≠ I∗(q�) , q, q� ∈ QR , it then follows that BNE is empty. It also follows that the 
conditions of Proposition 2 (i) and (ii) are satisfied, so all Arrow optima are U-effi-
cient, as well as IK-inefficient and belief neutrally inefficient.

IKE = WBNE.
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To illustrate, let us assume that there are two states with returns R1 = 0.9 and 
R2 = 1.2 . Moreover, assume that there are two agents with beliefs given by q1

1
= 0.1 

and q2
1
= 0.9 , that the set of reasonable beliefs is the convex hull of the two agents’ 

beliefs, i.e., QR = {(q1, 1 − q1) ∶ 0.1 ≤ q1 ≤ 0.9} , and that the discount factor is 
� = 1.

For an Arrow optimum, a ∈ EA

(q1,q2)
 , with Pareto weights �1 , �2 , the first order 

conditions of optimality then imply that

and consequently agent 1 consumes relatively more in state 2 than in state 1, being 
relatively optimistic about that state. The outcome is therefore speculative. Note that 
the allocation is U-efficient, since there is no other allocation that is better for both 
agents for all reasonable beliefs.

Aggregate time 1 consumption is 1 − I , and therefore the economy’s investment-
to-consumption ratio is Z =

I

1−I
 . For a given q, it is easy to derive the ( �-independ-

ent) optimal investment ratio as

Figure 6 shows the optimal consumption ratio for three different values of risk aver-
sion, � ∈

{
1

2
, 1, 2

}
 , when varying q1 . When agents have logarithmic utility, corre-

sponding to � = 1 , the ratio does not vary with q. This corresponds to the well-known 

q1
m
�1
(
am,1,2

)−�
= q2

m
�2
(
a2
m,2,2

)−�

, m ∈ {1, 2} and �1
(
a1,1,1

)−�
= �2

(
a1,2,1

)−�
,

(29)Z∗(q) =
I∗(q)

1 − I∗(q)
= E0

[
R̃1−𝛾

||||
q

] 1

𝛾

.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.9

0.95

1

1.05

1.1

1.15

1.2

 = 1

 = 1/2

 = 2

Fig. 6   Optimal investment-to-consumption, as a function of q
1

 , for different coefficients of risk aversion
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property of logarithmic utility that the investment opportunity set does not affect the 
consumption ratio, see Merton (1969). In this knife edge case, |I∗| = 1

2
 , and 

BNE = WBNE = IKE . For risk aversion greater than unity, the optimal consumption 
ratio increases in q1 while for risk aversion less than unity the ratio decreases in q1 . 
Whenever � ≠ 1 , BNE is therefore empty, in line with the discussion above.

Altogether, this work-horse economy example shows that U-efficiency is too broad a 
concept to rule out speculative allocations, that belief neutral efficiency is such a strong 
concept that it may rule out all allocations, and that the concept of efficiency under disa-
greement can be extended to interesting production economies, while capturing both the 
intuitions provided by weak belief neutral efficiency and IK-efficiency.

Section 4.3

Figure 7 shows expected utilities as function of q for the example in Sect. 4.5. The 
red line is thae new allocation, a6 , which changes the efficiency sets under the vari-
ous concepts.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
q

0

0.5

1

1.5

2

2.5

3
EU

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
q

0

0.5

1

1.5

2

2.5

3

EU

EU4(a4|q)EU1(a4|q)

EU1,2(a1|q)

EU1,2(a3|q)EU1,2(a2|q)

EU1,2(a1|q)

EU1,2(a6|q)

Fig. 7   Modified example in Sect. 4.5. The red line in the left panel represents the expected utility associ-
ated with the new allocation a

6

 , which lies weakly above a
1

 , and strictly below either a
2

 or a
3

 for all rea-
sonable beliefs (colour figure online)
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