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Abstract
We study pathwise regularization by noise for equations on the plane in the spirit of
the framework outlined by Catellier and Gubinelli (Stoch Process Appl 126(8):2323–
2366, 2016). To this end, we extend the notion of non-linear Young equations to a
two dimensional domain and prove existence and uniqueness of such equations. This
concept is then used in order to prove regularization by noise for stochastic equations
on the plane. The statement of regularization by noise is formulated in terms of the
regularity of the local time associated to the perturbing stochastic field. For this, we
provide two quantified example: a fractional Brownian sheet and the sum of two one-
parameter fractional Brownian motions. As a further illustration of our regularization
results, we also prove well-posedness of a 1D non-linear wave equation with a noisy
boundary given by fractional Brownian motions. A discussion of open problems and
further investigations is provided.
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1 Introduction

Regularization by noise is the study of the potentially regularizing effect of irregular
paths or stochastic processes on a-priori ill-posed Ordinary Differential Equations
(ODEs) or Partial Differential Equations (PDEs). For illustration, consider the
following differential equation

dxt = b(xt ) dt + dzt , t ≥ 0, (1.1)

where b is a non-linear function and z is a continuous path. Zvonkin [37] initially
observed that when z is a Brownian motion, and the above equation is interpreted
as a Stochastic Differential Equation (SDE) then strong existence and uniqueness
holds even when b is merely bounded and measurable. This is in contrast to the
classical theory of ODEs (when z ≡ 0 in (1.1)), where one typically requires that b
is Lipschitz (or of similar regularity) in order to guarantee uniqueness, see e.g. [12].
Similar regularization by noise phenomena were proved by Davie in [13] where, in
contrast to [37], uniqueness of solutions to (1.1) was proven in a path-by-path manner
when b is a bounded and measurable function and z is a continuous path sampled from
the law of the Brownian motion.

We can therefore think of z as a process which might provide a regularizing effect
on the drift coefficient b such that a unique solution can be proven to exist, even when
existence and/or uniqueness fails in the classical setting (z ≡ 0). This field of study
has since the initiation in [37] seen a rapid development, and investigations into the
regularizing effect of various stochastic processes are by now a large field of research.

There is typically a clear distinction in the approach to proving such effects. The
traditional approach is based on classical tools from stochastic analysis and probability
theory, and the concept of solutions which are then investigated is in the sense of (prob-
abilistic) strong or weak solutions, see e.g. [15]. More recently, by using tools inspired
by the theory of rough paths, much progress has been made towards understanding
the path-by-path or pathwise regularization by noise effect.

The idea is first to identify a class of stochastic processes whose paths provide the
desired regularization effect, and then solve the SDE (1.1) in a pathwise manner, see
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e.g. [10, 20, 25] for some of the recent works in this direction. With the approach
presented in these papers, the authors are able to give meaning to and prove pathwise
wellposedness of equations of the form of (1.1) even in the case when b is truly a
distribution (in the sense of generalized functions). A particularly interesting feature
of this approach is the apparent connection between the regularization by noise effect
and the regularity of the local time associated to noise source in the equation.

Regularization by noise has also been investigated extensively in the context of
SPDEs. While there are certainly several papers studying the regularization by noise
effect for parabolic SPDEs both from a probabilistic and pathwise perspective, see e.g.
[29–31], and more recently [2, 6, 11], we will discuss here some of the development
for regularization by noise for hyperbolic SPDEs, more closely related to the equations
considered in this article.

Motivated by the pathwise techniques used for regularization by noise in [10, 20,
25], we will in this article extend the aforementioned techniques in order to prove
pathwise regularization by noise results for stochastic differential equations on the
plane of the form

xt = ξt +
∫ t

0
b(xs) ds + wt , t = (t1, t2) ∈ [0, T ]2, (1.2)

where w : [0, T ]2 → R
d is an additive continuous field, and we use the notation∫ t

0 b(xs) ds := ∫ t1
0

∫ t2
0 b(xs1,s2) ds1 ds2. The term ξ : [0, T ]2 → R

d is a continuous
field representing the boundary conditions of the equation. In contrast to the probabilis-
tic methodology used for regularization by noise for the stochastic heat equation in [2]
based on stochastic sewing lemma, our analysis of regularization will be done through
an analysis of the regularity of the local time associated to the additive continuous field
w, similarly as done for ODEs in [24, 25]. In combination with an extension of the
theory of non-linear Young equations to the plane, this will allow for a purely pathwise
analysis of the regularization by noise phenomena for a class of hyperbolic equations.
When considering stochastic equations, this methodology can be interpreted in the
spirit of rough paths theory: probabilistic considerations are only needed in order to
prove pathwise regularity of the local time, and the analysis of the equation itself is
done purely analytically. While proving space time regularity of various stochastic
processes has recently been extensively investigated in several articles [19, 24, 25],
similar analysis for stochastic fields have not yet received equal recent attention. In
particular, with respect to the our framework, only partial results in this direction are
known (see e.g. [21] and the discussion in Remark 24 explaining why such results
are not sufficient in our context). In this article we will focus on the analytical step of
the pathwise regularization by noise program described above, while also providing
new probabilistic space-time regularity estimates for the fractional Brownian sheet
that allow to employ the analytic machinery developed (refer to Theorem 31). Let us
already mention at this point however, that we do not expect this probabilistic result
to be optimal and further research in this direction seems to be in place (refer also the
the final Sect. 6 for a brief discussion of potential approaches in this context).

Before motivating our approach in more detail, observe that the integral equation
can be seen to be the integrated version of the so-called Goursat partial differential
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equation

∂2

∂t1∂t2
xt = b(xt ) + ∂2

∂t1∂t2
wt , t = (t1, t2) ∈ [0, T ]2,

with the boundary conditions x(0,t2) = ξ(0,t2), x(t1,0) = ξ(t1,0) and
∂2

∂t1∂t2
ξ = 0, and w

is zero on the boundary of [0, T ]2 (i.e. w0,t2 = wt1,0 = 0 for all t ∈ [0, T ]2). This
hyperbolic equation is fundamentally linked with the stochastic wave equation, which
will be illustrated in detail below, see Theorem 4. Furthermore, we see the regulariza-
tion by noise problem for the integral equation in (1.2) as a first step in order to prove
regularization by noise for more complicated SPDEs driven by a stochastic field, see
in particular Sect. 6 for a discussion of further development and open problems.

The integral equation in (1.2) has been extensively studied from a probabilistic point
of view,mostly in the settingwherew is aBrownian sheet, but also other processes have
been considered. Specifically, in [35, 36] strong existence and pathwise uniqueness of
solutions to equations of the form

xt = ξt +
∫ t

0
b(xs) ds +

∫ t

0
σ(xs) dws, t ∈ [0, T ]2,

under the assumption that both b and σ are Lipschitz continuous and of linear growth,
and w is a Brownian sheet. The same author proved existence of weak solutions
to the above equation when b is merely continuous together with a certain growth
condition and a condition on the sixth moment of the boundary process ξ . Strong
existence anduniqueness has later been obtained in [14]when the driftb is bounded and
nondecreasing, andw is a rough fractional Brownian sheet ( i.e. with Hurst parameters
H1, H2 ≤ 1

2 , see Sect. 4 for further information about the fractional Brownian sheet).
Based on a multi-parameter version of the sewing lemma constructed in [23], we

will in this article extend the framework of non-linear Young equations used in [10, 20,
25] (see also [17] for a complete overview in the one-parameter case) to two-parameter
processes. Given a function A : [0, T ]2 × R

d → R
n which is sufficiently regular in

both time and spatial arguments, and a sufficiently regular path y : [0, T ]2 → R
d ,

one can then construct a nonlinear Young integral on the plane of the form

∫ t

s
A(dr , yr ) = lim

|P |→0

∑
[u,v]∈P

�u,vA(·, yu),

where P is a partition of the rectangle [s1, t1] × [s2, t2] consisting of rectangles of the
form [u, v] = [u1, v1] × [u2, v2] for [ui , vi ] ⊂ [si , ti ] with i = 1, 2, and the limit is
taken as the mesh of the partition goes to zero. The operator� denotes the rectangular
increment and is defined for s, t ∈ [0, T ]2 by

�s,t f := f (t1, t2) − f (t1, s2) − f (s1, t2) + f (s1, s2),
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for any function f on the plane [0, T ]2. With the goal of proving pathwise existence
and uniqueness of (1.2) when b is a distribution, a crucial step will be to give meaning
to the integral term. By setting θ = x − w we observe that, formally, θ solves the
equation

θt = ξt +
∫ t

0
b(θs + ws) ds. (1.3)

The integral appearing on the right hand side may be easier to handle due to its
connection with the local time associated to the path w. Indeed, recall that the local
time formula tells us that for each x ∈ R

d we have

∫ t

s
b(x + wr ) dr = (b ∗ �s,t L

−w)(x),

where ∗ denotes the usual convolution. We then observe that by Young’s convolution
inequality in Besov spaces, the regularity of the mapping x 	→ ∫ t

s b(x + wr ) dr is
given as a sum of the spatial regularity exponents of b and L−w. Thus, if L−w is a
sufficiently smooth function, the convolution b∗L−w may be a differentiable function,
even when b is a distribution.

The nonlinear Young integral can therefore be used to give meaning to the integral
appearing in (1.3) by setting A(t, x) = b∗L−w

t (x). If θ : [0, T ]2 → R
d is a sufficiently

regular path, we then define

∫ t

0
b(θs + ws) ds =

∫ t

0
(b ∗ L−w)(ds, θs) = lim

|P |→0

∑
[u,v]∈P

b ∗ �u,vL
−w(θu). (1.4)

In subsequent sections we show also that this integral coincides with the classical
Riemann integral whenever b is a continuous function. Now existence and uniqueness
of (1.3) is granted under sufficient regularity conditions on b and the local time L−w.
We illustrate this by highlighting one of the main results in this article, after some
notational definitions.

Let E be a Banach space. For γ ∈ (0, 1)2 we denote byCγ ([0, T ]2; E) the set of E-
valued two parameter jointly γ -Hölder continuous functions, proposed in Definition
7.We denote the usual Besov spaces by Bα

p,q(R
d ;Rn), refer Sect. 2 for their definition.

The first main result about of the current paper can be stated as follows, see Theorem
28 for the precise formulation.

Theorem 1 Let T > 0. Consider parameters α, ζ ∈ R, γ = (γ1, γ2) ∈ ( 12 , 1)
2 and

η = (η1, η2) ∈ (0, 1]2 such that for i = 1, 2 the following two conditions hold

α + ζ ≥ 2 + ηi , and (1 + ηi )γi > 1.

Let p, q ∈ [1,∞] with 1
p + 1

q = 1, and suppose that w ∈ C([0, T ]2;Rd)

has an associated local time L−w ∈ Cγ ([0, T ]2; Bα
q,q(R

d;Rd)). Then for every
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ξ ∈ Cγ ([0, T ]2;Rd), and any b ∈ Bζ
p,p(R

d ;Rd) there exists a unique solution
x ∈ C([0, T ]2;Rd) to Eq. (1.2). More precisely, there exists a θ ∈ Cγ ([0, T ]2;Rd)

with the property that x = w + θ , and θ satisfies

θt = ξt +
∫ t

0
(b ∗ L−w)(ds, θs), t ∈ [0, T ]2,

where the integral is interpreted in the nonlinear Young sense, as in (1.4).

Remark 2 Note that Uniqueness then holds in the class of functions of the form x =
w + θ with θ ∈ Cγ satisfying (1).

As is clear from the above theorem, a second crucial ingredient in our study of reg-
ularization by noise in the plane consists of regularity estimates for the local time
associated with stochastic fields. Our second main result can be stated as follows (see
Theorem 31)

Theorem 3 Let w : [0, T ]2 → R
d be a fractional Brownian sheet of Hurst parameter

H = (H1, H2) on (
,F ,P). Suppose that

λ <
1

2(H1 ∨ H2)
− d

2
.

Then for almost every ω ∈ 
, w admits a local time L such that for γ1 ∈ (1/2, 1 −
(λ + d

2 )H1) and γ2 ∈ (1/2, 1 − (λ + d
2 )H2)

∥∥�s,t L
∥∥
Hλ
x

� (t1 − s1)
γ1(t2 − s2)

γ2 ,

Combining Theorems 1 and 3, we immediately obtain a regularization by noise result
for stochastic differential equations in the plane perturbed by an additive fractional
Brownian sheet.

As a further interesting application of Theorem 1, we also study the Goursat bound-
ary regularization of wave equation with singular non-linearities. More precisely, for
a distributional non-linearity h, we study the problem

(
∂2

∂x2
− ∂2

∂ y2

)
u = h(u(x, y)), (1.5)

on (x, y) ∈ R π
4

◦ [0, T ]2 subject to the Goursat boundary conditions

u(x, y) = β1(y) if y = x

u(x, y) = β2(y) if y = −x .
(1.6)

Here R π
4
denotes the rotation operator of the plane by π/4.

The wave equation in (1.5) with random boundary conditions (1.6) arises in the
literature on the splitting method to construct a non-continuous approximation of the
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solution of a stochastic Goursat problem, see e.g. [1]. Thus, in our understanding,
the analysis of this problem will help to apply the splitting method to study Goursat
problemwith a distributional non-linearity perturbed by a suitable fractional Brownian
sheet. However, in case h is a true distribution it is even unclear how to define a solution
to this problem and prove its well-posedness by using classical methods.

To circumvent this issue, the main observation in our analysis is that the one-
dimensional wave equation (1.5) with the above prescribed Goursat boundary
condition (1.6) can be transformed into a Goursat PDE, accessible by our previous
Theorem 1, as shown in Sect. 5. In particular, assuming β1, β2 to be sufficiently reg-
ularizing meaning they admit sufficiently regular local times, said Theorem 1 allows
to establish existence and uniqueness to the problem

ψt = −2
∫ t

0
(h ∗ L)(ds, ψs), (1.7)

where Lt (x) = L−β1(·/√2) ∗ L−β2(·/√2)(x), and the integral is interpreted in the non-
linear Young sense. Then the second main result result of this paper is as follows, see
Theorem 39 for details and the precise formulation.

Theorem 4 Assume that the parameters p, q, ζ, γ and α belong to the range as

in Theorem 1. Suppose h ∈ Bζ
p,p(R

d) and suppose that Lt (x) = (L−β1(·/√2)
t1 ∗

L−β2(·/√2)
t2 )(x) satisfies L ∈ Cγ

t B
α
q,q(R

d). Then there exists a unique solution u to
(1.5), in the sense of Definition 38, given by

u(x, y) := ψ(
y + x√

2
,
y − x√

2
) + β1(

y + x√
2

) + β2(
y − x√

2
),

where ψ is the unique solution to (1.7), interpreted in the nonlinear Young sense.

Remark 5 In Theorem 36 we provide specific conditions under which sample paths of
the fractional Brownian motion may be used as boundary processes β1 and β2 thus
providing one example of stochastic paths which fulfills the conditions in Theorem 4.
However, the class of stochastic processes providing such regularizing effects is by
now well studied, see e.g. [19, 24, 25], and we therefore do not study such processes
in more detail here.

Remark 6 Note that by developing a Young integration theory in two dimensions,
whose proof is on similar lines, as presented in Proposition 16, the authors of [32] have
shown the existence of a unique solution to a non-linear one dimensional wave equa-
tion driven by an arbitrary signal whose rectangular increments satisfy some Hölder
continuous with Hölder exponent greater than 1

2 . Similar results for one dimensional
stochastic geometric wave equation have also been presented by the last author of
this paper, in collaboration with Brzeźniak, in [8] where the noise is modelled by a
fractional Brownian sheet of Hurst parameters greater than 3

4 . In contrast to Proposi-
tion 16, to achieve the existence of a unique local solution they extend the theory of
pathwise stochastic integrals in Besov spaces to two dimensional setting. However,
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the present work focuses on the regularization by boundary conditions in the context
of 1D wave equation (which in integral form can be seen as an additive perturbation
of the wave equation), our Theorem 4 is fundamentally different from the main results
of [8, 32] where a multiplicative noise is considered. Hence, the results presented in
this article are not comparable with their results in a straightforward manner.

This paper is organized in six sections. Section2 covers the notation and the required
definitions used in the paper.

Section 3 is devoted to the extension of nonlinear Young theory to two dimensional
integrands, and in particular prove existence, uniqueness and stability of non-linear
Young integral equations. In Sect. 4 we give a rigorous concept of solution to (1.2)
and prove the regularization by noise effect under certain conditions on the local time
associated to the noise. We moreover provide a quantitative regularity estimate for the
local time associated with the fractional Brownian sheet which can then be employed
in the study of the aforementioned regularization by noise phenomenon.

In Sect. 5 we demonstrate how the theory of 2D nonlinear Young equations can be
employed in the study of regularization of the wave equation with a noisy Goursat type
boundary condition. In particular, wellposedness of this equation when the nonlinear
coefficient is a distribution and the boundary processes are given as rough fractional
Brownian motions is proven. We conclude the paper with Sect. 6 in which we discuss
further extensions of our results and other related challenging open problems.

2 Notation

Wewill work with a partial ordering of points in the rectangle [0, T ]2, in the sense that
for s, t ∈ [0, T ]2 the notation s < t means that s1 < t1 and s2 < t2. We will work in a
two-parameter setting, and will therefore frequently work with rectangles as opposed
to intervals. For s = (s1, s2) and t = (t1, t2) with s < t , we define [s, t] ⊂ [0, T ]2
by [s, t] = [s1, t1] × [s2, t2]. We therefore consider [s, t] to be the rectangle spanned
by the lower left point (s1, s2) and the upper right point (t1, t2). We will refer to the
set {0} × [0, T ] and [0, T ] × {0} as the boundary of [0, T ]2. For two numbers a and
b the notation a � b (or a ∼ b) means that there exists a constant C > 0 such that
a ≤ Cb (or (a = Cb). If the constant C depends on an important parameter k we use
the notation �k (or ∼k).

For a function A : [0, T ]2 × [0, T ]2 → R
d , we set

�s,t A := A(s1,s2),(t1,t2).

We will denote the increment of a function f : [0, T ]2 → R
d over a rectangle [s, t]

by

�s,t f = ft1,t2 − ft1,s2 − fs1,t2 + fs1,s2 ,

which canonically generalizes the notion of an increment in the two dimensional
setting. This type of increment satisfies certain important properties which will be
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used throughout the article, and we therefore comment on some of these properties
here.

If the mixed partial derivative ∂2 f (t1,t2)
∂t1∂t2

exists for all t ∈ [0, T ]2, then it is readily
seen that

�s,t f =
∫ t

s

∂2 f (r1, r2)

∂r1∂r2
dr ,

where we use the double-integral notation
∫ t
s := ∫ t1

s1

∫ t2
s2

and dr = dr2 dr1. Fur-
thermore, we observe that if g(t1, t2) = �0,t f , then g is zero on the boundary,
since

g(t1, 0) = �0,(t1,0) f = f (t1, 0) − f (0, 0) − f (t1, 0) + f (0, 0) = 0,

and similarly we can check that g(0, t2) = 0. Furthermore, we have

�s,t g = �s,t f . (2.1)

Note that the two functions can still be different on the boundary, as this is not captured
by the rectangular increment.

We will work with a 2D Hölder space, capturing the necessary regularity of fields
of interest in each of their variables. To this end, we also introduce two concepts
which will be used to measure the regularity: Namely, for s < t ∈ [0, T ]2 and
α = (α1, α2) ∈ (0, 1)2 we define

m(t − s)α := |t1 − s1|α1 |t2 − s2|α2 . (2.2)

With a slight abuse of notation we also define

|t − s|α = |t1 − s1|α1 + |t2 − s2|α2 . (2.3)

Definition 7 Let E be a Banach space and f : [0, T ]2 → E be such that, for some
α = (α1, α2) ∈ (0, 1)2,

[ f ]α := [ f ](1,0),α + [ f ](0,1),α + [ f ](1,1),α < ∞,

where we define the semi-norms

[ f ](1,0),α := sup
s �=t∈[0,T ]2

| f (t1, s2) − f (s1, s2)|E
|t1 − s1|α1 ,

[ f ](0,1),α := sup
s �=t∈[0,T ]2

| f (s1, t2) − f (s1, s2)|E
|t2 − s2|α2 ,

[ f ](1,1),α := sup
s �=t∈[0,T ]2

|�s,t f |E
m(t − s)α

.

(2.4)
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We then say that f is α-Hölder continuous on the rectangle [0, T ]2, and we write
f ∈ Cα

t E . Under the mapping f 	→ | f (0, 0)|+ [ f ]α =: ‖ f ‖Cα
t E , the space C

α
t E is a

Banach space. Whenever E = R
d we writeCα

t or sometimesCα([0, T ]2;Rd) instead
of Cα

t R
d . Moreover, if we need to keep track of the interval over which compute the

above quantities then we will highlight the interval explicitly in subscript, for e.g.
[ f ]α,[0,T ].

Remark 8 Note that any function f : [0, T ]2 → E can be decomposed into two
functions f = z + y where y is zero on the boundary ∂[0, T ]2 := {0} × [0, T ] ∪
[0, T ] × {0} and for any (s, t) ∈ [0, T ]2 �s,t z = 0. Indeed, by simple addition and
subtraction, we see that

f (t1, t2) = �0,t f + f (t1, 0) + f (0, t2) − f (0, 0),

thus by defining

z(t1, t2) := f (t1, 0) + f (0, t2) − f (0, 0) and y(t1, t2) = �0,t f ,

we see that z and y satisfy the claimed properties. Furthermore, considering the 2D-
Hölder semi-norm of f over [0, T ]2, we see that

[ f ]α ∼T [z](1,0),α + [z](0,1),α + [y](1,1),α. (2.5)

This decomposition and relation will play a central role in subsequent sections.

Let us also recall the definition of Besov spaces which will be of use towards the
formulation of our regularization by noise results. For amore extensive introductionwe
refer to [4]. We will denote by S (respectively S ′) the space of Schwartz functions
on R

d (respectively its dual, the space of tempered distributions). For f ∈ S ′ we
denote the Fourier transform by f̂ = F ( f ) = ∫

Rd e−i x · f (x)dx , where the integral
notation is formal, with inverse F−1 f = (2π)−d

∫
Rd eiz· f̂ (z)dz.

Definition 9 Let χ, ρ ∈ C∞(Rd) be two radial functions such that χ is supported
on a ball B = {|x | ≤ c} and ρ is supported on an annulus A = {a ≤ |x | ≤ b} for
a, b, c > 0, such that

χ +
∑
j≥0

ρ
(
2− j ·

)
≡ 1,

supp (χ) ∩ supp
(
ρ
(
2− j ·

))
= ∅, ∀ j ≥ 1,

supp
(
ρ
(
2− j ·

))
∩ supp

(
ρ
(
2−i ·

))
= ∅, ∀|i − j | ≥ 1.

Then we call the pair (χ, ρ) a dyadic partition of unity. Furthermore, we write ρ j :=
ρ(2− j ·) for j ≥ 0 and ρ−1 = χ , as well as K j = F−1ρ j .

The existence of a partition of unity is shown for example in [4, Proposition 2.10].
We fix a partition of unity (χ, ρ) for the rest of the paper.

123



Stoch PDE: Anal Comp

Definition 10 For f ∈ S ′ we define its Littlewood-Paley blocks by

� j f := F−1(ρ j f̂ ) = K j ∗ f .

It follows that f = ∑
j≥−1 � j f with convergence inS ′.

Definition 11 For any α ∈ R and p, q ∈ [1,∞], the Besov space Bα
p,q(R

d) is

Bα
p,q(R

d) :=

⎧⎪⎨
⎪⎩ f ∈ S ′

∣∣∣∣∣∣∣
‖ f ‖Bα

p,q (Rd ) :=
⎛
⎝∑

j≥−1

(
2 jα‖� j f ‖L p

)q
⎞
⎠

1
q

< ∞

⎫⎪⎬
⎪⎭ ,

with the usual interpretation as �∞ norm if q = ∞.

At various places we will write Bα
p,q instead Bα

p,q(R
d) to simplify notation. Fur-

thermore we will work with the classical space of global Hölder continuous functions
over the whole spaceRd . We denote the space of globally bounded Hölder continuous
functions from R

d by Cα
x := Cα

b (Rd). We extend these spaces to the differen-
tiable functions with Hölder continuous derivatives in the canonical way. Note that
Bα∞,∞(Rd) � Cα

b (Rd) whenever α is a positive non-integer number.

3 2D Non-linear Young integrals and equations

In this section we will provide a framework for a 2D non-linear Young theory, starting
with the formulation of the 2D Sewing Lemma from [23] and followed by non-linear
Young integrals and equations.

3.1 The 2D Sewing Lemma

In order to formulate the 2D Sewing Lemma, we will introduce an extension of the
familiar δ operator known from the theory of rough paths [16]. We define this as
follows: for a function f : [0, T ]4 → R

d , and s < u < t ∈ [0, T ]2 define

δ1u1 fs,t = fs,t − fs,(u1,t2) − f(u1,s2),t ,

δ2u2 fs,t = fs,t − fs,(t1,u2) − f(s1,u2),t .

Here a = (a1, a2) ∈ [0, T ]2 for a = s, u, t . Thus, for i = 1, 2, δi : [0, T ] →
L(C([0, T ]4);C([0, T ]4)) (where L(X; Y ) is the space of linear operators from X to
Y ). Furthermore, we will invoke the composition of δ1 ◦ δ2 defined in the canonical
way; i.e. for u = (u1, u2) ∈ [0, T ]2

(δ1 ◦ δ2)u f = δ1u1(δ
2
u2 f ) = δ2u2(δ

1
u1 f ),
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and we note that δ1 ◦ δ2 : [0, T ]2 → L(C([0, T ]4);C([0, T ]4)). Remark that we
can canonically identify δi and (δ1 ◦ δ2) as mappings in L(C([0, T ]4);C([0, T ]5))
respectively L(C([0, T ]4);C([0, T ]6)).

Definition 12 Consider α ∈ (0, 1)2 and β ∈ (1,∞)2. We denote by Cα,β
2 the space of

all functions � : [0, T ]4 → R
d such that �s,t = 0 if s1 = t1 or s2 = t2 and

[�]α,β := [�]α + [�](0,1),α,β + [�](1,0),α,β + [�](1,1),α,β < ∞,

where the semi-norm [�]α , and the remaining terms above are given by

[�]α := sup
s �=t∈[0,T ]2

|�s,t |
m(t − s)α

,

[�](1,0),α,β := sup
s<u<t∈[0,T ]2

|δ1u1�s,t |
|t1 − s1|β1 |t2 − s2|α2 ,

[�](0,1),α,β := sup
s<u<t∈[0,T ]2

|δ2u2�s,t |
|t1 − s1|α1 |t2 − s2|β2 ,

[�](1,1),α,β := sup
s<u<t∈[0,T ]2

|(δ1 ◦ δ2)u�s,t |
m(t − s)β

,

(3.1)

where we recall that m(t − s)β is defined as in (2.2). For later notational convenience
we also define [δ�]α,β = [�](0,1),α,β + [�](1,0),α,β + [�](1,1),α,β .

When working with the two dimensional sewing lemma it is convenient to simplify
notation for two dimensional partitions.We therefore provide the following definition.

Definition 13 We will say that P is a partition of the rectangle [s, t] ⊂ [0, T ]2 if

P = P1 × P2,

where P1 is a standard partition of [s1, t1] and P2 is a standard partition of [s2, t2].
We are now ready to state a two dimensional version of the sewing lemma.A version

of this lemma was first introduced in [33] using variation norms, and extended to the
hyper-cubes in arbitrary dimension in the setting of Hölder type norms in [23]. Here
we follow the last reference.

Lemma 14 ([23], Lemma 14) For α ∈ (0, 1)2 and β ∈ (1,∞)2, let � ∈ Cα,β
2 . Let

P := P[s, t] denote a partition of [s, t] ⊂ [0, T ]2 in the sense of Definition 13. There
exists a unique continuous linear functional I : Cα,β

2 → Cα
t given by

I(�)[s,t] := lim
|P |→0

∑
[u,v]∈P

�u,v,
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where the limit is taken over any sequence of partitions with |P| → 0. We note that it is
under the restriction t 	→ I(�)t := I(�)[0,t] that we have I(�) ∈ Cα

t , and we have
that�s,tI(�)· = I(�)[s,t]. Furthermore, there exists a constant C = C(α, β, T ) > 0
such that the function I(�) satisfies the following inequality

|I(�)[s,t] − �s,t | ≤ Cm(t − s)α|t − s|β−α[δ�]α,β, (3.2)

where m(t − s)α and |t − s|β−α are defined in (2.2) and (2.3).

For the sake of brevity, we refer the reader to [23, Lem. 14] for a full proof of this
lemma.

3.2 2D non-linear Young integral

With the aim of constructing a 2D analogue of the non-linear Young integral, we will
need to control the rectangular increments of differentiable non-linear functions. We
therefore provide the following elementary lemma, which will be frequently used in
the sequel.

Lemma 15 Let f ∈ C1+η(Rd) for some η ∈ (0, 1). Then the following bound holds:
For all x, y, z, w ∈ R

d

| f (x) − f (y) − f (z) + f (w)| ≤
‖ f ‖C1+η (|x − y − z + w| + |x − y|(|x − z| + |y − w|)η). (3.3)

Proof From a first order Taylor expansion, it follows that

f (x) − f (y) − f (z) + f (w) =
∫ 1

0
∇ f (θx + (1 − θ)y)

−∇ f (θ z + (1 − θ)w) dθ(x − y)

+
∫ 1

0
∇ f (θx + (1 − θ)y) dθ(x − y − z + w). (3.4)

Using that ∇ f ∈ Cη, it follows that

| f (x) − f (y) − f (z) + f (w)| � ‖ f ‖C1+η

(|x − y − z + w| +
∫ 1

0
|θ(x − z) + (1 − θ)(y − w)|η dθ |x − y|).

��
With the above lemma at hand, we are now ready to prove the existence of the 2D

Non-Linear Young integral (NLY), and its properties.
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Proposition 16 (2D-Non-linear Young integral) Let A : [0, T ]2 × R
d → R

d be such
that for some γ ∈ ( 12 , 1]2 and some η ∈ (0, 1], A ∈ Cγ

t C
1+η
x . Consider a path

y ∈ Cα
t ([0, T ]2;Rd) with α ∈ (0, 1)2 such that for i = 1, 2 we have αiη + γi > 1.

Then the 2D non-linear Young integral of y with respect to A is defined by

∫ t

0
A(ds, ys) := lim

|P |→0

∑
[u,v]∈P

�u,vA(yu), (3.5)

where P is a partition of [0, t] ⊂ [0, T ]2, as given in Definition 13. Furthermore,
there exists a constant C > 0 such that

∣∣∣∣
∫ t

s
A(dr , yr ) − �s,t A(ys)

∣∣∣∣ ≤ C‖A‖
Cγ
t C

1+η
x

([y](1,1),α
∨([y](1,0),α + [y](0,1),α)1+η)m(t − s)γ |t − s|ηα, (3.6)

and it follows that

[0, T ]2 � t 	→
∫ t

0
A(ds, ys) ∈ Cγ

t .

Proof Towards the construction of the integral in (3.5), we will apply the 2D sewing
lemma to the integrand �u,vA(yu). Thus, we need to check that [0, T ]4 � (s, t) 	→
�s,t A(ys) belongs to Cα,β

2 for the given α and some well chosen β ∈ (1,∞)2. Let
u = (u1, u2) such that s < u < t . It is readily checked that

δ1u1�s,t A(ys) = �(u1,s2),t A(ys) − �(u1,s2),t A(y(u1,s2)), (3.7)

and similarly for δ2u2�s,t A(ys), and we have

δ1u1 ◦ δ2u2�s,t A(ys)

= − (�u,t A(yu) − �u,t A(yu1,s2) − �u,t A(ys1,u2) + �u,t A(ys)
)
. (3.8)

We first prove the necessary regularity of the increment in (3.7), and a similar
estimate for δ2 follows directly. Using that A ∈ Cγ

t C
1+η
x we have that

|δ1u1�s,t A(ys)| ≤ ‖A(u1,s2),t‖C1
x
[y](1,0),α|u1 − s1|α1 .

Invoking the assumption that t 	→ A(t, ·) ∈ Cγ
t we get that

|δ1u1�s,t A(ys)| ≤ ‖A‖Cγ
t C1

x
[y](1,0),α|t1 − s1|α1+γ1 |t2 − s2|γ2 , (3.9)

where we have used that |t1 − u1|γ1 |u1 − s1|α1 ≤ |t1 − s1|α1+γ1 since s < u < t .
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Now, we will consider the increment in (3.8). By Lemma 15 and (3.8) it follows
that

|δ1u1 ◦ δ2u2�s,t A(ys)| ≤ ‖�u,t A‖
C1+η
x(|�s,u y| + |ys1,s2 − yu1,s2 |(|ys1,s2 − ys1,u2 | + |yu1,s2 − yu1,u2 |)η

)
. (3.10)

Invoking the assumption of time regularity of A and y, we see that

|δ1u1 ◦ δ2u2�s,t A(ys)| �T ‖A‖
Cγ
t C

1+η
x

([y](1,1),α + [y](1,0),α([y](1,0),α + [y](0,1),α)η)

m(t − s)γ (m(t − s)α + |t1 − s1|α1 |t2 − s2|ηα2). (3.11)

Here we recall that m(t − s)α = |t1 − s1|α1 |t2 − s2|α2 . Note that

m(t − s)γ (m(t − s)α + |t1 − s1|α1 |t2 − s2|ηα2) �T m(t − s)γ+αη.

Thus, from the estimates in (3.9) and (3.11) and using the assumption that αη+γ > 1,
we define β = αη + γ and it follows that �s,t := �s,t A(ys) is contained in Cα,β

2 .
Using that [y](1,0),α ≤ [y](1,0),α + [y](0,1),α and that for positive numbers a, b we
have a + b ≤ 2a ∨ b, we have that

([y](1,1),α + [y](1,0),α([y](1,0),α + [y](0,1),α)η)

≤ 2
(
[y](1,1),α ∨ ([y](1,0),α + [y](0,1),α)1+η

)
,

we conclude by an application of Lemma 14, where the inequality in (3.6) follows
directly from (3.2).

��
Remark 17 Note that our construction of the 2D non-linear Young integral above
requires one additional degree of spatial regularity compared with the 1d-nonlinear
Young setting (refer e.g. to [17, Theorem2.7]). Thismore restrictive condition appears,
as we have to control already at this step four-point increments in the form of (3.8)
due to the necessity of controlling δ1 ◦ δ2�A.

The following Lemma establishes the consistency of the 2D non-linear Young integral
constructed in the above Proposition 16 with respect to classical Riemann integration
in the setting of continuously differentiable A.

Lemma 18 Suppose the conditions of Proposition 16 hold. Suppose moreover ∂t1∂t2 A
exists and is continuous. Then the 2D non-linear Young integral constructed in
Proposition 16 coincides with the corresponding Riemann integral, i.e.

∫ t

0
A(ds, ys) =

∫ t

0
∂t1∂t2 A(s, ys) ds
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Proof Remark that as we have

�s,t A(ys) =
∫ t

s
∂t1∂t2 A(r , ys) dr

it suffice to show that for any sequencePn of rectangular partitions of [s1, t1]×[s2, t2]
such that |Pn| → 0, we have that

Dn =
∑

[u1,v1]×[u2,v2]∈Pn

[∫ v

u
∂t1∂t2 A(r , yu) − ∂t1∂t2 A(r , yr ) dr

]
→ 0 as n → ∞..

It is readily seen that

|Dn| ≤ sup
[u1,v1]×[u2,v2]∈Pn

sup
r∈[u,v]

|∂t1∂t2 A(r , yu) − ∂t1∂t2 A(r , yr )|m(t − s),

Since the mesh size of Pn goes to 0 as n → ∞ by assumption, it follows that

sup
[u1,v1]×[u2,v2]∈Pn

sup
r∈[u,v]

|∂t1∂t2 A(r , yu) − ∂t1∂t2 A(r , yr )| → 0,

as n → ∞ since ∂t1∂t2 A is assumed to be continuous. We conclude that Dn → 0 as
n → ∞ which concludes the proof. ��

Being a concept of integration constructed free of probability, the following stability
estimates are not only useful for the subsequent proof of existence and uniqueness of
non-linear Young equations, but also provides powerful estimates when applied in
combination with stochastic processes, as will be evident in our application towards
regularization by noise.

Proposition 19 (Stability of integral) For some γ ∈ ( 12 , 1]2 and η ∈ (0, 1], consider
two functions A, Ã ∈ Cγ

t C
2+η
x . Furthermore, suppose y, ỹ ∈ Cα

t such thatαη+γ > 1
Then the 2D non-linear Young integral satisfies the following inequality

∣∣∣∣
∫ t

s
A(dr , yr ) −

∫ t

s
Ã(dr , ỹr )

∣∣∣∣
≤
(
C1‖A − Ã‖

Cγ
t C

2+η
x

+ C2(|ys − ỹs | + [y − ỹ]α;[s,t])
)
m(t − s)γ , (3.12)

where the constants C1 and C2 are given by

C1 =K ([y]α ∨ [ỹ]α),

C2 =K (‖A‖
Cγ
t C

2+η
x

∨ ‖ Ã‖
Cγ
t C

2+η
x

)

([y](1,1),α + [ỹ](1,1),α) ∨ ([y](0,1),α + [y](1,0),α + [ỹ](0,1),α + [ỹ](1,0),α)1+η,

(3.13)

for some constant K depending on T , α, γ, η.
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Proof To prove this, we will apply Lemma 14 to the increment �s,t := �s,t A(ys) −
�s,t Ã(ỹs), in order invoke the inequality (3.2). We have � ∈ Cγ

t , as we get that

|�s,t | �T (‖A‖Cγ
t C0

x
+ ‖ Ã‖Cγ

t C0
x
)m(t − s)γ , (3.14)

We proceed to first prove bounds for δi� for i = 1, 2 and then we will provide bounds
for δ1 ◦ δ2�.

For u = (u1, u2) we observe that

δ1u1�s,t = �(u1,s2),t A(ys) − �(u1,s2),t A(y(u1,s2))

−
[
�(u1,s2),t Ã(ỹs) − �(u1,s2),t Ã(ỹ(u1,s2))

]
.

Define the function G : [0, T ]2 × R
d × R

d → R
d×d by

Gt (x, x̃) :=
∫ 1

0
DAt (θx + (1 − θ)x̃) dθ,

where DA is the matrix valued derivative of A. Similarly we define G̃ from the
composition of ỹ and Ã. Note in particular that due to the assumption that x 	→
A(t, x) ∈ C2+η

x for all t ∈ [0, T ]2, we have that

|Gt (x, x̃)| ≤ ‖At (·)‖C1
x
, |Gt (x, x̃) − Gt (z, z̃)

≤ |‖At (·)‖C2
x
(|x − x̃ − z + z̃| + |x̃ − z̃|) (3.15)

and similarly for G̃. Then

δ1u1�s,t = �(u1,s2),tG(ys, y(u1,s2))(ys − y(u1,s2))

−�(u1,s2),t G̃(ỹs, ỹ(u1,s2))(ỹs − ỹ(u1,s2)).

By addition and subtraction of the term �(u1,s2),tG(ys, y(u1,s2))(ỹs − ỹ(u1,s2)) in the
above relation we will seek to control the following two terms

I1(s, u, t) = �(u1,s2),tG(ys, y(u1,s2))
(
ys − y(u1,s2) − ỹs + ỹ(u1,s2)

)
,

I2(s, u, t) =
(
�(u1,s2),tG(ys, y(u1,s2)) − �(u1,s2),t G̃(ỹs, ỹ(u1,s2))

)
(ỹs − ỹ(u1,s2)).

For the term I1, using (3.15) it is readily checked that

|I1(s, u, t)| ≤ ‖A‖Cγ
t C1

x
[y − ỹ](1,0),α;[s,t]|t1 − s1|α1+γ1 |t2 − s2|γ2 .
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Next, we consider I2. To this end, first observe that by addition and subtraction of the
term �(u1,s2),tG(ỹs, ỹ(u1,s2)) we have

�(u1,s2),tG(ys, y(u1,s2)) − �(u1,s2),t G̃(ỹs, ỹ(u1,s2))

= [
�(u1,s2),tG(ys, y(u1,s2)) − �(u1,s2),tG(ỹs, ỹ(u1,s2))

]
+
[
�(u1,s2),tG(ỹs, ỹ(u1,s2)) − �(u1,s2),t G̃(ỹs, ỹ(u1,s2))

]
.

For the first bracket on the right hand side above, we use the second inequality in
(3.15) to see that

|�(u1,s2),tG(ys, y(u1,s2)) − �(u1,s2),tG(ỹs, ỹ(u1,s2))|
≤ 2‖A‖Cγ

t C2
x
‖y − ỹ‖∞;[s,t]m(t − s)γ .

For the term in the second bracket, we use the first inequality in (3.15) to observe that

|�(u1,s2),tG(ỹs, ỹ(u1,s2)) − �(u1,s2),t G̃(ỹs, ỹ(u1,s2))| ≤ ‖A − Ã‖Cγ
t C1

x
m(t − s)γ .

Combining the above estimates, we see that

|I2(s, u, t)| � [ỹ](1,0),α;[s,t](‖A‖Cγ
t C2

x
‖y − ỹ‖∞;[s,t]

+‖A − Ã‖Cγ
t C2

x
)|t1 − s1|α1+γ1 |t2 − s2|γ2 .

From a combination of our estimates for I1 and I2, we see that

|δ1u1�s,t | � (1 + ‖A‖Cγ
t C2

x
+ [ỹ](1,0),α;[s,t])(|ys − ỹs |

+[y − ỹ]α;[s,t] + ‖A − Ã‖Cγ
t C2

x
)|t1 − s1|α1+γ1 |t2 − s2|γ2 .

By similar considerations, we can show that

|δ2u2�s,t | � (1 + ‖A‖Cγ
t C2

x
+ [ỹ](0,1),α;[s,t])(|ys − ỹs | + [y − ỹ]α;[s,t]

+‖A − Ã‖Cγ
t C2

x
)|t1 − s1|γ1 |t2 − s2|α2+γ2 .

Next we move on to consider the term δ1 ◦ δ2�. By linearity of the δ-operators, we
have similarly to (3.8) that

δ1u1 ◦ δ2u2�s,t = − (�u,t A(yu) − �u,t A(yu1,s2)

−�u,t A(ys1,u2) + �u,t A(ys)
)

+
(
�u,t Ã(ỹu) − �u,t Ã(ỹu1,s2) − �u,t Ã(ỹs1,u2) + �u,t Ã(ỹs)

)
.
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By addition and subtraction of Ã(y), we see that this is the same as

δ1u1 ◦ δ2u2�s,t = −
(
�u,t (A − Ã)(yu) − �u,t (A − Ã)(yu1,s2)

−�u,t (A − Ã)(ys1,u2) + �u,t (A − Ã)(ys)
)

+
(
�u,t Ã(ỹu) − �u,t Ã(yu) − �u,t Ã(ỹu1,s2) + �u,t Ã(yu1,s2)

− �u,t Ã(ỹs1,u2) + �u,t Ã(ys1,u2) + �u,t Ã(ỹs) − �u,t Ã(ys)
)
(3.16)

For the first term on the right hand side, we see that by defining a new function
Ā = A − Ã, we can easily use the same arguments as in the proof of Proposition 16
(see in particular (3.11)) to see that

|�u,t (A − Ã)(yu) − �u,t (A − Ã)(yu1,s2) − �u,t (A − Ã)(ys1,u2)

+ �u,t (A − Ã)(ys)|
� ‖A − Ã‖Cγ

t C2
x
([y]α;[s,t] ∨ [y]2α;[s,t])m(t − s)α+γ .

(3.17)

Note that in contrast to (3.11) we have A, Ã ∈ C2+η and thus the η dependence on
the right hand side above disappear. The remaining term in (3.16) must be treated
differently, and in a similar procedure as what we did for δ1�. By a first order Taylor
approximation, we see that for x, x̃ ∈ R

d

�u,t Ã(x) − �u,t Ã(x̃) = �u,t G̃(x, x̃)(x − x̃).

In order to control the right hand side of (3.16) it now remains to bound the term

+
(
�u,t Ã(ỹu) − �u,t Ã(yu) − �u,t Ã(ỹu1,s2) + �u,t Ã(yu1,s2)

− �u,t Ã(ỹs1,u2) + �u,t Ã(ys1,u2) + �u,t Ã(ỹs) − �u,t Ã(ys)
)

= �u,t G̃(ỹu, yu)(ỹu − yu) − �u,t G̃(ỹu1,s2 , yu1,s2)(ỹu1,s2 − yu1,s2)

− �u,t G̃(ỹs1,u2 , ys1,u2)(ỹs1,u2 − ys1,u2) + �u,t G̃(ỹs, ys)(ỹs − ys)

=: �s,u

(
�u,t G̃(y, ỹ)(y − ỹ)

)
.

Due to the multiplicative nature of�u,t G̃(y, ỹ)(y− ỹ), we must be careful. From [23,
Lemma 5] it follows that we have the decomposition

�s,u

(
�u,t G̃(y, ỹ)(y − ỹ)

)
=

3∑
i=1

J is,u,t ,
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where

J 1s,u,t :=
[
�s,u

(
�u,t G̃(y, ỹ)

)]
(yu − ỹu),

J 2s,u,t :=
[
�u,t G̃(ys, ỹs)

]
�s,u(y − ỹ),

J 3s,u,t := [�u,t G̃(yu1,s2 , ỹu1,s2) − �u,t G̃(ys1,s2 , ỹs1,s2)][(ys1,u2 − ỹs1,u2) − (ys − ỹs)].

Each of these terms must be treated separately. The simplest term is J 2, where we
observe that

|J 2s,u,t | � ‖G̃‖Cγ
t L∞

x
[y − ỹ](1,1),α;[s,t]m(t − s)α+γ .

Invoking again the first bound in (3.15), we see that

|J 2s,u,t | � ‖ Ã‖Cγ
t C1

x
[y − ỹ](1,1),α;[s,t]m(t − s)α+γ . (3.18)

Next we consider J 1. By Lemma 15, setting z = (y, ỹ), we see that

|�s,u

(
�u,t G̃(y, ỹ)

)
| � ‖�u,t G̃‖

C1+η
x

[([z](1,1),α;[s,t]) ∨ ([z](0,1),α;[s,t]

+ [z](1,0),α;[s,t])1+η]
m(t − s)γ+ηα

� ‖ Ã‖
Cγ
t C

2+η
x

[([z](1,1),α;[s,t]) ∨ ([z](0,1),α;[s,t] + [z](1,0),α;[s,t])1+η]
m(t − s)γ+ηα,

where we have used a slight extension of the second inequality in (3.15) using Lemma
15. Let us stress that it is precisely at this point that the required regularity of A, Ã ∈
Cγ
t C

2+η
x enters into the picture,while previous esimates required less spatial regularity.

Note that [z]α ≤ [y]α + [ỹ]α . Thus for J 1 we get

|J 1s,u,t | � ‖ Ã‖
Cγ
t C

2+η
x

([y](1,1),α;[s,t] + [ỹ](1,1),α;[s,t])

∨([y](0,1),α;[s,t] + [y](1,0),α;[s,t] + [ỹ](0,1),α;[s,t] + [ỹ](1,0),α;[s,t])1+η]
(|ys − ỹs | + [y − ỹ]α;[s,t])m(t − s)γ+ηα, (3.19)

where we have used that ‖y− ỹ‖∞;[s,t] ≤ |ys − ỹs |+[y− ỹ]α;[s,t]. At last we consider
J 3, and by using the fact that z 	→ G̃(z) is differentiable, we get from similar type of
estimates as above

|J 3s,u,t | � ‖ Ã‖Cγ
t C2

x
([y]α;[s,t] + [ỹ]α;[s,t])[y − ỹ]α;[s,t]m(t − s)α+γ . (3.20)

123



Stoch PDE: Anal Comp

Combining our bounds for J 1, J 2 and J 3 from (3.19), (3.18) (3.20), we have that

|�s,u

(
�u,t G̃(y, ỹ)(y − ỹ)

)
| �T ‖ Ã‖

Cγ
t C

2+η
x

[([y](1,1),α;[s,t] + [ỹ](1,1),α;[s,t])

∨([y](0,1),α;[s,t] + [y](1,0),α;[s,t] + [ỹ](0,1),α;[s,t]
+[ỹ](1,0),α;[s,t])1+η](|ys − ỹs | + [y − ỹ]α;[s,t])m(t − s)γ+ηα. (3.21)

A bound for (3.16) now follows by a combination of (3.21) and (3.17) and we obtain

|δ1u1 ◦ δ2u2�s,t |
≤ C2(‖A − Ã‖

Cγ
t C

2+η
x

+ |ys − ỹs | + [y − ỹ]α;[s,t])m(t − s)γ+ηα,

where C2 is given as in (3.13). It now follows that we can apply the 2D sewing lemma
(Lemma 14), and invoking the inequality (3.2) in this lemma, the bound in (3.12)
follows. ��
Remark 20 Again, we require one more degree of spatial regularity in our setting
of stability of 2D non-linear Young integrals than in the 1d-nonlinear Young setting
(compare e.g. to [17, Theorem 2.7.4] for the limit case δ = 1). Essentially, as stability
estimates of the above form require one additional degree of spatial regularity com-
pared with the regime of existence of the integral, the difference in spatial regularity
constraints observed already in Remark 17 carries over.

With the stability estimate for NLY integrals, we are now ready to also consider
integral equations,where the 2DNLY integral appear. Similarly as how thefield of (1D)
non-linear Young equations is simply a generalisation of classical Young differential
equations, the 2D non-linear Young equations are generalizing the already established
notion of 2D Young equations.

In the following theorem we prove existence and uniqueness of these equations for
sufficiently smooth non-linear functions A : [0, T ]2 × R

d → R
d . As the techniques

are strongly based on the proof of [23, Theorem 25], we will be mostly concerned with
various estimates that differ from this reference due to the non-linear Young structure
of the integral.

Theorem 21 (Existence and Uniqueness) Suppose A ∈ Cγ
t C

2+η
x for some γ ∈ ( 12 , 1]2

and η ∈ (0, 1). Furthermore, let ξ ∈ Cγ
t be such that for any s < t ∈ [0, T ]2,

�s,tξ = 0. If (1 + η)γ > 1, then there exists a unique solution θ ∈ Cγ
t to the

equation

θt = ξt +
∫ t

0
A(ds, θs), t ∈ [0, T ]2, (3.22)

where the integral is interpreted in the sense of the NLY integral in Proposition 16.

Proof Let ε < γ be small and τ ∈ [0, T ]2 be two parameters to be chosen appropri-
ately later, and let Cγ−ε

τ (ξ) be a collection of paths z in Cγ−ε([0, τ ]2;Rd) with the

123



Stoch PDE: Anal Comp

property that z = ξ on the boundary (i.e. on ∂[0, τ ]2 := {0} × [0, τ ] ∪ [0, τ ] × {0}).
In this space, the norms are restricted to the interval [0, τ ], in the sense that
[·]γ−ε := [·]γ−ε;[0,τ ]. Note that this implies that all z ∈ Cγ−ε

τ (ξ) can be decom-
posed as z = ξ + y, where y is zero on the boundary, and by Remark 8 we have
that

‖z‖γ−ε ∼τ |z0| + [z]γ−ε = |ξ0| + [ξ ](1,0),γ−ε + [ξ ](0,1),γ−ε + [y](1,1),γ−ε .

Thus with the metric defined by Cγ−ε
τ (ξ) � (x, y) 	→ [x − y](1,1),γ−ε it follows that

Cγ−ε
τ (ξ) is a complete affine metric space. Since (1 + η)γ > 1 and γ > 1

2 choose

ε > 0 small such that (1 + η)(γ − ε) > 1. On the space Cγ−ε
τ (ξ) define the solution

mapping M by

Cγ−ε
τ (ξ) � z 	→ Mτ (z) := {ξt +

∫ t

0
A(ds, zs)| t ∈ [0, τ1] × [0, τ2]}.

Define now Bγ−ε
τ (ξ) ⊂ Cγ−ε

τ (ξ) to be the closed unit ball in Cγ−ε
τ (ξ) centered at ξ ,

i.e.

Bγ−ε
τ (ξ) := {z ∈ Cγ−ε

τ (ξ)| [z − ξ ](1,1),γ−ε ≤ 1}.

Note also that for any z ∈ Bγ−ε
τ (ξ), then

[z]γ−ε = [y](1,1),γ−ε + [ξ ](1,0),γ−ε + [ξ ](0,1),γ−ε

≤ 1 + [ξ ](1,0),γ−ε + [ξ ](0,1),γ−ε =: Nξ . (3.23)

From here, a classical Picard fixed point argument can be developed; first we prove
that the solution map Mτ leaves Bγ−ε

τ (ξ) invariant, i.e. Mτ (Bγ−ε
τ (ξ)) ⊂ Bγ−ε

τ (ξ),
and then we prove that the solution map is a contraction, i.e. for z, y ∈ Bγ−ε

τ (ξ) then
there exists a q ∈ (0, 1) such that

[Mτ (y) − Mτ (z)]γ−ε ≤ q[y − z]γ−ε .

We begin by proving invariance. For any z ∈ Bγ−ε
τ (ξ) it follows from (3.6) that there

exists a constant C > 0 such that

[Mτ (z) − ξ ](1,1),γ−ε = [
∫ ·

0
A(ds, zs)](1,1),γ−ε ≤ Cm(τ )ε‖A‖

Cγ
t C

1+η
x

(1 + [z]1+η
γ−ε),

(3.24)

where we recall that m(τ )ε = τ
ε1
1 τ

ε2
2 . Bounding the term [z]γ−ε by Nξ as defined in

(3.23) we get

[Mτ (z) − ξ ](1,1),γ−ε ≤ Cm(τ )ε‖A‖
Cγ
t C

1+η
x

(1 + N 1+η
ξ ),
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choosing τ 1 small enough, we see that Mτ 1 leaves the unit ball Bγ−ε
τ1 (ξ) invariant.

Note however that the choice τ 1 depends on the boundary ξ , but only through the
(1, 0) and (0, 1) Hölder norm, and does not depend on z − ξ , which will be important
later.

For contraction we invoke the stability inequality from Proposition 19 to see that
for z, z̃ ∈ Bγ−ε

τ (ξ) we have

[Mτ (z) − Mτ (z̃)](1,1),γ−ε ≤ m(τ )ε2K‖A‖
Cγ
t C

2+η
x

(1 + Nξ )
1+η[z − z̃](1,1),γ−ε,

where we have used that [z − z̃]γ−ε = [z − z̃](1,1),γ−ε since z and z̃ share the same
boundary processes ξ . Again, choose τ 2 = τ small, such that

m(τ 2)ε2K‖A‖
Cγ
t C

2+η
x

(1 + Nξ )
1+η < 1,

we see thatMτ 2 is a contractionmapping fromBγ−ε

τ 2
(ξ) intoBγ−ε

τ 2
(ξ). Let τ̄ = τ 1∧τ 2,

and then it follows that there exists a unique fixed point of z 	→ Mτ̄ (z) on the interval
[0, τ̄ ]. For integers k, j ≥ 1, the solution can now be iterated to rectangles on the
form [kτ̄1, (k + 1)τ̄1] × [ j τ̄2, ( j + 1)τ̄2] ⊂ [0, T ]2 by following the exact procedure
provided in the proof of [23, Theorem 25]. The crucial point to obtain global existence
is to use the fact A and its derivatives is globally bounded and the fact that the constant
Nξ , and thus τ 1 and τ 2 only depends on the boundary information, and not on z − ξ

for z ∈ Bγ−ε
τ (ξ). The detailed proof of this point is rather lengthy and written in full

detail in [23], and we therefore omit any further details here. Once it is proven that
the solution indeed exists on the full rectangle [0, T ]2, it follows that it is contained in
Cγ ([0, T ]2;Rd). In fact, it is then readily seen that the solution θ to (3.22) is contained
in Cγ−ε([0, T ]2;Rd). Indeed, observe that

|�s,tθ | = |
∫ t

s
A(ds, θs)| �T ‖A‖

Cγ
t C

1+η
x

(1 + [θ ]γ−ε)m(t − s)γ ,

and similar estimates shows that [θ ](1,0),γ and [θ ](0,1),γ arefinite, and thuswe conclude
that θ ∈ Cγ ([0, T ]2;Rd). ��
Remark 22 In the above proof we have constructed a local solution on small rectangles
[0, τ ] = [0, τ1] × [0, τ2], in order to iterate the solution to rectangles of the form
[kτ1, (k + 1)τ1] × [ jτ2, ( j + 1)τ2], consistent with, and fully described in, [23].
However, as pointed out by the anonymous referee, based on the estimate in (3.24), it
is clear that one only really need to take τ = (τ1, T ) for τ1 sufficiently small, and from
there one may then do the iteration of the solution on small "strips" [kτ1, (k + 1)τ1]×
[0, T ] of the rectangle [0, T ]2. Such a solution method would certainly be similar to
the one that is shown in [23] and potentially reduce the length of some arguments
slightly, but for brevity of the presentation we have here used the method outlined in
[23] to avoid a detail presentation of this step.

We conclude this section with the following proposition providing stability of the
solutions to the 2D non-linear Young equations in terms of the non-linear function A.
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Proposition 23 Consider two functions A, Ã ∈ Cγ
t C

2+η
x for some γ ∈ ( 12 , 1]2 and

η ∈ (0, 1) such that (1 + η)γ > 1. Furthermore, let ξ, ξ̃ ∈ Cγ
t be such that for any

s < t ∈ [0, T ]2, �s,tξ = �s,t ξ̃ = 0. Let θ, θ̃ ∈ Cγ
t be two solutions to (3.22) driven

by (A, ξ) and ( Ã, ξ) respectively, and assume there exists a constant M > 0 such that

‖θ‖γ ∨ ‖θ̃‖γ ∨ ‖A‖
Cγ
t C

2+η
x

∨ ‖ Ã‖
Cγ
t C

2+η
x

≤ M . (3.25)

Then the solution map (A, ξ) 	→ θ is continuous, and there exists a constant C
depending on γ, M, T such that

[θ − θ̃ ]γ ≤ C(‖ξ − ξ̃‖γ + ‖A − Ã‖
Cγ
t C

2+η
x

). (3.26)

Proof First observe that the difference θ − θ̃ is given by

θt − θ̃t = ξt − ξ̃t +
∫ t

0
A(ds, θs) −

∫ t

0
Ã(ds, θ̃s).

Using the exact same techniques as for proving the stability result for the non-linear
Young integral in (3.12), we see that

∣∣∣∣
∫ t

s
A(dr , θr ) −

∫ t

s
Ã(dr , θ̃r ) − (�s,t A(θs) − �s,t Ã(θ̃s))

∣∣∣∣
≤ (C1‖A − Ã‖

Cγ
t C

2+η
x

+ C2(|θs − θ̃s | + [θ − θ̃ ]β))|t − s|ηγm(t − s)γ .

Here C1 and C2 are given as in (3.13), and by definition of M we see that

C1 ∨ C2 ≤ K (M),

for some monotone increasing function K . Furthermore, using that �s,tξ = �s,t ξ̃ =
0, we see from the same inequality that the following bound also holds

∣∣∣�s,t (θ − θ̃ ) − (�s,t A(θs) − �s,t Ã(θ̃s))

∣∣∣
≤ K (M)(‖A − Ã‖

Cγ
t C

2+η
x

+ |θs − θ̃s | + [θ − θ̃]β;[s,t])|t − s|ηγm(t − s)γ .

For some τ ∈ (0, T )2 consider any interval [ρ, ρ + τ ] such that [ρ, ρ + τ ] ⊂ [0, T ]2.
It follows that for β < γ we have

[θ − θ̃ − (�ρ,·A(θρ) − �ρ,· Ã(θ̃ρ))](1,1),γ ;[ρ,ρ+τ ] ≤ K (M)|τ |ηγ (‖A − Ã‖
Cγ
t C

2+η
x

+|θρ − θ̃ρ | + [θ − θ̃ ]γ ;[ρ,ρ+τ ]).

By similar computations as above one can also show that

[θ − θ̃ − (�ρ,·A(θρ) − �ρ,· Ã(θ̃ρ))](1,0),γ ;[ρ,ρ+τ ]
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�T τ
γ η
1 K (M)(‖A − Ã‖

Cγ
t C

2+η
x

+ |θρ − θ̃ρ | + [θ − θ̃ ]γ ;[ρ,ρ+τ ]),

[θ − θ̃ − (�ρ,·A(θρ) − �ρ,· Ã(θ̃ρ))](0,1),γ ;[ρ,ρ+τ ]
�T τ

γ η
2 K (M)(‖A − Ã‖

Cγ
t C

2+η
x

+ |θρ − θ̃ρ | + [θ − θ̃ ]γ ;[ρ,ρ+τ ]).

Combining these estimates, it follows that there exists a constant C =
C(T , K (M), γ η) > 0 such that

[θ − θ̃ − (�ρ,·A(θρ) − �ρ,· Ã(θ̃ρ))]γ ;[ρ,ρ+τ ] ≤ C
(
‖A − Ã‖

Cγ
t C

2+η
x

+|θρ − θ̃ρ | + |τ |γ η[θ − θ̃ ]β;[ρ,ρ+τ ]
)

.

In particular, choosing τ small enough such that

|τ |ηγ ≤ 1

2C
,

it follows that

[θ − θ̃ − (�ρ,·A(θρ) − �ρ,· Ã(θ̃ρ))]γ ;[ρ,ρ+τ ] ≤ 2C(|θρ − θ̃ρ | + ‖A − Ã‖
Cγ
t C

2+η
x

).

and in particular, reformulating using the triangle inequality, we see that

[θ − θ̃ ]γ ;[ρ,ρ+τ ] ≤ 2C(|θρ − θ̃ρ | + ‖A − Ã‖
Cγ
t C

2+η
x

). (3.27)

Note that this inequality holds for any ρ ∈ [0, T )2 such that [ρ, ρ + τ ] ⊂ [0, T ]2, an
in particular for the rectangle [0, τ ]. Iterating the inequality obtained on this interval
to any interval [kτ, (k+1)τ ] ⊂ [0, T ]2, using that the relation that |xt | ≤ |x0|+ [x]γ ,
one can show that on any interval [ρ, ρ + τ ]

[θ − θ̃]γ ;[ρ,ρ+τ ] � ‖ξ − ξ̃‖γ + ‖A − Ã‖
Cγ
t C

2+η
x

.

We therefore conclude by the 2D-Hölder norm scaling property proven in [23,
Proposition 24], that (3.26) holds. ��

4 Regularization of SDEs on the plane

Consider the stochastic differential equation formally given by

xt = ξt +
∫ t

0
b(xs) ds + wt , t ∈ [0, T ]2, (4.1)

where ξt = ξ1t11t2=0 + ξ2t21t1=0 is a function supported on the boundary {0}× [0, T ] ∪
[0, T ] × {0}. The integral equation can therefore be seen to be equipped with the two
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boundary conditions xt1,0 = ξ1t1 +wt1,0 and x0,t2 = ξ2t2 +w0,t2 . The goal of this section
is to prove well-posedness of this equation, even in the case when b is distributional
(in the sense of generalized functions) given thatw provides a sufficiently regularizing
effect.

Remark 24 In this article the formulation of the results for regularization by noise will
be in terms of the potential regularity of the local time, similar to the approach in [24,
25]. Similar type of pathwise regularization by noise results can also be formulated as
requirements on the so called averaged field associated with w and the drift b, as in
[10]. On two dimensional domains, the local time and occupation measure related to
stochastic fields is a well studied topic, and some types of regularity estimates are well
known, see e.g. [21, Theorem 28.1] where it is established that the (H1, . . . , HN )-
fractional Brownian sheet on [0, T ]N with H1 = · · · = HN = H has a local time LH

t

contained H
N
2H − d

2 P-almost surely (see also [34], [3] for joint space-time continuity of
the local time in this setting). However, such regularity estimates are not sufficient in
order to apply non-linear Young theory, as one still misses proofs of higher quantified
joint space time regularity of these occupations measures (in particular, estimates that
provide at the same time a quantified Young regularity in time and higher spatial
regularity appear lacking. While [34], [3] do provide some Hölder regularity in time
for fixed space points respectively Hölder regularity in space for fixed time points,
estimates that establish jointly Hölder continuity in time on a Bessel potential scale
of high order as in space as in Theorem 31 appear to be new).

Suppose now that w : [0, T ]2 → R
d is a stochastic field. Let μw denote the

occupation measure of w, defined as follows for a Borel set A ∈ B(Rd),

μw
t (A) = λ{s < t ∈ [0, T ]2| ws ∈ A},

where λ is the Lebesgue measure. If the occupation measure is absolutely continuous
with respect to the Lebesgue measure on Rd it admits a density, Lw, i.e.

μw
t (A) =

∫
A
Lw
t (z) dz, t ∈ [0, T ]2.

The function Lw : [0, T ]2 ×R
d → R+ is called the local time associated to w. Given

a bounded measurable function b : Rd → R
d and x ∈ R

d , the following local time
formula holds

∫ t

s
b(x + wr ) dr =

∫
Rd

b(x − z)�s,t L
−w(z) dz = (b ∗ �s,t L

−w)(x). (4.2)

Remark 25 For the reader familiar with the concept of averaged fields in the pathwise
regularization by noise approach developed by Catellier, Galeati and Gubinelli in [10,
19, 20], the left hand side of the above equation could be seen as a two dimensional
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extension of the averaged field associated to b and w. That is,

Twb(t, x) =
∫ t

0
b(x + wr ) dr , t ∈ [0, T ]2,

where we stress that the integral above is a double integral, and from convention
dr = dr2 dr1.

With the aim of proving well-posedness of (4.1) in the case when b is truly dis-
tributional, we need to make sense of the integral appearing in (4.1). Similarly to the
(1D) pathwise regularization approach, we will construct this integral in terms of a
non-linear Young integral. That is, let us first reformulate (4.1) by setting θ = x − w.
Then formally θ solves the equation

θt = ξt +
∫ t

0
b(θs + ws) ds. (4.3)

In the case when b is continuous the integral appearing above can be constructed in
the Riemann sense; for a sequence of partitions of {Pn} of [0, t1]×[0, t2] (constructed
as in Definition 13) with mesh going to zero when n tends to infinity, we have that

∫ t

0
b(θs + ws) ds = lim

n→∞
∑

[u1,v1]×[u2,v2]∈Pn

b(θu + wu)�u,vid, (4.4)

where�u,vid := ∫ v1
u1

∫ v2
u2

dr2 dr1. An alternative approach to constructing this integral
is in terms of the non-linear Young integral. Suppose the local time associated with
w is differentiable in its spatial variable and (2D) γ -Hölder continuous in the time
variable with γ > 1

2 . Then we can use Proposition 16 to show that the following
integral exists:

∫ t

0
(b ∗ L−w)(ds, θs) := lim

n→∞
∑

[u1,v1]×[u2,v2]∈Pn

(b ∗ �u,vL
−w)(θu). (4.5)

In the next proposition we prove that the above integral indeed exists in the non-linear
Young sense, and that it agrees with the classical Riemann integral in the case of
continuous functions b.

Proposition 26 Consider p, q ∈ [1,∞] such that 1
p + 1

q = 1. Let b ∈ Bζ
p,p(R

d)

for some ζ ∈ R and assume w : [0, T ]2 → R
d to be continuous such that L−w ∈

Cγ
t B

κ
q,q(R

d), with γ ∈ ( 12 , 1]2 and ζ + κ > 1 + η for some η ∈ (0, 1). Suppose
θ ∈ Cα

t for α ∈ (0, 1)2 such that αη + γ > 1. Then the nonlinear Young integral
defined in (4.5) exists. Furthermore, if b is continuous, then this integral agrees with
the classical Riemann integral.
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Proof Set�s,t A(x) := (b∗�s,t L−w)(x) = ∫ t
s b(x+wr ) dr . By Young’s convolution

inequality (see e.g. [4]), it follows that

‖�s,t A‖
Cκ+ζ
x

� ‖b‖
Bζ
p,p(R

d )
‖L−w‖Cγ

t Bκ
q,q (Rd )m(t − s)γ . (4.6)

This implies that A ∈ Cγ
t C

κ+ζ
x . Furthermore, t 	→ �0,t Lw is clearly 0 on the bound-

ary, as illustrated in Remark 8. Thus, since κ +ζ > 1+η and θ ∈ Cα
t with ηα+γ > 1

it then follows from Proposition 16 that the integral

∫ t

0
(b ∗ L−w)(ds, θs) =

∫ t

0
A(ds, θs),

exists in the sense of (3.5).
Suppose now that b is continuous so that the Riemann integral in (4.4) exists.

Remark that then At (x) = ∫ t
0 b(x+wr ) dr , i.e. ∂t1∂t2 As(x) = b(x+ws) is continuous.

Hence, by Lemma 18, the 2d-nonlinear Young integral constructed coincides with the
corresponding Riemann integral. ��

Now that the non-linear Young integral for the convolution with a function b and
the local time is well defined, we will move on to prove existence and uniqueness of
solutions to (4.1). However, as we are interested in allowing for distributional b, we
need a rigorous concept of solution which behaves well under approximation. This is
provided in the following definition.

Definition 27 Let w : [0, T ]2 → R
d be a continuous field, and b ∈ S(Rd)′ (the space

of Schwartz distributions). Assume that b ∗ L−w ∈ Cγ
t C

2+η
x for some γ ∈ ( 12 , 1]2

and for some η ∈ (0, 1) such that (1 + η)γ > 1. We say that x ∈ C([0, T ]2;Rd) is
a solution to (4.1) if there exists a θ ∈ Cγ ([0, T ]2;Rd), such that x = w + θ , and θ

satisfies

θt = ξt +
∫ t

0
(b ∗ L−w)(ds, θs), t ∈ [0, T ]. (4.7)

Here, ξt = ξ1t11t2=0+ξ2t21t1=0 and ξ ∈ Cβ
t for someβ ≥ γ , the integral is understood as

a non-linear Young integral as defined in Proposition 26 and the equation is interpreted
in the non-linear Young sense (see Theorem 21). We call ξ boundary data of θ . The
boundary data of x is accordingly ξ + w.

Thenext result provides simple conditions for the existence anduniqueness of solutions
in terms of the regularity of the (possibly distributional) coefficient b and the regularity
of the local time associated to the continuous field w.

Theorem 28 Let p, q ∈ [1,∞] be such that 1
p + 1

q = 1. Assume b ∈ Bζ
p,p(R

d) for

ζ ∈ R and thatw ∈ C([0, T ]2;Rd) has an associated local time L−w ∈ Cγ
t B

α
q,q(R

d)

for some γ ∈ ( 12 , 1]2 and α ∈ (0, 1)2. If there exists an η ∈ (0, 1) such that

γ (1 + η) > 1 and ζ + α > 2 + η, (4.8)
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then there exists a unique solution x ∈ C([0, T ]2;Rd) to equation 4.1, where the
solution is given in the sense of Definition 27.

Proof Weknow that under the conditions in (4.8) the non-linear Young integral in (4.7)
is well defined according to Proposition 26, and it follows by Theorem 21 that a unique
solution to (4.7) exists in Cγ

t . Setting x = w + θ it follows that x ∈ C([0, T ]2;Rd),
and that x is a solution in the sense of Definition 27. ��
Remark 29 Note that in the case when b is a continuous function and the conditions of
Theorem 28 is satisfied, then the solution coincides with the classical one. Indeed, in
this case, the simple transformation (4.1) given in (4.3) holds, and since the non-linear
Young integral agrees with the Riemann integral, in this case, the two concepts of
solution also agree.

With the stability result from Proposition 23 it also follows that smooth approx-
imations of a solution converge to the solution of the non-linear Young equation.

Corollary 30 Suppose b, w and L−w satisfies the conditions of Theorem 28 such that
a unique solution x to (4.1) with boundary data ξ + w exists in the sense of Defi-
nition 27. Let {bn}n∈N be a sequence of smooth functions approximating b such that
limn→∞ ‖bn − b‖

Bζ
p,p(R

d )
= 0. Denote by {xn}n∈N ⊂ C([0, T ]2;Rd) the sequence

of solutions with boundary data ξ + w constructed from the sequence of solutions to
(4.1) where the drift of xn is given by bn. Then xn → x in C([0, T ]2;Rd), and we
have that for any β ∈ (0, γ ) and any n ∈ N

‖xn − x‖∞ ≤ C‖bn − b‖
Bζ
p,p(R

d )
.

Proof This follows directly from Proposition 23, the fact that ‖xn − x‖∞ ≤ |xn0 −
x0| + [xn − x]β , together with the interpretation of the solutions in the non-linear
Young sense, as illustrated in Proposition 26 and Theorem 28. ��

4.1 Regularity of the local time of the fractional Brownian sheet

While the above theorem provides explicit conditions for the existence and uniqueness
of solutions to the equation in terms of regularity of the local time associated with the
continuousfieldw, it does not provide any further conditions on thefieldw to guarantee
that the local time indeed has the assumed regularity. The above theorem is therefore
abstract in itself, and one needs to study space-time regularity properties of local
times associated with various continuous (stochastic) fields in order to get concrete
conditions on the fieldw and b to guarantee existence and uniqueness. In the following,
we derive joint space-time regularity estimates for the local time associated with two
types of noises: the fractional Brownian sheet and sums of independent fractional
Brownian motions in distinct variables. The following theorem can be considered an
extension of [25, Theorem 3.1] to the two dimensional setting.
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Theorem 31 Letw : [0, T ]2 → R
d be a fractional Brownian sheet of Hurst parameter

H = (H1, H2) on (
,F ,P). Suppose that

λ <
1

2(H1 ∨ H2)
− d

2

Then for almost every ω ∈ 
, w admits a local time L such that for γ1 ∈ (1/2, 1 −
(λ + d

2 )H1) and γ2 ∈ (1/2, 1 − (λ + d
2 )H2)

∥∥�s,t L
∥∥
Hλ
x

� (t1 − s1)
γ1(t2 − s2)

γ2 .

Proof Weproceed similar to [25, Theorem 3.1]. Recall that ifμ denotes the occupation
measure associated with w, we have by the occupation times formula

�s,t μ̂(z) =
∫ t

s
ei z·wr dr .

Recall also that it was shown in [25, Theorem 3.1] that for a d-dimensional fractional
Brownian motion BH1 of Hurst parameter H1, one obtains the bound

∥∥∥∥
∫ t1

s1
eiαz·B

H1
r dr

∥∥∥∥
Lm (
)

� (1 + |z|2)−λ′/2|α|−λ′
(t1 − s1)

1−λ′H1, (4.9)

provided 1 − λ′H1 > 1/2 thanks to the stochastic sewing lemma [28]. Moreover,
remark that for the Brownian sheet wr = wr1,r2 , we have that for fixed time points
r2 ∈ [0, T ], wr1,r2 � r H2

2 BH1
r1 in law, where BH1 is a standard fractional Brownian

motion of Hurst parameter H1. This implies that

∥∥∥∥
∫ t

s
ei z·wr dr

∥∥∥∥
Lm

≤
∫ t2

s2

∥∥∥∥
∫ t1

s1
eiz·wr dr1

∥∥∥∥
Lm

dr2

=
∫ t2

s2

∥∥∥∥
∫ t1

s1
eiz·r

H2
2 B

H1
r1 dr1

∥∥∥∥
Lm

dr2

�
∫ t2

s2
(1 + |z|2)−λ′/2r−H2λ

′
2 (t1 − s1)

1−λ′H1dr2

� (1 + |z|2)−λ′/2(t1 − s1)
1−λ′H1(t2 − s2)

1−λ′H2 ,

where we need to require 1 − λ′H2 > 1/2 as to assure γ2 > 1/2. By definition of
Bessel-potential spaces, we therefore obtain by Minkowski’s integral inequality

E[∥∥�s,tμ
∥∥p
Hs ]1/p =

(
E

(∫
Rd

�s,t μ̂(z)2(1 + |z|2)sdz
)p/2

)1/p

≤
(∫

Rd

∥∥∥|�s,t μ̂(z)|2
∥∥∥
L p/2(
)

(1 + |z|2)sdz
)1/2
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=
(∫

Rd

∥∥|�s,t μ̂(z)
∥∥2
L p(
)

(1 + |z|2)sdz
)1/2

� (t1 − s1)
1−λ′H1(t2 − s2)

1−λ′H2

∫
Rd

(1 + |z|2)s−λ′
dz

� (t1 − s1)
1−λ′H1(t2 − s2)

1−λ′H2

∫ ∞

0
(1 + |r |2)s−λ′

rd−1dr

� (t1 − s1)
p(1−λ′H1)(t2 − s2)

p(1−λ′H2),

provided s < λ′ − d/2. We can then conclude by the joint Kolmogorov continuity
theorem as expressed in [26, Theorem 3.1] to obtain for γ1 < 1 − λ′H1 and γ2 <

1 − λ′H2

∥∥�s,tμ
∥∥
Hs � (t1 − s1)

γ1(t2 − s2)
γ2 .

It thus follows that for such γ = (γ1, γ2), we may conclude

L ∈ Cγ
t H

s,

where

s < λ′ − d

2
<

1

2(H1 ∨ H2)
− d/2.

��
Remark 32 Let us remark that we expect the above Theorem 31 to be far from opti-
mal: In particular, no genuinely two dimensional stochastic cancellations have been
employed, meaning regularization is not obtained from "both directions", but rather
limited by the one with the biggest Hurst parameter i.e. H1 ∨ H2. Indeed, note that
already the above proof is exploiting self-similarity properties to transfer the one
parameter setting to the present two parameter setting. As already in [25], a crucial
role in the regularity estimates for local times was played by the Stochastic Sewing
Lemma, we expect that in our setting, a "2D Stochastic Sewing Lemma" not yet avail-
able in the literature (see however [27] for a stochastic reconstruction theorem very
close in spirit) might prove instrumental in establishing regularization from "both
directions".

Combing Theorem 28 with the above 31, we immediately obtain:

Theorem 33 Letw : [0, T ]2 → R
d be a fractional Brownian sheet of Hurst parameter

H = (H1, H2) on (
,F ,P). Let b ∈ H ζ for ζ ∈ R. Suppose that

ζ > 3 − 1

2(H1 ∨ H2)
+ d

2
, (4.10)

then for almost all ω ∈ 
 independent of b there exists a unique solution x ∈
C([0, T ]2;Rd) to equation 4.1, where the solution is given in the sense of Definition
27.
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4.2 Regularity of the local time of the sum of two one-parameter fractional
Brownianmotions

Lemma 34 Let β1 and β2 are two fractional Brownian motions on a probability space
(
,F ,P) with Hurst parameters H1, H2 ∈ (0, 1). Then, for almost all ω ∈ 
, the
local time L−w associated with w = β1 + β2 is given by the convolution of local
times L−β1

and L−β2
, i.e.

L−w
t (x) = L−β1

t1 ∗ L−β2

t2 (x), t = (t1, t2) ∈ [0, T ]2.

Proof Let b : R
d → R be any measurable function and fix any ω ∈ 
. To keep

the notation simple we avoid writing ω explicitly. By applying the local time formula
twice we have

b ∗ L−w
t (x) =

∫ t

0
b(x + wr ) dr =

∫ t1

0

∫ t2

0
b(x + β1

r1 + β2
r2) dr1 dr2

=
∫ t1

0

∫
Rd

b(x + β1
r1 − z)L−β2

t2 (z) dz dr1

=
∫
Rd

∫
Rd

b(x − z′ − z)L−β2

t2 (z)L−β1

t1 (z′) dz dz′

= b ∗ L−β1

t1 ∗ L−β2

t2 (x).

Hence the result. ��
Remark 35 Observe that the result proved in Lemma 34 is pathwise and thus holds
for any random sampling of β1 and β2, regardless of whether they are independent or
not.

The next result is an interesting application of Theorem 28 about the regularization
by a special type of two-dimensional stochastic field which is the sum of two fBms.

Theorem 36 Let wt := β1
t1 + β2

t2 , where β1 and β2 are two fractional Brownian
motions on a probability space (
,F ,P) with the Hurst parameters, respectively,
H1, H2 ∈ (0, 1). Then, if b ∈ Bζ

1,1(R
d), where ζ satisfies

ζ > d + 3 − 1

2H1
− 1

2H2
, (4.11)

then, for almost all ω ∈ 
, there exists a unique solution to the equation

xt (ω) =
∫ t

0
b(xs(ω)) ds + wt (ω), t ∈ [0, T ]2,

where the solution is given in the sense of Definition 27 with ξt = 0.
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Proof We know that P-a.s. the local times L−β1
and L−β2

associated to β1 and β2 are

contained in Cγ1
t H

1
2H1

− d
2 −ε

x and Cγ2
t H

1
2H2

− d
2 −ε

x for any ε > 0 and some γ1, γ2 > 1
2 ,

see e.g. [25]. Let us set γ = (γ1, γ2) and choose η ∈ (0, 1) such that (1 + η)γ > 1.
Since, from Lemma 34, the local time L−w is given by a convolution of two (one-

dimensional) local times L−β1∗L−β2
, its regularity is found fromYoung’s convolution

inequality in Besov spaces (see e.g. [4]). Thus its regularity in the spatial variable is
given as the sum of the spatial regularities of the one dimensional local times, i.e. for

all t ∈ [0, T ]2, L−w
t ∈ C

1
2H1

+ 1
2H2

−d
x � B

1
2H1

+ 1
2H2

−d
∞,∞ .

Furthermore, it is readily checked that

�s,t L
−w = (L−β1

t1 − L−β1

s1 ) ∗ (L−β2

t2 − L−β2

s2 ),

and thus it follows by elementary computations that t 	→ L−w
t ∈ Cγ

t , and we conclude

that L−w ∈ Cγ
t C

1
2H1

+ 1
2H2

−d
x . Again by invoking the Young’s convolution inequality

using that b ∈ Bζ
1,1 it follows by the same estimate as in (4.6) together with the, we

get that b ∗ L−w ∈ Cγ
t C

ζ+ 1
2H1

+ 1
2H2

−d
x . Now it follows from the assumption (4.11)

that we can apply Theorem 28, which concludes the proof. ��
Our next result shows that it is sufficient to have only one of β1 and β2 random in

Theorem 36.

Lemma 37 Let [0, T ]2, ξt and b as in Theorem 36. Letwt := βt1+ f (t2), t = (t1, t2) ∈
[0, T ]2, where β is a fractional Brownian motion on a probability space (
,F ,P)

with the Hurst parameter H ∈ (0, 1) and f : [0, T ] → R
d is a measurable function.

Then, if ζ satisfies the relation

ζ > d + 3 − 1

2H
, (4.12)

then, the conclusion of Theorem 36 holds true.

Proof First observe that by definition of occupation measure

‖μ f
s2,t2‖T V = |t2 − s2|, ∀s2 < t2 ∈ [0, T ],

where μ f is the occupation measure of β2 and ‖ · ‖T V is the total variation norm.
Next, since ‖μ f·,·‖B0

1,∞
� ‖μ f·,·‖T V and, as in Theorem 36, L−β1 ∈

Cγ
t H

1
2 H − d

2 −ε
x ,P-a.s., local time relation (4.2) and convolution inequalities give, for

s = (s1, s2) < t = (t1, t2) ∈ [0, T ]2,

‖b ∗ �s,t L
−w‖

C
ζ+ 1

2H −d−ε

x

= ‖b ∗ L−β1

s1,t1 ∗ μ
f
s2,t2‖

C
ζ+ 1

2H −d−ε

x
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� ‖b‖
Bζ
1,1

‖L−β1

s1,t1‖
C

1
2H −d−ε

x

‖μ f
s2,t2‖T V � |t1 − s1|γ |t2 − s2|.

This implies that b ∗�s,t L−w ∈ C (γ,1)
t C

ζ+ 1
2 H −d−ε

x . Then, as in the proof of previous
theorem, the conclusion follows by applying Theorem 28. ��

5 Wave equation with noisy boundary

5.1 Statement of the problem

In the following section, we show how the theory of 2D non-linear Young equations
can be employed in the study of Goursat boundary regularization for wave equations
with singular non-linearities. More precisely, we intend to study the problem

(
∂2

∂x2
− ∂2

∂ y2

)
u = h(u(x, y)), (5.1)

on (x, y) ∈ R π
4

◦ [0, T ]2 (here R π
4
denotes the rotation operator of the plane by π/4)

subject to the boundary conditions along characteristics

u(x, y) = β1(y) if y = x

u(x, y) = β2(y) if y = −x,
(5.2)

and the consistency condition β1(0) = β2(0) for a potentially distributional non-
linearity h. Note that for distributional h, it is a priori even unclear what is meant by a
solution to (5.1). We therefore start by considering smooth mollifications hε = h ∗ρε

as non-linearities, for which a change of coordinates yields a reformulation of (5.1)
as a Goursat problem (5.5) which in turn can be analysed as a 2D non-linear Young
equation (5.6). As seen in the previous section, 2D non-linear Young equations can be
well posed even in the case of distributional h, provided sufficient regularization by the
boundary conditions β1, β2 is assumed. Moreover, they enjoy the stability property
of Proposition 23. In particular, this will imply that the sequence of solutions uε to
the problem (5.1) with mollified non-linearity hε—constructed in passing by the 2D
non-linear Young equation—will converge uniformly as ε → 0, independent of the
sequence of mollifications chosen. It will be in this sense that we solve the problem
(5.1) for distributional non-linearities h.

After this brief motivation, let us proceed to introduce the aforementioned
transformations. Assume for some smooth hε , we have a solution uε to

(
∂2

∂x2
− ∂2

∂ y2

)
uε = hε(uε(x, y)), (5.3)
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that satisfies the Goursat boundary conditions (5.2). Consider the transformation

t1 = y + x√
2

,

t2 = y − x√
2

,

(5.4)

which corresponds to the rotation operator R− π
4
and consider the function

φε(t1, t2) := uε

(
t1 − t2√

2
,
t1 + t2√

2

)
.

Then it is easily verified that φε solves

−2
∂2

∂t1∂t2
φε(t1, t2) = hε

(
φε(t1, t2)

)
.

Moreover, note that if t2 = 0, then y − x = 0, which implies that

φε(t1, 0) = uε

(
t1√
2
,
t1√
2

)
= β1

(
t1√
2

)
.

Similarly, if t1 = 0, then y = −x , i.e.

φε(0, t2) = uε

(−t2√
2

,
t2√
2

)
= β2

(
t2√
2

)
.

Hence, we derived from the wave equation with the boundary condition along
characteristics the new boundary problem

− 2
∂2

∂t1∂t2
φε = hε

(
φε(t1, t2)

)
, (5.5)

with boundary condition

φε(t1, 0) = β1
(

t1√
2

)
,

φε(0, t2) = β2
(

t2√
2

)
.

Note that conversely, by employing the inverse transform to (5.4), solutions to (5.5)
give rise to solutions to (5.3): If φε solves (5.5), then uε(x, y) := φε((y−x)/

√
2, (y+

x)/
√
2) solves (5.3).
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It follows from the above derivation that by integration on both sides of (5.5) using
t = (t1, t2) ∈ [0, T ]2 (for some well chosen T ) we have

φε
t = β1

(
t1√
2

)
+ β2

(
t2√
2

)
− 2

∫ t

0
h(φε

s ) ds,

where φε
t = uε

(
t1−t2√

2
, t1+t2√

2

)
. Consider then ψε = φε· −β1

( ·√
2

)
−β2

( ·√
2

)
, which

then solves the equation

ψε
t = −2

∫ t

0
hε

(
ψε
s + β1

(
s1√
2

)
+ β2

(
s2√
2

))
ds. (5.6)

The above problem (5.6) can now alternatively be solvedwith the 2D non-linear Young
theory as brought forward above, provided β1, β2 are sufficiently regularizing. To go
back to the wave equation, we employ the reverse transform to (5.4) to obtain

uε(x, y) := ψε

(
y + 2√

2
,
y − x√

2

)
+ β1

(
y + x√

2

)
+ β2

(
y − x√

2

)
, (5.7)

as the unique solution to (5.3). Note that as indeed ψε(t1, 0) = ψε(0, t2) = 0 for any
t1, t2 ∈ [0, T ], we have that the boundary conditions (5.2) are satisfied. Finally, if hε

is issued from the mollification of some distribution h, i.e. hε = h ∗ ρε , we know by
Proposition 23 that (ψε)ε and thus (uε)ε will converge uniformly. This observation
will serve us to define the following notion of solutions to (5.1) even for distributional
nonlinearities h.

Definition 38 Let h ∈ S(R)′. We say that u is a solution to (5.1) if for any sequence
(ρε)ε of mollifications, the sequence (uε)ε of solutions to (5.3) with mollified non-
linearity hε = h ∗ ρε converges to u uniformly on R π

4
◦ [0, T ]2, i.e. in C(R π

4
◦

[0, T ]2;R).

Remark that with the above notion of solution, existence implies also uniqueness. Let
us now pass to the main result of this section.

Theorem 39 Let β̄ i (·) = β i (·/√2) and p, q ∈ [1,∞] such that 1
p + 1

q = 1. Suppose

h ∈ Bζ
p,p(R) and suppose that Lt (x) = (L−β̄1

t1 ∗ L−β̄2

t2 )(x) satisfies L ∈ Cγ
t B

α
q,q(R).

Assume there exists η ∈ (0, 1) such that

γ (1 + η) > 1 and ζ + α > 2 + η.

Then there exists a unique solution u to (5.1) in the sense of Definition 38 given by

u(x, y) := ψ

(
y + 2√

2
,
y − x√

2

)
+ β1

(
y + x√

2

)
+ β2

(
y − x√

2

)
,
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where ψ is the unique solution to

ψt = −2
∫ t

0
(h ∗ L)(ds, ψs), (5.8)

understood in the sense of Definition 27.

Proof The above is an immediate consequence ofTheorem28 aswell as Proposition 23
in conjunction with the above considerations. Indeed, note that for any mollification
hε = h ∗ ρε , the solution uε to (5.3) is given by (5.7). Note that by Corollary 30,
ψε given by (5.6) converges uniformly to ψ , the solution to (5.8). Existence and
uniqueness of ψ is ensured by Theorem 28. Finally, by (5.7), this implies that (uε)ε
converges uniformly to

u(x, y) := ψ

(
y + 2√

2
,
y − x√

2

)
+ β1

(
y + x√

2

)
+ β2

(
y − x√

2

)
,

completing the proof. ��
Finally, we illustrate the above theorem in the setting where the boundary processes

β i are given as fractional Brownian motions in the following corollary.

Corollary 40 Let h ∈ Bζ
1,1(R) for any ζ ∈ R. Then there exist two independent

fractionalBrownianmotions β̄1, β̄2 ofHurst parameters, respectively, H1, H2 ∈ (0, 1)
such that problem (5.1) has a unique solution in the sense of Definition 38.

Proof This is a direct consequence of Theorem 36 in combination with Theorem 39.
��

Remark 41 It is intriguing to note that one can partially connect Lemma 37 to the
solution theory of non-linear wave equations with random initial data as developed by
Burq, and Tzvetkov in [9], see also the work of Bourgain [7] which is the first step in
this direction. One of the key step in these works is to define a probability measure
suitable Sobolev spaces Hs corresponding to each initial data belonging to Hs . To
understand the relation loosely let us set one variable as time, say t1, and other as
space, say t2, then by taking t1 = 0, (β2, 0), where β2 is a fBm with Hurst parameter
H ∈ (0, 1), can be regarded as pair of initial data.

Since the law of β2 defines a probability measure onC([0, T ];R), the results of the
current section (together with Lemma 37) gives the existence of a unique solution, in
suitable sense, to a class of wave equation, which gives (5.1) under R π

4
, with (β2, 0)

as random initial data. In particular, since H ∈ (0, 1) is arbitrary, we construct a set of
probability measuresM on C([0, T ];R), of size uncountable infinitely, such that for
eachmeasureμ ∈ M, a class of wave equation is locally well-posed withμ as random
initial data taking values in C([0, T ];R). This connection is striking and pointed out
to us by the referee. Since it is really fascinating and challenging to see if one can
make this formal argument rigorous, we leave this line of research for future work.
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6 Further challenges, open problems and concluding remarks

We have extended the pathwise regularization by noise framework introduced in [10]
to equations on the plane, driven by a continuous regularizing field. The concept of
regularization in this article has been presented in view of the local time associated
with the field w. While we present here the case of regularization when the field
w is given by a fractional Brownian sheet or as a sum of two independent fractional
Brownianmotions, further systematic investigations of the space-time regularity of the
local time associated to various stochastic fields appears in order. In particular refined
estimates for the local time of the fractional Brownian sheet using a “multiparameter
Stochastic Sewing Lemma” or the application of a stochastic reconstruction theorem
as recently provided in [27] appear as an interesting direction for further research.

Consider now a general stochastic partial differential equation of the form

Lu(t, x) = b(u(t, x)) + ẇ(t, x), (t, x) ∈ [0, T ] × R,

where b is a non-linear function, L is a differential operator, and ẇ is the formal
mixed partial derivative a stochastic field w. We assume R is a hyper-cube in R

k .
Given that L generates a semi-group {St }, mild solution can typically be written as a
multi-parameter Volterra equation, in the sense that

u(t, x) = ξ(t, x) +
∫ t

0

∫
R
St−s(x − y)b(u(s, y)) dy ds

+
∫ t

0

∫
R
St−s(x − y)ẇ(s, y) dy ds.

The equation above could be reformulated by similar principles as in the current arti-
cle, although certain extensions must be made with respect to the construction of a
non-linear Young integral to account for the possibly singular nature of the Volterra
operator S. The stochastic process obtained in

∫ t
0

∫
R St−s(x − y)ẇ(s, y) dy ds might

indeed provide a regularizing effect in this equation, but it is then also needed to inves-
tigate the space-time regularity of the local time associated with this field. The authors
of [2] have recently made certain progress in this direction the case where L is the
heat operator. There they prove regularization by noise when ẇ is a white noise, and
allow for distributional coefficients, including the Dirac delta. For more general dif-
ferential operators the approach outlined above might yield interesting results related
to regularization by noise effects for a great variety of SPDEs.

An alternative approach to that presented in the current article would be to study the
regularity of the averaged field instead of only the local time. That is, one can study
the regularity of the mapping

[0, T ]2 × R
d � (t, x) 	→

∫ t

0
b(x + wr ) dr ,

for a given distribution b, and then use this instead of the convolution between b and the
local time Lw as done inTheorem28.As observed in [10] and further developed in [20],
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studying the averaged field directly in the concept of regularization by noise allows
for less regularity requirements on the distribution b. In fact, in the one dimensional
case when considering the SDE

xt = x0 +
∫ t

0
b(xs) ds + βt , t ∈ [0, T ],

where βt is a fractional Brownian motion with H < 1
2 it is shown in [10, 20] that

pathwise existence and uniqueness as well as differentiability of the flow holds if
b ∈ Cα

x (with compact support) and

α > 2 − 1

2H
.

More recently in [18], Galeati and Gerenscér push these results further to prove
pathwise existence, uniqueness, and differentiability of the flow under the condition

α > 1 − 1

2H
,

without the assumption of compact support. In contrast, using the local time approach
presented in the current paper, in the one dimensional setting, [25] shows that a similar
statement of existence and uniqueness holds if

α > 2 + d

2
− 1

2H
.

The additional dimension dependency comes from the fact that the final set of 
̄ ⊂ 


of full measure that that admits unique solutions is independent of the drift coefficient
b, something which is an advantage in certain regularization by noise problems, see
e.g. [5] and [22].
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