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RESEARCH ARTICLE

A Faster Procedure for Estimating SEMs Applying Minimum Distance Estimators
With a Fixed Weight Matrix

David Kreiberga and Xingwu Zhoub

aBI Norwegian Business School; bUppsala University

ABSTRACT
This study presents a separable nonlinear least squares (SNLLS) implementation of the minimum dis-
tance (MD) estimator employing a fixed-weight matrix for estimating structural equation models
(SEMs). In contrast to the standard implementation of the MD estimator, in which the complete set of
parameters is estimated using nonlinear optimization, the SNLLS implementation allows a subset of
parameters to be estimated using (linear) least squares (LS). The SNLLS implementation possesses a
number of benefits, such as faster convergence, better performance in ill-conditioned estimation prob-
lems, and fewer required starting values. The present work demonstrates that SNLLS, when applied to
SEM estimation problems, significantly reduces the estimation time. Reduced estimation time makes
SNLLS particularly useful in applications involving some form of resampling, such as simulation and
bootstrapping.

KEYWORDS
Minimum distance
estimation; numerical
efficiency; quadratic form fit
function; structural
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1. Introduction

This study addresses the application of separable nonlinear
least squares (SNLLS) when performing covariance structure
analysis (CSA). SNLLS was first introduced by Golub and
Pereyra (1973), who showed that for a certain type of non-
linear estimation problems, a subset of parameters can be
estimated using numerically efficient least squares (LS). As
will be discussed below, several studies have shown that par-
ameter separation offers a number of numerical benefits,
such as faster convergence, better performance when the
estimation problem is ill-conditioned (i.e., problems in
which the ratio between the largest and the smallest singular
value of the covariance matrix is large), and fewer required
starting values.

SNLLS is typically applied to problems involving some
form of nonlinear regression analysis, but not exclusively so.
A recent study by Kreiberg et al. (2021) suggested an SNLLS
implementation of the minimum distance (MD) estimator
for estimating confirmatory factor analysis (CFA) models.
The motivation for the current study is to generalize the
results in Kreiberg et al. (2021) by outlining an SNLLS
implementation for estimating structural equation models
(SEMs). This is important for several reasons. First, it makes
SNLLS applicable to a wider range of models. Second, at
this stage, little is known about the potential benefits of
applying SNLLS in the context of CSA. The outlined SNLLS
implementation may pave the way for future research on

how to improve the numerical performance of CSA
based estimators.

To make the idea of SNLLS clearer, consider the familiar
MD quadratic form objective function

F ϑð Þ ¼ sx � rx ϑð Þ� �T
V sx � rx ϑð Þ� �

, (1)

where sx and rx ϑð Þ are covariance vectors derived from the
sample and the model, respectively, ϑ is the parameter vec-
tor and V is a weighting matrix chosen by the user. We
consider the case in which V is a fixed matrix (i.e., when V
is not a function of ϑ). Such cases include well-known esti-
mators such as unweighted least squares (ULS), generalized
least squares (GLS), and weighted least squares (WLS). The
standard implementation of Equation (1) is a one-step esti-
mation procedure, here referred to as nonlinear least
squares (NLLS), that involves the use of nonlinear optimiza-
tion techniques. Estimation is performed by searching the
parameter space for the value of ϑ that minimizes Equation
(1). In contrast, the SNLLS implementation of Equation (1)
is a two-step estimation procedure that works by splitting ϑ
into two subsets. In the first step, one subset of parameters
is estimated using nonlinear optimization. In the second
step, based on the estimates obtained in the first step, the
remaining subset of parameters is estimated using LS. As
demonstrated in Kreiberg et al. (2021), SNLLS provides par-
ameter estimates and a minimum objective function value
identical to those obtained using NLLS. It obviously follows
that the asymptotic properties of the estimator are
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maintained. The presentation below presents a general
framework for how to accomplish parameter separation in
the case of SEMs.

Over the years, SNLLS has become popular in applied
research across a wide range of scientific disciplines. Golub
and Pereyra (2003) compiled a list of real-world examples of
SNLLS applications. Mullen (2008) subsequently provided a
comprehensive overview of SNLLS for a number of applica-
tions in physics and chemistry. SNLLS has also proved useful
in systems and control applications. For instance, S€oderstr€om
et al. (2009), S€oderstr€om & Mossberg (2011), and Kreiberg
et al. (2016) applied CSA to handle the errors-in-variables
(EIV) estimation problem. The work in these studies showed
how to implement the MD estimator using SNLLS.

Several studies have documented that the SNLLS imple-
mentation of nonlinear estimators offers a number of bene-
fits. For instance, Sj€oberg and Viberg (1997) evaluated the
numerical performance of SNLLS when applied to neural-
network minimization problems. Their main conclusions
were that SNLLS provides faster convergence and performs
better in cases in which the estimation problem is ill-condi-
tioned. A recent study by Dattner et al. (2020) investigated
the performance of SNLLS when applied to estimation prob-
lems involving ordinary differential equations (ODEs). Their
simulations showed that SNLLS provides faster convergence
as well as parameter estimates of similar or higher accuracy
than what is achieved by traditional nonlinear procedures.

The remainder of this article is organized as follows.
Section 2 establishes the notation used throughout the article.
In this section, we provide a brief overview of the SEM frame-
work and the associated MD estimator. Section 3 outlines how
to modify the MD objective function to accommodate the
SNLLS implementation of the estimator when applied to
SEMs. Section 4 compares the numerical efficiency of SNLLS
and NLLS when applied to real-world estimation problems.
Finally, Section 5 presents some concluding remarks.

2. Background

2.1. Notation

Before presenting the SEM framework, it will be useful to
introduce the following notation. Let x be a p� 1
zero-mean random vector, and let Rx be the associated p� p
covariance matrix given by

Rx ¼ E xxT
� �

, (2)

where E is the expectation operator and the superscript T is
the transpose of a vector or a matrix. The number of non-
redundant elements in Rx is h ¼ 2�1p pþ 1ð Þ, given that no
restrictions other than symmetry are placed on the elements
of Rx: A covariance vector containing the nonredundant ele-
ments (i.e., the lower half of Rx including the diagonal) is

rx ¼ vech Rxð Þ: (3)

In this expression, vech is the operation of vectorizing the non-
redundant elements of Rx: Alternatively, rx is obtained by

rx ¼ KT
x vec Rxð Þ: (4)

Here, vec is the operation of vectorizing the elements of a
matrix by stacking its columns, and Kx is a p2 � h matrix
obtained from

Kx ¼ Lx LTx Lx
� ��1

, (5)

where Lx is a p2 � h selection matrix containing only ones
and zeros. This matrix has the additional usage

vec Rxð Þ ¼ Lxrx: (6)

In the case of symmetry, Lx is referred to as the duplication
matrix in the literature (see Magnus & Neudecker, 1999). The
matrices Lx and Kx can be formed to handle covariance matri-
ces with additional structure beyond symmetry. For instance,
in the case that Rx is a diagonal, Kx is constructed so that rx
contains only the elements on the diagonal of Rx: Appendix A
outlines a general framework for how to obtain Lx and Kx for
various structures characterizing Rx:

We now expand the previous notation. Let x1 and x2 be
p1 � 1 and p2 � 1 zero-mean random vectors, respectively.
A p ¼ p1 þ p2 dimensional column vector is given by

x ¼ xT1 xT2
� �T

: (7)

The associated p� p covariance matrix is

Rx ¼
Rx1
p1�p1ð Þ

RT
x2, x1

p1�p2ð Þ
Rx2,x1
p2�p1ð Þ

Rx2
p2�p2ð Þ

0
BB@

1
CCA, (8)

where

Rx1 ¼ E x1x
T
1

� �
, Rx2 ¼ E x2x

T
2

� �
, Rx2,x1 ¼ E x2x

T
1

� �
: (9)

As before, the vector consisting of the nonredundant ele-
ments of Rx is given by rx: However, for later, it will be
more convenient to work with the vector

r
�
x ¼ rTx1 rTx2 rTx2, x1

� �T
, (10)

where

rx1 ¼ KT
x1vec Rx1ð Þ, rx2 ¼ KT

x2vec Rx2ð Þ, rx2,x1 ¼ vec Rx2,x1ð Þ:
(11)

Note that r�x contains the same elements as rx, but in a differ-
ent order. The last equation in Equation (11) follows from the
fact that there is no redundancy in Rx2,x1 : Appendix A shows
how to derive a matrix L

�
x: Then, by using Equations (4) and

(5), we obtain the covariance vector

r
�
x ¼ K

�T
x vec Rxð Þ: (12)

2.2. The SEM Framework

With the basic notation in place, we are ready to introduce
the SEM framework, which consists of the following three
equations (excluding constant terms)
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g ¼ Bgþ Cnþ d, (13)

x1 ¼ K1gþ �1, (14)

x2 ¼ K2nþ �2: (15)

The first equation is the structural equation, which specifies
the causal relationships among the latent variables. In this
equation, g and n are respectively pg � 1 and pn � 1 random
vectors, d is a pg � 1 random noise vector, and B and C are
respectively pg � pg and pg � pn parameter matrices relating
the latent random vectors. The last two equations are meas-
urement equations. In these equations, x1 and x2 are
respectively p1 � 1 and p2 � 1 observed random vectors, �1
and �2 are noise vectors of similar dimensions, and K1 and
K2 are respectively p1 � pg and p2 � pn parameter matrices
relating the observed and the latent random vectors. All
random vectors are zero-mean.

It is assumed that I � B, where I is the identity matrix, is
nonsingular such that g is uniquely determined by n and d: It
is further assumed that d and n are mutually uncorrelated, and
that �1 and �2 are mutually uncorrelated with g and n, respect-
ively. The noise vectors �1 and �2 are allowed to correlate.

The specification additionally includes the following
covariance matrices

Rn ¼ E nnT
� �

, Rd ¼ E ddT
� �

, R�1 ¼ E �1�
T
1

� �
,

R�2 ¼ E �2�
T
2

� �
, R�2, �1 ¼ E �2�

T
1

� �
:

(16)

The nonredundant elements of Rn, Rd, R�1 , R�2 and R�2, �1
are given by the covariance vectors

rn ¼ KT
n vec Rnð Þ, rd ¼ KT

d vec Rdð Þ, r�1 ¼ KT
�1
vec R�1ð Þ,

r�2 ¼ KT
�2
vec R�2ð Þ, r�2, �1 ¼ vec R�2, �1ð Þ:

(17)

Let ϑ be a parameter vector containing the free elements in
B, C, K1, K2, Rn, Rd, R�1 , R�2 and R�2, �1 , and let H ¼
I � Bð Þ�1

: The covariance matrix implied by Equations
(13)–(15) is

Rx ϑð Þ ¼ K1H CRnC
T þ Rd

� �
HTKT

1 þ R�1 K1HCRnK
T
2 þ RT

�2, �1

K2RnC
THTKT

1 þ R�2, �1 K2RnK
T
2 þ R�2

 !
:

(18)

2.3. The MD Estimator

Suppose that a sample of data points xi (for i ¼ 1, :::,N) is
available. An estimate of Rx is then computed using

Sx ¼ 1
N

XN
i¼1

xix
T
i : (19)

Given Sx, the aim is to estimate the true parameter vector
ϑ0: An estimate of ϑ0 is obtained by

ϑ̂ ¼ argmin F ϑð Þ,
ϑ

(20)

where F ϑð Þ is a scalar function that expresses the distance
between the observed and the model-implied covariance
structure. Below, we focus on the MD objective function
given by

F ϑð Þ ¼ sx � rx ϑð Þ� �T
V sx � rx ϑð Þ� �

: (21)

In this expression, sx and rx ϑð Þ are vectors containing the
nonredundant elements of Sx and Rx ϑð Þ, respectively. That is,

sx ¼ KT
x vec Sxð Þ, rx ϑð Þ ¼ KT

x vec Rx ϑð Þ� �
: (22)

Moreover, the matrix V is a positive definite weighting
matrix. Under suitable conditions, and for the right choice
of V , the MD estimator is consistent and asymptotically
normal. Note that consistency does not depend on V as
long as V converges in probability to a symmetric positive
definite matrix.

Using a proper algorithm, Equation (21) is minimized by
numerically searching the parameter space until some con-
vergence criterion is satisfied. For the estimation problem to
be feasible, it is a necessary condition that the number of
elements in sx � rx ϑð Þ is at least as large as the number of
free parameters in ϑ:

3. Modifying the MD Quadratic Form
Objective Function

Next, we outline how to modify the objective function in
Equation (21) to accommodate the SNLLS implementation.
To do so, we need some additional notation. Let ϑb, c, k be a
tϑb, c, k � 1 vector containing the free elements in B, C, K1,
and K2, and let rn, d, � be a trn, d, � � 1 vector containing the
free elements in Rn, Rd, R�1 , R�2 , and R�2, �1 : The vector
rn, d, � is formed by

rn, d, � ¼ rTn rTd rT�1 rT�2 rT�2, �1

� �T
: (23)

The complete parameter vector now becomes

ϑ ¼ ϑTb, c, k rTn, d, �

� �T
: (24)

The key to applying SNLLS is the separation of parameters,
which involves expressing the covariance vector in Equation
(10) using

r
�
x ¼ G ϑb, c, kð Þrn, d, �: (25)

In this expression, G ϑb, c, kð Þ is a tall matrix valued function
(i.e., a matrix consisting of more rows than columns)
assumed to have full column rank. In Appendix B, it is
shown that G ϑb, c, kð Þ takes the general form

G ϑb, c, kð Þ

¼
KT

x1 K1HC� K1HCð ÞLn KT
x1 K1H � K1Hð ÞLd KT

x1L�1 0 0

KT
x2 K2 � K2ð ÞLn 0 0 KT

x2L�2 0

K1HC� K2ð ÞLn 0 0 0 I

0
BB@

1
CCA,

(26)

where � is the Kronecker product, the 0s are zero matrices
of compatible sizes, and I is the identity matrix. It is now
possible to write the objective function using

F ϑb, c, k, rn, d, �ð Þ ¼

ðs�x � G ϑb, c, kð Þrn, d, �ÞTV
�ðs�x � G ϑb, c, kð Þrn, d, �Þ,

(27)
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where s
�
x and V

�
correspond to sx and V , respectively, but

with their rows and columns rearranged according to the
order in r

�
x: For some value of G ϑb, c, kð Þ, the solution to the

problem of minimizing Equation (27) w.r.t. rn, d, � is a
straightforward application of LS

r̂n, d, � ϑb, c, kð Þ ¼ GT ϑb, c, kð ÞV�G ϑb, c, kð Þ
� ��1

GT ϑb, c, kð ÞV� s
�
x:

(28)

Since r̂n, d, � depends on ϑb, c, k, it is necessary to outline how
to obtain an estimate ϑ̂b, c, k without directly involving rn, d, �.
Theorem 2.1 in Golub and Pereyra (1973) provides the justi-
fication for replacing rn, d, � in Equation (27) with the right-
hand side of Equation (28). Doing so, leads to the modified
objective function

F ϑb, c, kð Þ ¼

s
�T
x V

�
s
�
x � s

�T
x V

�
G ϑb, c, kð Þ GT ϑb, c, kð ÞV

�
G ϑb, c, kð Þ

� ��1

GT ϑb, c, kð ÞV� s
�
x:

(29)

Apart from some slight notational differences, the derivation
of Equation (29) is similar to the derivation in Kreiberg et al.
(2021). From the preceding presentation, it follows that SNLLS
is a two-step procedure. In the first step, ϑ̂b, c, k is obtained by
minimizing Equation (29) applying nonlinear optimization. In
the second step, using ϑ̂b, c, k from the first step, r̂n, d, � is
obtained by Equation (28).

The major benefit of the formulation in Equation (29) is
that the minimization w.r.t. ϑb, c, k represents a lower dimen-
sional optimization problem. Thus, the computational load
when minimizing F ϑb, c, kð Þ w.r.t. ϑb, c, k is smaller, and in
some cases by a considerable margin, than what is the case
when minimizing Equation (21) w.r.t. ϑ: This is especially the
case when the number of elements in rn, d, � is large compared
with the number of elements in ϑb, c, k:

4. Illustrations

This section provides two examples that illustrate the differ-
ence in numerical efficiency between the two implementations,
SNLLS and NLLS, of the MD estimator when applied to
SEMs. Numerical performance is assessed by studying the con-
vergence of the optimizer and the time it takes the optimizer
to reach its minimum. Since timing depends on other proc-
esses running on the device performing the estimation, it is
recommended to compute the average estimation time over
multiple runs. Estimation and timing are performed using
Matlab (2020, version R2020b). The two implementations are
compared under the following conditions:

� Algorithm: The optimizer is a Quasi-Newton (QN) design
applying the Broyden–Fletcher–Goldfarb–Shanno (BFGS)
Hessian update mechanism (default in Matlab).

� Gradient: For simplicity, the gradient is computed using a
finite difference approach. The computation is based on a
centered design, which is supposed to provide greater
accuracy at the expense of being more time-consuming.

� Tolerances: Tolerances are set to their default values
(details are found in the Matlab documentation).

� Starting values: Starting values are taken from the open-
source R (R Core Team, 2021) package lavaan (Rosseel,
2012). The starting values for the free elements are
as follows:
– K1 and K2 are computed using the non-iterative fabin

3 estimator (see H€agglund, 1982).
– B and C are set to zero.
– Rn and Rd are set to zero except for the diagonal ele-

ments, which are set to 0.05.
– R�1 and R�2 are set to zero except for the diagonal ele-

ments, which are set to half the observed variance.
For the examples below, no starting values are
required for the elements in R�2 ,�1

Note that SNLLS only requires starting values for the
parameter vector ϑb,c,k, whereas NLLS requires starting
values for the complete parameter vector ϑ:

� Estimator: The GLS estimator is used throughout the exam-
ples. The GLS estimator uses a weight matrix of the form

V
� ¼ 2�1L

�T
x S�1

� S�1
� �

L
�
x: (30)

� Timing: In each example, the model is re-estimated 1000
times using the same empirical covariance matrix as input.

To ensure that our programming is correct, we compared
the estimation results to the results obtained using lavaan.

4.1. Example 1

The first example considers a model for the medical illness of
depression. The data (N ¼ 323Þ used in this example are taken
from Geiser (2012) and consist of six indicators of depression.
In the data, X1,1 and X1,2 are indicators of the first-order com-
mon factor Depression State 1, X1,3 and X1,4 are indicators of
the first-order common factor Depression State 2, and X1,5 and
X1,6 are indicators of the first-order common factor Depression
State 3. The three factors themselves are indicators of the
second-order common trait factor Depression. The model add-
itionally contains an indicator-specific factor labeled IS.
Indicators X1,1, X1,2, X1,3, X1,5, and the factor Depression
State 1 serve as marker variables. The path diagram illustrating
the structure of the model is shown in Figure 1.

Figure 1. Geiser (2012).
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Results of the estimation are presented in Table 1. As seen
from the table, the number of iterations and function evalua-
tions is (It, Fe) ¼ (23, 375) for SNLLS and (It, Fe) ¼ (145,
5439) for NLLS. As expected, the required computational load
for minimizing F ϑb, c, kð Þ w.r.t. ϑb, c, k is far less than the
required load for minimizing F ϑð Þ w.r.t. ϑ: Figure 2 shows the
convergence profiles for the two implementations. From the fig-
ure, it is clear that the SNLLS objective function F ϑb, c, kð Þ starts
at a point much closer to its minimum of 0.0109 than what is
seen for the NLLS objective function F ϑð Þ: In terms of estima-
tion time, the mean time is 0.0334 sec. for SNLLS and
0.1408 sec. for NLLS. Thus, SNLLS is faster by a factor of
0.1408/0.0334 ¼ 4.2153. The results in this example clearly sug-
gest that the SNLLS implementation is numerically more effi-
cient than the standard NLLS implementation.

4.2. Example 2

The second example considers a model for industrialization
and political democracy. The model is taken from Bollen
(1989), and has been used extensively in books, tutorials, etc.
The data consist of 11 indicators of industrialization and polit-
ical democracy for 75 countries (N ¼ 75Þ: In the data,
X1,1, :::,X1,4 are indicators of the common factor Political
Democracy at time 1 (1960), X1,5, :::,X1,8 are indicators of the
common factor Political Democracy at time 2 (1965) and
X2,1, :::,X2,3 are indicators of the common factor
Industrialization at time 1 (1960). Due to the repeated meas-
urement design, the unique factors belonging to X1,i and
X1,iþ4 for i ¼ 1, :::, 4 are set to correlate. Additionally, the
unique factors belonging to X1,i and X1,iþ2 for i ¼ 2, 6 are set

to correlate. Indicators X1,1, X1,5 and X2,1 serve as marker var-
iables. The path diagram of the model is shown in Figure 3.

Results of the estimation are presented in Table 2. The
results in this example generally confirm the results from
the previous example. In this case, the number of iterations
and function evaluations are (It, Fe) ¼ (26, 759) for SNLLS
and (It, Fe) ¼ (230, 14742) for NLLS. Figure 4 shows the
convergence profiles for the two implementations. The pat-
terns in the figure resemble those in Figure 2. Considering
the estimation time, the mean time is 0.1257 sec. for SNLLS
and 0.8263 sec. for NLLS. In this case, SNLLS proves to be
faster by a factor of 0.8263/0.1257 ¼ 6.5736.

5. Concluding Remarks

In this study, we have presented an SNLLS implementation
of the MD objective function for estimating SEMs. The out-
lined framework includes all necessary expressions for
applying SNLLS, and represents a generalization of

Table 1. Timing results, Geiser (2012).

SNLLS NLLS

Mean est. time (in sec.) 0.0334 0.1408
Median est. time in (sec.) 0.0323 0.1393
Standard dev. est. time in (sec.) 0.0047 0.0067
Minimum objective func. value 0.0109 0.0109
Number of iterations (It) 23 145
Number func. evaluations (Fe) 375 5439
trn, d, � =tϑb, c, k 1.57 1.57

Figure 2. Convergence profile, Geiser (2012).

Table 2. Timing results, Bollen (1989).

SNLLS NLLS

Mean est. time (in sec.) 0.1257 0.8263
Median est. time in (sec.) 0.1244 0.8246
Standard dev. est. time in (sec.) 0.0106 0.0182
Minimum objective func. value 0.4858 0.4858
Number of iterations (It) 26 230
Number func. evaluations (Fe) 759 14742
trn, d, � =tϑb, c, k 1.82 1.82

Figure 3. Bollen (1989).
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previously known results. Using examples from the SEM lit-
erature, we demonstrated that the computational load of
applying SNLLS is considerably less than that of applying
NLLS. Another benefit of SNLLS is that fewer starting val-
ues are required, which may mitigate potential problems
due to the somewhat arbitrary choice of starting values for
the covariance parameters.

The present work may have several interesting extensions.
First, as shown by research, SNLLS may hold a potential for
improving numerical performance in situations in which the
estimation problem is ill-conditioned. Thus, an interesting case
for future research would be to compare the numerical per-
formance of SNLLS and NLLS under more challenging condi-
tions in which the condition number of the observed
covariance matrix is large. Second, the SNLLS implementation
is not yet available for maximum likelihood (ML) estimation.
Some initial work on this topic is underway. This work, com-
bined with the previous point, may lead to an improved
implementation of the ML estimator when applied to SEMs.
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Appendices

A. Deriving L and K
Let x be an arbitrary p� 1 random vector, and let Rx ¼ ri, jf g be the
associated p� p covariance matrix. The purpose of the following pres-
entation is to introduce an algebraic framework that facilitates elimi-
nating the redundancy originating from the structure of Rx: To do so,
let Kx be a matrix such that

rx ¼ KT
x vec Rxð Þ, (A1)

where rx is a covariance vector containing the nonredundant elements
of Rx and Kx is a matrix obtained by

Kx ¼ Lx LTx Lx
� ��1

: (A2)

In this expression, Lx is a selection matrix (i.e., a matrix composed of
zeros and ones).

Below, we propose a rather general framework that applies to any
structure characterizing Rx: Before presenting some examples on how
to obtain Lx, it is necessary to introduce some additional notation. Let
E u, vð Þ ¼ ei, j u, vð Þ� 	

denote a p� p matrix (for i, j ¼ 1, :::, p) with
elements

ei, j u,vð Þ ¼ 1 if ri, j ¼ ru,v
0 otherwise

:



(A3)

Figure 4. Convergence profile, Bollen (1989).
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Next, we demonstrate how to obtain Lx for two standard cases and
one case specialized for the SNLLS implementation.

Case 1: As a start, consider the case in which Rx is symmetric and
no other restrictions are placed on its elements. The covariance vector
containing the 2�1p pþ 1ð Þ nonredundant elements of Rx is

rx ¼ r1,1 ::: rp,1 r2,2 ::: rp,2 r3,3 ::: ::: rp,pð ÞT : (A4)

Applying (A3), the matrix Lx is formed by horizontally concatenating
2�1p pþ 1ð Þ vectors using

Lx ¼
�
vec E 1,1ð Þð Þ ::: vec E p,1ð Þð Þ vec E 2,2ð Þð Þ ::: vec E p,2ð Þð Þ
vec E 3,3ð Þð Þ ::: ::: vec E p,pð Þ� ��

:
(A5)

Case 2: Now, consider the case in which Rx is diagonal. The covari-
ance vector containing the p nonredundant elements of Rx is given by

rx ¼ r1,1 r2,2 ::: rp,pð ÞT: (A6)

The matrix Lx is now formed by horizontally concatenating p vectors

Lx ¼ vec E 1,1ð Þð Þ vec E 2,2ð Þð Þ ::: vec E p,pð Þ� �� �
: (A7)

Before introducing the third and final case, it is necessary to expand
the notation. Let x1 and x2 be respectively p1 � 1 and p2 � 1 random
vectors, and let x be a p ¼ p1 þ p2 dimensional column vector
obtained by stacking x1 and x2 in the following way

x ¼ xT1 xT2
� �T

: (A8)

The associated p � p covariance matrix is given by

Rx ¼
Rx1
p1�p1ð Þ

RT
x2, x1

p1�p2ð Þ
Rx2 , x1
p2�p1ð Þ

Rx2
p2�p2ð Þ

0
BB@

1
CCA: (A9)

Case 3: As in the first case, suppose that no other restrictions, apart
from symmetry, are placed on the elements of Rx: Let the covariance
vector containing the 2�1p pþ 1ð Þ nonredundant elements of Rx be
given by

r
�
x ¼ rTx1 rTx2 rTx2 , x1

� �T
, (A10)

where

rx1 ¼ r1,1 ::: rp1,1 r2,2 ::: rp1 ,2 r3,3 ::: ::: rp1 , p1ð ÞT , (A11)

rx2 ¼ rp1þ1, p1þ1 ::: rp, p1þ1 rp1þ2, p1þ2 ::: rp, p1þ2 rp1þ3, p1þ3 ::: ::: rp, pð ÞT , (A12)

rx2, x1 ¼ rp1þ1,1 ::: rp,1 rp1þ1,2 ::: rp,2 rp1þ1,3 ::: ::: rp, p1ð ÞT: (A13)

Construct a matrix L
�
x by horizontally concatenating three matrices

L
�
x ¼

�
ðL�xÞ1,1 ðL�xÞ1,2 ðL�xÞ1,3

�
, (A14)

where the submatrices are given by

ðL�xÞ1,1 ¼
�
vec E 1, 1ð Þð Þ ::: vec E p1,1ð Þð Þ vec E 2,2ð Þð Þ ::: vec E p1,2ð Þð Þ
vec E 3,3ð Þð Þ ::: ::: vec E p1,p1ð Þ� ��

,

(A15)

ðL�xÞ1,2 ¼
�
vec E p1 þ 1, p1 þ 1ð Þð Þ ::: vec E p, p1 þ 1ð Þð Þ
vec E p1 þ 2, p1 þ 2ð Þð Þ ::: vec E p, p1 þ 2ð Þð Þ
vec E p1 þ 3, p1 þ 3ð Þð Þ ::: ::: vec E p, pð Þ� ��

,

(A16)

ðL�xÞ1,3 ¼
�
vec E p1 þ 1,1ð Þð Þ ::: vec E p,1ð Þð Þ vec E p1 þ 1,2ð Þð Þ ::: vec E p,2ð Þð Þ
vec E p1 þ 1,3ð Þð Þ ::: ::: vecðE p,p1ð ÞÞ

�
:

(A17)

The number of columns in (A15), (A16), and (A17) is 2�1p1 p1 þ 1ð Þ,
2�1p2 p2 þ 1ð Þ and p2 � p1, respectively.

B. Deriving G ϑb,c,kð Þ
The derivation below uses the following matrix identity

vec ABCð Þ ¼ CT
�A

� �
vec Bð Þ, (B1)

where A, B, and C are matrices of compatible sizes. In addition, we
make use of the following relations

vec Rnð Þ ¼ Lnrn, vec Rdð Þ ¼ Ldrd, vec R�1ð Þ ¼ L�1r�1 ,

vec R�2ð Þ ¼ L�2r�2 :
(B2)

The model-implied covariance matrix is

Rx ϑð Þ ¼ Rx1 ϑð Þ RT
x2 ,x1 ϑð Þ

Rx2 ,x1 ϑð Þ Rx2 ϑð Þ

 !

¼ K1H CRnC
T þ Rd

� �
HTKT

1 þ R�1 K1HCRnK
T
2 þ RT

�2, �1

K2RnC
THTKT

1 þ R�2, �1 K2RnK
T
2 þ R�2

 !

¼ K1HCRnC
THTKT

1 þ K1HRdHTKT
1 þ R�1 K1HCRnK

T
2 þ RT

�2 , �1

K2RnC
THTKT

1 þ R�2 , �1 K2RnK
T
2 þ R�2

 !
:

(B3)

Applying SNLLS, the key is to express the model-implied covariance
vector using the form

r
�
x ϑð Þ ¼ rTx1 ϑð Þ rTx2 ϑð Þ rTx2 , x1 ϑð Þ

� �T
:¼ G ϑb, c, kð Þrn, d, �:

(B4)

To do so, it is necessary to vectorize the individual blocks of (B3).
Starting with the block Rx1 ϑð Þ, we have

rx1 ϑð Þ ¼ KT
x1vec Rx1 ϑð Þ� �

¼ KT
x1vec K1HCRnC

THTKT
1

� �
þ KT

x1vec K1HRdHTKT
1

� �
þ KT

x1vec R�1ð Þ
¼ KT

x1 K1HC� K1HCð Þvec Rnð Þ þ KT
x1 K1H � K1Hð Þvec Rdð Þ þ KT

x1vec R�1ð Þ:

(B5)

Using (B1) and (B2), it follows that

rx1 ϑð Þ ¼ KT
x1 K1HC� K1HCð ÞLnrn þ KT

x1 K1H � K1Hð ÞLdrd þ KT
x1L�1r�1

¼ KT
x1 K1HC� K1HCð ÞLn KT

x1 K1H � K1Hð ÞLd KT
x1L�1 0 0

� �
rn, d, �:

(B6)

Next, we consider the block Rx2 ϑð Þ: Using the same procedure as
before, we have

rx2 ϑð Þ ¼ KT
x2vec Rx2 ϑð Þ� �

¼ KT
x2vec K2RnK

T
2

� �
þ KT

x2vec R�2ð Þ
¼ KT

x2 K2 � K2ð Þvec Rnð Þ þ KT
x2vec R�2ð Þ

¼ KT
x2 K2 � K2ð ÞLnrn þ KT

x2L�2r�2

¼ KT
x2 K2 � K2ð ÞLn 0 0 KT

x2L�2 0
� �

rn, d, �:

(B7)

STRUCTURAL EQUATION MODELING: A MULTIDISCIPLINARY JOURNAL 7



Finally, for the block Rx2 , x1 ϑð Þ, it follows that
rx2 ,x1 ϑð Þ ¼ vec Rx2,x1 ϑð Þ� �

¼ vec K2RnC
THTKT

1

� �
þ vec R�2 , �1ð Þ

¼ K1HC� K2ð Þvec Rnð Þ þ vec R�2 , �1ð Þ
¼ K1HC� K2ð ÞLnrn þ r�2 , �1

¼ K1HC� K2ð ÞLn 0 0 0 I
� �

rn, d, �:

(B8)

Putting the pieces together, we obtain

rx1 ϑð Þ
rx2 ϑð Þ
rx2, x1 ϑð Þ

0
B@

1
CA

¼
KT

x1 K1HC� K1HCð ÞLn KT
x1 K1H � K1Hð ÞLd KT

x1L�1 0 0

KT
x2 K2 � K2ð ÞLn 0 0 KT

x2L�2 0

K1HC� K2ð ÞLn 0 0 0 I

0
BB@

1
CCA

� rn, d, �:

(B9)
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