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Abstract

As wind power costs have declined, capacity has grown quickly, often times in adjacent

areas. Price and volatility risk from wind power’s intermittency can be mitigated through

geographic diversification and transmission. But wind power generation has a fat-tailed and

right-skewed distribution. In this article we investigate how geographic diversification of wind

power and the effect of wind power on market prices vary across the distribution of production.

In a case study from Denmark and Sweden, we show that during tail-end production periods,

correlations between areas increase substantially as does congestion in the transmission net-

work. This leads to highly non-linear price effects of wind power. The marginal effect of wind

power on the local prices is shown to be substantially higher at the 10th decile of wind power

production. The research has important implications for valuation models of wind power

projects and for operations of electricity markets with high penetrations of wind power.

Keywords— Wind power, tail correlations, transmission, price risk
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1 Introduction

Before wind power became a mature technology, generation tended to be built out in countries and regions

that provided financial support, such as Denmark and Northern Germany in Europe and California in

the United States. This often meant that wind power was geographically concentrated. Wind power

costs have come down dramatically in the previous decade, and onshore wind power is often competitive

with traditional generation in many areas (Trancik, 2015; Campisi et al., 2016; Williams et al., 2017;

Wiser et al., 2019, 2020). This has meant that wind power capacity has been built up in many more

locales, often in countries or regions adjacent to each other. Given available transmission capacity, such

geographic dispersion can act as a form of diversification: Mitigating the risks that stem from wind power’s

intermittency (Grothe and Schnieders, 2011; Simoes et al., 2017; Novacheck and Johnson, 2017; Katzenstein

et al., 2010; Roques et al., 2010; Schmalensee, 2016; Green et al., 2016). When there is less wind power in

one place, power can be transferred from a neighboring area where the wind is blowing.

However, experience from other asset classes–both real and financial–have shown that risks that appear

to be diversified away in normal times, may show strong correlations during extreme events (Hartmann

et al., 2004; Ye et al., 2017). In the context of electricity markets with high penetrations of wind power,

the risk that has been most explored is the systemic risk that may come from periods of low wind power

generation highly correlated across a wide geographic area leading to a shortfall of generation relative to

load. Yet there is also a risk of too much wind generation. If wind is highly correlated across areas at high

production times, then it could have the effect of driving down the price towards the short-run marginal

cost of wind power–near zero. This price risk is born by wind power producers, but also owners of other

generation assets that face lower-than-expected prices and more price volatility. There is also a risk born

by the power system as a whole, as excess generation can lead to increased balancing costs and expensive

curtailment. The extra uncertainty around prices and electricity market operations can lead to a higher

cost of capital, with adverse effects on further investments in renewable energy generation.

Analyses of the effect of wind power, and in general intermittent generation on power markets and

prices have become important subjects within energy economics. Increasing penetrations of renewable

generation sources can fundamentally change the price formation process and risk characteristics of whole-

sale electricity markets. For example, power prices driven by commodity markets will tend to be random

walks, while markets dominated by renewables will tend to display mean reversion and trend stationarity

(Gianfreda and Bunn, 2018). Correlations between production from renewable sources and power prices

may also increase with higher renewable penetrations (Ernstsen and Boomsma, 2018).

A related area of research has been devising valuation models of wind power that take into account the

special characteristics of the generation technology and its effects on market prices and volatility. Many of

these analyses take a real-options approach, where correctly specifying uncertainty becomes a particularly

important factor in the investment decision and its timing (Tseng and Barz, 2002; Thompson et al., 2004;

Munoz et al., 2011; Ernstsen and Boomsma, 2018).

Many analyses of wind power’s effects on power prices use time series techniques to try to estimate

a marginal average effect in electricity markets: Gelabert et al. (2011) for Spain, Ketterer (2014) and
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Paraschiv et al. (2014) for Germany, and Mulder and Scholtens (2013) for the Netherlands. Wen et al.

(2020) takes an explicitly spatial econometric approach to estimating the effects of wind on nodal prices

in the New Zealand market, but still relies on average marginal estimates. The results of such statistical

models have become important inputs in the models of transmission system operators (TSO), and wind

power developers who seek to make accurate valuations of proposed projects.

But we argue that the inference from such models is incomplete. Point estimates that indicate average

marginal effects are most useful when a distribution is approximately normal, with few outliers and with

most of the probability mass located near the mean value. But wind power is not well approximated by

a normal distribution. Instead, production tends to be better approximated by distributions with right-

skewness and "fat tails" where periods of large positive production, far removed from the median value

of the distribution, can be expected to happen relatively frequently. Recent analytical analyses of the

wind power valuation problem, such as Ernstsen and Boomsma (2018) therefore tend to use fat-tailed

and right-skewed distributions like the Weibull distribution to model wind power production. Analysis

of the effects of wind power on prices that use more flexible, non-parametric, modelling such as Rivard

and Yatchew (2016) for Ontario and Jonsson et al. (2010) for Denmark, tend to find non-linear effects in

periods of high production. We extend this literature by devising a time-series econometric model that

allows the estimates of the effect of wind power on prices to vary by decile of production.

The right-skewness and fat-tails of wind power distributions and their spatial correlation are important

considerations in valuation models of wind power. Gonzalez-Pedraz et al. (2014) show how standard

methods used in energy markets that tend to ignore or minimize tail behavior will tend to substantially

underestimate the risk of a portfolio of generation technologies. Elberg and Hagspiel (2015) develop a

stochastic wind turbine valuation model that takes into account the spatial dependence of a given wind

power plant and the aggregate wind power production. They note a pronounced “upper-tail dependence”–

that is that correlations increase markedly at periods of especially high production, and that this can lead

to adverse effects on revenue. A model with purely linear dependence would as a consequence tend to

over-value a wind power farm. The spatial character of wind power can also interact with weaknesses in

the electricity market structure. Bjørndal et al. (2018) note that zonal pricing, as exists in the Nordic

markets, fails to include enough locational price signals and can therefore lead to excess transmission flows

due to wind power.

While it has long been acknowledged that electricity from intermittent generation will tend to obtain

on average a lower prices than electricity from dispatchable generators (Joskow, 2011), Hirth (2013) and

Schmalensee (2016) point out that the price of electricity from intermittent generation will also tend to

consistently diverge from average electricity prices due to the correlations between production and prices.

Hirth (2013) devises a statistic he calls a value factor to estimate this divergence. A value factor of 1

represents a situation where electricity from intermittent generation sells at the same averate rate as the

average market price. Schmalensee (2016) finds that solar power in many of the areas of the US have a

value factor slightly higher than 1, however wind power tends to have value factors somewhat below 1,

indicating that production tends to be correlated with low-price periods. This article contributes to this
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literature, showing how wind power not only is correlated with low prices, but at high penetrations and

during high-production periods, can also cause prices to drop further, potentially leading to even lower

value factors.

In this article we study data from Denmark and Sweden: Two countries with large wind power pen-

etrations, which are connected through both large physical transmission capacity as well as through the

common Nordic electricity market. We use hourly data from 2016 and 2017 on wind power production,

electricity prices, transmission capacities and flows. We particularly focus on the eastern price area in

Denmark, called DK2, consisting of the island of Zealand, where the Copenhagen metropolitan area is

located. This price area lies between the western Danish area and the southermost Swedish price area,

both of which have high penetrations of wind power.

We first present some descriptive evidence that suggests that for much of the distribution of wind power

generation, geographic dispersion of wind power can have a diversifying effect. Correlations between wind

power production–even in in adjacent areas–are relatively weak.

However, a marked difference appears in the 90th decile of the distribution of wind power production.

Wind power production at the highest deciles in a given price area are strongly correlated with wind power

production in adjacent areas. This suggests that the pattern of power flow, congestion in the network, and

marginal price effects may be substantially different in these tail periods compared to average marginal

effects.

To more formally explore the patterns of wind power distribution on prices and flows, we develop

a flexible but also simple and robust methodology: A dynamic decile group model. We decompose the

price and flow variables that serve as our dependent variable into deterministic and stochastic components.

Then, instead of estimating an average marginal effect of wind power, we allow the effect of wind to vary

by decile of production.

Our modeling reveals wind power’s nuanced effects on pricing and exchange on the electricity market.

Wind power in the Danish areas at low deciles of production tends to have little to no effect on prices in

DK2. Instead, the main effect of wind power in this area is a linear effect on net exchange towards the

Swedish price area, which in turn is connected to the flexible hydro power in the Swedish northern price

areas. This interaction between wind power in Denmark and transmission to neighboring hydropower areas

is consistent with analysis by Green and Vasilakos (2012) and Mauritzen (2013).

However, at the highest deciles of production, when wind power is highly correlated across areas and

there is a high probability of congestion in the transmission network, wind power tends to have an out-sized

effect on prices in the DK2 area.

The results from this article are in some ways particular to the geography, generation and transmission

network of the Nordic market. But the lessons from the case study are broader. The numerous statistical

models of the effect of wind power on market prices that attempt to estimate an average marginal effect,

poorly capture the underlying dynamics of wind power’s effect on a power market. In turn, the estimates

from these models may serve as flawed inputs in models of electricity market operations and wind power

valuation.
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There are also implications for policy and planning. As noted by Schmalensee (2016) and Green et al.

(2016), many incentive schemes internationally tend to lead to sub-optimal geographic investment decisions.

For example, in the US, one of the main drivers of renewable energy investments are state-level generation

mandates called Renewable Portfolio Standards (Greenstone and Nath, 2020). Likewise, many European

incentive schemes often favor local investments. This article adds support to the argument that increased

focus needs to go towards devising markets and policies that lead to more optimal siting decisions.

In summary, this article contributes to the literature on investment and integration of wind power

in power markets in several ways: 1.) We provide evidence for geographic diversification of wind power

production at moderate levels of production in the areas of the Nordic market with the highest penetrations

of wind power. 2.) We provide evidence that this diversifying effect fails to hold at the highest quantiles of

production when wind power production becomes highly correlated across adjacent areas. 3.) We devise

a novel econometric model that takes into account the dynamics and seasonality in the power market

time series while allowing the effects of wind power to vary over the distribution of production. 4.) We

add support to findings of Rivard and Yatchew (2016) and Jonsson et al. (2010) of a disproportionately

stronger effect of wind power on prices at the highest quantiles of production and extend these findings to

show that these results are highly dependent on the pattern of transmission and congestion in the system.

The rest of the article is organised as follows. In the next section we present a short overview of the

Nordic Electricity Market and introduce our data sources. In section three, we present some descriptive

evidence for both geographic diversification at moderate wind power production levels as well as markedly

increased correlations across areas at the highest quantiles of wind power production. In the fourth section

we introduce the dynamic decile econometric model, and present results for the effects of wind power on

both prices and power flow. We conclude with a discussion of the implications of the findings and future

avenues of research.

2 The Nordic Electricity Market and Data

Our data consists of hourly observations from the beginning of January 2016 through December of 2017

from the Nordic Electricity Market, Nord Pool. The data is openly available from the website of the Nord

Pool Group1. A cleaned and formatted data set that we use in our analysis is available upon request.

We use the prices that are set on the day-ahead market of Nord Pool. These prices are established

through an auction mechanism where producers and wholesale consumers submit supply and demand

schedules by noon the day ahead of delivery. These are aggregated and an unconstrained system price is

set that clears the market assuming no congestion between the price areas.

When congestion occurs between price areas, the markets become decoupled with prices being set in

each market until the market clears in both price areas with the transmission constraint met. Importantly,

flow on the transmission interconnectors will always flow from low price areas to high price areas.

We limit our analysis to three price areas in the Nordic market: The two Danish price areas, DK1 and

DK2, and the southernmost Swedish price area, SE4. A snapshot of these price areas from the exchange,
1https://www.nordpoolgroup.com/historical-market-data/
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Figure 1: Area power prices in southern Swe-
den (SE4), eastern Denmark (DK1) and west-
ern Denmark (DK2). Data from Nord Pool
Group.

Figure 2: Wind power production in south-
ern Sweden (SE4), eastern Denmark (DK1) and
western Denmark (DK2). Data from Nord Pool
Group.
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Nord Pool Spot, is shown in figure 3. These price areas were chosen strategically. All three contain large

penetrations of wind power and none contain significant hydro power generation, which provides large

amounts of flexibility to energy systems. Instead, most of the generation in these areas that is not wind

power comes from thermal plants–primarily gas and combined heat and power plants. Figure 1 shows price

series for SE4, DK1 and DK2.

The available transmission capacity between price areas is established by the transmission system

operators (TSO) and are also announced a day before delivery.

Nord Pool also runs an intra-day market called Elbas, where power can be traded bilaterally up to

an hour before delivery and producers and consumers can make up for shortfalls or surpluses from the

day-ahead market. We do not analyse data from the intraday market in this article.

Nord Pool publishes two series for wind power in the different price areas: Predicted wind power from

a day-ahead based on predictive models from the transmission system operator, and realized wind power.

We use actual realized wind power in this article. Figure 2 shows the time series of wind power from the

three relevant price areas.

Table 1 gives some summary statistics for the three price areas over the period studied. Notice that

the mean wind power production in the DK1 area is nearly four times that of the neighboring DK2 area

and nearly three times that of the SE4 area. The average price is also about 5 percent lower in the DK1

area compared to the DK2 and SE4. However, the volatility of prices, measured by the standard deviation,

is highest in the DK2 area. Both DK1 and SE4 areas have direct interconnections to flexible hydropower

generation in Norway and the northern price areas of Sweden. The DK2 price area, on the other hand,

has no direct interconnectors to a hydropower area, and power must flow through one of the neighboring

price areas. The unique geography of the DK2 price area makes it a particularly interesting case study.

The DK2 area has a significant amount of wind power and is sandwiched between two even bigger wind

power areas and with no direct connection to hydro power.

Table 1: Descriptive statistics from the three price areas studied

Eastern Denmark Western Denmark Southern Sweden
Price area DK1 DK2 SE4
Mean hourly wind power (MWh) 1159 305 467
Mean price (EUR/MWh) 3085 3068 1224
St. dev price 1036 1224 1096

3 Wind power production: Distributions and geographic

correlations

Figure 4 shows correlation coefficients between Danish and Swedish price areas. The areas are ordered

according to geographic location. In general, correlations across areas of wind power production decline

with distance. Correlations between adjacent areas still vary considerably, however. For example, the cor-

relation between wind power in the two Danish areas, DK1 and DK2, has a considerably higher coefficient
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Figure 3: A snapshot of the southern portion of
the Nordic electricity market. Denmark is di-
vided into two price areas, DK1 and DK2. SE4
is the southernmost Swedish price area, that
contains the majority of Swedish wind power
production. Source: Nord Pool Group

Figure 4: The figure shows a heat map illustrat-
ing the correlations between wind power pro-
duction between price areas in Denmark and
Sweden, ordered from areas that are adjacent
to those farthest away. Correlations quickly de-
cline with distance.

than between wind power in SE2 and SE3.

Correlation coefficients, as well as coefficients on simple regression models, are estimates of average

marginal effects. For processes that are well described by a normal distribution, the average effect is often

times a good summary statistic as the tail of the distribution is thin, meaning that most realizations of

the process happen close to the mean value.

Wind power aggregated over a geographic area tends to be better approximated by a distribution with

right-skewness and excess kurtosis ("fat tails"), such as a Weibull distribution (Carlin and Haslett, 1982).

Figure 5 shows the empirical density of wind power in the DK2 area overlapped with fitted theoretical

densities from the Weibull distribution and half-normal distribution. The vertical dotted lines represent

the sample median, mean and 90th percentile of the wind data from DK2. The empirical density clearly

has substantially more of its weight on the tail compared to what a half-normal distribution might suggest.

The 90th percentile of observations lies far from the mean.

The fat tail of wind power distributions suggests that estimates of mean marginal effects may provide

a poor summary of the effects of wind power over the full distribution. The idea of looking at average

correlations between wind power areas may also be incomplete. Figure 6 shows a scatter plot of wind

power in the DK2 area plotted against the wind power generated in the SE4 area. The colors represent

net exchange between DK2 and SE4, with a positive value indicating net import to DK2. While there

appears to be a clear correlation between wind power in the two neighboring regions for most of the range

of values, there is a substantial amount of spread. At outer values of the range, however, there seems to

be a bunching of values: High values of wind power in DK2 appear to be more highly correlated with high

values in SE4. Visually, there also appears to be a shift in the pattern of exchange between the areas as

wind power increases.
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Figure 5: The figure shows the empirical density (green) of wind power. Wind power production
summed over an area can be approximated by a distribution with right-skewness, such as the
Weibull distribution (solid line). Large values far from the mean and median happen often relative
to a half-normal distribution (dotted line). The vertical dotted lines represent the mean, median
and 90th percentile of the empirical wind power distribution. The 90th percentile of observations
can be seen to be far from the median and mean values.
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Figure 6: The figure shows a scatter plot of
wind power in the DK2 and SE4 price areas.
The correlation of wind power production in
DK2 and SE4 appears to increase during pe-
riods of peak wind power.

Figure 7: The figure shows the distribution
of wind power production for area DK2 con-
ditional on the deciles of wind power in SE4.
While most deciles show considerable disper-
sion, at the 90th percentile, the distribution is
clustered in the far end, indicating a high de-
gree of correlation at the upper decile.

The impression of higher correlations at the higher end of the range of wind power values is confirmed

by figure 7. The figure shows densities of wind power production in SE4, conditional on deciles of wind

power production in DK2. Most deciles are characterized by a high variance, supporting the idea of

geographic diversification, and is consistent with previous research (Grothe and Schnieders, 2011; Simoes

et al., 2017). However, the 90th decile appears substantially different. Here, the density is more compact,

suggesting a higher level of correlation between wind power in the two areas. In other words, high wind

power in DK2 is strongly correlated with high wind power in SE4. This distinction between geographic

diversification at mean production periods versus peak wind power production periods has not been widely

explored in the literature.

The reasons for the changing correlations are related to the meteorological factors that decide wind

speed and direction over a certain area (Carlin and Haslett, 1982), the details of which are well beyond

the scope of this article. Intuitively, periods of high wind speed associated with weather fronts of high or

low pressure moving through an area will tend to have a more uniform effect on wind speeds over a large

swath of area. On the other hand, periods of moderate or low wind speed will vary more at the local level.

4 Dynamic decile group model

The preceding section suggests that relying on average marginal effects to summarize the effects of wind

power on prices and other aspects of an electricity market can give an incomplete and perhaps misleading

picture. The distribution of wind power is not well approximated by a normal distribution, and values

far from the median are relatively common. More so, wind power correlations between areas appear to

increase markedly in the top decile of production.

In this section, we devise an alternative methodology–a dynamic decile model–to estimate and explore

price effects of wind power across deciles. The methodology is simple but also flexible and robust. In
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Figure 8: The residuals of the price series for ar-
eas DK1, DK2 and SE4 after regressing on the
deterministic components consisting of month,
hour of day and day-of-week.

Figure 9: The residuals of the wind power series
for areas DK1, DK2 and SE4 after regressing
on the deterministic components consisting of
month and hour of day.

specifying effects across a conditional distribution, the model is similar to quantile regression (Koenker

and Bassett, 1978). However, quantile regression has primarily, though not exclusively, been applied to

cross-sectional and panel data and it is the dependent variable that is generally decomposed into quantiles.

Our methodology has the benefit of being easy to implement and interpret in a time series context and

with standard time series methods.

The model for each area is comprised of to stages. In the first stage, we decompose the stochastic and

deterministic components of the series for price and wind production, pit and windit, in area i at time t

(with an hourly frequency).

The first stage of the price equation is shown in equation 1. In this equation, the deterministic

components associated with month-of-year effects, month, hourly effects, hour and day-of-week effects,

dow are filtered out, leaving the stochastic component, up
it.

pit = α+ month + hour + dow + up
it (1)

The residuals for each of the three price areas is shown in figure 8.

In the second stage of the estimation, the residuals, ûp
it are fitted to a dynamic equation in addition to
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Figure 10: The stochastic component (residuals
from the deterministic regression) of the wind
power series for the DK2 area is shown mapped
into decile categories.

Figure 11: Prices versus wind power produc-
tion, by decile of wind power in the DK2 price
area.

a set of binary decile indicators, Iw
it,1, I

w
it,2, . . . I

w
it,10. These wind decile indicators are based on the wind

power series from the three price areas, DK1, DK2 and SE4. Deterministic components from the wind

power series consisting of daily and monthly variation are filtered out by way of estimating equation 2. The

resulting residuals, uw
it, consists of the stochastic portion of the series. The series of wind power residuals

are shown in figure 9.

windit = α+ month + hour + uw
it (2)

We use the empirical deciles of the wind power residuals for each area, i, to estimate the unconditional

deciles. Next, the deciles are used to construct the 10 indicator variables, Iw
it,1 through Iw

it,10 corresponding

to the 10 deciles of wind power. Thus, if a given observation at time t in a given area i experienced wind

power between the 10th and 20th quantile, then the indicator variable Iw
t,2 = 1, while all other indicator

variables, Iw
it,1 = Iw

it,3 = ... = Iw
it,10 = 0.

A visualization of the mapping from the continuous series to decile indicators for the DK2 price areas

is shown in figure 10. A scatter plot of the stochastic component of wind production versus the stochastic

component of prices in the DK2 prices is shown in figure 11. The plot shows the tendency for prices to

fall under large amounts of wind power.

The equation of interest, representing the stochastic component of power prices in area i at a time t

as a function of autoregressive terms and the wind power decile indicators, can be written as in equation

3. δi0 represents the intercept term, while δi1, δi2, . . . , δi10 represent the coefficients to be estimated on

the autoregressive terms. Iw
it,1, I

w
it,2, . . . , I

w
it,10 represent the 10 indicator variables corresponding to the 10

deciles of wind power. βw
it,1, β

w
it,2, . . . , β

w
it,10 are coefficients on the indicator variables to be estimated.

The model is intentionally parsimonious. We do not try to fully explain price movements in the price

area. We also do not include transmission flows in the model. The reason is that we interpret transmission

flows as an intermediate variable. We want to start by estimating the distributional effects of wind power

on prices including the effects through changes in transmission and congestion. In later specifications, we

will add variables for congestion and wind power from neighboring price areas and we will also look closer
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at the effects of wind power on transmission flows.

up
it = δi0 + δi1u

p
it−1 + δi2u

p
it−2 + · · · + βw

i1I
w
it,1 + βw

i2I
w
it,2 + . . . βw

i10I
w
it,10 + εit (3)

Including the deciles of wind power is a simple and easy-to-interpret way of including the effects of wind

power but allowing the effects to vary flexibly and non-linearly. Importantly, it makes no assumption about

the normality of the distribution of wind power. Deciles provide a good balance between completeness

and simplicity, having a fine-enough precision to capture the behavior at the tails, while mostly avoiding

problems of over-fitting the data, which can lead to poor out-of-sample fit.

For identifying the effects of wind power, we rely on the assumption that wind power production is to

a great extent exogenous to prices in the area. Wind power has a marginal cost close to zero, and thus a

wind power producer generally has little incentive to curtail their own production. The exception would

be periods where prices fall to below zero. This can happen in the Danish price areas but is rare.

We also check for potential issues of collinearity. Perfect collinearity would lead to numerical issues

in the estimation of our model, and we see no signs of this. We could still have an imperfect collinearity

problem if some of the covariates have very strong correlations - especially between non-autoregressive

terms or between the autoregressive terms and other covariates. A simple way of checking for any poten-

tial problems is to look at correlation coefficients between covariates, which we have done. Besides the

correlations between the autoregressive terms, the correlations between the other covariates are estimated

to be low (generally below 0.4). The highest correlations are for the top (10th) decile terms for wind

power between areas (approximately 0.6), which we discuss as a feature of the analysis earlier. With the

amount of data available–around 17,000 observations–these levels of correlations should not be detrimental

to inference.

4.1 Wind power and prices in two price areas.

In the first specification we look at the effect of wind power deciles on prices within the same price area.

For the dynamic part of the equation, we use a process of testing and comparing the goodness-of-fit,

as measured by Akaike Information Criterion (AIC), of different specifications. We use autocorrelation

functions (ACF) and partial autocorrelation functions (PACF) of the filtered price series in order to identify

a sensible starting specification. The ACF and PACF appeared to indicate both normal autocorrelation as

well as seasonal (daily) patterns. We started with a fifth order autoregressive model as well as including

21st through 29th terms in order to model the seasonal component. We then both increased and decreased

the number of the autoregressive components and seasonal autoregressive components until we found

a specification with the best fit as measured by AIC and BIC.2 When AIC and BIC gave conflicting

indications of model fit, we chose the specification based on BIC, as this tends to favor more parsimonious

specifications.

From this process, we chose a specification with first and second autoregressive terms as well as 22nd
2BIC stands for Bayesian Information Criterion (Schwarz, 1978). BIC is similar to AIC in that likelihoods of

nested models can be compared subject to a penalty term for the number of parameters. BIC has a larger penalty
term than AIC and tends to favor more parsimonious models.
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through 28th autoregressive terms. The specification is run for both the price areas DK2 and SE4. The

specification can be written as in equation 4.

up
i,t = δi,0 + δi,1u

p
i,t−1 + δi,2u

p
i,t−2 + δi,23u

p
i,t−23 + δi,24u

p
i,t−24

+ δi,25u
p
i,t−25 + δi,26u

p
i,t−26 + βw

i1I
w
it,1 + βw

i2I
w
it,2 + · · · + βw

i10I
w
it,10 + εi,t (4)

The coefficients of interest are the decile coefficients, and we show these visually in figure 12. Here the

points represent the point estimates, where the lines represent 95% confidence intervals. The confidence

intervals are based on heteroskedasticity robust standard errors of the White type (1980). The first decile

is left out as a comparison value. Estimated parameters for the dynamic portion of the models are shown

in the first two columns of table 2.

Table 2: Columns 1 and 2 show estimated dynamic parameters of models in equations 4 where
only deciles of wind power from DK2 are included. Columns 3 and 4 show the estimated dynamic
parameters from models from equation 5 where wind power deciles from DK2, DK1 and SE4
are included. Columns 5 and 6 are from specifications where wind power effects are estimated
conditional on congestion. White standard errors are shown in parenthesis.

Wind in DK2 area Wind in DK1, DK2, SE4 Conditional on congestion
Price area DK2 SE4 DK2 SE4 DK2
Intercept 60.31a 35.93a 60.31a 35.93a 55.56a

(11.5) (11.13) (11.5) (11.13) (14.43)
ar1 1.07a 1.07a 1.07a 1.07a 1.05a

(0.03) (0.04) (0.03) (0.04) (0.03)
ar2 -0.23a -0.23a -0.23a -0.23a -0.23a

(0.03) (0.03) (0.03) (0.03) (0.03)
ar22 -0.02 -0.02 -0.02 -0.02 -0.03

(0.02) (0.02) (0.02) (0.02) (0.02)
ar23 0.18a 0.17a 0.18a 0.17a 0.18a

(0.03) (0.04) (0.03) (0.04) (0.03)
ar24 0.17a 0.19a 0.17a 0.19a 0.16a

(0.04) (0.04) (0.04) (0.04) (0.04)
ar25 -0.18a -0.19a -0.18a -0.19a -0.18a

(0.04) (0.05) (0.04) (0.05) (0.04)
ar26 -0.08a -0.08b -0.08a -0.08b -0.08a

(0.03) (0.03) (0.03) (0.03) (0.03)
ar27 0.01 0.03 0.01 0.03 0.01

(0.03) (0.03) (0.03) (0.03) (0.02)
ar28 0.003 -0.0003 0.0009 -0.007 0.008

(0.02) (0.02) (0.02) (0.02) (0.02)
a: p<0.01, b: p<0.05, c: p<0.10
Heteroskedasticity standard errors of the White type (1980) in parenthesis.
17158 observations

The estimates show that in both price areas, low deciles are associated with little to no effect on prices.

A modest effect on prices is estimated in the middle deciles. But a disproportionately large effect in the

DK2 price area is estimated on the 90th percentile. For DK2, the price effect is estimated to be nearly

double the effect of the 50th percentile.

As a whole, the estimated coefficients on the deciles do not point to a simple linear relationship between
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Figure 12: The points represent the OLS estimate for each decile indicator, with the lowest decile
left out as the comparison value. The bands represent 95% confidence intervals. Estimates for
prices in the DK2 area are shown in black and estimates for prices in the SE4 area are shown in
grey.

wind power and prices. Instead, significant price effects of wind power generation appear only to materialize

at the mid-ranges of deciles, and then appear to be fairly steady across the deciles, while markedly higher

effects are seen at the highest deciles.

From our background analysis, the regression is clearly incomplete. Wind power is highly correlated

at the highest production levels, and this could potentially be driving the out-sized effect on prices in DK2

in the top decile. To get a more nuanced understanding of the distribution of effects, we estimate a new

specification, as shown in equation 5 that includes deciles of wind power from both neighboring DK1 and

SE4 areas.

up
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p
i,t−1 + δi,2u

p
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p
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p
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i,t−26

+ βw
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w
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DK2,t,2 + . . . βw

DK2,10I
w
DK2,t,10

+ βw
SE4,1I

w
SE4,t,1 + βw

SE4,2I
w
SE4,t,2 + . . . βw

SE4,10I
w
SE4,t,10

+ βw
DK1,1I

w
DK1,t,1 + βw

DK1,2I
w
DK1,t,2 + . . . βw

DK1,10I
w
DK1,t,10 + εi,t (5)

A summary of the estimated coefficients on the wind power deciles are presented in figure 13. The

estimated parameters of the dynamic portion of the model are shown in the third and fourth column of

table 2. A few patterns are apparent in the figure. First, the impact of wind power within the DK2 area

on its own prices is low to moderate for most of the deciles but is then shown to have a strong effect in
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Figure 13: The points represent the estimates of each decile indicator of wind power. The bands
represent 95 % confidence intervals. Estimates from wind power in DK1 are shown in black,
estimates from wind power in DK2 are shown in dark grey and estimates from wind power in SE4
are shown in light grey.

the 8th and 9th decile. Wind in DK2 is not estimated to have a statistically significant effect on prices in

the SE4 area (right panel) through the 9th decile, and is only estimated to have a moderate, statistically

significant negative effect at the 10th decile. In SE4, on the other hand, wind power seems to have little

effect on its own prices or neighboring DK2 at all deciles.

The second pattern is that wind power in DK1 significantly impacts prices in both DK2 and SE4, but

the impact does not appear to be linear. The impact of wind power in DK1 on prices in DK2 and SE4 are

not statistically different from zero in the first three deciles of production. The strongest negative effect is

estimated at the 9th and 10th decile in the DK2 area and in the 10th decile in the SE4 area.

In this specification we have included a large number of covariates, and it may be useful to apply an

algorithm that identifies covariates that do not improve the fit of the model and remove them from the

model. We have made use of the General To Specific (GETS) framework that is particularly well adapted

to time-series models. The results from the GETS analysis are largely in line and reinforce the results and

interpretation from the full model presented in this section (Campos et al., 2005).3 Details of the results

from the GETS analysis can be found in the appendix.

When considering wind power’s effect on power flows and congestion in the system, the patterns become

coherent. Figure 14 is a representation of the probability of congestion between the DK2 and SE4 price

areas conditional on the percentile of wind power. Each dot represents the mean of the binary observation

of whether there was congestion or not within each percentile. The blue line represents a Loess smoothed
3We make use of the R package GETS(Pretis et al., 2018) to run the routine.
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Figure 14: The figure represents the probability of congestion (vertical axis) between the areas
DK2 and SE4 conditional on the percentile of wind power. Each point represents the mean of
the binary variable of whether there was congestion or not for all hours in a certain percentile of
wind power production. The line represents a smoothed Loess curve through the data points with
associated 95% uncertainty band.

curve through these lines, with the grey band representing the uncertainty band of the Loess estimation.

The figure shows a pattern of reduced congestion between the price areas as wind power in DK2

increases up to approximately the 60th percentile. Wind power that increases beyond the 60th percentile

is associated with sharply higher probability of congestion.

At higher deciles of wind power production, which also are highly correlated across areas, the probability

of transmission of congestion is higher. This can also explain why wind power within the price areas has

an out-sized effect at high deciles. A higher probability of congestion means that wind power cannot flow

out and instead adds supply to the area, pressing down the price.

To formally investigate the role of congestion, we use a specification where the wind power deciles

interact with an indicator variable for congestion. We focus on prices in the DK2 area since this lies

geographically between the two other areas. We can write the specification as in equation 6, where the

effects of wind power in the DK1 and DK2 areas are allowed to vary by whether there was congestion. The

variable Ct,DK1 is an indicator variable equal to 1 when there is congestion between the DK2 and DK1

areas at time t, and 0 otherwise. Likewise, Ct,SE4 is an indicator variable that is equal to one when there

is congestion between DK2 and SE4 and 0 otherwise. The design of the electricity market is such that

prices between areas will only diverge when there is congestion between areas. Congestion can therefore

be detected in the data by observing whether in any given hour, prices are different between areas.
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ζDK1 represents the vector of coefficients on the interaction term. For the sake of brevity, we exclude

wind power in the SE4 areas, since this was not shown to have any significant effect on prices in the DK2

area.

up
t = δ0 + δ1u

p
t−1 + δ2u

p
t−2 + δ23u

p
t−23 + δ24u

p
t−24 + δ25u

p
t−25 + δ26u

p
t−26

+ αSE4Ct,SE4 + αDK1Ct,DK1

+ βw
DK2,1I

w
DK2,t,1 + βw

DK2,2I
w
DK2,t,2 + . . . βw

DK2,10I
w
DK2,t,10

+ βw
DK1,1I

w
DK1,t,1 + βw

DK1,2I
w
DK1,t,2 + . . . βw

DK1,10I
w
DK1,t,10

+ ζDK1
DK2,1Ct,DK1 · Iw

DK2,t,1 + ζDK1
DK2,2Ct,DK1I

w
DK2,t,2 + . . . ζDK1

DK2,10Ct,DK1I
w
DK2,t,10

+ ζDK1
DK1,1Ct,DK1 · Iw

DK1,t,1 + ζDK1
DK1,2Ct,DK1I

w
DK1,t,2 + . . . ζDK1

DK1,10Ct,DK1I
w
DK1,t,10

+ ζSE4
DK2,1Ct,SE4 · Iw

DK2,t,1 + ζSE4
DK2,2Ct,SE4I

w
DK2,t,2 + . . . ζSE4

DK2,10Ct,SE4I
w
DK2,t,10

+ ζSE4
DK1,1Ct,SE4 · Iw

DK1,t,1 + ζSE4
DK1,2Ct,SE4I

w
DK1,t,2 + . . . ζSE4

DK1,10Ct,SE4I
w
DK1,t,10 + εt (6)

A summary of the main results is shown in figure 15. The estimated coefficients on the dynamic terms

are shown in column 5 in table 2. Looking at the left panel of figure 15, the effects of wind power generated

in DK1 has a progressively more negative effect on prices in DK2 in periods without congestion. On the

other hand, wind power in DK1 has no significant effect on prices in DK2 in periods with congestion. But

the largest effect of wind power in DK2 on its own prices is in the 90th decile when there is congestion

with the SE4 price area.

Wind power in the DK2 price area is estimated to have at most only modest effects on prices in the

DK2 area over all the deciles when there is not congestion. This seems to indicate that excess wind in

these periods flows to neighboring areas, rather than adding to local supply that presses down prices. With

congestion, wind power in the 90th percentile is estimated to press down prices significantly.

The specification that takes into account congestion in the grid gives a nuanced picture of how wind

power effects prices in the market. On the one hand, the absence of congestion allows for wind power in a

neighboring DK1 area to negatively affect prices. On the other hand, congestion also amplifies the effects

of wind power’s effect on its own prices at high deciles. When there is a lack of congestion from the DK2

to the SE4 area, wind power generated in DK2 has little effect on prices in its own areas. Presumably, the

main effect of increased wind power would be an increased flow of electricity to the Swedish price areas.

Geography is likely a key factor behind these results. Without congestion, excess wind energy can

flow into the Swedish price areas, where the hydro-power stations located in the northern price areas can

flexibly adjust their production. This provides an explanation of why congestion between DK2 and SE4

areas is so important in determining the effects of wind power on prices in the DK2 area.

The results so far illustrate some of the weaknesses of simpler models that only estimate a marginal

average effect. Such models will often be interpreted such that moderate amounts of wind power will press

down prices. Our results show that this is not necessarily so, and that the effects of wind power on price

are largely during high-production times and heavily dependent on congestion in the system.
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Figure 15: The effect of wind power in deciles on prices in the DK2 price area conditional on
congestion. The left pane shows the effects of wind power generated in the DK1 area, while the
right pane shows the effects of wind power generated in the DK2 area. The dots represent OLS
estimates, while the bands represent 95% confidence intervals. Light grey indicates estimates with
no congestion. Dark grey indicates congestion between DK2 and SE4 areas, and black indicates
congestion between DK2 and DK1 areas.
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4.2 Wind power deciles and transmission flows

To further investigate the role of transmission flows, we again construct a two-stage procedure, but this

time we use net exchange between DK1 and DK2, and DK2 and SE4 as the dynamic dependent variable.

As before, we first decompose the dependent variable into deterministic and stochastic components by

running a regression as shown in equation 7. Here, NXt, represents the net exchange between two prices

areas. This is sum of imports (-) and exports (+) over any given hour between two price areas.

As with the first-stage regression on prices, the deterministic elements relating to month-of-year, hour

and day-of-week are estimated and controlled for, leaving the stochastic component, captured by the

residual, unx
t .

nxt = α+ month + hour + dow + unx
t (7)

As with the estimation of prices, the stochastic component is then modelled as a dynamic process

with wind power deciles, as shown in equations 8. Compared to the modelling of prices, a slightly

different specification for the dynamic process is found to provide the best fit for the net-exchange

time series. Three (hourly) autoregressive terms plus an autoregressive term at the 23rd hour pro-

vided the best fit. In addition to the dynamic specification, coefficients on the decile indicators for wind
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The estimates for the wind decile indicators are shown in figure 16. In the left panel, the effects on net

exchange between DK2 and DK1 are shown. A positive value indicates net export to DK1. Where wind

power in DK2 and SE4 are estimated to have a modest positive effect on flow from DK2 to DK1 at the

higher deciles. However, the biggest effect came from wind power in the DK1 area, which is estimated to

have a strong effect on flow in the direction from DK2 to DK1. The effect seems to be disproportionately

stronger at the highest deciles.

In the right panel, the estimated effects of wind power on net exchange between DK2 and SE4 are

shown. Both wind power in DK1 and DK2 are shown to have significant effects on flow to the Swedish
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Figure 16: The effect of wind power on net exchange. The left panel shows results where flow
between DK2 to DK1 is the dependent variable. The right panel shows results where flow between
SE4 to DK2 is the dependent variable. The points represent OLS point estimates and the bands
represent 95% confidence intervals. The light grey estimates are for wind power generated the SE4
area. The dark grey estimates are for wind power generated in the DK2 area, while the black
estimates are for wind power generated in the DK1 area.

price area, especially at the highest deciles. Wind power in SE4 appears to have a substantial effect on

flow from SE4 to DK2, which is approximately linearly increasing by decile.

The estimates on net exchange help support the interpretation of results from the price effects. Excess

wind power will tend to lead to increased net flows in the direction of the flexible hydro power in the

Swedish price areas. Transmission limits and resulting congestion led to an out-sized effect on prices at

higher deciles of wind power production.

Exchange between the wind power areas tends to be one sided. This appears to be evidence against the

geographical diversification hypothesis. If geographic diversification of wind power were a driving factor

in the flows, then we would expect to see, for example, flows into the DK1 area from DK2 under the high

wind power deciles in DK2. But this is not observed. The explanation is the high correlation of wind power

at the high deciles. This leads to a flow towards the hydropower areas, and in the case of congestion, an

effect on prices.

5 Conclusions

Geographic diversification of wind power with sufficient transmission capacity between areas is seen as one

of the primary ways of mitigating the technology’s inherent intermittency. With a case study from the

Nordic electricity market, we show evidence for the diversifying effects of geographic separation at moderate
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levels of wind power production. There tends to be low correlations between wind power production in

different price areas, and this correlation quickly goes towards zero as distance increases. Furthermore,

at moderate levels of wind power, extra generation can be exported through the transmission network,

leading to only moderate effects on prices.

However, we also document how wind power correlations across areas increase markedly at high quan-

tiles of wind power production. Combined with the effects of congestion at times of high wind power, this

can lead to non-linearly large effects on prices. This effect has the potential to increase risk for actors in

the power market under large penetrations of wind power, as prices are pressed down to low levels, and

leading to less price certainty for investors.

Denmark and southern Sweden consists of three interconnected price areas with large amounts of wind

power and provides a useful case study in how wind power affects power prices and flow between areas.

The results of this study are in some ways particular to the geography and generation profile of the Nordic

electricity market. But the study presents some important broader lessons. First, statistical and econo-

metric models of wind power’s effect on prices that rely on estimating a single point estimate representing

an average marginal effect overlook the significant variation across the distribution of production. Another

broad point is that wind power can be expected to have a complex effect on prices in a power market: The

effects are highly dependent on factors such as geography, congestion in the transmission network, and

the composition and generation in the market. Finally, the diversifying effects of geographically dispersed

wind power that is evident at moderate periods of generation, should not necessarily be expected to hold

at more extreme periods, when wind power tends to be more highly correlated across geographies and

when transmission capacity is more likely to be congested.

The results have implications for electricity market design and policy. The Nordic market relies on a

zonal market with a uniform price within predefined areas. However, such aggregated price areas can lead

to significant inefficiencies if there are substantial geographic variations in the marginal cost of generation

within these areas, something our analysis suggests is likely. In other markets, such as the PJM market in

the US, nodal systems are used that in theory provide the correct match between the price and marginal

cost of electricity at any point in the network given all the technical and physical constraints (Hogan, 1992;

Green, 2007; Bjorndal et al., 2014). Bjørndal et al. (2018) propose a hybrid zonal-nodal approach as an

optimal market solution under high penetrations of wind power. Such nodal or hybrid systems that better

provide locational marginal price signals would also provide better incentives for the optimal location of

wind farms (Lewis, 2010).

The findings in this article also underline the importance of arguments presented by among others

Schmalensee (2016) and Green et al. (2016) that incentive schemes should to the greatest extent possible be

geographically neutral, allowing investors to base their locational decisions on wind conditions and market

prices. Many incentive policies at the state and national level lead to inefficient placement of wind power.

The article also underlines the importance of investing in long-distance transmission with large penetrations

of wind power as well as designing appropriate financial instruments–such as Financial Transmission Rights

(Hogan, 1992)–that provide the correct incentives for both optimal geographic investment in wind power
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as well as transmission capacity.

Finally, there are important considerations such as the role of market power, market design (as discussed

above), and the role of financial markets that we do not explicitly consider in this article. In addition,

we have restricted ourselves to effects on prices in the day-ahead market. Undoubtedly, wind power will

also effect the shorter term markets such as the hour-ahead market and balancing market. These are all

promising avenues for future research.

6 Computation and replication

For estimation, we use the open-source R programming language (R Core Team, 2019). Several packages

are available for estimating dynamic models with exogenous regressors, but we chose the arx routine from

the R package gets (Pretis et al., 2018). The GETS analysis is also run with tools from the gets package.

Figures were created with the R package ggplot2 (Wickham, 2016). The data and code used in the analysis

are available upon request.
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A GETS Analysis

In the main sections of the article we present the full results of our models, including parameter estimates

that were not significant. In this section we present alternative specifications using an algorithm based on

the General To Specific (GETS) procedure (Campos et al., 2005). In particular we use the R package gets

(Pretis et al., 2018).

The GETS procedure is particularly well adapted as a variable selection procedure for time series

models. The basic intuition for the algorithm is that it iteratively removes the least significant covariate

from a base model, compares information criteria (we use AIC) of the new model with the old, and then

repeats the process until an optimal model is reached. In addition, the algorithm includes robustness

mechanisms that vary the order of removal.

In general we found the process of GETS modelling to reinforce our stated results. We provide details

about the GETS results below.

We start with model written in equation 5, which is the first model with a substantial number of

covariates. Table 3 shows the results from the optimal model selected by the algorithm for both regressions
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Table 3: GETS model
DK2 SE4

coef std.error coef std.error
ar1 1.07a 0.03 1.06a 0.04
ar2 −0.22a 0.03 −0.22a 0.03
ar23 0.16a 0.02 0.15a 0.03
ar24 0.17a 0.04 0.20a 0.04
ar25 −0.18a 0.04 −0.20a 0.04
ar26 −0.07a 0.02 −0.05a 0.02
(Intercept) 43.57a 5.34 38.32a 5.15
wind_DK1_deciles40_50 −32.00a 10.06 −43.06a 9.40
wind_DK1_deciles50_60 −40.85a 9.98 −36.13a 9.23
wind_DK1_deciles60_70 −63.62a 10.86 −61.33a 9.92
wind_DK1_deciles70_80 −74.84a 10.56 −67.88a 9.61
wind_DK1_deciles80_90 −90.13a 12.66 −68.05a 10.56
wind_DK1_deciles90_100 −93.75a 14.81 −86.42a 11.88
wind_DK2_deciles90_100 −38.51a 12.94 −17.39a 7.94
a: p<0.01, b: p<0.05, c: p<0.10

where prices in the DK2 and SE4 areas are the left-hand-side variables.

Not surprisingly, the deciles for wind power in the SE4 area are removed as covariates. These deciles

were not shown to be significant in the full model. However, when the SE4 deciles were removed, it had

the effect of also slightly attenuating the estimates for the DK2 deciles, several of which were significant in

the full model, leaving only the highest decile of wind power for the DK2 area as significant. This model

provides some strengthening of one of the main findings: That the highest deciles of wind power can have

a disproportionately large effect on prices.

However, as a matter of interpretation, the GETS model is not materially different from the full model

presented in the main text. We report the AIC value of the optimal model as well as the "one-cut" model–

which represents the model where all non-significant (at the 5% level) covariates are removed from the full

model. The AIC values are equivalent up to 3 decimal points. This provides support for relying on an

interpretation of the full model, where non-significant covariates are disregarded. In this one-cut model,

the wind power terms from DK2 are still included

We also complete a GETS analysis of the model written in equation 6 where the deciles are interacted

with dummy variables representing whether there was congestion between the price areas. Only prices

in the DK2 areas were used as the left-hand-side variables in this regression. Results of the sparsest

specification are shown in table 4.

As a matter of interpretation the GETS modelling again reinforces the results from the full model

discussed in the full section. The upper 5 deciles of wind in the DK1 area during uncongested times have

a unambiguous negative effect on prices in the DK2 area. When there is congestion between the DK2 and

SE4 area, wind power in DK2 also has a strong negative effect on prices in the three top deciles of wind

power production. All these results are in line with the full model presented in the main section.

Three positive terms for wind power deciles are also included in this specification, but these are of

dubious value in terms of interpretation. Two are estimated with a p-value of between .01 and .05 and one
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Table 4: Results from the GETS modeling
coef std.error

ar1 1.05a 0.03
ar2 −0.22a 0.03
ar23 0.15a 0.02
ar24 0.17a 0.04
ar25 −0.18a 0.04
ar26 −0.07a 0.02
(Intercept) 21.03a 5.17
DK2_DK1Congesteda 65.77 7.85
wind_DK1_deciles40_50a −42.84 10.11
wind_DK1_deciles50_60a −49.07 9.90
wind_DK1_deciles60_70a −64.82 10.96
wind_DK1_deciles70_80a −80.00 10.47
wind_DK1_deciles80_90a −90.19 13.77
wind_DK1_deciles90_100a −106.73 13.42
DK2_SE4Congested 47.31a 13.04
DK2_DK1Congested:wind_DK1_deciles80_90 41.36b 20.42
DK2_SE4Congested:wind_DK2_deciles70_80 −150.71a 36.04
DK2_SE4Congested:wind_DK2_deciles80_90 −126.39a 36.73
DK2_SE4Congested:wind_DK2_deciles90_100 −217.26a 37.33
DK2_SE4Congested: wind_DK1_deciles40_50: 82.86b 38.00
DK2_SE4Congested:wind_DK1_deciles80_90 −115.67a 34.73
DK2_DK1Congested:wind_DK2_deciles20_30 55.58 36.62
a: p<0.01, b: p<0.05, c: p<0.10

has a p-value of over .10. When we run the algorithm, setting the critical value to .01 all three disappear

from the specification. Even without this change, all three terms are absent in other specifications that give

an equivalent AIC value. In terms of theory there is little logic that would indicate that more wind power

production could drive prices higher. Instead, the estimated point coefficients seem likely to be driven by

the positive effect on prices of congestion that is not fully controlled for by the congestion dummies.
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