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Wenhui Yanga Lu Chena,∗ Stéphane Dauzère-Pérèsb,c

a School of Mechanical Engineering,

Shanghai Jiao Tong University, Shanghai, China, 200240
b Department of Manufacturing Sciences and Logistics,Mines Saint-Etienne,

Univ. Clermont Auvergne, CNRS, UMR 6158 LIMOS, CMP, Gardanne, France
c Department of Accounting, Auditing and Business Analytics,

BI Norwegian Business School, 0484 Oslo, Norway

Abstract

In modern production systems, considering machine conditions is becoming es-

sential to achieve an overall optimisation of the production schedule. This paper

studies a single machine scheduling problem, where the actual processing times of

jobs depend on their position in the production sequence and maintenance is consid-

ered. Moreover, the machine is subject to an uncertain condition variation. There

is a tradeoff between rejecting a maintenance action, resulting in longer processing

times, and accepting a maintenance action, leading to higher processing efficiency

for future jobs. The problem is formulated as a finite-horizon Markov Decision

Process. The objective is to minimize the makespan. Optimality properties are

analyzed, based on which a dynamic optimisation approach is developed. Compu-

tational experiments demonstrate the effectiveness of the proposed approach.

Keywords : Single machine scheduling; Machine condition; Markov Decision Process;

Dynamic optimisation approach; Maintenance

1 Introduction

Numerous studies on scheduling problems assume that machines process jobs in a

perfect condition. However, this is never the case in real workshops. For instance, a

machine may be shut down deliberately for a routine maintenance or unexpectedly by

a random breakdown. Once one of these situations occurs, the loss of production can

rather easily be quantified (Allahverdi and Mittenthal, 1994, 1995; Kao et al., 2018). In

practice, there also exists invisible machine conditions between perfect and down due

to loose linkage, wear and fatigue of parts, or misalignment of tighteners, etc (Lee et

∗Corresponding author: Email: chenlu@sjtu.edu.cn

1



al., 2013; Ahmadzadeh and Lundberg, 2013; Huang et al., 2019). How to measure the

impact of invisible machine conditions on scheduling is challenging.

The single machine scheduling problem studied in this paper is derived from a real

valve workshop in China Astronautics. The valve production is a typical multi-variety

small-batch production. Different types of valve share same resources (i.e. the milling

process of valve hosing parts, the detecting process of valve shell shape) in the workshop.

It is thus important to ensure a high throughput for those shared resources that are

usually bottlenecks. Moreover, it is observed that the later a job is processed, the longer

the processing time of the job to meet quality requirements. In this case, a maintenance

action is usually conducted to increase the efficiency of the machine. The decision to

be made here is a joint sequence of jobs in a batch and maintenance actions on critical

resources. The objective is to minimize the makespan. There is a tradeoff between

rejecting a maintenance action, resulting in longer processing times for future jobs, and

accepting a maintenance action, to ensure a higher processing efficiency of the machine.

With the development of sensor technology and Prognostics and Health Management,

some statistics during production can be collected, based on which the reliability or the

lifetime of machines can be derived. However, this is still not possible or too complex

in many manufacturing contexts, and a deterministic machine deterioration process

is assumed in most studies. We consider in our paper an uncertain machine condition

variation. In the workshop, the machine condition is categorized into three levels, namely

stable, unstable, and down. A finite-horizon Markov Decision Process (MDP) is applied

to describe the dynamic and uncertain evolution of the invisible machine condition. An

optimal joint sequence of jobs and maintenance actions can be obtained by studying

optimality properties of the problem.

The paper is organized as follows. Section 2 reviews the related literature. In Section

3, a single machine scheduling model is proposed based on a MDP. A dynamic optimisa-

tion approach is developed in Section 4. Section 5 presents and analyzes computational

results. Finally, Section 6 provides concluding remarks and some perspectives on future

research.

2 Literature review

We first review works on scheduling with machine condition constraints, followed

by the literature on joint optimisation of scheduling and maintenance. Our scientific

contributions are then discussed.

2.1 Scheduling with machine condition constraints

In production scheduling, reliability and availability are the two major measurements

to quantify machine condition.

There are three typical ways to define reliability, namely experienced-based approach,

model-based approach, and data-driven approach (Gorjian et al., 2010). An experience-
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based approach usually defines machine reliability based on the mathematical distri-

bution, such as Poisson distribution, Weibull distribution (Yan and Hua, 2010), and

Exponential distribution (Johnson, 1989). Najid et al. (2011) and Yildirim and Nezami

(2014) analyzed production plainning problems constrained by machine reliability based

on non-homogenous Poisson distribution. Castanier et al. (2015) studied a production

scheduling problem, which is influenced by stochastic failures modeled by Weibull distri-

bution. Zhou et al. (2017) addressed a reliability constrained task scheduling problem

to minimize makespan where the machine failures followed an exponential law.

When historical repair and failure data are missing, an experienced-based approach

cannot be used. A model-based approach monitors machine reliability by a physics-

based model or a statistical model. For instance, Han et al. (2016) and Shui et al.

(2019) developed models that incorporate both physical models and data analytics to

represent the interactions among operational reliability and product characteristics. Re-

gression models (Li et al., 2017) and functional quantitative / qualitative models (Sun

et al., 2017) are some typically statistical models to measure machine reliability during

production process.

A data-driven approach quantifies machine reliability based on recognizing pattern

variation (Regattieri et al., 2010). Sensor data is used to estimate and predict reliability

(Alsina et al., 2017; Tian, et al., 2018). Abundant historical data is needed to support

a specific variation rule of machine reliability.

Machine availability is another widely used measurement to define machine condi-

tion. Lee (1996) firstly addressed scheduling with a single fixed unavailable period. It

was assumed that the start time and the duration of the unavailable period were known

in advance. These assumptions are too idealistic in real application. Ji et al. (2007)

found that routine maintenance brings periodic unavailable periods. Since then, machine

scheduling with periodic machine availability were studied (Low et al., 2010; Yu et al.,

2014; Gonzalez and Framinan, 2018; Nesello et al., 2018). Tamssaouet et al. (2018)

used an approach based on disjunctive graphs to represent job sequences when solving

the job-shop scheduling problem with fixed unavailability periods. Dieulle et al. (2003)

found that the machine becomes unavailable when its condition drops below a pre-set

critical threshold. This finding leads to a more realistic situation with flexible unavail-

ability intervals. Nourelfath et al. (2010) and Peng and van Houtum (2016) studied a

minimum production cost scheduling problem with flexible unavailable production peri-

ods. Lee and Kim (2015) studied a parallel machine scheduling problem with production

availability constraints, where production availability refers to the physical limitation of

machines. For example, some jobs cannot be processed on a specific machine.

Some other studies used the processing efficiency or the product yield rate to define

the machine condition. Martinelli (2005) proposed optimal production policies con-

strained by production-dependent failures. Sloan (2004) defined a product yield rate

that depends on the machine condition following a binomial distribution. Cheng et al.

(2016) studied a joint optimisation of the production rate and maintenance in machining
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systems where the production-dependent failure rate is modeled by a Weibull cumula-

tive damage model. Broek et al. (2020) adjusted the production rates to balance the

output and the failure risk in condition-based production planning. They assumed that

deterioration increments are fixed for a given production rate.

In the literature, it has already been discussed that the efficiency of schedules is

heavily influenced by the machine condition. However, a deterministic machine deteri-

oration process is assumed in most studies. To define the uncertain machine condition

variation, Markov chains are usually considered to model the machine deterioration from

the state “as good as new” to the state “breakdown” (Neves et al., 2011). In this case,

the machine condition is classified by a finite number of discrete states whose variation

is governed by the state transition (Boukas and Liu, 2001). The efficiency and effective-

ness of the method was demonstrated by successfully applying it to real data (Kim et

al, 2011). The numerical results in Khaleghei and Makis (2015) validated the robust-

ness of the Markov model. More precisely, even when the historical repair and failure

data are missing, the model can still be effective. Kurt and Kharoufeh (2009) applied a

Markovian model in a scheduling problem and proposed an optimal maintenance policy.

Liu et al. (2018) used a hidden semi-Markov model to predict the machine condition

and to integrate maintenance actions in a single machine scheduling problem.

2.2 Joint optimisation of scheduling and maintenance

Maintenance results in the update of the machine condition. Lee (1997) first intro-

duced maintenance into production scheduling. Since then, the integration of scheduling

and maintenance has been extensively studied (Boudjelida, 2019). Cassady and Ku-

tanoglu (2005) proposed an integrated model for a single machine scheduling problem

with preventive maintenance to minimize the weighted sum of the completion times.

Mokhtari et al. (2012) introduced multiple maintenance services in a parallel machine

scheduling system and developed a population-based variable neighborhood search algo-

rithm. Yang (2013) investigated scheduling problems with deterioration effects, in which

they assumed that the duration of maintenance activities depends on the machine run-

ning time and the processing time of jobs varies according to the machine condition.

Yildirim and Nezami (2014) proposed a single machine scheduling model with preven-

tive maintenance, which is triggered when the reliability is lower than a threshold. Ting

et al. (2018) studied a single machine scheduling problem with flexible periodic mainte-

nance. Maintenance activities keep the machine condition acceptable by reverting the

machine from a sub-normal processing rate to a normal one.

2.3 Summary and contributions

Our work on the single machine scheduling problem with discrete machine condition

constraints contributes to a new field of research. The consideration of machine condi-

tions has been shown in numerous studies to help improve the operational performance
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in production scheduling. There are also a large number of studies on the joint opti-

misation of production scheduling and preventive maintenance. However, considering a

machine condition variation that is uncertain and its impact on job processing times has

been explored on a very limited scale. The contributions of our paper are summarized

below:

1. A finite-horizon MDP model is developed to simultaneously consider the machine

condition transition and maintenance activities. The joint optimisation of the

production sequence of jobs and of maintenance decisions can be achieved.

2. Two optimality properties are proposed, based on which a dynamic optimisation

algorithm is developed to solve real size instances. Moreover, a rule-based ini-

tial solution generation procedure is embedded to reduce the complexity of the

dynamic algorithm.

3. Real data collected from a valve workshop are used to validate the performance of

the proposed dynamic algorithm. Useful managerial insights regarding the impact

of the uncertain machine condition variation on scheduling are derived.

3 Mathematical formulation

3.1 Problem description

The bathtub curve has been widely used to describe the lifetime of a population

of products (Xie et al., 2002). The bathtub curve consists of three periods: An infant

mortality period with a decreasing failure rate; a normal life period with a constant

failure rate; and a wear-out period with an increasing failure rate.

The machine addressed in this paper is at the middle stage of the bathtub curve, and

its reliability is at a stable level with a constant failure rate. As processing continues,

the processing time of jobs increase due to reasons as machine tools temperature change

and abrasion etc. Let ti be the nominal value of the processing time for job i, and tij

be the actual processing time when job i is scheduled in the jth position. We define tij

according to the sum-of-processing-times-based deteriorating model (Cheng et al., 2010)

as:

tij = ti(1−
∑j−1

l=1 t[l]∑n
l=1 tl

)−
1
2 = ti

√ ∑n
l=1 tl∑n
l=j t[l]

(1)

where t[l] is the nominal processing time of the job processed in the lth position in the

sequence of jobs.

In addition, we consider that the machine has two working states correlated through

the transition probabilities. Machine breakdowns are not considered in this study. Let

us denote the two states 0 (stable) and 1 (unstable). Their transition probabilities satisfy

p(0|0) = 1− p(1|0) and p(1|1) = 1− p(0|1), as shown in Figure 1. When a maintenance

action occurs, the transition probabilities are updated to be pm(0|0) and pm(1|1).
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Figure 1: Transition probabilities between machine states

When the machine is in the unstable state, the processing time is observed to be

longer. The unstable state can be associated with a deteriorating rate d, 0 < d < 1.

Let t
′
ij be the processing time of job i in the jth position when the machine is in the

unstable state.

t
′
ij = tij(1 + d) (2)

With (1) and (2):

t
′
ij = tij(1 + d) = ti(1 + d)

√ ∑n
l=1 tl∑n
l=j t[l]

(3)

The scheduling problem can be described as follows. A set of N jobs needs to be

processed on a single machine. After the machine completes a job, the machine state has

a probability to stay in its current state or to move to the other state. The processing

time of a given job depends on its position in the sequence and on the machine state.

A maintenance action (MA) can be inserted between any two jobs in the sequence. In

this study, we consider only minor non-replacement maintenance actions (Makis et al.,

1998; Liu et al., 2018) on the machine, in which lubrication, adjustment or cleaning may

happen. After an MA, the probability of the machine remaining stable is higher. That

is, p(0|0) < pm(0|0) and p(1|1) > pm(1|1). Thus, the expected processing time of the

job after the MA is shorter.

The problem is to find a job sequence and the corresponding maintenance decisions,

such that: (1) Each job is assigned to only one position; (2) Positions are consecutive

and each position is assigned to only one job; (3) The machine processes one job at a

time. The objective is to minimize the makespan.

The decision variables are

x0
ij = 1, if job i is processed in the jth position, and no MA is inserted at the beginning of

position j; = 0, otherwise. i = 1, 2, . . . , N , j = 1, 2, . . . , N .

x1
ij = 1, if job i is processed in the jth position, and an MA is inserted at the beginning of

position j; = 0, otherwise. i = 1, 2, . . . , N , j = 1, 2, . . . , N .

Let I be the job sequence I = (i1, i2, . . . , iN ), and Y be the MA sequence Y =

(y1, y2, . . . , yN ). For position j, if x1
ij = 1 (i = 1, 2, . . . , N), yj = 1; otherwise, yj = 0.

The optimal solution is a joint sequence of I and Y (denoted as {I∗, Y ∗}) that minimizes
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the makespan MaxCj , where Cj is the completion time of the job at position j (j = 1,

2, ..., N).

3.2 Model development

Before defining the mathematical model, we first present two Lemmas to calculate

Cj . It is assumed that the machine starts from the stable state. That is, C1 = tix
0
i1.

An arbitrary position n in the job sequence has two times: The processing time of

the job at position n and the duration of the MA (if there is an MA between the job

at position n-1 and the job at position n). And the following four situations may take

place.

(1) The machine is in the stable state at the (n− 1)th position and there is no MA

between position n− 1 and position n. Cn can be calculated as:

Cn = Cn−1 + p(0|0)tinx
0
in + (1− p(0|0))t

′
inx

0
in

= Cn−1 + (1− p(0|0)d+ d)tinx
0
in

(4)

(2) The machine is in the stable state at the (n − 1)th position and there is an

MA between position n− 1 and position n. Cn can be calculated as:

Cn = Cn−1 + b+ pm(0|0)tinx
1
in + (1− pm(0|0))t

′
inx

1
in

= Cn−1 + b+ (1− pm(0|0)d+ d)tinx
1
in

(5)

(3) The machine is in the unstable state at the (n− 1)th position and there is no

MA between position n− 1 and position n. Cn can be calculated as:

Cn = Cn−1 + (1− p(1|1))tinx
0
in + p(1|1)t

′
inx

0
in

= Cn−1 + (1 + p(1|1)d)tinx
0
in

(6)

(4) The machine is in the unstable state at the (n− 1)th position and there is an

MA between position n− 1 and position n. Cn can be calculated as:

Cn = Cn−1 + b+ (1− pm(1|1))tinx
1
in + pm(1|1)t

′
inx

1
in

= Cn−1 + b+ (1 + pm(1|1)d)tinx
1
in

(7)

Equations (4) to (7) can be written in the following general form:

Cn = Cn−1 +byn+∆tinxin =


Cn−1 + byn + δ1tinx

0
in, δ1 = 1− p(0|0)d+ d

Cn−1 + byn + δ2tinx
1
in, δ2 = 1− pm(0|0)d+ d

Cn−1 + byn + δ3tinx
0
in, δ3 = 1 + p(1|1)d

Cn−1 + byn + δ4tinx
1
in, δ4 = 1 + pm(1|1)d

(8)

where ∆ is a coefficient that depends on the situation. It can be observed that, if an

MA is inserted, it can reduce the prolonged time of the job processing time caused by

the unstable state of the completion time of the position.
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In order to reduce the exponential number of possibilities that need to be considered,

the following two lemmas are proposed to identify optimal positions to insert an MA.

Lemma 1:An MA needs to be inserted between position j − 1 and position j (j =

2, 3, . . . , N) in an optimal solution, if: 1) the machine is in the stable state at the end

of the (j − 1)th position, and 2) b < (pm(0|0)− p(0|0))dtij .

Proof :

Let C
′
j be the completion time at the jth position with an MA between position j−1

and position j, and C
′′
j be the completion time at the jth position without an MA. From

equation (4) and (5), the difference between C
′
j and C

′′
j is,

∆C = C
′
j − C

′′
j

= b+ pm(0|0)tij + (1− pm(0|0))t
′
ij − p(0|0)tij − (1− p(0|0))t

′
ij

= b− (pm(0|0)− p(0|0))dtij .

With pm(0|0)− p(0|0) > 0, b < (pm(0|0)− p(0|0))dtij , ∆C < 0.

Thus, inserting an MA between position j − 1 and position j can reduce the com-

pletion time at position j.

Lemma 1 has been proven.

Lemma 2:An MA needs to be inserted between position j − 1 and position j (j =

3, 4, . . . , N) in an optimal solution, if: 1) the machine is in the unstable state at the end

of the (j − 1)th position, and 2) b < (p(1|1)− pm(1|1))dt
′
ij .

Lemma 2 can be proved in a similar way to that of Lemma 1.

The above two MA decision rules give sufficient conditions to insert MAs in optimal

solutions. Thus, the number of feasible solutions calculated by a typical backward

recursive method is reduced from 4N−1AN−1
N to 2N−2AN−1

N (N ≥ 2).

Denote Z as the objective function value. Based on the above analysis, a finite-

horizon MDP model can be formulated as:

Minimize Z = MaxCj (9)

subject to:

N∑
i=1

x0
ij +

N∑
i=1

x1
ij = 1, j = 1, 2, ..., N (10)

N∑
j=1

x0
ij +

N∑
i=1

x1
ij = 1, i = 1, 2, ..., N (11)

Cj =Cj−1 + x0
ijmin

{
[(p(0|0)tij + (1− p(0|0))t

′
ij ], [(1− p(1|1))tij + p(1|1)t

′
ij ]
}

+ x1
ijmin

{
[b+ pm(0|0)tij + (1− pm(0|0))t

′
ij ], [b+ (1− pm(1|1))tij + pm(1|1)t

′
ij ]
}
,

j = 2, 3, ..., N

(12)
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x0
ij ∈ {0, 1} , x1

ij ∈ {0, 1} , i = 1, 2, ..., N, j = 1, 2, ..., N (13)

The objective function (9) minimizes the makespan. Constraints (10) ensure that

each job i is assigned to exactly one position. Constraints (11) ensure that each position

j is assigned to only one job. Constraints (12) calculate the minimum processing time

of job i which is processed in position j. Constraints (13) define the domains of the

decision variables.

3.3 Optimal objective function value calculation

A Backward Recursive Method (BAM) is used to calculate the makespan of the

above finite-horizon MDP model. The following notations are used in the BAM:

{Ij , Yj} Partial solution from position j (j = 1, 2, ..., N).

ti,j−1(Ij , Yj) Expected processing time at position j − 1 when the job i (i =

1, 2, ..., N) is assigned to position j − 1 with {Ij , Yj} as the partial

solution from position j (j = 2, 3, ..., N). Ci,N+1 = 0.

Cj(Ij , Yj) Expected completion time at position N with {Ij , Yj} as the partial

solution from position j (j = 1, 2, ..., N).

When j = 1, Z = C(I1, Y1) is the makespan of all the jobs of solution {I, Y }.
The BAM calculates the completion time at each position from the last position and

is described in Algorithm 1 (shown in Table 1).

Table 1: The algorithm of the backward recursive method
Algorithm 1. Backward recursive method

START

1. Initialize algorithm parameters p(0|0), pm(0|0), p(1|1), pm(1|1), b, N

2. Set j = N .

3. While j > 1 do

4. Set i = 1.

5. While i ≤ N do

6. Assign job i to position j.

7. Apply Lemma 1 and Lemma 2 to obtain yj .

8. Calculate ti,j(Ij+1, Yj+1),

9. Cj(Ij , Yj) = Ci,j−1(Ij−1, Yj−1) + ∆ti,j(Ij+1, Yj+1) + byj

10. i = i + 1.

11. end while

12. j = j − 1.

13. end while

14. Z∗ = minC(I, Y ).

15. Return Z∗.

END

In line 7, the proposed two Lemmas are applied to make MA decisions for each

position. The expected processing time at position j is calculated in line 8. In line 9,
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the completion time of the partial solution is updated. The optimal makespan Z∗ is

returned when the BAM terminates. The algorithm has a complexity of O(logN2).

3.4 A numerical example

In this section, we present an illustrative example with ten jobs (from J1 to J10)

to be processed. The nominal processing time (unit: min) for each job is: t1 = 166,

t2 = 142, t3 = 143, t4 = 174, t5 = 122, t6 = 132, t7 = 158, t8 = 145, t9 = 138, t10 = 170.

The maintenance duration time b is 12min. The deteriorating rate d is set to 0.2.

Two production scenarios are considered. Their corresponding transition probabil-

ities are given in Table 2. The machine has a higher probability to stay in a stable

condition in scenario 1 than it does in scenario 2.

Table 2: Transition probabilities of the two scenarios
Scenario p(0|0) p(1|0) p(1|1) p(0|1) pm(0|0) pm(1|0) pm(1|1) pm(0|1)

1 0.78 0.22 0.60 0.40 0.85 0.15 0.10 0.90

2 0.55 0.45 0.70 0.25 0.72 0.28 0.35 0.65

Table 3 shows the results when the BAM is applied to obtain the optimal solutions

for this instance.

Table 3: Optimal solutions for the instance
Scenario Z(min) {I∗, Y ∗}

1 2430.6 {(J8, J5, J6, J9, J2, J3, J7, J1, J10, J4), (0000000001)}
2 2531.3 {(J7, J5, J6, J9, J2, J3, J7, J1, J10, J4), (0000000011)}

In Table 3, it can be observed that the optimal makespan under senario 2 is longer.

And although the optimal sequences under the two scenarios are different, the partial

sequences from the 2nd position in both solutions are in non-decreasing order of the

nominal processing times of the jobs.

Based on the above observation, we develop a dynamic optimisation approach, based

on optimality properties, in which the enumeration procedure is replaced. Because it is

very fast, the dynamic optimisation approach can be applied to solve real size instances.

4 A dynamic optimisation approach

In this section, two optimality properties are proposed firstly. We consider the

situation where p(0|0) + p(1|1) > 1 and pm(0|0) + pm(1|1) > 1. It can be proved that

our dynamic optimisation approach is also applicable to other situations.

4.1 Optimality properties

Remember that C
′
j is the expected completion time at position j (j = 1, 2, . . . , N) if

the machine is stable at position j; and C
′′
j is the expected completion time at position

j (j = 1, 2, ..., N) if the machine is unstable in position j. The following Lemma holds.
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Lemma 3. With p(0|0) + p(1|1) > 1 and pm(0|0) + pm(1|1) > 1, C
′
j < C

′′
j .

The proof is provided in the Appendix.

Lemma 3 can be extended to the situation where p(0|0) +p(1|1) ≤ 1 and pm(0|0) +

pm(1|1) ≤ 1 as follows.

Lemma 4. With p(0|0) + p(1|1) ≤ 1 and pm(0|0) + pm(1|1) ≤ 1, C
′
j < C

′′
j .

Based on Lemma 3 and Lemma 4, the following proposition can be derived.

Proposition 1. In an optimal solution, the partial sequence from the 2nd position

follows the Shortest Processing Time (SPT) rule.

Proof

Assume that jobs h, i and k are three adjacent jobs in an optimal sequence with

job h sequenced in the (r − 1)th position, job i sequenced in the rth position and job k

sequenced in the (r+ 1)th position (r ≥ 2), and th ≤ ti ≤ tk. If exchanging jobs i and k

does not decrease the expected processing times at the rth and (r + 1)th positions, the

optimality is proved. Specifically, the following inequality needs to be proved.

(Ci,r − Ch,r−1) + (Ck,(r+1) − Ci,r) ≤ (Ck,r − Ch,r−1) + (Ci,(r+1) − Ck,r) (14)

The examination of inequality (14) starts by determining the optimal positions of

the MAs based on Lemma 1. That can be done under the following three situations.

(1) ti ≤ tk ≤ b
(pm(0|0)−p(0|0))d . Thus, there is no MA between position r − 1 and

position r, and no MA between position r and position (r + 1). (14) can be

written as:

(1 + d− p(0|0)d)ti

√
T

Tr
+ (1 + d− p(0|0)d)tk

√
T

Tr − ti

≤ (1 + d− p(0|0)d)tk

√
T

Tr
+ (1 + d− p(0|0)d)ti

√
T

Tr − tk

(15)

where T =
∑n

j=1 ti and Tr =
∑n

r t[r] . It is obvious that 1 + d − p(0|0)d > 1, and (15)

can be written as:

ti

√
T

Tr
+ tk

√
T

Tr − ti
≤ tk

√
T

Tr
+ ti

√
T

Tr − tk
(16)

√
T
Tr
−
√

T
Tr−tk

tk
T

≤

√
T
Tr
−
√

T
Tr−ti

ti
T

(17)

The left-hand side of (17) is the slope of the straight line l1 crossing the points

(x1, y1) = ((Tr
T −

tk
T ),

√
T
Tr
− T

tk
) and (x3, y3) = (Tr

T ,
√

T
Tr

). Similarly, the right-hand

side of (17) is the slope of the straight line l2 crossing the points (x2, y2) = ((Tr
T −

ti
T ),

√
T
Tr
− T

ti
) and (x3, y3). Since f(x) = x−

1
2 is monotone decreasing function of x for

x > 0. It is obvious that 0 ≤ x1 ≤ x2 ≤ x3. Thus, the slope of l2 is greater than the

slope of l1 as shown in Figure 2. (17) is true.
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Figure 2: Illustration of the slope of lines

(2) b
(pm(0|0)−p(0|0))d ≤ ti ≤ tk. Thus, an MA is inserted between position r − 1 and

position r, and an MA between position r and position (r + 1). (14) can be

written as:

b+ (1 + d− pm(0|0)d)ti

√
T

Tr
+ b+ (1 + d− pm(0|0)d)tk

√
T

Tr − ti

≤ b+ (1 + d− pm(0|0)d)tk

√
T

Tr
+ b+ (1 + d− pm(0|0)d)ti

√
T

Tr − tk

(18)

Since it is obvious that 1 + d− pm(0|0)d > 1, (18) is true.

(3)ti ≤ b
(pm(0|0)−p(0|0))d < tk. Thus, there is no MA before job i is processed (in

position r or position r + 1) and an MA is inserted before job k is processed (in

position r or position r + 1). (14) can be written as:

(1 + d− p(0|0)d)ti

√
T

Tr
+ b+ (1 + d− pm(0|0)d)tk

√
T

Tr − ti

≤ b+ (1 + d− pm(0|0)d)tk

√
T

Tr
+ (1 + d− p(0|0)d)ti

√
T

Tr − tk

(19)

Because it is obvious that 1 + d− p(0|0)d > 0, (19) can be written as:√
T
Tr
−
√

T
Tr−tk

tk
T

≤ 1 + d− pm(0|0)d

1 + d− p(0|0)d

√
T
Tr
−
√

T
Tr−ti

ti
T

(20)

As p(0|0) < pm(0|0), 1+d−pm(0|0)d
1+d−p(0|0)d < 1, inequality (20) is true.

The above analysis proves that interchanging jobs i and k increases the expected

processing times at the rth and (r + 1)th positions. The partial sequence from the 2nd

position of an optimal scheduling solution follows the SPT rule.

Proposition 1 has been proven.

In Proposition 1, it is assumed that p(0|0) +p(1|1) > 1 and pm(0|0) +pm(1|1) > 1.

It can be proved that Proposition 1 is also valid for any other scenarios of transition

probabilities. For the sake of simplification, the proofs are not provided here.
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4.2 Objective evaluation

With Proposition 1, potential job sequences can be enumerated by assigning an

arbitrary job in the first position and the sequence from the 2nd position follows the

SPT rule. An optimal solution is the one with minimum Z.

Denote sj to be the job sequence in which the jth job in the SPT sequence is assigned

in the first position. Let S be the set of job sequences, S = (s1, s2, ..., sN ). It is obvious

that s1 is the SPT sequence. Proposition 2 is proposed to find the optimal sequence

(denote as s∗) in S.

Denote Z(SPT) as the makespan of the SPT sequence, and Z(sj) as the makespan

of sequence sj .

Proposition 2. If Z(sj) > Z(SPT), then Z(sj+1) > Z(SPT), j ≥ 2.

Proof

From equation (8):

Z(sj) = tj1 + ∆tj12 + ∆tj23 + ...+ ∆tj(j−1)j + ∆tj(j+1)(j+1) + ...+ ∆tjNN

Z(SPT ) = tj11 + ∆tj22 + ∆tj33 + ...+ ∆tj(j−1)(j−1) + ∆tjj + ∆tj(j+1)(j+1) + ...+ ∆tjNN

Thus,

∆Z = Z(sj)− Z(SPT )

= tj1 −∆tjj + (∆tj12 − tj11) + (∆tj23 −∆tj22) + ...+ (∆tj(j−1)j −∆tj(j−1)(j−1))

= tj −∆tj

√
T

T −
∑j−1

1 tjn
+ [∆tj1(

√
T

T − tj
− 1) + ∆tj2(

√
T

T − tj − tj1
−

√
T

T − tj1
)+

...+ ∆tjj−1(

√
T

T −
∑j−2

1 tjn
− tj −

√
T

T −
∑j−2

1 tjn
) + (∆− 1)tj1 ]

=
T

∆
− T

√
T

T −
∑j−1

1 tjn
+ tj1

[
√

T
T−tj −

√
T
T ]

tj
T

+ tj2

[
√

T
T−tj−tj1

−
√

T
T−tj1

]

tj
T

+ ...+

tjj−1

[
√

T

T−tj−
∑j−2

1 tjn
−
√

T

T−
∑j−2

1 tjn
]

tj
T

+
(∆− 1)tj11

tj
T

=
T

∆
−
√

T

T −
∑j−1

1 tjn
+ f(

tj
T

) +
(∆− 1)tj11

tj
T

where T =
∑n

j=1 tj , f(
tj
T ) = tj1

[
√

T
T−tj

−
√

T
T

]

tj
T

+ tj2 [

√
T

T−tj−tj1
tj
T

−

√
T

T−tj1
tj
T

] + ...+

tjj−1

[
√

T

T−tj−
∑j−2

1 tjn

−
√

T

T−
∑j−2

1 tjn

]

tj
T

+
(∆−1)tj11

tj
T

.

When the jth processed job of SPT sequence is identified, T
∆−

√
T

T−
∑j−1

1 tjn
+

(∆−1)tj11
tj
T

is a constant. Let g denote
tj
T . With Proposition 1, f(g) is an increasing convex

function (proof shown in the Appendix) of g for g > 0. Thus,

Z = f(g) + constant.

Zsj = f(
tj
T ) + constant.
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Zsj+1 = f(
tj+1

T ) + constant.

If Z(sj)− Z(SPT ) > 0, then Z(sj+1)− Z(SPT ) > 0.

Proposition 2 has been proven.

4.3 Dynamic optimisation algorithm

The complete dynamic optimisation algorithm can be found in Algorithm 2 (shown

in Table 4).

Table 4: Algorithm of the dynamic optimisation algorithm
Algorithm 2. Dynamic optimisation algorithm

START

1. Generate a SPT sequence.

2. Enumerate job sequences based on Proposition 1, get S.

3. Apply Binary search method to find the job sequence sj which satisfies Z(sj) < Z(SPT)

and Z(sj+1) > Z(SPT).Let Sj ={s1, s2, ..., sj}.
4. Obtain the corresponding maintenance decision for Sj based on Lemma 1 and Lemma 2.

5. Apply Algorithm 1 to calculate the makespan of each job sequence s in Sj .

6. Select the job sequence with the minimum Z as the optimal job sequence s∗.

7. Return s∗.

END

Because of the Binary search method, the dynamic optimisation algorithm has a

complexity of O(logN).

5 Computational experiments

Let us present the computational results and analyses. The dynamic optimisation

algorithm is implemented in MATLAB R2017b on a personal computer with an Intel R©
CoreTM i7-7700HQ(2.8GHZ) CPU and 8GB RAM memory under Windows 10 operating

system.

5.1 Generation of instances

Data from a real valve workshop in China Astronautics were used to evaluate the

performance of the proposed dynamic optimisation algorithm. The machine performing

the process of milling the valve housing parts was chosen as the research subject in our

experiments.

The analysis of the job processing times showed that their deviation has a changing

trajectory. For example, Figure 3 shows the deviation of the processing time of each

job in the job sequence for an instance. In every instance, there are a certain number

of points that deviate from the trajectory.

Based on the analysis of 39 sets of actual processing data on the milling machine, it

was established that the machine has two conditions. The transition probability between
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Figure 3: Deviation of job processing times in an instance

the machine conditions can be estimated by a Hidden Markov Model (HMM). A HMM

is typically defined by a triplet λ = {π,A,K}:

• π = {πm|m = 1, 2}, where πm is the probability of the machine being in state m

before starting production,

• A = {amc|1 ≤ m, c ≤ 2}, where amc is the transition probability from state m to

state c,

• K = {km(oj)|m = 1, 2}, where km(oj) is the emission probability of oj being ob-

served at state m.

After collecting the actual job processing times, we could obtain oj , the deviation of

the actual processing time tij from its nominal value ti. Then, the observation sequence

of HMM is O = {o1, o2, ..., oN}. In a HMM, given observation sequences, the transition

probabilities amc can be calculated by the Baum-Welch algorithm (Baum et al., 1970).

To implement the Baum-Welch algorithm, forward variables αj(m) and backward

variables βj(m) are defined. Forward variables αj(m) correspond to the joint probability

of the following two events at position j: Subsequence {o1, o2, ..., oj} is observed and the

machine is in statem. Thus, αj(m) = P (o1, o2, ..., oj ,m|λ) =
[∑2

c=1 αj−1(c)acm

]
km(oj),

j = 2, 3, ..., N . Backward variables βj(m) correspond to the joint probability of the fol-

lowing two events at position j: Subsequence {oj+1, oj+2, ..., oN} is observed and the ma-

chine is in statem. Thus, βj(m) = P (oj+1, oj+2, ..., oN ,m|λ) =
∑2

c=1 amckc(oj+1)βj+1(c),

j = 1, 2, ..., N .

As described in Algorithm 3, the Baum-Welch algorithm is implemented in a recur-

sive way to estimate the transition probabilities A of the HMM.

Out of the 39 sets of data, 34 sets were used as the training data to the HMM. The

rest five sets of data were used as the validation sets. After application of Baum-Welch

algorithm, the HMM obtained from the training sets is applied to the validation sets and

the average error is less than 5%. The transition probabilities of machine state are set as

p(0|0) = 0.78, p(1|0) = 0.22, p(1|1) = 0.60, p(0|1) = 0.40. The transition probabilities

after an MA are set as pm(0|0) = 0.85, pm(1|0) = 0.15, pm(1|1) = 0.10, pm(0|1) = 0.90.

15



Table 5: Baum-Welch algorithm for calculating transition probability

Algorithm 3. Baum-Welch algorithm

START

1. Input observation sequence O = {o1, o2, ..., oN}.
2. Randomly generate initial value of parameters: a

(0)
mc ∈ (0, 1), km(oj)

(0) ∈ (0, 1), π
(0)
m ∈ (0, 1).

3. Set l = 0

4. Do

5. l = l + 1

6. Calculate forward variables αj(m) and backward variables βj(m), j = 1, 2, ..., N

7. Estimate values of a
(l)
mc, km(oj)

(l), π
(l)
m using amc =

∑N−1
j=1 αj(m)amckc(oj+1)βj+1(c)∑N−1

j=1 αj(m)βj(m)
,

km(h) =

∑N
j=1,oj=vh

αj(m)βj(m)∑N
j=1 αj(m)βj(m)

, πm = α1(m)β1(m)∑2
c=1 α1(c)β1(c)

8. Loop Until the values of a
(l)
mc, km(oj)

(l) and π
(l)
m converge

9. Output the value of transition probability amc

END

Different instances were randomly generated based on the information we obtained

from the above workshop. Parameters of the instances are described below.

1) The number of jobs in a batch ranges from 20 to 100.

2) There are different types of products to be processed. The processing times were

generated from a normal distribution with mean value µ = 150 and standard

deviation σ = 20 (unit:min).

3) Other parameters are defined as follows: Maintenance time b = 12min; deterio-

rating rate d = 0.2.

5.2 Algorithm performance evaluation

Firstly, the performance of the dynamic optimisation algorithm is analyzed by solving

real-size problems. There are nine sets with twenty randomly generated instances in each

set. Table 5 reports the optimal makespan and the average times of maintenance for

different instances.

Table 6: Performance of the algorithm for instances with different number of jobs.
Set No. N CPU(s) Makespan(min) Average times of MAs

1 20 0.02 5224 1.67

2 30 0.03 8116.6 2.71

3 40 0.05 10954 3.62

4 50 0.09 13928 4.72

5 60 0.12 16904 5.65

6 70 0.20 19803 6.60

7 80 0.31 22826 7.66

8 90 0.30 25841 8.60

9 100 0.44 28799 9.69

Table 6 shows that optimal solutions can be obtained within a second for instances
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up to 100 jobs. As expected, the times of MAs increases with the number of jobs. To

evaluate our dynamic algorithm for solving real problems, we compare its performance

with two maintenance strategies that are usually applied in the workshop. They are:

1) No MAs (NOMA): Maintenance is not considered in this strategy. The solution

is obtained by solving the dynamic algorithm with b = 0;

2) MAs with Periodic Intervals (MAPI): An MA is systematically inserted into the

production sequence after a given number of jobs. The production sequence

is obtained by inserting MAs with periodic intervals in an optimal sequence of

NOMA.

The same sets of instances were solved by the three algorithms respectively. The

objective function value obtained from our dynamic algorithm is used as the benchmark

(denoted as Z) for the other two strategies. The deviations are calculated as:

DevNOMA =
ZNOMA − Z

Z
× 100%, DevMAPI =

ZMAPI − Z
Z

× 100%.

where ZNOMA and ZMAPI are objective function values of no MAs strategy and MAs

with periodic intervals strategy respectively.

Table 7 summarizes the average results for the nine sets of instances (where Z
(3)
MAPI ,

resp. Z
(10)
MAPI , is the objective function of MAPI with an MA inserted every three jobs,

resp. every ten jobs, and Dev
(3)
MAPI and Dev

(10)
MAPI are the corresponding deviations).

Both the average objective function values and the times of MAs are compared.

Table 7: Comparison with different maintenance strategies
Dynamic algorithm NOMA MAPI Deviation

Set N Z Times ZNOMA Times Z
(3)
MAPI Times Z

(10)
MAPI Times DevNO Dev

(3)
MA Dev

(10)
MA

No. (min) of MAs (min) of MAs (min) of MAs (min) of MAs MA(%) PI(%) PI(%)

1 20 5224 2 5245.1 0 5291.6 6 5238.9 2 0.40 1.29 0.29

2 30 8116.6 3 8154.1 0 8213.8 10 8145.2 3 0.46 1.20 0.35

3 40 10954 4 11010 0 11109 13 10990 4 0.51 1.42 0.33

4 50 13928 5 13996 0 14111 16 13979 5 0.49 1.31 0.37

5 60 16904 6 16994 0 17155 20 16977 6 0.53 1.48 0.43

6 70 19803 7 19913 0 20107 23 19902 7 0.56 1.54 0.50

7 80 22826 8 22971 0 23194 26 22954 8 0.64 1.61 0.56

8 90 25841 9 26004 0 26248 30 25989 9 0.63 1.58 0.57

9 100 28799 10 29013 0 29308 33 28981 10 0.74 1.77 0.63

The following observations can be made:

1) Comparing with the NOMA strategy, our dynamic algorithm performs better

in terms of makespan even though conducting maintenance actions takes extra

time. The average deviation increases steadily with the number of jobs (from

0.40% to 0.74%). The reason is that by conducting maintenance actions during

production, the probability of the machine staying at the stable state is higher.

Thus, the expected processing times of the jobs after the MA are shorter. In

other words, the processing efficiency of the machine is improved.

2) Our dynamic algorithm also outperforms the MAPI strategy in terms of makespan.

Even if there are MAs at the same times than the dynamic algorithm and MAPI
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with every ten jobs in each set, the average deviation is between 0.29% and 0.63%.

To further analyze the impact of different maintenance strategies on makespan,

ANOVA test is conducted to evaluate the performance of the proposed dynamic al-

gorithm in a statistical sense. ANOVA test is an analysis of variance for significance

test. The test result may reject or support the idea that dependent variables are influ-

enced by independent variables. In ANOVA test, the null hypothesis is that all group

means are exactly equal, and the alternative hypothesis is that not all group means are

equal.

Table 8: One-Way ANOVA test
Sum of Degrees of Mean F P-value F0.05-distribution

Squares Freedom Square

Between Groups 736 229 2 368 114.6 3.482225 0.037427 3.158843

Within Groups 6 025 610 57 105 712.5 N/A N/A N/A

Total 6 761 839 59 N/A N/A N/A N/A

In Table 8, F is the ANOVA test statistic that shows how likely the makespan means

of three algorithms are equal.

It can be observed in Table 8 that F > Fa and P-value < 0.05. It indicates that the

null hypothesis is rejected, in favor of alternative hypothesis. Therefore, at a significance

level of 0.05, the proposed dynamic algorithm has statistical significance on makespan

compared with NOMA and MAPI.

In the following, the average deviation of the objective functions obtained with five

typical intervals for MAPI are compared to the optimal solution obtained from the

dynamic algorithm. Figure 4 shows this average deviation for all instances for MAPI

with maintenance actions inserted every three jobs, five jobs, ten jobs, fifteen jobs and

twenty jobs.

Figure 4: Comparison of different maintenance strategies

Figure 4 shows that:

1) The deviations of the MAPI strategies over the dynamic algorithm increase with
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the number of jobs. For example, the deviation of the MAPI strategy with MAs

inserted every five jobs increases from 0.66% to 1.07%.

2) While conducting maintenance improves the processing efficiency of the machine,

more frequent maintenance actions induce an increase of the makespan. The

same results are observed for different instance sizes. As the interval of MAPI

increases from 3 to 20 jobs, the deviation significantly decreases in each set. For

example, for an instance with 80 jobs, the deviation decreases from 1.61% to

0.36% when the interval of MAPI increases from 3 to 20 jobs.

The managerial insight of the above analysis for the workshop is to determine the

appropriate maintenance intervals such that the balance between keeping processing

efficiency of the machine and improving machine throughput can be achieved.

5.3 Sensitivity Analyses

Sensitivity analyses were also conducted by varying the following two parameters:

(1) the transition probability of the machine state, and (2) the deteriorating rate of the

processing times.

5.3.1 Transition probability of machine state

Two scenarios with different transition probabilities are considered and details are

given in Table 2.

In scenario 1, the transition probability satisfies p(0|0) + p(1|1) > 1 and pm(0|0) +

pm(1|1) ≤ 1. In this case, the machine has a higher transition probability to stay in a

stable state. In scenario 2, the transition probability satisfies p(0|0) + p(1|1) > 1 and

pm(0|0) + pm(1|1) > 1. The machine has a lower transition probability to stay in a

stable state.

Figure 5(a) shows the average deviation of the makespan under the two different

scenarios and is calculated as:

Dev =
Z2 − Z1

Z1
× 100%,

where Z1 and Z2 are the makespan for scenario 1 and scenario 2 respectively. Figure

5(b) shows the average times of MAs.
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(a) Deviation of makespan (b) Average MAs times

Figure 5: Sensitivity analysis to transition probability

Figure 5(a) shows that, as the number of jobs increases, the deviation of makespan

gradually rises from 3.59% to 3.88%. The reason is that more MAs are needed in scenario

2.

Figure 5(b) shows that much more maintenance actions are needed in scenario 2.

For example, for an instance with 90 jobs, there are more than 8 MAs. That is, an MA

is needed before the job is processed for almost one fifth of the jobs. In this case, a

major preventive maintenance is strongly recommended.

5.3.2 Deteriorating rate of processing times

For different machines, the deteriorating rate of processing times is different. To

evaluate its impact on makespan, three levels of deteriorating rates are considered in

this set of experiments, namely low deteriorating rate (d = 0.2), medium deteriorating

rate (d = 0.3), and high deteriorating rate (d = 0.4).

Figure 6(a) illustrates the average deviation of makespan with three different dete-

riorating rates. Figure 6(b) illustrates the average times of MAs. The makespan with

d = 0.2 is used as the benchmark to calculate the deviations:

Dev1 =
Zd2 − Zd1

Zd1
× 100%, Dev2 =

Zd3 − Zd1

Zd1
× 100%

where Zd1 , Zd2 and Zd3 are the makespan for low deteriorating rate, medium deterio-

rating rate and high deteriorating rate respectively.
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(a) Deviation of makespan (b) Average MAs times

Figure 6: Sensitivity analysis to different deteriorating rates

It can be observed in Figure 6 that:

1) With higher deteriorating rate (d), the average deviation of makespan is larger.

This tendency becomes less apparent for larger size problems. When d increases

from 0.2 to 0.3, the deviation gradually declines from 2.49% to 1.46%. When d

increases from 0.2 to 0.4, the deviation declines from 3.99% to 2.92%. It reveals

that the deteriorating rate has a less significant impact on the processing time as

the number of jobs increases.

2) As d increases, more MAs are needed. For instances with 90 jobs, when d increases

from 0.2 to 0.3, ten more MAs are needed. And when d increases from 0.2 to

0.4, twenty-three more MAs are needed. It is obvious that the increasing of

deteriorating rate leads to more MAs to maintain processing efficiency as the

number of jobs increases.

In this study, we consider that the machine is at the middle stage of the bathtub

curve, and its reliability is at a stable level. Even so, the machine condition still has an

impact on processing efficiency. Our dynamic optimisation approach provides optimal

schedules by modifying the SPT sequence and inserting minor maintenance activities.

Since the transition probability of the machine condition to stay in a state stable is

higher after an MA, performing more maintenance actions help to maintain processing

efficiency. Thus, the machine is kept in a more stable state, and the proposed schedule

becomes more efficient for practical use. From the experimental results, if the times

of minor maintenance actions are large, then a major preventive maintenance action is

recommended to restore machine condition.

6 Conclusion

We have studied a single machine scheduling problem with machine conditions and

maintenance decisions derived from a valve manufacturing company. The processing

time of a job is assumed to be dependent on its position in the schedule and the ma-

chine conditions. Discrete machine states are defined via transition probabilities. An
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MDP model is formulated to minimize makespan. Optimality properties are analyzed,

based on which a dynamic optimisation algorithm is developed for solving real-world

problems by modifying the SPT sequence. Computational experiments demonstrate the

effectiveness and the efficiency of our dynamic algorithm to minimize makespan with

machine condition constraints. The performance of the dynamic algorithm is further val-

idated by comparing with two maintenance strategies. It is revealed that the makespan

can be reduced by 0.50% averagely by joint optimisation of production sequence and

maintenance decisions.

Sensitivity analyses provide valuable information on the impact of the state tran-

sition probability and the deteriorating rate on the optimized schedules. When the

transition probability of the machine staying in a stable state decreases, more mainte-

nance actions are needed to minimize the makespan. When the machine deteriorating

rate increases, the times of the maintenance actions increase. The managerial impli-

cation is twofold: 1) Considering machine conditions helps to maintain the processing

efficiency of the machine and makes the production schedule more practical; and 2) The

computational results help the workshop managers to make appropriate maintenance

decisions to improve the throughput of the machine.

An interesting extension of this research is to study the problem in a more complex

production environment, such as parallel machine scheduling and flow shop scheduling

problems where each machine may have different transition probabilities to indicate

machine conditions. The algorithm for the single machine problem developed in this

study could be embedded into a decomposition approach to quickly obtain good solutions

to be used in more complex systems.
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Appendix

1. Proof of Lemma 3.

Proof :

1) There is no MA between position j − 1 and position j.

From (4) and (6), the difference between C
′
j and C

′′
j is,

∆C = C
′
j − C

′′
j

= p(0|0)tij + (1− p(0|0))t
′
ij − (1− p(1|1))tij − p(1|1)t

′
ij

= (1− p(0|0)− p(1|1))tij .

It can be observed that tij ≥ 0, p(0|0) + p(1|1) > 1, ∆C ≤ 0.

2) An MA is inserted between position j − 1 and position j.

Let CMA
j be the expected completion time at position j (j = 1, 2, ..., N) if the

machine is in a stable state at the beginning of position j; and CMA
′

j be the expected

completion time at position j (j = 1, 2, ..., N) if the machine is in an unstable state at

the beginning of position j. From (5) and (7), the difference between CMA
j and CMA

′

j

is,

∆CMA = CMA
j − CMA

′

j

= b+ pm(0|0)tij + (1− pm(0|0))t
′
ij − b− (1− pm(1|1))tij − pm(1|1)t

′
ij

= (1− pm(0|0)− pm(1|1))tij .

It can be observed that tij ≥ 0, pm(0|0) + pm(1|1) > 1, ∆CMA ≤ 0.

Lemma 3 has been proven.

2. Proof of Proposition 2.

In proposition 2, f(g) = (c−g)−
1
2−c−

1
2

g is an increasing convex function.
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Proof :

Le us assume that f(g) = (c−g)−
1
2−c−

1
2

g is an increasing convex function, and so is

−f(c − g) = g−
1
2−c−

1
2

g−c . Denote g1 > g2 > 0, f(g1) − f(g2) = f(c − g2) − f(c − g1) =

g
− 1

2
1 −c−

1
2

g1−c − g
− 1

2
2 −c−

1
2

g2−c .

With (g1 − c)(g2 − c) > 0, the fractional molecule of f(c − g2) − f(c − g1) can be

written as:

g
− 1

2
1 g2 − g

− 1
2

2 g1 + c−
1
2 (g1 − g2)− c(g−

1
2

1 − g−
1
2

2 )

which can be rewritten,

g
− 1

2
1 g

− 1
2

2 (g
− 3

2
2 − g−

3
2

1 ) + c−
1
2 (g1 − g2)− c(g−

1
2

1 − g−
1
2

2 )

where g1 > g2 > 0, then g
− 3

2
2 − g−

3
2

1 > 0, c−
1
2 (g1 − g2) > 0, and g

− 1
2

1 − g−
1
2

2 < 0.

According to the properties of increasing functions, g1 > g2 > 0 and f(c−g2)−f(c−

g1) > 0, −f(c− g) is an increasing function. Thus, the function f(g) = (c−g)−
1
2−c−

1
2

g is

an increasing convex function.

The proposition has been proven.

3. Deviation between MAPI and NOMA with different job intervals.

Figure 7 presents the deviation between MAPI and NOMA with job intervals for

MAPI from 1 to 100.

Figure 7: Comparison of MAPI and NOMA

Figure 7 shows that, with the increase of the job interval, the makespan obtained

with MAPI approaches the makespan obtained with NOMA. When the job interval for

MAPI is lower than 45 jobs, the deviation decreases from 0.8% to 0 in a fluctuating way.

Except for some job intervals, too many MAs make the makespan worse. When the job

interval is between 45 and 50 jobs, the deviation is below 0. When there are not too

many MAs, MAPI improves the machine condition and reduces the makespan. When

the job interval is greater than 50, there is only one MA in MAPI at a different job
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position. The later the MA is inserted from the 51th job position, the more significant

the effect of the maintenance action.
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