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Abstract

Directed links in cash flow networks affect the cross-section of risk premia through

three channels. In a tractable consumption-based equilibrium asset pricing model,

we obtain closed-form solutions that disentangle these channels for arbitrary di-

rected networks. First, shocks that can propagate through the economy command

a higher market price of risk. Second, shock-receiving assets earn an extra pre-

mium since their valuation ratios drop upon shocks in connected assets. Third,

a hedge effect pushes risk premia down: when a shock propagates through the

economy, an asset that is unconnected becomes relatively more attractive and its

valuation ratio increases.
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1. Introduction

The existence of network linkages between firms, industries, or countries can turn microe-

conomic shocks into aggregate fluctuations. Taking this as given, the question arises what

such a potential amplification implies for asset prices. In this paper, we develop a tractable

consumption-based equilibrium asset pricing model that allows us to trace risk premia back

to the core input of any network model, namely the individual entries of the connectivity

matrix. The fact that links in a network usually have a direction, i.e., it makes a difference

whether a link goes from node i to node j or the other way around, turns out to be of

first-order importance for expected excess returns.

We propose an equilibrium asset pricing model, in which negative cash flow shocks in

some assets can increase the probability of subsequent cash flow shocks in other assets.1 The

direction and the magnitude of this “timing of shocks” characterize the network in our model.

Based on a series expansion of the closed-form solution of our model, we prove for arbitrary

networks that directed links between cash flows affect the cross-section of risk premia through

three channels: (i) Shocks that can propagate through the economy command a higher market

price of risk (“spreading channel”). (ii) Shock-receiving assets earn an extra premium for

spillover risk because their valuation ratios drop upon shocks in connected assets (“receiving

channel”). (iii) A hedge effect pushes risk premia down: when a shock propagates through the

economy, an asset that is unconnected becomes relatively more attractive and its valuation

ratio increases (“hedging channel”).2 The first two channels increase risk premia, while the

third one pushes them down, so that the overall impact of directed shock propagation on

risk premia depends on the tradeoff between these channels.

We disentangle the three channels for arbitrary directed networks. However, the in-

tuition behind them is more easily understood by a stylized example. Suppose there are

three assets in the economy. Shocks can propagate from asset 1 to asset 2, but there are no

other links in the economy. In particular, asset 3 is unconnected to the rest of the economy.

The intuition behind the spreading channel is as follows. Shocks to the cash flow of asset

1 increase cash flow risk in the rest of the economy (here: asset 2). Hence, they are more

systematic and carry a higher market price of risk than the cash flow shocks of assets 2 and

3 which cannot propagate. The more an asset loads on cash flow risk of asset 1, the higher

1We will use the term “asset” to refer to a node in the network throughout the paper. Of course, nodes

can represent industries, countries, or any other economic unit.

2As we explain below, the hedging channel is different from the market clearing channel discussed, e.g.,

by Cochrane, Longstaff, and Santa-Clara (2008) and Martin (2013), which generally increases risk premia of

unconnected assets.
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is thus its risk premium.

The other two channels build on the general intuition that in equilibrium all price-

to-cash flow ratios in the economy respond to any cash flow shock that has the potential

to propagate. In the example, the valuation ratio of asset 2 decreases upon a shock to the

cash flow of asset 1 because the cash flow of asset 2 becomes riskier upon this shock. Shock-

receiving assets (here: asset 2) thus load on systematic risk factors (here: cash flow risk of

asset 1) and this constitutes the receiving channel outlined above.

The hedging channel can be illustrated through the unconnected asset 3. Upon a cash

flow shock of asset 1, the price-dividend ratio of asset 3 increases. This is because the entire

economy becomes riskier, but asset 3 is unaffected and therefore, in relative terms, less risky

as compared to the economy as a whole. Put differently, asset 3 is the best hedging device

against the propagation of shocks (here: shocks to the cash flow of asset 1). The positive

price reaction upon cash flow shocks pushes risk premia down for hedge assets (here: asset

3).

As our main theorem for arbitrary directed networks reveals, each asset’s risk premium

is affected by all three channels in general networks. The spreading and the receiving channel

are determined only by the direct linkages from and to a particular asset. In contrast, the

hedging channel is driven by all other linkages in the network. This has three important

implications. First, in a given network, the hedging channel operates through all assets

except the ones which cannot spread their shocks anywhere. Second, it is not possible to

construct a network in which the hedging channel is shut down completely. Third, the risk

premium of an asset also depends on the existence of cash flow linkages in very remote or

unconnected parts of the economy.

Our consumption-based equilibrium asset pricing model features an arbitrary number

of assets whose cash flows are linked via self and mutually exciting jump processes, and a

representative investor with recursive preferences. An initial negative cash flow shock of asset

i increases the probability of future cash flow shocks to connected assets j 6= i (and potentially

also to i itself), but it is unknown when (and if at all) these shocks will materialize. The

network thus manifests itself only indirectly via the dynamics of jump intensities as state

variables, but not directly through contemporaneous shocks to the levels of several cash

flows. Aggregate consumption is driven by all individual jumps, while a given jump affects

the cash flow of only one asset at a time. The representative investor cares about the risk

associated with future values of the state variables. Hence, the price-to-cash flow ratios of all

assets will react to a jump in any individual cash flow that has the potential to propagate,

and it is the structure of the network which determines the sign and the magnitude of these
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reactions.

Our shock propagation setup is motivated by the theoretical work of Acemoglu, Car-

valho, Ozdaglar, and Tahbaz-Salehi (2012), Acemoglu, Ozdaglar, and Tahbaz-Salehi (2017),

and Herskovic (2018) who show how intersectoral input-output linkages may turn microeco-

nomic shocks into aggregate fluctuations and macroeconomic tail risks. Moreover, the crucial

feature of our model that cash flow shocks to one node in the network affect other nodes only

with a certain time lag has also been documented empirically. In a recent paper, Carvalho,

Nirei, Saito, and Tahbaz-Salehi (2020) provide rich empirical evidence for such a delayed

propagation of cash flow shocks at the firm level in a natural experiment setting around the

nuclear incident of Fukushima in 2011. They summarize the intuition behind their result

as follows: “When faced with a supply-chain disruption, individual firms are unable to find

suitable alternatives in order to completely insulate themselves from the shock (at least in

the short run). This is consistent with an emerging literature [. . . ] that emphasizes the im-

portance of search frictions and relation-specific investments along supply chains.” (p. 34).

However, even though the cash flow shocks propagate with a time lag, equilibrium prices

react immediately to any shock in the economy since markets are efficient. It is precisely this

instantaneous reaction of prices to cash flow shocks propagating slowly over time that is key

for the risk premia in our equilibrium model.

By combining the exponentially affine equilibrium framework of Eraker and Shalias-

tovich (2008) with mutually exciting processes introduced into finance by Aı̈t-Sahalia, Cacho-

Diaz, and Laeven (2015), our model inherits the following two important properties. First,

mutually exciting processes naturally feature directed links, with a shock going from i to j,

but not necessarily vice versa. Second, the model belongs to the exponentially affine class

for which there is a well-developed solution theory, and thus it remains tractable with at

least semi-closed form expressions for all equilibrium quantities. A series expansion allows

us to rewrite the market prices of jump risk, jump exposures, and expected excess returns as

functions of row and column sums of the connectivity matrix for arbitrary directed networks.

We contribute to the literature in various other ways. Most importantly, we are the first

to trace risk premia back to individual entries of the connectivity matrix in an equilibrium

setup. Moreover, we dissect the three channels. In particular, the hedging channel is novel.

Through this channel network linkages can have a negative effect on expected excess returns,

and this effect is not limited to unconnected assets, but also prevalent for connected assets.

Finally, the model we propose is as complex as necessary, but as simple as possible to tease

out the three channels, while still allowing for closed-form solutions for arbitrary directed

networks. In particular, our three channels change signs or do not even exist in simpler mod-
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els. A model with contemporaneous jumps instead of sequential jumps lacks the spreading

channel and the hedging channel described above. In contrast, in our model with mutually

exciting jumps, all risk premia depend on all entries of the connectivity matrix. Replacing

recursive preferences by CRRA utility shuts down the spreading channel and switches the

sign of the receiving channel.

Without specifically considering network linkages, Martin (2013) also presents gen-

eral closed-form solutions for consumption-based asset pricing models with multiple risky

assets.3 His focus is on the market clearing channel arising from the assumption that aggre-

gate consumption equals the sum of all individual cash flows. The market clearing channel

implies that upon a negative shock to the cash flow of one asset, the price-dividend ratios

of all other assets decrease. Relaxing the market clearing assumption allows us to highlight

that the hedging channel we uncover is different from the market clearing channel in his

paper. Moreover, it facilitates tracing equilibrium quantities back to the individual entries

of the connectivity matrix. In our model, the price responses work through time variation in

the probability of future cash flow shocks which depends on these individual entries of the

connectivity matrix. In particular, the hedging channel leads to positive price reactions.

Several papers study the asset pricing implications of networks at the production level.

Herskovic (2018) highlights the role of sparsity and concentration of an entire network for

capturing aggregate risk. Gofman, Segal, and Wu (2018) determine a firm’s vertical position

in the supply chain and calculate a top-minus-bottom spread which they explain in a pro-

duction economy with layer-specific capital. In an international context, Richmond (2019)

relies on Katz centrality and finds that more central countries have lower interest rates and

currency risk premia. The purely empirical papers by Ahern (2013) and Aobdia, Caskey,

and Ozel (2014) link equity returns to trade flows between industries. However, none of

these papers focus explicitly on the impact of directedness and thus our findings are novel

to this literature.4 Besides our paper, Buraschi and Tebaldi (2019) are the only ones who

model cash flow networks. However, their focus is on systemic risk in banking networks and

multiple equilibria.

Another strand of literature analyzes networks estimated from return data. An example

3This strand of literature started with the seminal papers by Dumas (1992) and Cochrane, Longstaff,

and Santa-Clara (2008).

4Concerning production or supply chain networks, there is also a large strand of literature in economics,

in which the authors do not focus on the asset pricing implications of network structures. Examples include,

among others, Long and Plosser (1983), Gabaix (2011), Carvalho and Voigtländer (2015), Wu (2015), Ace-

moglu, Akcigit, and Kerr (2016), Barrot and Sauvagnat (2016), Wu (2016), Ozdagli and Weber (2019), and

Tascherau-Dumouchel (2018). Carvalho (2014) provides an excellent review of this literature.
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for such papers is Diebold and Yilmaz (2014). Many papers dealing with the measurement

of systemic risk also follow this route, e.g., Billio, Getmansky, Lo, and Pelizzon (2012) and

Demirer, Diebold, Liu, and Yilmaz (2017). The main difference between these papers and

ours is that we model the underlying fundamentals, i.e., cash flows, and prices and returns

are then endogenously determined in equilibrium.

Finally, Aı̈t-Sahalia, Cacho-Diaz, and Laeven (2015) are the first to discuss the role of

mutually exciting jumps in finance applications. The methodological framework of our equi-

librium model goes back to the paper by Eraker and Shaliastovich (2008). Besides, there is

an increasing literature about consumption-based asset pricing models with stochastic jump

intensities in the endowment process. For instance, Wachter (2013) and Gabaix (2012) ana-

lyze the equity premium puzzle and the excess volatility puzzle in economies with stochastic

intensities for rare consumption disasters, but do so in models with only one endowment

stream, which obviously does not lend itself to any network applications.5

The paper is structured as follows. In Section 2, we present the model, explain the

solution, and summarize our theoretical results for arbitrary directed network structures.

In Section 3, we dissect the three channels in a stylized three asset economy and in an n-

asset star network. We discuss the key assumptions underlying our model in Section 4. In

Section 5, we illustrate that our model features a centrality premium. Section 6 concludes.

2. Model

2.1. Fundamental Dynamics

We assume a Lucas endowment economy. Log aggregate consumption yt ≡ lnYt follows

dyt = µ dt+
n∑
j=1

K dNj,t,

5This framework is extended to a two-sector economy with jump intensities driven by correlated Brownian

motions in Tsai and Wachter (2016) and towards CDS pricing in Seo and Wachter (2018). Benzoni, Collin-

Dufresne, Goldstein, and Helwege (2015) analyze defaultable bonds subject to contagion risk in a general

equilibrium model. Nowotny (2011) investigates a one-sector economy with consumption following a self

exciting process. Branger, Kraft, and Meinerding (2014) show that self exciting processes can endogenously

evolve in a framework with learning about latent disaster intensities. A comprehensive summary of the

disaster risk literature is provided by Tsai and Wachter (2015).
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where µ is the constant drift rate and the Nj,t (j = 1, . . . , n) are self and mutually exciting

jump processes with constant jump sizes K < 0.6,7 Their stochastic jump intensities `j,t have

dynamics

d`j,t = κ
(

¯̀
j − `j,t

)
dt+

n∑
i=1

βj,i dNi,t. (1)

The coefficients βj,i represent discrete changes in `j,t induced by a jump in Ni,t. The param-

eters βj,i, collected in what we call the “beta matrix” or the connectivity matrix, completely

determine the structure of a given network.8 To preclude negative intensities we assume

βj,i ≥ 0 for all pairs (j, i).

There are n industries in the economy, indexed by i, with the following dynamics for

log cash flows yi,t:

dyi,t = µi dt+ LdNi,t (i = 1, . . . , n). (2)

Thus, the level of industry i’s cash flow is affected by the jump process Ni only.

Equations (1) and (2) formalize how the beta matrix gives rise to a dynamic shock

propagation mechanism by which negative shocks to one cash flow stream can spread across

the economy. With βj,i > 0, a downward jump in cash flow i immediately increases the jump

intensity of cash flow j by the amount βj,i. Once the increased intensity `j,t indeed leads

to a jump in cash flow j and there is a nonzero coefficient βk,j, the initial shock is passed

on to asset k and can in this way be propagated through the whole network. Note that our

specification is general in the sense that it also allows for “feedback loops”, i.e., depending on

the structure of the network, an initial shock to node i can, after a number of intermediate

steps, eventually reach node i itself again. Nevertheless, each jump only affects one cash flow

directly, so that network connectivity is captured exclusively via linkages in the dynamics of

6We do not include diffusion terms in the dynamics of aggregate consumption for parsimony. One could

of course generalize the model to incorporate additional types of diffusive risk premia, which are unrelated

to the network structure, as long as the framework remains affine.

7In principle, cash flows could also be subject to positive jumps. Our general model solution in Ap-

pendix A and the approximations in Appendix B are valid irrespective of the sign of K or L. The sign

restrictions matter only for the theorems and corollaries derived from there. In Appendix C, we briefly sum-

marize the impact of positive jumps on the three channels through which directed links in cash flow networks

affect the cross-section of risk premia.

8Our network is weighted in the sense that the links between nodes are represented by (positive) real

numbers, not just by the binary 0-1 information whether two nodes are linked or not.
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the state variables, not at the cash flow level itself.

In the model, nodes in the network represent industries or groups of firms whose earn-

ings are described by the cash flow processes. Thus, we refer to nodes as assets throughout

the paper. The cash flow jumps may be interpreted as natural disasters or policy shocks,

whose timing is uncertain, but to which investors assign a non-zero probability. The empirical

literature documents that such shocks can spread through the economy along supply chains

(see, e.g., Carvalho, Nirei, Saito, and Tahbaz-Salehi, 2020), and our network linkages can be

interpreted as arising from customer-supplier relations. Importantly, cash flow shocks can

propagate in customer-supplier networks with a certain delay. For instance, using a broad

data set of natural disasters, Barrot and Sauvagnat (2016) find that the sales of firms linked

to other firms affected by a disaster also decrease, but that this decrease materializes on

average between one and four quarters after the initial shock.

Therefore, the main ingredient of our asset pricing model are sequential cash flow

shocks. Suppose industry A experiences a negative cash flow shock, e.g., because its sales

go down, or because it faces an unexpected rise in production costs following a natural

disaster or a policy shock. How does this shock to industry A affect suppliers or customers

in industries B and C related to A via contractual obligations? Firms in industry A may

default on trade credit or delay the payment of bills (see Jacobson and von Schedvin, 2015;

Murfin and Njoroge, 2015). This can lead to cash flow shocks in the linked industries B

and C, possibly with a non-negligible delay (see Albuquerque, Ramadorai, and Watugala,

2015). Potential reasons for such a delay are search frictions as emphasized by Carvalho,

Nirei, Saito, and Tahbaz-Salehi (2020), or that corporate restructuring takes time and does

not necessarily affect the cash flow immediately.

Following this line of reasoning, the beta coefficients and the modeling of the network,

exclusively through the dynamics of state variables, can be interpreted as follows. The larger

βj,i, the more likely a cash flow shock in industry i is followed by a cash flow shock in industry

j. The amount of the increase in this likelihood is given exogenously. Thinking of the assets

as industries, the beta coefficients might represent industry characteristics that explain the

extent of shock propagation risk, e.g., the number of individual customer-supplier linkages of

firms across these industries or the strengths of such linkages. All entries in the beta matrix

are assumed to be non-negative values and not normalized, so that a change in one coefficient

does not require an adjustment in any other coefficient in the corresponding row or column.

Coefficients equal to zero indicate no direct dependence between the cash flows of the two

respective industries, e.g., because there is no customer-supplier relation between them.

The above interpretation is consistent with two other model assumptions. First, all cash
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flow and consumption jumps in our model are negative, because the propagation of cash flow

shocks is usually considered more relevant for negative than for positive shocks. For instance,

think of increased default risk after a natural disaster. The literature on financial frictions,

contagion, and systemic risk has largely documented that the amplification and propagation

of negative shocks during economic busts is very different from the gradual build-up during

economic booms (see, e.g., Bernanke, Gertler, and Gilchrist, 1996; Fostel and Geanakoplos,

2008; Brunnermeier and Sannikov, 2014). Second, the interpretation above implies that each

asset represents a substantial fraction of the economy. Therefore, it is natural to assume

that each cash flow jump is accompanied by a jump in aggregate consumption at the same

time. In this sense, the ratio L/K can be viewed as a rough proxy for the relative size of an

industry.

Mutually exciting jumps provide certainly not the only, but a very lean and reduced-

form modeling tool to capture exactly this propagation mechanism. An initial cash flow shock

in industry i increases the probability of future cash flow shocks to a connected industry j 6= i

(and potentially also industry i itself), but it is unknown when (and if at all) these shocks

will materialize. Stated differently, a cash flow shock of one industry changes the conditional

distribution of future cash flows of other industries, but does not affect the level of these cash

flows instantaneously. The structure of the jump processes in our model thus differs in a time

series and in a cross-sectional dimension from, for instance, contemporaneous jumps in many

assets. As an alternative to continuous-time mutually exciting processes, the time dimension

of shock propagation could also be represented by, e.g., a discrete-time vector autoregressive

model. However, this would lead to the problem that the sum of state variables following an

AR(1) processes does not necessarily follow an AR(1) process itself (see Granger and Morris,

1976), so that the standard affine solution machinery cannot be applied.

Our specification ensures that the vector Xt = (yt, `1,t, . . . , `n,t, y1,t, . . . , yn,t)
′ follows an

affine jump process.9 The joint process (Nt, `t) is Markov. In all applications of the model,

we assume κ > βi,i for i = 1, . . . , n, so that the vector of intensities ` is stationary.10

Remark 1. We do not link aggregate consumption to the sum of cash flows, but model

cash flows as claims on the risk factors in the consumption process. The difference between

aggregate consumption and the sum of all individual cash flows can be thought of, e.g., as

the investor’s implicit labor income. This specification is consistent with empirical data,

e.g., Santos and Veronesi (2006) point out that the sum of cash flows is only a fraction of

9See Appendix A for details.

10See, e.g., Aı̈t-Sahalia, Cacho-Diaz, and Laeven (2015) for details about mutually exciting processes, in

particular, concerning conditions for stationarity.
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aggregate consumption. This assumption also underlies asset pricing models like Campbell

and Cochrane (1999), Longstaff and Piazzesi (2004), Bansal and Yaron (2004), Backus,

Chernov, and Martin (2011), or Barberis, Greenwood, Jin, and Shleifer (2015).

An alternative approach to modeling economies with multiple Lucas trees has been pi-

oneered by Cochrane, Longstaff, and Santa-Clara (2008) and Martin (2013). These authors

assume that aggregate consumption equals the sum of all cash flows. The shares of each cash

flow in aggregate consumption become state variables and affect all equilibrium prices. These

state variables follow highly nonlinear dynamics, so that such a model cannot be solved using

the affine machinery applied in this paper.

We follow the former approach because only this framework, in conjunction with the

affine machinery, allows us to trace risk premia back to the core input of any network model,

namely the individual entries of the connectivity matrix, and to isolate the three channels

affecting risk premia. If one were to solve a general model in which the market clearing

channel and the three channels of our paper coexist and complement each other, i.e., a model

with multiple risky assets, market clearing and directed cash flow networks, one would have

to rely on numerical solutions. Such a numerical solution would only be valid for a given

network structure. In contrast, the series expansion of our closed-form solution allows us to

derive statements that hold for arbitrary directed network structures.

Our solution approach using first-order approximations which will be explained below

highlights two straightforward and very basic measures for the directedness of cash flow

shocks. The spreading capacity, denoted by spreadi, of asset i is defined as the respective

column sum of the beta matrix:

spreadi =
n∑
j=1

βj,i. (3)

Its receiving capacity, denoted by receivei, is defined as the respective row sum:

receivei =
n∑
j=1

βi,j. (4)

These measures have also been proposed by, e.g., Jackson (2008) and Diebold and Yilmaz

(2014) and represent the total strength of the network links going from node i to all other

nodes or vice versa. In the framework of our model, the higher spreadi, the more a shock to

cash flows of asset i increases the jump intensities of other nodes. The higher receivei, the
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more asset i is affected by other cash flow jumps somewhere in the economy.11

2.2. Model Solution

Our economy is populated by a representative agent with an infinite planning horizon. We

assume that the agent has recursive preferences so that the risk generated by state variables

(in this case the intensities `i,t) will be priced in equilibrium.

The derivation of the model solution closely follows Eraker and Shaliastovich (2008).12

They show that the continuous-time dynamics of the pricing kernel Mt can be written as

d lnMt = −δ θ dt− (1− θ) d lnRt −
θ

ψ
dyt,

where δ is the subjective time preference rate, γ is the coefficient of relative risk aversion,

ψ is the elasticity of intertemporal substitution (EIS), and θ = 1−γ
1− 1

ψ

. We assume γ > 1 and

ψ > 1, so that θ < 0. In particular, with γ > 1
ψ

, the representative agent has a preference

for early resolution of uncertainty.

The return on the consumption claim Rt satisfies the following continuous-time version

of the Euler equation

0 =
1

dt
Et

[
d
(
elnMt+lnRt

)
elnMt+lnRt

]
.

Rt depends on the dynamics of the log wealth-consumption ratio v and aggregate con-

sumption. To compute Rt, we use the Campbell-Shiller log-linear approximation d lnRt =

kv,0 dt + kv,1 dvt − (1− kv,1) vt dt + dyt with linearizing constants kv,0 and 0 � kv,1 < 1.

Employing the usual affine guess for the log wealth-consumption ratio vt, i.e., assuming

vt = A + B′ `t with B = (B1, . . . , Bn)′ and `t = (`1,t, . . . , `n,t)
′, we can solve numerically for

the coefficients A and B as well as for the linearizing constants (see Appendix A).

The dynamics of the pricing kernel are

dMt

Mt

= −rt dt−
n∑
i=1

MPJRi (dNi,t − `i,tdt), (5)

11Although we call spread and receive measure of directedness, they can of course also be applied in an

undirected network, i.e., in a network where the connectivity matrix is symmetric. In this case, we have

spreadi = receivei for all i.

12Details are presented in Appendix A.
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where rt is the equilibrium risk-free rate and MPJRi is the market price of risk for the jump

process Ni. These in general negative market prices of jump risk are given as

MPJRi = 1− exp

{
−γ K + kv,1 (θ − 1)

n∑
j=1

Bj βj,i

}
, (6)

with kv,1 = ēv

1+ēv
, where ēv is the steady-state wealth-consumption ratio. The exponential

term is a product of two factors. The first factor, exp {−γ K}, represents the compensation

for the immediate shock caused by the jump in cash flow i. Since K < 0 these market prices

of jump risk are in general negative. The second factor with the remaining exponents is

the compensation for the risk caused by variations in the state variables and is one of the

key features of our model. It depends on the impact of the intensities `i on the equilibrium

wealth-consumption ratio, represented by the components of the vector B.

In analogy to the return on the consumption claim, the returns Ri,t on the individual

cash flow claims satisfy the continuous-time Euler equations

0 =
1

dt
Et

[
d
(
elnMt+lnRi,t

)
elnMt+lnRi,t

]
.

The local expected excess return of asset i can be written as

EERi =
1

dt
Et [dRi,t]− rt =

n∑
j=1

`j,t MPJRj JEXPi,j, (7)

i.e., the risk premium of asset i is given by the sum of the products of jump intensity, market

price of risk, and jump exposures denoted by JEXPi,j.

These jump exposures are defined as the response of the return on asset i to a shock

in the cash flow of asset j, i.e.,

dRi,t = . . . dt+
n∑
j=1

JEXPi,j dNj,t.

To compute these, we proceed as in the case of the consumption claim, i.e., we employ

an affine guess for the log price-to-cash flow ratio of asset i, vi,t = Ai + C ′i`t with Ci =

(Ci,1, . . . , Ci,n)′, and use the Campbell-Shiller approximation d lnRi,t = ki,0 dt + ki,1 dvi,t −
(1− ki,1) vi,t dt+ dyi,t with linearization constants ki,0 and 0� ki,1 < 1. Again, we solve for

the coefficients Ai and Ci,j (j = 1, . . . , n) as well as for the linearization constants ki,0 and

ki,1 numerically (see Appendix A).
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Finally, the jump exposure of asset i to shocks in the cash flow of asset j is given by

JEXPi,j =

{
exp (L+ ki,1

∑n
k=1Ci,k βk,i)− 1 for j = i

exp (ki,1
∑n

k=1Ci,k βk,j)− 1 for j 6= i.
(8)

The exponential term in the exposure of asset i to jumps in its own cash flow, JEXPi,i, has

two components. First, there is the price change due to the immediate cash flow shock, rep-

resented via the jump size L. By assumption this component is only present in the exposure

of asset i to jumps in its own cash flow i because Ni exclusively affects yi, i.e., jumps in other

assets do not have a direct impact on the cash flow yi. The second term is a special feature

of models with recursive utility and captures the effect of a shock in cash flow j on asset i’s

price-to-cash flow ratio. For j 6= i, the exposure JEXPi,j only consists of this valuation ratio

effect.

Finally, the risk-free rate is given as

rt = Φ0 + Φ′1 `t,

with Φ0 and Φ1 given in Appendix A.

2.3. First-Order Approximations

The coefficients B and Ci in Equations (6) and (8) are the solutions of ordinary differential

equations given in Appendix A. They are non-linear functions of all the coefficients in the

network connectivity matrix β and cannot be given in closed-form. Therefore, there is also

no closed-form solution for the market prices of risk or the jump exposures as functions

of entries of the connectivity matrix just from Equation (6) or (8). However, motivated by

Carvalho, Nirei, Saito, and Tahbaz-Salehi (2020) and Walden (2019), we can derive theorems

through a first-order approximation. This implies that we summarize polynomial terms of

order 2 or higher in the network coefficients using the notation O (β2). Throughout the paper,

quantities in which O (β2) terms have been omitted are denoted by the superscript ∗∗. In this

section, we impose some mild parameter restrictions to dissect the three channels outlined

in the introduction.

Assumptions.

(A1) 0 < κ < 1

(A2) − ln(2) < K

(A3) L < K < 0

13



(A4) `1,t = . . . = `n,t = `t

(A1) is an assumption for convenience which allows us to shorten the proofs in the

appendix. (A2) puts a mild bound on the consumption jump size which is in line with the

estimates of Barro (2006). (A3) states that the cash flow jump size is more negative than the

consumption jump size. This is in line with the concept of levered consumption dating back

to Abel (1999). (A4) makes sure that cross-sectional differences can arise through network

linkages only.

We obtain the following theorem for the market prices of jump risk.

Theorem 1. The first-order approximation of asset i’s market price of jump risk is given

by

MPJR∗∗i = 1− exp

{
A+ B

n∑
j=1

βj,i

}
= 1− exp {A+ B spreadi} (9)

with A = −γ K

B =
(θ − 1) (1− exp {K (1− γ)})

θ
[
(1− κ)− 1

kv,1

] .

Assuming (A1), we obtain the following results:

(1) A > 0 and B > 0.

(2) If spreadi > spreadj, then |MPJR∗∗i | >
∣∣MPJR∗∗j

∣∣.
Proof: See Appendix B.1.

The second exponential factor on the right-hand side of (9) is one of the key features of

our model. The spreading capacity of an asset is the main driver of cross-sectional differences

in the equilibrium market prices of risk. The theorem states that the market prices of risk

for jumps associated with high spread assets are larger (in absolute terms) than those of low

spread assets (note that A and B do not depend on i). Throughout the paper, we will refer

to the spreading channel whenever equilibrium quantities involve B.

The economic intuition behind this key result is the following. By definition, high

spread industries have more links or stronger links to other industries, relative to their low

spread counterparts. Hence, cash flow shocks originating from a high spread industry have

a more pronounced impact on the rest of the economy, i.e., they increase the aggregate

risk of subsequent shocks by a larger amount. In models with stochastic cash flow jump
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intensities and recursive preferences, the wealth-consumption ratio is generally decreasing in

the aggregate jump risk.13 The wealth-consumption ratio in our economy thus reacts more

negatively to cash flow shocks of high spread assets. These shocks are thus more systematic

and carry a higher (i.e., more negative) market price of risk in equilibrium.

The theorem explicates that a necessary condition for this key result is that B > 0. This

condition is satisfied under some mild preference parameter restrictions like θ < 0, which

implies ψ > 1 (if γ > 1). In this situation, the intertemporal substitution effect dominates

the income effect, so that the investor wants to consume more and save less in bad times

with high jump intensities. Moreover, MPJRi is the larger, the larger the impact of jumps

in asset i on aggregate consumption, as measured by K.

For the jump exposures, we can formulate the following theorem.

Theorem 2. The first-order approximation of the jump exposures of asset i against shocks

to cash flow j is given by

JEXP∗∗i,j :=

{
exp

{
Di · βi,j + Ci · (spreadj − βi,j)

}
− 1 for j 6= i

exp {L+Di · βi,i + Ci · (spreadi − βi,i)} − 1 for j = i
(10)

with Ci =
1− exp {−K γ} − θ−1

θ
[1− exp {K (1− γ)}]

1− κ− 1
ki,1

Di =
1− exp {L−K γ} − θ−1

θ
[1− exp {K (1− γ)}]

1− κ− 1
ki,1

.

Assuming (A1), (A2), and (A3) we obtain

(1) Ci > 0 for all i and for γ > 2ψ − 1.

(2) Di < 0 for all i.

(3) If JEXP∗∗i,i, JEXP∗∗j,j < 0, ki,1 = kj,1, βi,i = βj,j, and spreadi > spreadj, then
∣∣JEXP∗∗i,i

∣∣ < ∣∣JEXP∗∗j,j
∣∣.

Proof: See Appendix B.2.

For j 6= i, the expression for JEXP∗∗i,j comprises two terms. The first one represents the

impact of the jump in cash flow j on the jump intensity of asset i, whereas the second term

captures the effect on the jump intensities of the other assets in the economy.

The first quantity, Di βi,j, describes a price effect through direct spillover of shocks

from j to i. A jump in asset j increases the jump intensity of asset i by βi,j. The reaction

13This has been shown, e.g., by Wachter (2013).
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of the price-dividend ratio of i due to this direct effect, exp {Di βi,j} − 1, is negative since

Di < 0. Throughout the paper, we will refer to this effect as the receiving channel.

In contrast, the second term, Ci · (spreadj − βi,j) = Ci ·
∑n

k=1,k 6=i βk,j, is positive, since

Ci > 0. This term represents what we label as hedging channel throughout the paper, namely

the effect of a jump in cash flow j on the price of asset i that arises through the propagation

of shocks to other parts of the economy. The economic intuition is as follows. In equilibrium,

the jump in asset j’s cash flow makes asset i relatively more attractive if the jump in j

spreads widely through the rest of the economy. Hence, asset i can be viewed as a hedging

device against shock propagation risk: its price-dividend ratio increases upon a shock in j

through this channel. I.e., if a jump in asset j’s cash flow makes the entire economy riskier,

the drop in the price-dividend ratio of asset i coming from the receiving channel is dampened

by this second term. The hedging channel is more pronounced for shocks originating from

high spread assets than from low spread assets. The hedging term is always positive, as long

as at least one βk,j 6= 0 (for k 6= i) and for mild restrictions on the preference parameters.

The two previous effects describe the response of the price-dividend ratio to shocks.

The ultimate sign of JEXP∗∗i,j depends on the trade-off between the positive hedging term,

Ci ·(spreadj−βi,j), and the negative receiving channel term, Di ·βi,j, and thus on the network

structure. For j = i, there is an additional term, the negative cash flow effect of a jump in i

on the price of asset i itself, represented by exp {L}−1. If L is chosen strongly negative, then

JEXP∗∗i,i will be negative. Since the hedging channel is more pronounced for a high spread

asset than for a low spread asset, we have that
∣∣JEXP∗∗i,i

∣∣ < ∣∣JEXP∗∗j,j
∣∣ for spreadi > spreadj.

Remark 2. Formally, the notion of an asset’s relative attractiveness to which we refer above

is linked to the quantity
`i,t∑
j `j,t

, i.e., the ratio of the jump intensities of cash flow i and of

aggregate consumption. In a pure jump model like ours, this ratio drives all asset prices and

risk premia because
Covt(Mt,yi,t)

Vart(Mt)
is a function of it. To see this, remember that according to

Equation (5) the pricing kernel Mt reacts to all jumps Nj (j = 1, . . . , N), whereas the cash

flow yi,t reacts to the jump Ni only, i.e., the covariance term is a function of `i,t. By the same

reasoning, the variance of Mt is a function of
∑

j `j,t. In case there is a jump in one of the

cash flows in the economy,
∑

j `j,t goes up if the jump spreads throughout the economy and

this increase is the larger the more widely the jump spreads. Suppose asset i is not affected

by this jump, i.e., `i,t remains unchanged. Then, the ratio
`i,t∑
j `j,t

goes down, asset i becomes

relatively more attractive, and asset i’s price-dividend ratio goes up.

Using the closed-form solutions derived for the market prices of jump risk and the jump

exposures, the proof of the following theorem for the expected excess return is straightfor-

ward.
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Theorem 3. Under the assumptions (A1) to (A4), the first-order approximation of asset i’s

expected excess return is given by

EER∗∗i,t = −`tAL − `t BL
n∑
j=1

βj,i︸ ︷︷ ︸
spreading channel

− `tADi
n∑
j=1

βi,j︸ ︷︷ ︸
receiving channel

− `tACi
n∑
j=1

n∑
k=1, k 6=i

βk,j︸ ︷︷ ︸
hedging channel

(11)

= −`tAL− `t BL spreadi − `tADi receivei − `tACi
n∑
j=1

(
spreadj − βi,j

)
= −`tAL− `t BL spreadi − `tADi receivei − `tACi

n∑
k=1, k 6=i

receivek.

The expected excess return comprises four terms. The first one, −`tAL = `tγKL, is

positive and represents the well-known risk premium for jumps in cash flows disregarding

any network features.

The second term, −`t BL spreadi, is positive. It captures the extra risk premium for

asset i arising through the spreading channel. If shocks to asset i can spread through the

economy, these shocks earn a higher market price of risk, as outlined above. This term is the

larger for high spread assets relative to low spread assets.

Also the third term, −`tADi receivei, is positive. It captures the additional risk pre-

mium arising through the receiving channel. If there is a link from some other assets j to

asset i, then jumps in j make i riskier, and this commands an extra premium in equilibrium

for holding asset i.

The last term, −`tACi
∑n

j=1

(
spreadj − βi,j

)
= −`tACi

∑n
k=1, k 6=i receivek, is negative

and represents the hedging channel. If a jump spreads widely throughout the economy,

this “diversification” makes the price-dividend ratio of asset i react less to the jump. In

equilibrium, this lowers asset i’s total risk premium.

Overall, we see that the risk premium of asset i depends on spread and receive of all

assets in the economy. The dependence on its own spreading capacity comes through the

spreading channel in the second term and the hedging channel in the fourth term. The

dependence on the spreading capacity of all the other assets in the economy is captured by

the fourth term. In particular, spreadi enters the above formula with two opposing signs:

high spread assets earn an extra risk premium through the spreading channel, but at the

same time a strong hedging channel lowers their risk premium. Therefore, we cannot make a

general statement about the impact of spread on the cross-section of risk premia. However,

we derive the following corollary.
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Corollary 1. If assumptions (A1) to (A4), and ki,1 = ki′,1 hold, we have Ci = Ci′ and

Di = Di′ and the difference between the expected excess returns of two assets i and i′ is given

by

EER∗∗i,t − EER∗∗i′,t = −`t BL (spreadi − spreadi′)− `tADi (receivei − receivei′)

+ `tACi (receivei − receivei′) . (12)

If spreadi > spreadi′ and receivei > receivei′, then EER∗∗i,t > EER∗∗i′,t.

All three terms in Equation (12) are positive. First, risk premia for high spread assets

are higher than risk premia of low spread assets through the spreading channel. Second, if

receivei is larger than receivei′ , the receiving channel is larger for asset i than for i′. Third,

for the same reason, the hedging channel pushing risk premia down is less pronounced for i

than for i′.

Finally, the theorem again shows that our two measures for the directedness of cash-

flow shocks, spread and receive, are consistent with the first-order approximation. Stated

differently, we have chosen them because the key building blocks of expected excess returns

are determined by row and column sums.

Remark 3. The hedging channel uncovered here is related to, but different from the market

clearing channel put forward by Cochrane, Longstaff, and Santa-Clara (2008) and Martin

(2013). The key quantity in a model in which the market for the consumption good has

to clear, is the dividend share
yi,t∑
j yj,t

. A negative shock to cash flow i reduces the dividend

share of asset i, whereas it mechanically increases the dividend shares of all other assets

j 6= i (assuming that all cash flow processes are locally uncorrelated). The cash flow risk of

asset i is then less systematic, while the risks of the other assets become more systematic.

Thus, asset i’s price-dividend ratio increases and the price-dividend ratios of all other assets

decrease upon this shock. Hence, the price reactions of all assets in the rest of the economy

have a negative sign.

In contrast, in our model, it is not the sum of the individual cash flows, but the aggregate

jump intensity which matters. The equilibrium price of asset i depends on
`i,t∑
j `j,t

, i.e., the

ratio of the jump intensities of cash flow i and of aggregate consumption. We then distinguish

between hedge and non-hedge assets, where hedge assets are those for which
`i,t∑
j `j,t

decreases

upon a negative cash flow shock in the economy. Upon such a shock, the hedge assets become

relatively more attractive and their price-dividend ratios increase, while the non-hedge assets

become relatively less attractive and their price-dividend ratios decrease. Hence, the price
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reactions of hedge assets have a positive sign, while those of non-hedge assets have a negative

sign.

For the sake of completeness, we also derive the following theorem for the risk-free rate.

Theorem 4. The first-order approximation of the risk-free rate is given by

r∗∗t = F + G
n∑
j=1

n∑
i=1

βi,j +H
n∑
j=1

`j,t + I
n∑
j=1

`j,t

n∑
i=1

βi,j

= F + G
n∑
j=1

spreadj +H
n∑
j=1

`j,t + I
n∑
j=1

`j,t spreadj

= F + G
n∑
i=1

receivei +H
n∑
j=1

`j,t + I
n∑
j=1

`j,t spreadj

where the coefficients F , G, H, and I are given in Appendix B.3. Assuming (A1), we obtain

(1) G < 0

(2) I > 0.

Proof: See Appendix B.3.

The risk-free rate is the negative of the conditional expectation of the pricing kernel.

Thus, all the channels affecting equilibrium valuation ratios show up in the risk-free rate as

well. In particular, every single network coefficient βi,j enters the formula with a positive and

with a negative sign (I > 0 and G < 0) so that we cannot make general statements about

the impact of the network structure on the risk-free rate.

3. Dissecting the Three Channels

The general theorems derived above hold for arbitrary directed networks, i.e., for any possible

network structure and any number of assets. In principle, each asset’s expected excess return

is affected by all three channels. The channels we derived and discussed in the previous

section are present in any directed network, but it is instructive to study them in more

stylized networks in which they can be dissected more easily. To achieve this, we frequently

assume βi,j > 0 and βj,i = 0.

19



3.1. A Stylized Three Asset Economy

In this section, we set n = 3 and choose the following beta matrix:

β =

 0 0 0

β2,1 0 0

0 0 0

 .

Shocks can propagate from asset 1 to asset 2, but there are no other links in the economy,

and there is no self-excitation, i.e., the diagonal of β is set to 0. Asset 3 is separated from

the rest of the economy, i.e., it can neither spread shocks to other assets nor does it receive

any shocks from them. The network is shown graphically in Figure 1.

We choose this network because it is the smallest possible network that has the following

two features: (i) There exists at least one link between two assets. (ii) There exists at least

one additional asset that has no ties to the link in (i). For simplicity, we assume that this

additional asset (asset 3) has no link at all to the rest of the economy (assets 1 and 2). That

implies that we can study the general equilibrium pricing effects of shock propagation on an

asset that has no fundamental link to the assets sending out or receiving the shock.

Table 1 summarizes the expected excess returns of the three assets and highlights the

contributions of the three channels to these risk premia. For the sake of illustration, we start

our explanations with asset 2 which receives shocks (from asset 1) in this economy, but does

not spread any shocks. We arrive at the following corollary.

Corollary 2. Under the assumptions (A1) to (A3), the first-order approximation of asset

2’s expected excess return is given by

EER∗∗2,t = −`2,tAL − `1,tAD2 β2,1︸ ︷︷ ︸
receiving channel

which results from the following first-order approximation of the jump exposures and the

market prices of jump risk

JEXP∗∗2,1 = exp {D2 β2,1} − 1 JEXP∗∗2,2 = exp {L} − 1 JEXP∗∗2,3 = 0

MPJR∗∗1 = 1− exp {A+ B β2,1} MPJR∗∗2 = 1− exp {A} MPJR∗∗3 = 1− exp {A}

where A > 0, B > 0, and D2 < 0 are given in Theorems 1 and 2.

The expected excess return is given by EER2 =
∑3

j=1 `j,t MPJRj JEXP2,j. Given the

sparse beta matrix, this sum collapses to the expression given in the corollary.
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As explained in the general framework, the first term represents the standard risk

premium for jumps in cash flows, −`2,tAL = `2,t γ K L. Jumps in the cash flow of asset 2

do not spread, i.e., do not change the distribution of any other cash flow throughout the

economy. Hence, the risk premium that asset 2 commands for loading on these cash flow

jumps, consists only of this standard term. This part of the premium is positive and arises

irrespective of any network linkages. Neither the exposure, JEXP∗∗2,2, nor the market price of

risk for jumps in cash flow 2, MPJR∗∗2 , depend on the structure of the network.

The second term is caused by the receiving channel, −`1,tAD2 β2,1. This positive term

reflects the additional risk premium which asset 2 commands. A shock to the cash flow of

asset 1 propagates to asset 2, i.e., it increases the intensity of subsequent cash flow shocks

in asset 2. Hence, the price-dividend ratio of asset 2 reacts negatively to shocks in the cash

flow of asset 1, i.e., JEXP∗∗2,1 < 0. The market price of jump risk MPJR∗∗1 is negative (like all

market prices of jump risk in our economy), and so this receiving premium is positive.

Finally, since asset 2’s price-dividend ratio does not react to shocks in asset 3, JEXP∗∗2,3 =

0, there is no additional premium to be earned for these shocks. To sum up, an asset which

is purely shock receiving, but does not spread its own shocks throughout the economy, earns

an additional positive risk premium in equilibrium.

Next, we turn to asset 3 which neither receives nor spreads any shocks.

Corollary 3. Under the assumptions (A1) to (A3), the first-order approximation of asset

3’s expected excess return is given by

EER∗∗3,t = −`3,tAL − `1,tAC3 β2,1︸ ︷︷ ︸
hedging channel

which results from the following first-order approximation of the jump exposures and the

market prices of jump risk

JEXP∗∗3,1 = exp {C3 β2,1} − 1 JEXP∗∗3,2 = 0 JEXP∗∗3,3 = exp {L} − 1

MPJR∗∗1 = 1− exp {A+ B β2,1} MPJR∗∗2 = 1− exp {A} MPJR∗∗3 = 1− exp {A}

where A > 0, B > 0, and C3 > 0 are given in Theorems 1 and 2.

The corollary illustrates one of the key results from our equilibrium model: Although

asset 3 is unconnected to the rest of the economy, its risk premium contains a term reflecting

the link from asset 1 to 2, −`1,tAC3 β2,1.

This term is negative and can be explained through the hedging channel. Upon a shock

to asset 1, the cash flow of asset 2 and thus also aggregate consumption becomes riskier, while
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the distribution of asset 3’s cash flows remains unchanged. In relative terms, the cash flow

risk of asset 3 then represents a smaller fraction of the overall cash flow risk in the economy.

Consequently, through the equilibrium pricing mechanism, the price-dividend ratio of asset

3 increases, JEXP∗∗3,1 > 0. Because of this positive exposure, asset 3 can be considered as a

hedging device against the risk of losses due to shock propagation from asset 1 to asset 2.

This makes asset 3 more attractive and lowers its expected return. Put differently, its risk

premium, EER∗∗3,t, is lower than the (hypothetical) jump risk premium which would arise in

an economy without any network linkages and cash-flow shocks only, −`3,tAL.

Finally, we present the results for asset 1.

Corollary 4. Under the assumptions (A1) to (A3), the first-order approximation of asset

1’s expected excess return is given by

EER∗∗1,t = −`1,tAL − `1,t BLβ2,1︸ ︷︷ ︸
spreading channel

− `1,tAC1 β2,1︸ ︷︷ ︸
hedging channel

which results from the following first-order approximation of the jump exposures and the

market prices of jump risk

JEXP∗∗1,1 = exp {L+ C1 β2,1} − 1 JEXP∗∗1,2 = 0 JEXP∗∗1,3 = 0

MPJR∗∗1 = 1− exp {A+ B β2,1} MPJR∗∗2 = 1− exp {A} MPJR∗∗3 = 1− exp {A}

where A > 0, B > 0, and C1 > 0 are given in Theorems 1 and 2.

Asset 1 is the shock-spreading asset in this economy. Besides the risk premium for

cash-flow jumps, its expected excess return contains two network terms.

First, asset 1 earns a positive extra risk premium −`1,t BLβ2,1 which arises through

the spreading channel. Out of the three possible cash flow jumps in this economy, only the

shocks to the cash flow of asset 1 have the potential to change the future distribution of cash

flows in the economy. Hence, the market price of risk for these shocks contains an additional

network component, B β2,1, which implies an extra risk premium on the cash flow jump size L

of asset 1. Overall, we thus see that shock-spreading assets command an extra risk premium

for the additional systematic risk they induce.

The second component,−`1,tAC1 β2,1, reflects the hedging channel we just discussed for

asset 3. Such a term also appears for asset 1 because the same equilibrium pricing mechanism

is at work here. When asset 1 is hit by a cash flow shock, the intensity of subsequent cash

flow shocks of asset 2 increases. Consequently, in relative terms the cash flow risk of asset
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1 then represents a smaller fraction of the overall cash flow risk in the economy. Hence,

the price-dividend ratio of asset 1 increases after a shock to its own cash flow. As already

explained for asset 3 above, the additional risk premium arising through the hedging channel

is thus negative.

This stylized example reveals another striking fact: The hedging channel is effective in

any network, even in those that exhibit only one link. Even if there would be no unconnected

third asset, the hedging channel would still show up in the expected excess return of asset

1, i.e., it can never be shut down completely.

Comparing all three assets with each other, we see that asset 3 has the lowest expected

excess return in the economy because the hedging channel pushes its risk premium down, i.e.,

EER∗∗1,t > EER∗∗3,t and EER∗∗2,t > EER∗∗3,t. However, we cannot rank assets 1 and 2 relative to

each other. Both assets command additional positive risk premia due to network connectivity,

but from distinct channels, and the sizes of these risk premia depend on the parametrization

of the model.

Finally, we acknowledge that we are discussing first-order approximations here, thereby

omitting higher order terms involving β2
2,1, β3

2,1 and so forth. It is this approximation which

allows us to uncover the structure of expected excess returns in such a comprehensive way.

Without it, we would have numerous additional interaction terms, in which the four key

channels would be intertwined and reinforce or weaken each other. However, the building

blocks are the ones we outlined above.

3.2. An n-Asset Star Network

The 3-asset network above allowed us to separate the four key channels driving expected

excess return. Such a clear separation is not possible in an arbitrary network with n assets.

For instance, the hedging channel, −`tACi
∑n

j=1

∑n
k=1,k 6=i βk,j, involves all entries of the

beta matrix except for the i-th row. Hence, it is difficult to isolate.

However, Equation (11) allows us to derive conditions for a sparse network with n assets

in which at least the spreading and the receiving channel can be disentangled. The spreading

channel, −`t BL
∑n

j=1 βj,i, appears in the risk premium of asset i whenever the i-th column

of the beta matrix has nonzero entries, whereas the receiving channel, −`tADi
∑n

j=1 βi,j,

shows up whenever there are nonzero entries in the i-th row. Both channels can thus be

separated in so-called star networks or core-periphery networks, where only one row or one

column has nonzero entries.
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For ease of exposition, we study the two following beta matrices:

βOS =


0 0 . . . 0

β∗ 0 . . . 0
...

...
. . .

...

β∗ 0 . . . 0

 βIS =


0 β∗ . . . β∗

0 0 . . . 0
...

...
. . .

...

0 0 . . . 0


In the outward star network (OS), shocks can only propagate from the core asset 1 to the

periphery assets 2, . . . , n. In the inward star network (IS), the core asset receives shocks

from the periphery assets. The networks are shown graphically in Figure 2.

Corollary 5. Under the assumptions (A1) to (A4), the first-order approximations for ex-

pected excess returns in the inward (IS) and outward (OS) star networks are given by

EEROS,∗∗
core,t = −`tAL − `t BL (n− 1) β∗ − `tACcore (n− 1) β∗

EEROS,∗∗
per,t = −`tAL − `tADper β∗ − `tACper (n− 2) β∗

EERIS,∗∗
core,t = −`tAL − `tADcore (n− 1) β∗

EERIS,∗∗
per,t = −`tAL − `t BLβ∗ − `tACper (n− 1) β∗.

As explained previously, we have A > 0, B > 0, Ci > 0, and Di < 0.

In the outward star network, the core asset earns an extra risk premium because it is the

only asset in the economy which can spread shocks. The periphery assets earn an additional

risk premium, −`tADper β∗, through the receiving channel. For both core and periphery

assets the risk premium is reduced through the hedging channel. While this is rather obvious

for the core asset, the hedge term for the periphery asset, −`tACper (n− 2) β∗, reflects the

fact that a jump in the cash flow of the core asset affects all periphery assets at the same

time. For instance, upon a cash flow shock of asset 1, the price-dividend ratio of asset 2

increases because the remaining assets 3, . . . , n also become riskier. That is why the hedge

term is multiplied by n− 2 in the above formula.

In the inward star network, the hedging channel does not affect the core asset because

it is the only asset in the economy that receives shocks. Instead, the receiving channel is very

pronounced here (multiplied by n-1). For the periphery assets, we see the spreading channel

and the hedging channel at work. Here, the hedging channel is actually the sum of two terms:

(i) −`tACper β∗, which describes the reaction of a periphery asset to its own shocks, and (ii)

−`tACper (n− 2) β∗, capturing the reaction to the shocks from the other n − 2 periphery

assets.
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4. Discussing Key Assumptions of the Model

Our results depend crucially on combining two key features, namely mutually exciting pro-

cesses for cash flows and recursive preferences. While the former capture the way how shocks

propagate through the economy, the latter relate to the pricing of these shocks. In the fol-

lowing, we document that both features are crucial to obtain our results.

4.1. Mutually Exciting Jumps versus Contemporaneous Jumps

In our equilibrium asset pricing model negative cash flow shocks in some assets can increase

the probability of subsequent cash flow shocks in other assets. The direction and the magni-

tude of this timing of shocks characterize the network in our model. We now compare our

results to the ones in a model in which this time dimension is disregarded.

Switching off the time dimension of shock propagation in our model translates into

the beta matrix being zero. The only way to then have some form of shock propagation is

through contemporaneous jumps. Assume that log aggregate consumption follows

dyt = µ dt+
n∑
j=1

Kj dNj,t,

but the dynamics for the log cash flows are now given by

dyi,t = µi dt+
n∑
j=1

Li,j dNj,t (i = 1, . . . , n)

with constant jump intensities ¯̀
j. A jump in cash flow j affects the level of all cash flows

for which Li,j 6= 0. We collect the jump sizes Li,j in a matrix, which can then be viewed as

the connectivity matrix. In Appendix D, we show that the solution of this model is nested

in our framework.

The main quantities of interest can be summarized as follows:

MPJRi = 1− exp {−γ Ki}

JEXPi,j = exp {Li,j} − 1

EERi =
n∑
j=1

`j [1− exp {−γ Kj}] [exp {Li,j} − 1] ≈ γ
n∑
j=1

`jKj Li,j

First of all, the market prices of risk do not depend on the structure of the network, hence
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there is no room for the spreading channel outlined previously. Second, jump exposures

depend on the network structure only through the exogenously assumed Li,j, which represent

the size of the co-jumps of cash flow i upon a jump in cash flow j. Although this extra

exposure to shocks originating from other assets does not involve any state variables, it can

be regarded as an analogue to the receiving channel described previously. However, the jump

exposures do not give rise to the hedging channel that we uncovered in the previous section.

The reason is that in this model valuation ratios are constant over time and, in particular,

not reflecting the dynamic shock propagation mechanism.

Structurally, risk premia in a model with contemporaneous jumps are similar to the

standard cash flow jump risk premia in a model without network linkages, i.e., the first term

in Equation (11). In particular, assets that are unconnected to the rest of the economy, like

asset 3 in the example in Section 3.1, do not command any additional risk premium for shock

propagation risk, neither positive nor negative because the hedging channel does not exist.

In contrast, in our proposed model with mutually exciting jumps, all risk premia depend on

all entries of the connectivity matrix.

4.2. Recursive Preferences versus CRRA Utility

The second key feature of our model is a representative investor with recursive preferences.

If we restrict the utility specification to constant relative risk aversion (CRRA), i.e., θ = 1,

then all formulas derived in Section 2 still hold. However the sign of D changes and we get

B = 0.

For the market price of jump risk described in Theorem 1 this implies MPJR∗∗i ≡
1− exp {A}. Hence, there is no effect of shock propagation through the spreading channel.

In Theorem 2, Di becomes positive if L > K γ. Hence, the receiving channel switches sign

from negative to positive. This switch goes back to a well-known flaw of CRRA utility:

valuation ratios increase if the economy as a whole becomes riskier.14 Put differently, if

there is a shock to the cash flow of asset i and this shock is propagated to asset j, then

asset j’s price-dividend ratio increases with CRRA utility, while it decreases with recursive

preferences. Finally, the coefficient C does not change sign. It depends on the riskiness of a

cash flow relative to all other cash flows in the economy, and such cross-sectional relations

between valuation ratios are not affected by CRRA utility.

To sum up, in Theorem 3, all terms related to shock propagation are either zero or

14The reason is that the income effect dominates the substitution effect in this case. This has already

been pointed out, e.g., by Bansal and Yaron (2004).
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negative. Shock propagation thus always decreases expected excess returns in an economy

with CRRA utility.

5. Centrality Premium

The empirical asset pricing literature on networks documents a relation between the cross-

section of expected excess returns and the degree of connectivity of an asset within the

network, referred to in the literature as network centrality. In his study, Ahern (2013) finds

that more central assets earn higher average returns. He focuses on undirected networks

characterized by symmetric beta matrices, and so we also restrict the analysis in this section

to this type of networks.

Our model provides an explanation for the main finding of Ahern (2013). Since the the-

orems obtained from our first-order approximation do not allow us to rank assets according

to their risk premia, we illustrate this with a meaningful example. Specifically, we analyze

the cross-section of expected excess returns in an economy in which assets differ in their

eigenvector centrality. Besides Ahern (2013), this centrality measure has been suggested by,

among others, Ahern and Harford (2014) and Ozsoylev, Walden, Yavuz, and Bildik (2014).

The general idea behind the concept of eigenvector centrality is that the centrality of a given

node depends on the centrality of its neighbors, so that a node is supposed to be central

when it has many neighbors, important neighbors, or both.

Eigenvector centrality is related to the eigenvalues and eigenvectors of the beta matrix

characterizing the network. Formally, let ϕ1, . . . , ϕn denote the eigenvectors of β, sorted

in descending order by their absolute values, and α ∈ Rn×n (with generic element αi,j)

the so-called centrality matrix containing the associated eigenvectors as columns. Then the

eigenvector centralities of the network nodes are given by the eigenvector associated with

the principal eigenvalue ϕ1, i.e., by the first column of α with elements αi,1 (i = 1, . . . , n).

We construct a beta matrix such that it represents an economy where all assets in

the network differ with respect to their eigenvector centrality. We can represent this matrix

β = αϕα−1 with ϕ as the diagonal matrix containing the eigenvalues of β. We choose

ϕ1 = 0.4 and ϕj = 0 for j = 2, . . . , 10. For the centrality vector, i.e., the principal eigenvector

α1 = (α1,1, . . . , α10,1) corresponding to the eigenvalue ϕ1, we choose the components as

α10,1 = 0.25 and then with step size s, αi,1 = αi+1,1 + s for i from 9 down to 2. Lastly, α1,1 is

chosen such that the vector has unit length. With our benchmark step size of s = 0.014, this

results in α1 = (0.382, 0.362, 0.348, . . . , 0.264, 0.25)′. The remaining eigenvectors are chosen
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such that the beta matrix is symmetric and the network is undirected.15 The top-left graph

of Figure 3 depicts the corresponding network graphically.

For the remaining parameters, we choose the following values: γ = 10, ψ = 1.5, µ =

0.05, K = −0.01, µi = 0.05, L = −0.10, κ = 0.8, ¯̀ = 0.10, and we evaluate the model at

`1,t, . . . , `n,t = ¯̀. Figure 3 shows in the top-right plot the expected excess returns computed

using the first-order approximations from Section 2.3, denoted by EER∗∗, and in the bottom-

left plot, the expected excess returns obtained from the numerical solution described in

Appendix A, denoted by EER. We see that the relation between eigenvector centrality and

expected excess returns is basically perfectly linear, both for the linear approximation and

for the numerical solution.16 This shows that our model can produce a centrality premium

in the spirit of Ahern (2013). Moreover, the bottom-right plot shows that the approximation

produces the same sorting as the numerical solution.17 This is consistent with the results

we obtain from regressing EER∗∗ on EER which yields the following parameter estimates,

t-stats (in parentheses), R2, and correlations:

EER∗∗i = 0.0011 + 0.0812 EERi + ui,

(437.5) (188.1)
R2 = 0.9998, Corr = 0.9999.

The approximated risk premia are an affine function of the exact risk premia. However, the

levels differ because there are no higher-order terms in the first-order approximation.18

6. Conclusion

We develop a tractable consumption-based equilibrium asset pricing model that allows us

to trace risk premia back to the core input of any network model, namely the individual

entries of the connectivity matrix. Based on a series expansion of the closed-form solution of

our model, we prove for arbitrary networks that directed links between cash flows affect the

cross-section of risk premia through three channels: a spreading channel, a receiving channel

15A sufficient condition for a symmetric beta matrix is that its eigenvectors form an orthonormal basis of

Rn, i.e., the eigenvector matrix is an orthogonal matrix. Further details are given in Appendix E.

16When we vary µ, K, µi, L, κ, ¯̀, ϕ, s, and α10,1, we find that this linear pattern is robust with respect

to the choice of these parameters.

17The approximation quality depends on the degree of precision with which the Leontief inverse of the

beta matrix can be approximated by an affine function of this matrix itself, see Appendices B.1.2 and B.2.2.

18In the Online Appendix, we document that this high approximation quality carries over to the market

prices of risk and the jump exposures.
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and a hedging channel. The first two increase risk premia, while the third one pushes them

down. The overall impact of directed shock propagation on risk premia depends on the

tradeoff between these channels.

We are the first to trace risk premia back to column sums and row sums of the con-

nectivity matrix in an equilibrium setup. In particular, the hedging channel is novel to the

literature. When a shock propagates through the economy, parts of the economy and aggre-

gate consumption become riskier for a prolonged time period. At the same time, an asset

that is unconnected and immune to this propagation becomes relatively more attractive.

Hence, its valuation ratio increases in equilibrium, so that network linkages have a negative

effect on its expected excess return.

The three channels that we uncover are the key building blocks of equilibrium risk

premia in any directed cash flow network. More broadly, our results highlight that the price

of an asset i can react to cash flow shocks of another asset j even though there is no

fundamental link between these two assets.

This key insight has consequences for empirical research. The risk premium of an asset

does not only depend on its own characteristics (e.g., its position in the network), but

also on the characteristics of all other assets, irrespective of whether they are connected or

unconnected. Hence, the results using an isolated approach, focussing only on the influence of

direct links between two assets, may be confounded by equilibrium effects such as the hedging

channel outlined here, when the rest of the economy is disregarded. In this, our findings also

touch upon the literature on banking networks, input-output networks or international trade

networks. Researchers who study return relations between countries, industries, firms, or

banks should make sure not to overlook the influence of links among the rest of the economy.

Data availability

No new data were generated or analysed in support of this research.
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Appendix

A. Model Solution

We derive the solution for a slightly more general version of the model presented in Section 2:

dyt = µdt+

n∑
j=1

Kj dNj,t,

d`j,t = κj
(

¯̀
j − `j,t

)
dt+

n∑
i=1

βj,i dNi,t,

dyi,t = µi dt+ Li dNi,t (i = 1, . . . , n).

To solve for the equilibrium we apply the approach proposed in Eraker and Shaliastovich

(2008). The vector X = (y, `1, . . . , `n, y1, . . . , yn)′ follows the affine jump process

dXt = µ (Xt) dt+ ξt dNt,

where we use the following notation:

• µ(Xt) =M+KXt

with M =



µ

κ1
¯̀
1

...

κn ¯̀
n

µ1

...

µn


and K =



0 0 . . . 0 . . . 0

0 −κ1 . . . 0 . . . 0
...

...
. . .

...
. . .

...

0 0 . . . −κn . . . 0

0 0 . . . 0 . . . 0
...

...
. . .

...
. . .

...

0 0 . . . 0 . . . 0


,

• `t = l0 + l1Xt

with l0 =


0
...

0

 and l1 =


0 1 . . . 0 0 . . . 0
...

...
. . .

...
...

. . .
...

0 0 . . . 1 0 . . . 0

,

• ξt =
(
ξ1,t, . . . , ξn,t

)
=



K1 . . . Kn

β1,1 . . . β1,n

...
. . .

...

βn,1 . . . βn,n

L1 . . . 0
...

. . .
...

0 . . . Ln


.
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The jump transform % (u) = E
[(
eu
′ξ1,t , . . . , eu

′ξn,t
)]′

is in our case simply equal to
(
eu
′ξ1,t , . . . , eu

′ξn,t
)′

,

since the jump sizes are all constant. We define the selection vectors δy, δ`i,t (i = 1, . . . , n), and δy,i

(i = 1, . . . , n) implicitly via dyt = δ′y dXt, d`i,t = δ′`,i dXt, and dyi,t = δ′y,i dXt.

The continuous-time version of the Euler equation can be written as

0 =
1

dt
Et

[
d
(
elnMt+lnRt

)
elnMt+lnRt

]
, (A.1)

where R is the return on the claim to aggregate consumption. The logarithm of the pricing kernel

has the dynamics

d lnMt = −δ θ dt− (1− θ) d lnRt −
θ

ψ
dyt.

We apply the usual affine conjecture for the log wealth-consumption ratio

vt = A+ (0, B1, . . . , Bn, 0, . . . , 0) Xt

= A+ (B1, . . . , Bn) `t,

and use the Campbell-Shiller approximation for the return on the consumption claim

d lnRt = kv,0 dt+ kv,1 dvt − (1− kv,1) vt dt+ dyt.

Combining the Campbell-Shiller approximation, the affine guess for vt, and the dynamics of the log

pricing kernel, we get

d
(
elnMt+lnRt

)
elnMt+lnRt

=
{
−δ θ + θ kv,0 − θ (1− kv,1)

(
A+B′Xt

)
+ χ′y (M+KXt)

}
dt

+
{
eχ
′
y ξt − 1

}
dNt, (A.2)

where χy = θ

[(
1− 1

ψ

)
δy + kv,1B

]
=

(
−θ

(
1

ψ
− 1

)
, θ kv,1B1, . . . , θ kv,1Bn, 0, . . . , 0

)′
,

and where 1 is a vector of ones with length n. We plug expression (A.2) into the Euler equation (A.1)

to get a system of equations for A and B:

0 = θ [−δ + kv,0 − (1− kv,1) A] +M′ χy + l′0 [% (χy)− 1] (A.3)

0 = K′ χy − θ (1− kv,1) B + l′1 [% (χy)− 1] . (A.4)
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We have two additional equations for the loglinearization constants kv,0 and kv,1:

0 = −kv,0 − ln kv,1 + (1− kv,1)
[
A+B′ µX

]
(A.5)

0 = A+B′ µX − ln (kv,1) + ln (1− kv,1) , (A.6)

where µX is a vector with i-th component E [Xi] if that expectation is finite and 0 otherwise. Due

to the presence of the mutually exciting jump terms, the long-run means ¯̀̄
i, i.e., the unconditional

expectations, are not equal to the respective mean reversion levels ¯̀
i, as it would be the case, e.g.,

for a standard square-root process. According to Aı̈t-Sahalia, Cacho-Diaz, and Laeven (2015), the
¯̀̄
i are the solution to the following system of equations:

¯̀̄
i =

κi ¯̀
i +
∑

j 6=i βi,j
¯̀̄
j

κi − βi,i
(i = 1, . . . , n). (A.7)

We assume κi > βi,i for i = 1, . . . , n to ensure that all the ¯̀̄
i are positive.

We solve the four equations (A.3), (A.4), (A.5), and (A.6) via an iterative procedure. We

initialize kv,1 by setting it equal to δ, then compute kv,0, A, and B. Given these we then compute

kv,1 again and iterate forward until the system converges.

The pricing kernel has dynamics

dMt

Mt
= −rt dt− [1− % (−λ)]′ (dNt − `tdt)

with λ = γ δy + (1− θ) kv,1B

= (γ, (1− θ) kv,1B1, . . . , (1− θ) kv,1Bn, 0, . . . , 0)′ ,

so that we can immediately read off the risk-free rate and the market prices of risk. The risk-free

rate is given as

rt = Φ0 + Φ′1Xt

with Φ0 = θ δ + (θ − 1)
[
ln kv,1 + (kv,1 − 1) B′ µX

]
+M′ λ− l′0 [% (−λ)− 1]

Φ1 = (1− θ) (kv,1 − 1) B +K′ λ− l′1 [% (−λ)− 1] .
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The market prices of jump risk are given as
MPJR1

...

MPJRn

 = [1− % (−λ)]

=


1− exp (−γ K1 + kv,1 (θ − 1) [B1 β1,1 + . . .+Bn βn,1])

...

1− exp (−γ Kn + kv,1 (θ − 1) [B1 β1,n + . . .+Bn βn,n])

 .

The return on the consumption claim is given by

dRt = {. . .} dt+ {% (δy + kv,1B)− 1} dNt

with jump exposures 
JEXPy,1

...

JEXPy,n

 = % (δy + kv,1B)− 1,

where

JEXPy,i = exp [Ki + kv,1 (B1 β1,i + . . .+Bn βn,i)]− 1

for i = 1, . . . , n.

To obtain the expected excess returns on the cash flow claims, we follow the same approach

as for the consumption claim. The continuous-time Euler equation again reads

0 =
1

dt
Et

[
d
(
elnMt+lnRi,t

)
elnMt+lnRi,t

]
.

Applying the Campbell-Shiller approximation

d lnRi,t = ki,0 dt+ ki,1 dvi,t − (1− ki,1) vi,t dt+ dyi,t

and the usual affine guess for the log price-to cash flow ratio

vi,t = Ai + (0, Ci,1, . . . , Ci,n, 0, . . . , 0) Xt

= Ai + (Ci,1, . . . , Ci,n) `t,
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we arrive at

d
(
elnMt+lnRi,t

)
elnMt+lnRi,t

=
{
−δ θ − (1− θ)

[
kv,0 − (1− kv,1)

(
A+B′Xt

)]
+ ki,0

− (1− ki,1)
[
Ai + C ′iXt

]
+ χ′y,i (M+KXt)

}
dt

+
{
eχ
′
y,i ξt − 1

}
dNt, (A.8)

where χy,i = ki,1Ci + δy,i − λ. Plugging (A.8) into the Euler equation yields a system of equations

for the coefficients Ai and Ci:

0 = −θ δ + (1− θ)
[
ln kv,1 − (1− kv,1) B′ µX

]
− ln ki,1 + (1− ki,1) C ′i µX

+M′ χy,i + l′0 [% (χy,i)− 1] (A.9)

0 = K′ χy,i + (1− θ) (1− kv,1) B − (1− ki,1) Ci + l′1 [% (χy,i)− 1] . (A.10)

The two additional equations for the log-linearization constants ki,0 and ki,1 are

0 = −ki,0 − ln ki,1 + (1− ki,1)
(
Ai + C ′i µX

)
(A.11)

0 = Ai + C ′i µX − ln ki,1 + ln (1− ki,1) . (A.12)

The return of the individual cash flow claim i is then given by

dRi,t = {. . .} dt+ {% (δy,i + ki,1Ci)− 1} dNt

so that the jump exposure of the return is thus given by

JEXPi,1
...

JEXPi,i
...

JEXPi,n


= [% (δy,i + ki,1Ci)− 1]

=



exp (ki,1 [Ci,1 β1,1 + . . .+ Ci,n βn,1])− 1
...

exp (Li + ki,1 [Ci,1 β1,i + . . .+ Ci,n βn,i])− 1
...

exp (ki,1 [Ci,1 β1,n + . . .+ Ci,n βn,n])− 1


.
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The expected return on the claim to cash flow i can then be written as

1

dt
Et [dRi,t] = − ln ki,1 + (1− ki,1) C ′i (µX −Xt) + [δi + ki,1Ci]

′ (M+KXt)

+ [% (δy,i + ki,1Ci)− 1] (l0 + l1Xt) .

The expected excess return is given by

1

dt
Et [dRi,t]− rt = (l0 + l1Xt)

′ [% (χy,i + λ) + % (−λ)− % (χy,i)− 1]

which can be represented as

1

dt
Et [dRi,t]− rt =

n∑
j=1

`j,t MPJRj JEXPi,j .

B. Approximation for General Network Structures

B.1. Market Prices of Jump Risk

B.1.1. First Approximation Step

Rewriting Equation (A.4) for κ1 = . . . = κn = κ and K1 = . . . = Kn = K gives the following

system of equations

0 = B1 θ [kv,1 (1− κ)− 1] + exp {K (1− γ) + θ kv,1 (B1 β1,1 + . . .+Bn βn,1)} − 1

...

0 = Bn θ [kv,1 (1− κ)− 1] + exp {K (1− γ) + θ kv,1 (B1 β1,n + . . .+Bn βn,n)} − 1

and translating this into matrix notation yields

1 = θ [kv,1 (1− κ)− 1] B + exp {K (1− γ)} exp
{
θ kv,1 β

′B
}
,

where now and in the following, the “exp” operator, applied to a vector, stands for element-wise

application of the “exp” operator to the vector.

Next, we apply the approximation exp (x) = 1 + x+O
(
x2
)

and solve for B:

B =

(
In×n +

exp {K (1− γ)}
1− κ− 1

kv,1

β′

)−1
1

θ [kv,1 (1− κ)− 1]
[1− exp {K (1− γ)}] +O

(
β2
)

(B.1)

where In×n denotes an n × n identity matrix and exp{K (1−γ)}
1−κ− 1

kv,1

< 0 since 1
kv,1

> 1 − κ (due to

1
kv,1

= 1+ēv

ēv > 1 > 1− κ for 0 < κ < 1).
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To conclude the first approximation step, we define

B∗ =

(
In×n +

exp {K (1− γ)}
1− κ− 1

kv,1

β′

)−1
1

θ [kv,1 (1− κ)− 1]
[1− exp {K (1− γ)}] . (B.2)

B.1.2. Second Approximation Step

Since the inverse term in Equation (B.1) has the structure of a Leontief inverse, (I −A)−1 =

I +A1 +A2 + . . ., we rewrite (B.1) as:

B =

In×n − exp {K (1− γ)}
1− κ− 1

kv,1

β′ −

(
exp {K (1− γ)}

1− κ− 1
kv,1

β′

)2

− . . .

 1

θ [kv,1 (1− κ)− 1]

× [1− exp {K (1− γ)}] +O
(
β2
)

=

(
In×n −

exp {K (1− γ)}
1− κ− 1

kv,1

β′

)
1

θ [kv,1 (1− κ)− 1]
[1− exp {K (1− γ)}]

+O
(
β2
)

(B.3)

To conclude the second approximation step, we define

B∗∗ =

(
In×n −

exp {K (1− γ)}
1− κ− 1

kv,1

β′

)
1

θ [kv,1 (1− κ)− 1]
[1− exp {K (1− γ)}] . (B.4)

Plugging (B.3) into the market price of risk from Equation (6) and rewriting this in matrix

notation yields:

MPJR = 1− exp

{
−γ K +

kv,1 (θ − 1)

θ [kv,1 (1− κ)− 1]

[
β′ [1− exp {K (1− γ)}] +O

(
β2
)]}

= 1− exp

−γ K +
(θ − 1) (1− exp {K (1− γ)})

θ
[
(1− κ)− 1

kv,1

] spread +O
(
β2
)

= 1− exp
{
A+ B spread +O

(
β2
)}

with A and B given in Theorem 1. Thus we define

MPJR∗∗ = 1− exp {A+ B spread} . (B.5)

For γ > 1, θ < 0, 0 < κ < 1, and K < 0, we have A > 0 and B > 0 since 1
kv,1

> 1− κ.
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B.2. Jump Exposures

B.2.1. First Approximation Step

Rewriting Equation (A.10) for κ1 = . . . = κn = κ and K1 = . . . = Kn = K gives a system of

equations for each i, exemplified in the following for i = 1:

0 = B1 (kv,1 − 1) (θ − 1) + C1,1 (k1,1 − 1)− κ [B1 kv,1 (θ − 1) + C1,1 k1,1]

+ exp {L−K γ + β1,1 [B1 kv,1 (θ − 1) + C1,1 k1,1] + . . .+ βn,1 [Bn kv,1 (θ − 1) + C1,n k1,1]} − 1

...

0 = Bn (kv,1 − 1) (θ − 1) + C1,n (k1,1 − 1)− κ [Bn kv,1 (θ − 1) + C1,n k1,1]

+ exp {−K γ + β1,n [B1 kv,1 (θ − 1) + C1,1 k1,1] + . . .+ βn,n [Bn kv,1 (θ − 1) + C1,n k1,1]} − 1.

Collecting terms and introducing matrix notation yields the following system for each i:

1 = B (θ − 1) [kv,1 (1− κ)− 1] + Ci [ki,1 (1− κ)− 1]

+ [exp {−K γ} 1 + (exp {L−K γ} − exp {−K γ}) In×1,i] • exp
{
kv,1 (θ − 1) β′B + ki,1 β

′Ci
}
,

where now and in the following, • represents element-wise multiplication of the vectors. In×1,i is

an n× 1 vector with the i-th entry equal to 1 and zeros otherwise.

Again, we employ exp (x) = 1 + x+O
(
x2
)

and solve for Ci:

Ci =

(
I +

exp {−K γ} 1 + (exp {L−K γ} − exp {−K γ}) In×1,i

1− κ− 1
ki,1

• β′
)−1

1

ki,1 (1− κ)− 1

×
[
1− (θ − 1) [kv,1 (1− κ)− 1] B

− [exp {−K γ} 1 + (exp {L−K γ} − exp {−K γ}) In×1,i] • kv,1 (θ − 1) β′B

− exp {−K γ} 1− (exp {L−K γ} − exp {−K γ}) In×1,i

]
+O

(
β2
)
, (B.6)

where
exp{−K γ}1+(exp{L−K γ}−exp{−K γ}) In×1,i

1−κ− 1
ki,1

< 0 since 1
ki,1

> 1−κ (due to 1
ki,1

= 1+ ¯evi
¯evi

> 1 > 1−κ

for 0 < κ < 1).
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To conclude the first approximation step, we define

C∗i =

(
I +

exp {−K γ} 1 + (exp {L−K γ} − exp {−K γ}) In×1,i

1− κ− 1
ki,1

• β′
)−1

1

ki,1 (1− κ)− 1

×
[
1− (θ − 1) [kv,1 (1− κ)− 1] B

− [exp {−K γ} 1 + (exp {L−K γ} − exp {−K γ}) In×1,i] • kv,1 (θ − 1) β′B

− exp {−K γ} 1− (exp {L−K γ} − exp {−K γ}) In×1,i

]
. (B.7)

B.2.2. Second Approximation Step

Again the inverse term in Equation (B.6) has the structure of a Leontief inverse, and we rewrite

(B.6) as:

Ci =

[
In×n −

exp {−K γ} 1 + (exp {L−K γ} − exp {−K γ}) In×1,i

1− κ− 1
ki,1

• β′

−

(
exp {−K γ} 1 + (exp {L−K γ} − exp {−K γ}) In×1,i

1− κ− 1
ki,1

• β′
)2

− . . .

 1

ki,1 (1− κ)− 1

×
[
1− (θ − 1) [kv,1 (1− κ)− 1] B

− [exp {−K γ} 1 + (exp {L−K γ} − exp {−K γ}) In×1,i] • kv,1 (θ − 1) β′B

− exp {−K γ} 1− (exp {L−K γ} − exp {−K γ}) In×1,i

]
+O

(
β2
)

=

(
In×n −

exp {−K γ} 1 + (exp {L−K γ} − exp {−K γ}) In×1,i

1− κ− 1
ki,1

• β′
)

1

ki,1 (1− κ)− 1

×
[
1− (θ − 1) [kv,1 (1− κ)− 1] B

− [exp {−K γ} 1 + (exp {L−K γ} − exp {−K γ}) In×1,i] • kv,1 (θ − 1) β′B

− exp {−K γ} 1− (exp {L−K γ} − exp {−K γ}) In×1,i

]
+O

(
β2
)
. (B.8)

To conclude the second approximation step, we define

C∗∗i =

(
In×n −

exp {−K γ} 1 + (exp {L−K γ} − exp {−K γ}) In×1,i

1− κ− 1
ki,1

• β′
)

1

ki,1 (1− κ)− 1

×
[
1− (θ − 1) [kv,1 (1− κ)− 1] B

− [exp {−K γ} 1 + (exp {L−K γ} − exp {−K γ}) In×1,i] • kv,1 (θ − 1) β′B

− exp {−K γ} 1− (exp {L−K γ} − exp {−K γ}) In×1,i

]
(B.9)

38



Plugging (B.8) into the jump exposures from Equation (8) and rewriting them in matrix

notation yields:

JEXPi = exp

{
LIn×1,i +

1− θ−1
θ (1− exp {K (1− γ)})− exp {−K γ}

1− κ− 1
ki,1

β′ 1

−exp {−K γ} (exp {L} − 1)

1− κ− 1
ki,1

β′ In×1,i +O
(
β2
)}
− 1.

Breaking this expression down into the jump exposures JEXPi,j yields:

JEXPi,j =

 exp
{
Di · βi,j + Ci ·

∑n
k=1,k 6=i βk,j +O

(
β2
)}
− 1 for j 6= i

exp
{
L+Di · βi,i + Ci ·

∑n
k=1,k 6=i βk,i +O

(
β2
)}
− 1 for j = i

=

{
exp

{
Di βi,j + Ci

(
spreadj − βi,j

)
+O

(
β2
)}
− 1 for j 6= i

exp
{
L+Di βi,i + Ci (spreadi − βi,i) +O

(
β2
)}
− 1 for j = i

where

Ci =
1− θ−1

θ [1− exp {K (1− γ)}]− exp {−K γ}
1− κ− 1

ki,1

Di =
1− θ−1

θ [1− exp {K (1− γ)} − exp {L−K γ}]
1− κ− 1

ki,1

Di − Ci =
exp {−K γ} (1− exp {L})

1− κ− 1
ki,1

.

Note that 1
ki,1

> 1 − κ (see above). For γ > 1, 0 < κ < 1, and − log(2) < K < 0, we have Ci > 0.

Additionally assuming θ < 0, we obtain Di < 0.

Proof that Ci > 0: We rewrite Ci as follows:

Ci =
1− θ−1

θ [1− exp {K (1− γ)}]− exp {−K γ}
1− κ− 1

ki,1

=
exp {−K γ}

[
1
θ (exp {K γ} − 1) + exp {K} − 1

]
1− κ− 1

ki,1

Here, we have 1−κ− 1
ki,1

< 0 by assumption (since 0 < κ < 1). Moreover, we have exp {−K γ} > 0

and 1
θ (exp {K γ} − 1) + exp {K} − 1 < 0.

To see the last inequality, define

f (K) = exp {K γ} − 1− (exp {K}+ γ) (exp {K} − 1)

= exp {K γ} − 1− exp {2K} − γ exp {K}+ exp {K}+ γ
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Then f (0) = 0 and

f ′ (K) = γ exp {K γ} − 2 exp {2K} − γ exp {K}+ exp {K}

= γ (exp {K γ} − exp {K}) + exp {K} − 2 exp {2K}

If γ > 1 and − ln (2) < K < 0, then f ′ (K) < 0 which implies f (K) > 0. In particular,

exp {K γ} − 1

exp {K} − 1
< exp {K}+ γ < −θ.

The latter inequality is satisfied if γ > 2ψ− 1. The statement then follows. Altogether, we thus get

Ci > 0.

Proof that Di < 0: We rewrite Di as follows:

Di =
1− θ−1

θ [1− exp {K (1− γ)}]− exp {L−K γ}
1− κ− 1

ki,1

=
1
θ + exp {−K γ}

[(
1− 1

θ

)
exp {K} − exp {L}

]
1− κ− 1

ki,1

Again, we have 1− κ− 1
ki,1

< 0. Moreover, we have

1

θ
+ exp {−K γ}

[(
1− 1

θ

)
exp {K} − exp {L}

]
> 0

⇔ exp {−K γ}
[(

1− 1

θ

)
exp {K} − exp {L}

]
> −1

θ

⇔
(

1− 1

θ

)
exp {K}+

1

θ
exp {K γ} − exp {L} > 0

⇔ (exp {K} − exp {L}) +
1

θ
(exp {K γ} − exp {K}) > 0

which is true if L < K, γ > 1 and θ < 0. This completes the proof.

B.3. Risk-free rate

The risk-free rate is given by

rt = Φ0 + Φ′1 `t

with Φ0 = θ δ + (θ − 1)
[
ln kv,1 + (kv,1 − 1) B′ µX

]
+M′ λ− l′0 [% (−λ)− 1]

Φ1 = (1− θ) (kv,1 − 1) B +K′ λ− l′1 [% (−λ)− 1] .
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Rewriting the expressions for Φ0 and Φ1 yields:

Φ0 = θ δ + γ µ+ (θ − 1) ln kv1 + (θ − 1) κ
[
¯̀1− (kv1 − 1) `t

]′
B

Φ1 = (1− θ) [kv1 (1− κ)− 1] B − exp
{
−K γ + (θ − 1) kv1 β

′B
}

+ 1.

After substituting B by Equation (B.3), we receive:

Φ0 = θ δ + γ µ+ (θ − 1) ln kv1 +
(θ − 1) κ

θ [kv,1 (1− κ)− 1]

[
¯̀1− (kv1 − 1) `t

]′
×

(
In×n −

exp {K (1− γ)}
1− κ− 1

kv,1

β′

)
[1− exp {K (1− γ)}] +O

(
β2
)

Φ1 =
(1− θ) [kv1 (1− κ)− 1]

θ [kv,1 (1− κ)− 1]

(
In×n −

exp {K (1− γ)}
1− κ− 1

kv,1

β′

)
[1− exp {K (1− γ)}]

− exp

{
−K γ +

(θ − 1) kv1
θ [kv,1 (1− κ)− 1]

β′

(
In×n −

exp {K (1− γ)}
1− κ− 1

kv,1

β′

)
[1− exp {K (1− γ)}]

}
+1 +O

(
β2
)

Rewriting the resulting expression and subsuming higher-order terms of β using O
(
β2
)
:

Φ0 = θ δ + γ µ+ (θ − 1) ln kv1 + B
(

1− 1

kv1

)
κ
[
¯̀1− (kv1 − 1) `t

]′ [
1− exp {K (1− γ)}

1− κ− 1
kv,1

spread

]
+O

(
β2
)

Φ1 =
1− θ
θ

[1− exp {K (1− γ)}] + B exp {K (1− γ)} spread + 1− exp {A+ B spread}+O
(
β2
)
.

Finally, applying the approximation exp {x} = 1 + x+O
(
x2
)

allows us to rewrite Φ1 as follows:

Φ1 =
1− θ
θ

[1− exp {K (1− γ)}] + B exp {K (1− γ)} spread−A− B spread +O
(
β2
)
.

Thus, the first-order approximation of the risk-free rate is given by

rt = θ δ + γ µ+ (θ − 1) ln kv1 + B
(

1− 1

kv1

)
κ ¯̀1′ 1− B

(
1− 1

kv1

)
κ exp {K (1− γ)}

1− κ− 1
kv,1

¯̀1′ spread

+B
(

1− 1

kv1

)
κ (1− kv1) `′t 1 + B

(
1− 1

kv1

)
κ (kv1 − 1) exp {K (1− γ)}

1− κ− 1
kv,1

`′t spread

+

[
1− θ
θ

[1− exp {K (1− γ)}]−A
]′
`t + B [exp {K (1− γ)} − 1] spread′ `t.
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Sorting terms, we can rewrite this as follows:

r∗∗t = F + G
n∑
j=1

n∑
i=1

βi,j +H
n∑
j=1

`j,t + I
n∑
j=1

`j,t

n∑
i=1

βi,j

= F + G
n∑
j=1

spreadj +H
n∑
j=1

`j,t + I
n∑
j=1

`j,t spreadj

= F + G
n∑
i=1

receivei +H
n∑
j=1

`j,t + I
n∑
j=1

`j,t spreadj

with F = θ δ + γ µ+ (θ − 1) ln kv1 + B
(

1− 1

kv1

)
κ ¯̀n

G = −B

(
1− 1

kv1

)
κ exp {K (1− γ)}

1− κ− 1
kv,1

¯̀

H = B
(

1− 1

kv1

)
(1− kv1) κ+

1− θ
θ

[1− exp {K (1− γ)}]−A

I = B


(

1− 1
kv1

)
(kv1 − 1) κ exp {K (1− γ)}

1− κ− 1
kv,1

+ exp {K (1− γ)} − 1

 .
C. Implications of Positive Jumps for the Three Channels

For all statements regarding the signs of the channels, the assumption K < 0 is sufficient, but

not necessary. Hence, the signs of the relevant coefficients would not necessarily flip when this

assumption is violated. In the following, we briefly summarize the impact of positive jumps in

consumption on the three channels from Theorem 3 through which directed links in cash flow

networks affect the cross-section of risk premia.

The spreading channel is given by −`tBLspreadi. According to Theorem 1, K enters the

coefficient B. The assumption K < 0 is necessary and sufficient for B > 0. If K is positive, then

B < 0. If we additionally assume spreadi > spreadj , then MPJR∗∗i > MPJR∗∗j , i.e., statement (2) in

Theorem 1 is still valid. If K is positive and we additionally assume L > 0, the spreading channel

thus still increases risk premia.

The receiving channel is defined as −`tADi receivei. As shown in Theorem 1, K enters the

coefficient A. The assumption K < 0 is necessary and sufficient for A > 0. If K is positive, then

A < 0. Theorem 2 shows that the coefficient Di depends on K and L. The proof on pages 44 and

45 documents that Di is negative if K is negative and

L < ln

(
1

θ
eγK +

(
1− 1

θ

)
eK
)
, (C.1)
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which is satisfied for L < K because K < ln
(

1
θe
γK +

(
1− 1

θ

)
eK
)
. If K is positive and

L > ln

(
1

θ
eγK +

(
1− 1

θ

)
eK
)
, (C.2)

thenDi is positive. Thus, if L satisfies the conditions (C.1) or (C.2) above, then the receiving channel

still increases risk premia. Note that conditions (C.1) or (C.2) are sufficient, but not necessary. In

particular, we cannot compare the magnitude of the receiving channel for positive jumps to the one

for negative jumps. Numerical examples indicate, however, that it is larger for negative jumps.

The hedging channel is given by −`tACi
∑n

j=1

(
spreadj − βi,j

)
. If K is positive, then A < 0.

The sign of Ci, however, is ambiguous. In particular, we cannot conclude that the hedging channel

is always positive or always negative.

Loosely speaking, if positive jumps in consumption are accompanied by more pronounced

positive cash flow jumps, then the spreading and the receiving channel still increase risk premia.

D. Contemporaneous Jumps in Many Assets

The vector X = (y, `1, . . . , `n, y1, . . . , yn)′ follows the affine jump process

dXt = µ (Xt) dt+ ξt dNt,

where

• µ(Xt) =M+KXt

with M =



µ

0
...

0

µ1

...

µn


and K =



0 0 . . . 0 . . . 0

0 0 . . . 0 . . . 0
...

...
. . .

...
. . .

...

0 0 . . . 0 . . . 0

0 0 . . . 0 . . . 0
...

...
. . .

...
. . .

...

0 0 . . . 0 . . . 0


,

• `t = l0 + l1Xt

with l0 =


0
...

0

 and l1 =


0 0 . . . 0 0 . . . 0
...

...
. . .

...
...

. . .
...

0 0 . . . 0 0 . . . 0

,
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• ξt =
(
ξ1,t, . . . , ξn,t

)
=



K1 . . . Kn

0 . . . 0
...

. . .
...

0 . . . 0

L1,1 . . . L1,n

...
. . .

...

Ln,1 . . . Ln,n


.

The solution of such a model is nested in the general solution of our original model since only the

matrix ξt and the jump transform %(·) change. It is given by % (u) =
(
eu
′ξ1,t , . . . , eu

′ξn,t
)′

.

The pricing kernel has dynamics

dMt

Mt
= −rt dt− [1− % (−λ)]′ (dNt − `tdt)

with λ = γ δy = (γ, 0, . . . , 0)′ .

Given the new jump transform above, we end up with the result MPJRi = 1− e−γKi .

Similarly, we can compute the jump exposures of asset i to the various jumps in the economy

as 
JEXPi,1

...

JEXPi,n

 = [% (δy,i + ki,1Ci)− 1] =


exp (Li,1)− 1

...

exp (Li,n)− 1

 .

Expected excess returns follow from the formula

EERi =

n∑
j=1

`j MPJRj JEXPi,j

with constant jump intensities. Plugging in, we get

EERi =

n∑
j=1

`j
(
1− e−γKj

) (
eLi,j − 1

)
≈ γ

n∑
j=1

`jKj Li,j .
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E. Setting up the Beta Matrix

In the following, we describe how we operationalize the concept of eigenvector centrality to deter-

mine the beta matrix

β =


β1,1 . . . β1,n

...
. . .

...

βn,1 . . . βn,n

 .

W.l.o.g., we assume that the eigenvalues ϕ1, . . . , ϕn of β are sorted according to their absolute

size, i.e., ϕ1 is the principal eigenvalue. The eigenvectors for these eigenvalues are collected in the

matrix

α =


α1,1 . . . α1,n

...
. . .

...

αn,1 . . . αn,n


so that we have the usual diagonalization

β = α


ϕ1 . . . 0
...

. . .
...

0 . . . ϕn

α−1.

W.l.o.g. we assume that the eigenvectors in α are normalized to have length 1.

The β matrix is supposed to be non-negative because there is no economic interpretation for a

negative βij in our model. The Perron-Frobenius theorem then says that there exists an eigenvector

with only non-negative components. The Perron-Frobenius theorem also says that the non-negative

eigenvector is associated with the absolutely largest eigenvalue (called the spectral radius) which is

also non-negative. The eigenvectors related to all other eigenvalues must contain negative entries.19

Besides, the beta matrix is supposed to be symmetric in the benchmark case. Simple linear

algebra implies that the matrix β is symmetric if the eigenvector matrix is an orthogonal matrix

(i.e. αα′ = 1 or α′ = α−1):

(
α · diag(ϕ1, . . . , ϕn) · α−1

)′
=

(
α−1

)′ · diag(ϕ1, . . . , ϕn)′ · α′ = α · diag(ϕ1, . . . , ϕn) · α−1.

Taking these two facts into account, we construct the beta matrix using the following al-

19Moreover, the Perron-Frobenius theorem says that the principle eigenvalue is simple if the matrix is

irreducible and that there is no other eigenvalue with the same absolute value if the matrix is aperiodic. The

matrix constructed below is irreducible and aperiodic.
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gorithm. We assume that ϕ2 = . . . = ϕn, i.e., the eigenvalues other than ϕ1 are equal and then

construct the eigenvectors as follows. We assume that α2
1,1+. . .+α2

n,1 = 1. This implies that the first

eigenvector is normalized to length 1. Moreover, we assume that all entries αi,1 in the first column

are positive because of the Perron-Frobenius theorem. The remaining elements of the matrix α are

then chosen such that the matrix becomes an orthogonal matrix, i.e. the columns of the matrix are

mutually orthogonal and normalized to length 1. In a first step, we choose the vectors such that

they are all mutually orthogonal:

α1,1 1 1 1 . . . 1

α2,1 −α1,1

α2,1
− 1
α2,2

− 1
α2,2

. . . − 1
α2,2

α3,1 0 −α1,1+α2,1α2,3

α3,1
−1+α2

2,4

α3,3
. . . −1+α2

2,n

α3,3

α4,1 0 0 −α1,1+α2,1α2,4+α3,1α3,4

α4,1
. . . −1+α2

2,n+α2
3,n

α4,4

...
...

...
...

. . .
...

αn,1 0 0 0 . . . −α1,1+α2,1α2,n+α3,1α3,n+...+αn−1,1αn−1,n

αn,1


In a second step, we scale every column by its norm so that all eigenvectors have length 1. The

eigenvalues and eigenvectors uniquely determine the beta matrix. We have thus reduced the choice

of the beta matrix to the choice of two eigenvalues ϕ1 and ϕ2 and one eigenvector which contains

the eigenvector centrality of each node.

In Section 5, we choose the eigenvalues ϕ1 = 0.4, ϕ2 = . . . = ϕ10 = 0, and the entries of

the principal eigenvector are α1,1 = 0.3824, α2,1 = 0.3620, . . . , α10,1 = 0.2500. This leads to the

following beta matrix:

β =



0.0584 0.0553 . . . 0.0404 0.0382

0.0553 0.0524 . . . 0.0382 0.0362
...

...
. . .

...
...

0.0404 0.0382 . . . 0.0279 0.0264

0.0382 0.0362 . . . 0.0264 0.0250


.
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Äıt-Sahalia, Y., J. Cacho-Diaz, and R. Laeven (2015): “Modeling Financial Conta-

gion Using Mutually Exciting Jump Processes,” Journal of Financial Economics, 117(3),

585–606.

Albuquerque, R., T. Ramadorai, and S. W. Watugala (2015): “Trade credit and

cross-country predictable firm returns,” Journal of Financial Economics, 115, 592–613.

Aobdia, D., J. Caskey, and N. B. Ozel (2014): “Inter-industry network structure and

the cross-predictability of earnings and stock returns,” Review of Accounting Studies, 19(3),

1191–1224.

Backus, D., M. Chernov, and I. Martin (2011): “Disasters Implied by Equity Index

Options,” Journal of Finance, 66(6), 1969–2012.

Bansal, R., and A. Yaron (2004): “Risks for the Long Run: A Potential Resolution of

Asset Pricing Puzzles,” Journal of Finance, 59(4), 1481–1509.

Barberis, N., R. Greenwood, L. Jin, and A. Shleifer (2015): “X-CAPM: An ex-

trapolative capital asset pricing model,” Journal of Financial Economics, 115(1), 1–24.

Barro, R. J. (2006): “Rare Disasters and Asset Markets in the Twentieth Century,” Quar-

terly Journal of Economics, 121(3), 823–866.

47



Barrot, J.-N., and J. Sauvagnat (2016): “Input Specificity and the Propagation of

Idiosyncratic Shocks in Production Networks,” Quarterly Journal of Economics, 131(3),

1543–1592.

Benzoni, L., P. Collin-Dufresne, R. S. Goldstein, and J. Helwege (2015): “Mod-

eling Contagion via the Updating of Fragile Beliefs,” Review of Financial Studies, 28(7),

1960–2008.

Bernanke, B., M. Gertler, and S. Gilchrist (1996): “The financial accelerator and

the flight to quality,” The Review of Economics and Statistics, 78, 1–15.

Billio, M., M. Getmansky, A. Lo, and L. Pelizzon (2012): “Econometric measures of

connectedness and systemic risk in the finance and insurance sectors,” Journal of Financial

Economics, 104(3), 535–559.

Branger, N., H. Kraft, and C. Meinerding (2014): “Partial Information about Con-

tagion Risk, Self-Exciting Processes and Portfolio Optimization,” Journal of Economic

Dynamics and Control, 39(1), 18–36.

Brunnermeier, M. K., and Y. Sannikov (2014): “A Macroeconomic Model with a

Financial Sector,” American Economic Review, 104, 379–421.

Buraschi, A., and C. Tebaldi (2019): “Asset pricing implications of systemic risk in

network economies,” Working Paper.

Campbell, J. Y., and J. H. Cochrane (1999): “By Force of Habit: A Consumption-Based

Explanation of Aggregate Stock Market Behavior,” The Journal of Political Economy, 107,

205–251.

Carvalho, V. (2014): “From Micro to Macro via Production Networks,” Journal of Eco-

nomic Perspectives, 28(4), 23–47.

Carvalho, V., and N. Voigtländer (2015): “Input diffusion and the evolution of pro-

duction networks,” Working Paper.

Carvalho, V. M., M. Nirei, Y. U. Saito, and A. Tahbaz-Salehi (2020): “Supply

Chain Disruptions: Evidence from the Great East Japan Earthquake,” Quarterly Journal

of Economics, forthcoming.

Cochrane, J., F. Longstaff, and P. Santa-Clara (2008): “Two Trees,” Review of

Financial Studies, 21, 347–385.

48



Demirer, M., F. X. Diebold, L. Liu, and K. Yilmaz (2017): “Estimating Global Bank

Network Connectedness,” Journal of Applied Econometrics, 33(1), 1–15.

Diebold, F. X., and K. Yilmaz (2014): “On the Network Topology of Variance Decompo-

sitions: Measuring the Connectness of Financial Firms,” Journal of Econometrics, 182(1),

119–134.

Dumas, B. (1992): “Dynamic Equilibrium and the Real Exchange Rate in a Spatially Sep-

arated World,” Review of Financial Studies, 5(2), 153–180.

Eraker, B., and I. Shaliastovich (2008): “An Equilibrium Guide to Designing Affine

Pricing Models,” Mathematical Finance, 18(4), 519–543.

Fostel, A., and J. Geanakoplos (2008): “Leverage Cycles and the Anxious Economy,”

American Economic Review, 98(4), 1211–1244.

Gabaix, X. (2011): “The Granular Origins of Aggregate Fluctuations,” Econometrica,

79(3), 733–772.

(2012): “Variable Rare Disasters: An Exactly Solved Framework for Ten Puzzles in

Macro-Finance,” Quarterly Journal of Economics, 127(2), 645–700.

Gofman, M., G. Segal, and Y. Wu (2018): “Production Networks and Stock Returns:

The Role of Vertical Creative Destruction,” Working Paper.

Granger, C., and M. Morris (1976): “Time Series Modelling and Interpretation,” Jour-

nal of the Royal Statistical Society, 139(2), 246–257.

Herskovic, B. (2018): “Networks in Production: Asset Pricing Implications,” Journal of

Finance, 73(4), 1785–1818.

Jackson, M. O. (2008): Social and Economic Networks. Princeton University Press.

Jacobson, T., and E. von Schedvin (2015): “Trade Credit and the Propagation of

Corporate Failure: An Empirical Analysis,” Econometrica, 83, 1315–1371.

Long, J. B., and C. I. Plosser (1983): “Real Business Cycles,” Journal of Political

Economy, 91(1), 39–69.

Longstaff, F., and M. Piazzesi (2004): “Corporate Earnings and the Equity Premium,”

Journal of Financial Economics, 74, 401–421.

Martin, I. (2013): “The Lucas Orchard,” Econometrica, 81, 55–111.

49



Murfin, J., and K. Njoroge (2015): “The Implicit Costs of Trade Credit Borrowing by

Large Firms,” Review of Financial Studies, 28, 112–145.

Nowotny, M. (2011): “Disaster Begets Crisis: The Role of Contagion in Financial Mar-

kets,” Working Paper.

Ozdagli, A., and M. Weber (2019): “Monetary Policy Through Production Networks:

Evidence from the Stock Market,” Working Paper.

Ozsoylev, H., J. Walden, M. Yavuz, and R. Bildik (2014): “Investor Networks in

the Stock Market,” Review of Financial Studies, 27(5), 1323–1366.

Richmond, R. (2019): “Trade Network Centrality and Currency Risk Premia,” Journal of

Finance, 74, 1315–1361.

Santos, T., and P. Veronesi (2006): “Labor income and predictable stock returns,”

Review of Financial Studies, 19, 1–44.

Seo, S. B., and J. A. Wachter (2018): “Do rare events explain CDX tranche spreads?,”

Journal of Finance, 73(5), 2343–2383.

Tascherau-Dumouchel, M. (2018): “Cascades and Fluctuations in an Economy with an

Endogenous Production Network,” Working Paper.

Tsai, J., and J. A. Wachter (2015): “Disaster risk and its implications for asset pricing,”

Annual Review of Financial Economics, 7, 219–252.

(2016): “Rare Booms and Disasters in a Multi-Sector Endowment Economy,” Review

of Financial Studies, 29(5), 1113–1169.

Wachter, J. A. (2013): “Can Time-Varying Risk of Rare Disasters Explain Aggregate

Stock Market Volatility?,” Journal of Finance, 68(3), 987–1035.

Walden, J. (2019): “Trading Profits, and Volatility in a Dynamic Information Network

Model,” Review of Economic Studies, 86(5), 2248–2283.

Wu, A. (2016): “Shock Spillover and Financial Response in Supply Chain Networks: Evi-

dence from Firm-Level Data,” Working Paper.

Wu, L. (2015): “Centrality of the Supply Chain Network,” Working Paper.

50



Expected excess Risk premium Risk premium for time variation in price-dividend ratios
return of. . . for jumps in spreading receiving hedging

cash flows channel channel channel

Shock-spreading
asset 1

−`1,tAL −`1,t BLβ2,1 −`1,tAC1 β2,1

Shock-receiving
asset 2

−`2,tAL −`1,tAD2 β2,1

Unconnected
asset 3

−`3,tAL −`1,tAC3 β2,1

> 0 > 0 > 0 < 0

Table 1
Decomposition of risk premia

For the stylized three asset network discussed in Section 3.1, this table decomposes the expected

excess returns of the assets and provides the contribution of each channel to these risk premia. The

formulas are given in Corollaries 2 to 4.

Figure 1
Stylized network

The figure shows the stylized three asset network discussed in Section 3.1.
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Figure 3
Centrality premium

The top-left graph shows the network used in Section 5. The top-right plot shows the expected

excess return (computed using the first-order approximation from Section 2.3) as a function of each

asset’s eigenvector centrality. The bottom-left plot shows the expected excess return (obtained from

the numerical solution described in Appendix A) as a function of each asset’s eigenvector centrality.

The bottom-right plot shows the expected excess return from the first-order approximation as a

function of the expected excess return from the numerical solution.
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