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Summary  

Urban flooding events and damages to private and public buildings and infrastructure is 

expected to increase due to higher frequency of heavy rainfall.  Even if all countries were 

to fulfill their declared reductions in emission of greenhouse gases in accordance with the 

Paris agreement and limit the increase in global mean temperature to 1.5°C, more 

extreme weather is likely to occur. Cities are especially vulnerable to flooding of 

infrastructure and buildings and basements from run-off after heavy rainfall. Adaptation 

measures could reduce these damages but are costly. Thus, there is a need to document 

the correlation between heavy rainfall and damage cost to show the benefit to society in 

terms of avoided damage costs from adaptation. This is of interest of both insurance 

companies and the affected businesses, municipalities and households.  

This thesis adds to the scare literature on the correlation between precipitation and the 

damage costs from urban flooding by analyzing a unique dataset of daily insurance claim 

payments covering rainfall-related damages in Oslo over a 13-year period from 2008 to 

2020 from the Norwegian insurance companies and good quality meteorological data 

from a set of weather stations in Oslo during the same period.  

Data on insurance claims from business and households and the associated damage costs 

from the VASK data base of Finance Norway was used. Efforts were made to isolate urban 

flooding related damages from other water-related damages by applying combinations of 

coding of the damages. A sensitivity analysis of a less strict coding practice was also 

performed, in order to validate the damage coding.   

Different rainfall indicators have been used and the results show that both for daily and 

weekly data of the number of insurance claims and the resulting damage costs, 

precipitation (in mm) that day/week and the preceding week have a significant (at the 5 

% level) leading to increased number of insurance claims and damage costs. Precipitation 

the preceding month and the second and third week before the incident were included in 

the models, but precipitation more than one week before the incident was not significant.  

Using the number of extreme rain days (defined as more than 20 mm precipitation per 

day) instead of the amount of precipitation per week, had a significant effect on both the 

number of insurance claims and damage costs; both per day and per week.   

As damage costs from urban flooding are highest in August followed by September and 

October, seasonal dummy variables were also tested; showing that Summer (June-
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August) and in some cases Autumn (September-November) had a significant effect on 

damage costs.  

In conclusion, there is a clear correlation between rainfall and insurance claims, both in 

terms of numbers and costs. The explanatory power of the best models is, however, only 

around 20 % (in terms of adjusted R-square). This indicates that other factors explain a 

large part of the variation in insurance claims and costs. Thus, future research should 

collect data and investigate the effect of local conditions with regards to green areas and 

implementation of technical and nature-based adaptation measures in order to better 

explain the variation in future damager costs and predict the impacts of future adaptation 

measures.  
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1 Introduction 

1.2 Background  

The Intergovernmental Panel on Climate Change (IPCC) in their 6th Assessment Report 

found that there is a greater than 50% likelihood that global warming will reach or exceed 

1.5°C in the near‐term, even for the very low greenhouse gas emissions scenarios (IPCC 

2021). They state that “Human-induced climate change, including more frequent and 

intense extreme weather events, has caused widespread adverse impacts and related 

losses and damages to nature and people, beyond natural climate variability” (IPCC 2022, 

Summary for Policy Makers SPM B.1.) and predicts that the further increase in global 

mean temperature will cause higher frequencies and duration of extreme weather events 

like heat waves, windstorms and heavy rainfall.   

Heavy rainfall in urban areas can cause both fluvial and pluvial flooding. While a fluvial 

flood occurs when water levels in rivers rise and overtop their banks, pluvial floods occur 

when surface water accumulating from the result of intense rainfall saturates the urban 

drainage system, and the excess water cannot be absorbed. This study will investigate the 

cost of damage from the latter type of flooding, denoted by the term “urban flooding” 

throughout this study.  

Insurance claims can be used to document the damages and costs caused by urban 

flooding, and insurance companies can contribute to the reduction of these damage costs 

by sharing their data with the municipalities so they can design and implement strategies 

for technical and nature-based measures to mitigate damages as well as adapt. This is in 

the interest of both the insurance companies, the municipalities, affected households and 

businesses and society at large.  For example, if the insurance companies find that the 

cause of the damage is that the municipality has not maintained the drainage system well, 

they will claim the compensation paid to their customers back from the municipality.  

Finance Norway`s (FN) Climate report 2021 shows that the largest pluvial damage costs 

can be found in the large cities in Norway like Oslo and Stavanger (Finance Norway 2021; 

figures 7, 10 and 11). While there are studies looking at the correlation between the 

number of insurance claims and intense rainfall in cities in Norway (Rohrbek et al 2016, 

2018) and) and other European cities (Cortès et al 2018), there are only a few studies (e.g. 

Torgersen et al 2015) looking at also the total damage costs. Further, the insurance data 

available is often limited and uncertain in terms of defining the damages as a rainfall-

related damage, and Torgersen et al (2015) used a qualitative scale for damage costs 

rather than the amounts.  Thus, the insurance claims data need to be prepared in such a 
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way that only damages related to pluvial floods (urban flooding), and not all other causes, 

are included in the analysis.   

This thesis contributes to the scarce literature on the correlation between different 

rainfall indicators and urban flooding damage costs by analyzing a unique dataset of daily 

insurance claim payments covering rainfall-related damages in Oslo over a 13-year period 

from 2008 to 2020 from the Norwegian insurance companies and good quality 

meteorological data from a set of weather stations in Oslo during the same period. 

 

1.2 Problem statement and research questions 

The main aim of this thesis is to investigate the potential correlations between 

precipitation and the number of insurance claims as well as the damage costs from urban 

flooding in Oslo for the period 2008 – 2020.  

The following four research questions will be explored: 

1) Is there a correlation between rainfall data and the damage costs for insurance 

claims for urban flooding in Oslo, typically flooding of basements in built-up 

areas? 

2) Is there a correlation between rainfall data and the number of insurance claims 

for urban flooding in Oslo?  

3) What type of rainfall data – daily, weekly or monthly rainfall or discrete data in 

terms of number of “extreme rainfall” days (defined as having daily precipitation 

above a certain level) - can best explain the observed number of insurance claims 

and damage costs from urban flooding? 

4) Do other variables affect the observed number of insurance claims and damage 

costs from urban flooding? Both the average daily temperature (i.e., increased 

temperature would lead to more precipitation being rain instead of snow) and 

the size of the population (i.e., with higher population, a higher number of 

households could be affected) could affect the insurance claims and damage 

costs. 
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2.  Literature review  

According to Lamond and Pennig-Rowsell (2014) a high level of insurance coverage 

demands that there is a functioning and sustainable insurance scheme; which they define 

as requiring that there is: i) an insurable risk that is quantifiable, distributed, and 

affordable, ii) an insurable population aware of risk, willing to insure and which can afford 

the necessary premiums, and iii) a solvent insurer that is willing and can afford to run the 

scheme and pay claims; and has arrangements in place to cover any abnormally large 

losses. They further note that all these conditions seem not to be met in many countries, 

especially not in the developing part of the world where insurance coverage is very low 

(see Lamond and Pennig-Rowsell 2014, table 1).  

Norway, however, has compulsory flood insurance as part of property insurance policies, 

backed by a national pool (Norwegian Nature Perils Pool1), which is backed by 

reinsurance.  Thus, Norway has high coverage of flood insurance for properties. Rohrbeck 

et al (2018) looked at the correlation between weather events like rainfall or snow melt 

and the number of water-related property insurance claims, but not the cost of the claims, 

in three Norwegian cities, Oslo, Bærum and Bergen. Rohrbeck et al (2016) also used 

Norwegian data. They looked at the correlation between the number of issued insurance 

claims data and multiple daily weather metrics, such as the amount of precipitation, for 

Oslo and ten neighboring municipalities on both sides of the Inner Oslofjord. Their 

insurance data provided the daily number of insurance claims due to precipitation, 

surface water, snow melt, undermined drainage, sewage back-flow or blocked pipes at 

municipality level from 1997 to 2006. 

 

While Rohrbeck et al (2016, 2018) used data for the number of insurance claims for 

multiple cities in Norway for 1997-2006; Torgersen et al (2015) looked at the correlation 

between both the number and costs of insurance claims, and heavy precipitation in the 

city of Fredrikstad for the period 2006-2012. Figure 2.1 shows that insurance claims costs 

peak in late summer and early autumn (July, August and September). In their multivariate 

analysis they do not use the exact amounts but characterize the insurance claim costs on 

a scale from expensive to no cost at all.   

 
1 See https://www.naturskade.no/en/the-norwegian-natural-perils-pool/background/ and 
https://www.naturskade.no/en/naturskader-og-erstatning/compensation-schemes/    

https://www.naturskade.no/en/the-norwegian-natural-perils-pool/background/
https://www.naturskade.no/en/naturskader-og-erstatning/compensation-schemes/
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Figure 2.1. Monthly distribution of precipitation (30-year normal 1961-1990 (in blue) and 

monthly averages for two meteorological stations; Strømtangen (in red) and Sarpsborg 

(in green))  and insurance claims costs (in violet) for Fredrikstad during the period 2006-

2012. Source: Torgersen et al (2015, figure 3) 

 

Torgersen et al (2015) had access to insurance claims data for Fredrikstad for 2006-2012 

from Finance Norway (FN) and found that for most days with high insurance claims 

amounts, the rain starts with relatively low intensity but that the intensity remains higher 

over longer time relative to the observations included for calculation of Intensity-

Duration-Frequency curves (IDF-curves). An IDF-curve shows the probability that average 

rainfall intensity will occur in a specific region, where the calculated probability is based 

on statistical analysis of recorded rainfall data over a long period, typically 30 years. IDF-

curves are available from the Norwegian Meteorological Institute (MET), and they locate 

patterns in the short-time duration rainfall and its impact of flooding and find that the 

measured progress of rain is characterized as either the long lasting / less intensive or 

short term/intensive rain. Very extreme short duration rainfall with little spatial 

distribution within a small area of Fredrikstad did not seem to be the main reason for the 

insurance claims for the period 2006 -2012. This is good news also for my analysis as the 

weather stations are not that widespread as to cover very local extreme precipitation, but 

at least the coverage seems to be better in the larger cities (which are at risk to urban 
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flooding) than in the rural areas (which could be more subject to pluvial flooding2 than 

urban flooding). Torgersen et al (2015) conclude that little precipitation the week before 

is a plausible explanation for why some days with heavy rain result in no claims. Although 

“sealed” areas (e.g., parking lots, streets, conventional roofs etc; as opposed to blue-

green structures) dominate in the urban environment, they found a reduced risk of 

flooding when the ground was dry and unsaturated. Thus, the amount of precipitation 

over periods prior to extreme rainfall events should be considered as variables in addition 

to the rainfall the day of the extreme event to account for water runoff the extreme event 

caused. This thesis therefore include not only precipitation per day, but also for the 

preceding weeks.  

Cortès et al (2018) note in their study of the correlation between fluvial flood-related 

insurance damage claims in Catalonia in Northeast Spain and heavy precipitation, that this 

kind of analysis had not been possible in the Mediterranean countries up until then 

because of limited quantitative data on flood related damages. However, with access to 

insurance claims data for Catalonia, and the fact that flood insurance is bundled into all 

building insurance in Spain with 100 % coverage (Lamond and Pennig-Rowsell 2014, table 

1), they developed a model that can simulate the probability of a damaging event as a 

function of precipitation. 

 

Cortès et al (2018) conclude that these correlations can be used to predict fluvial flood 

damage in future climate change scenarios as e.g., Wobus et al. (2014) do when they 

estimate the damage costs from flooding in the USA under a Business-As-Usual (BAU) 

climate change scenario. Cortès et al (2018) further note that complex relationships 

between climate variability, human activities and flood damage may limit the applicability 

of these findings to conditions that are very different from the current ones; and that 

more complex analyses including other factors such as soil physical characteristics (e.g., 

slope, soil characteristics, vegetation) and construction of fluvial defense structures could 

provide better predictions. This type of issues for fluvial floods can certainly also impact 

the correlations between heavy precipitation and pluvial floods in urban areas (i.e.; urban 

flooding) in Norway, as noted by Torgersen (2015), but demand very location-specific data 

for urban areas which are usually not available, and not for my case study area Oslo.  

This literature review shows that there are few studies that have looked at the 

correlations between insurance claim costs and extreme weather events like flooding, 

 
2 Fluvial flooding refers to flooding caused by rivers overflowing 
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including urban flooding. This could be because it is difficult to get access to claims data 

from the insurance companies (both the number of claims and especially the damage 

costs), and/or that the insurance coverage is low for this type of extreme weather events 

in many countries.  

 

3. Data description 

3.1 Study site 

The main reason for choosing   the municipality of Oslo as the study area is that the capital 

of Norway is at risk for pluvial flooding, and the potential for damages is large as it is 

densely populated and a built-up area with a population of about 700,000 persons, is 

home to many businesses and regional and national government buildings. As the 

insurance claims statistics reflect damages only to households and businesses, this is what 

is analyzed here. Further, Oslo has a good network of  weather stations with long time 

series of good quality data.  Oslo is also located in an area where climate change scenarios 

show an increase in annual rainfall in the future (Hanssen-Bauer et al 2017).  

This thesis considers data for the period from 2008 to 2020. Meteorological data go way 

back, but the insurance claims database VASK ended their trial period in 2007 and only 

from 2008 all the large insurance companies started to report to FN. I have not used data 

from 2021 and 2022 as the insurance claim costs are estimates provided by the insurance 

companies that later are confirmed or corrected when the actual damage costs become 

available and the reason for the damage is confirmed. In the latter case some claims could 

after some time be moved from the VASK database to FN’s natural hazard database 

NASK3; which means the incident would no longer be classified as an urban flooding event. 

Thus, as data from 2021 and 2022 are still subject to changes, I use only the confirmed 

events and damage costs,  

3.2 Data sources  

The data used in this study consists of three different datasets. Weather data 

(precipitation and temperature) from the Norwegian Meteorological Institute (MET), 

insurance claims data from Finance Norway (FN) and population data from Statistics 

Norway (SSB). The data sources with links to the databases are listed in table 3.1.  

 
3 NASK : https://www.finansnorge.no/statistikk/skadeforsikring/naturskadestatistikk-nask/  

https://www.finansnorge.no/statistikk/skadeforsikring/naturskadestatistikk-nask/
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Table 3.1. Data sources for precipitation, insurance claims/damage costs and population 

in Oslo for period 2008-2020 

–Data Source  Website 

Precipitation, 

registered at 

meteorological 

stations in Oslo  

MET https://seklima.met.no/observations/ 

https://www.met.no/vaer-og-klima/kvaliteten-pa-

observasjonene 

 

Temperature  MET https://seklima.met.no/observations/ 

https://www.met.no/vaer-og-klima/kvaliteten-pa-

observasjonene 

 

Insurance 

claims and 

Damage costs  

FN - 

VASK 

 

https://www.finansnorge.no/statistikk/skadeforsikring/vask/ 

 

Population in 

Oslo 

SSB https://www.ssb.no/statbank/table/07459/tableViewLayout1/ 

 

 

3.2.1 Insurance claim data -VASK 

The insurance data were obtained from water damage statistics (VASK) provided by 

Finans Norge (FN). The basis for the data is insurance claims from households and 

businesses submitted to the insurance companies, which then report these to FN. From 

January 1st 2008 onwards all the largest insurance companies in Norway 2008 have 

delivered data to the VASK database. The data delivered covers 85 % of the Norwegian 

market. VASK uses weights to compensate for the underreporting. There is also a  

correction for slightly different routines in each insurance company and for damages that 

have occurred but are not yet reported. Thus, the incidents and damage costs  in VASK 

should be able to give a correct picture of all water damages that have occurred in Norway 

since 2008. However, as the estimated damage costs based on the submitted claims might 

be corrected more than one year after they are reported and registered in VASK, data 

only until 2020 is used. A replacement cost approach is used assess damage costs.  

The initiative to establish a common water damage statistics database came from the 

committee for actuarial damage (FAUS) in January 2005, and the month after the industry 

Board for Risk and Damage (BRS) decided to create the water damage statistics VASK 

database. The code system for the cause and type of damage was developed by a working 

group with representatives from the largest insurance claims companies. The purpose of 

https://seklima.met.no/observations/
https://www.met.no/vaer-og-klima/kvaliteten-pa-observasjonene
https://www.met.no/vaer-og-klima/kvaliteten-pa-observasjonene
https://seklima.met.no/observations/
https://www.met.no/vaer-og-klima/kvaliteten-pa-observasjonene
https://www.met.no/vaer-og-klima/kvaliteten-pa-observasjonene
https://www.finansnorge.no/statistikk/skadeforsikring/vask/
https://www.ssb.no/statbank/table/07459/tableViewLayout1/
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the insurance claim database VASK is to explain and follow the development of water 

related damages over time, in order to provide a good foundation for damage prevention 

measures and dissemination of information and contribute to more water damage-proof 

products and installations. Further, FN and the insurance industry would like to use the 

database to support their arguments for changes in spatial planning and the Planning and 

Building Act, building detail sheets, guidelines etc.  

In Norway, according to the VASK database, there are about 30 000 water related damage 

incidents annually with compensation payments of NOK 1,5 billion per year, but there are 

large fluctuations in water related damages from year to year in the period 2008-2020.  

58 % (17400) of these incidents are urban flooding, creating damage costs of about and 

700 million NOK annually on average. 

In VASK only water damages that are sufficiently well coded are included. This might lead 

to the numerical material being somewhat smaller than FN’s quarterly publication for 

claim statistics for land-based insurance.  

With regards to coding principles in VASK, all insurance companies that report to VASK 

are provided with guidance on how to report and code each insurance claim. All water 

related insurance damages are to be coded at three levels. These are:  

i) Installation - System that uses/transports water. Here the location of the 

damage is stated. Here it is stated whether the damage has occurred: 

outside or inside the building, whether the damage has occurred in a water 

supply pipe or in a drainage pipe, whether the part of the pipe where the 

damage has occurred is open or hidden, etc.  

ii) Source – Where the leaking water comes from; rain, snow, melt water etc. 

Provides a more detailed description of the location of the damage or of the 

damage itself. Pipe material is specified here, whether it occurred in a metal 

pipe or plastic pipe, whether it occurred in a water connected machine such 

as a washing machine, or whether it occurred in a connection with a leaky 

wet room  

iii) Cause - The actual cause of the damage. Here it is stated whether an 

assembly error has been made, whether the user has made a mistake, 

whether the damage is due to frost or kickback, etc.  

For each water related damage installation have 11 different categories, while source and 

cause have 10 categories each. This leads to almost 1100 different code combinations, 

with some combination being invalid. There are no “uknown” values. Table 3.2. provides 
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an overview over the codes that were selected  and defined as damages most likely 

connected to urban flooding. Using these VASK codes for Oslo for the period 2008-2020, 

insurance claims and damage costs were reported on 3 017 of these 4 749 days. In total 

for these 3 017 days there were 10 439 insurance claims from households and businesses. 

Table 3.2. Overview of type of damages and the codes in VASK most relevant to urban 

flooding 

Installation 

Code  Description 

Source 

Code  Description  

Cause 

Code  Description  

G Outdoor- water- and                          

sewer system 

I Precipitation/snow 

Melt/ground 

water 

E Old age 

H Water penetration 

from outside through 

foundation 

  G Stop in sewer / 

Sewer back up 

I Water penetration 

from outside above 

foundation  

  I Influence from 

outside 

    J Drainage system 

 

Table 3.3. provides a detailed description of the codes used for the installation affected, 

source and cause of the damage in order to define the claim as an urban flooding incident. 
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Table 3.3. Detailed description of codes in VASK used to define urban flooding incidents. 

Installation  

Code  Description  

G Outdoor water and drainage systems - Intake pipe for water and outlet for drainage 

(plug pipe) outside the building including basins. 

H Water penetration from the outside through the ground - Water penetration through 

the parts of the building that are below the ground, i.e., through the foundation wall 

below ground level. Also includes infiltration from drainage pipes for surface water, 

drainage pipes from roof drains and drainage pipes. 

I Water penetration from outside above ground – Water penetration through the parts of 

the building that have an exterior facing the open air above the terrain, i.e., through the 

roof and exterior walls. Also includes infiltration from gutters, external and internal roof 

drainers.  

Source  

Code  Description 

I Precipitation. Meltwater. Groundwater – Penetration of precipitation, meltwater from 

snow and ice, floodwater / surface water in the terrain and groundwater. 

Cause 

Code  Description 

E Old age (normally >30 years) of installation – wear and tear due to age or salty or acidic 

water. Blackened rubber bearings, broken gaskets, leaking valves, corrosion etc. Entire 

or significant parts of the installation are worn out4.  

G Stop in sewer. Sewer back up – Flooding in the building caused by water entering 

through the drainage network or due to closed drain, water trap or sanitary equipment.  

I Influence from outside – Sudden increase in pressure, nails or screws in water pipes, 

mechanical rubbing, exhaustion due to vibration or impact, the sprinkler head being run 

over by a truck etc., pipe breakage in plug pipes due to digging etc.   

J Drainage – Clogged drainage, extraordinary rainfall or snowmelt or larger amounts of 

surface water than the drainage is designed for.  

 
4 For more details on the term «ageing»; see “Levetid for sanitær-installasjoner i boliger” from 
Byggforsk ref no. 700.330. 
https://www.byggforsk.no/dokument/3112/levetider_for_sanitaerinstallasjoner_i_boliger  

https://www.byggforsk.no/dokument/3112/levetider_for_sanitaerinstallasjoner_i_boliger
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3.2.2 Meteorological data - MET 

The meteorological data were obtained from The Norwegian Meteorological Institute 

(MET) and their site Norwegian Climate Service Center (Norsk Klimaservicesenter). The 

service has metrological data from all over Norway. MET gathers data both from the 

meteorological stations that they themselves own and stations owned by the 

municipalities. For the stations owned by municipalities, MET provide guidance to make 

sure the observations meet their required quality standards. Because the data is gathered 

from so many stations, MET has undertaken multiple measures to make sure their data 

have the best quality possible. The stations need to have a good location, the equipment 

need to have sufficient accuracy and they must be maintained and controlled properly. 

MET also controls the data in multiple steps when they receive it, both automatically and 

manually5  

MET rates their stations and each element they observe on two different categories:  i) 

exposure class and ii) performance class. Exposure class indicates the quality of the 

station’s location for measuring the weather element on a scale from 1 to 4, where 1 

meets all the World Meteorological Organization’s (WMO) requirements for the location 

and 4 is a bad location. Performance class indicates the quality of the sensor in terms of 

measurement accuracy, calibration, and maintenance; on a scale from A to E, where A 

means the sensor meets all the requirements from WMO and E is unknown performance 

and is considered less valuable. 

In Oslo there are 38 weather stations that gather data; see figure 3.1. In this study, data 

is gathered from eight of these. These are (altitude in m.a.s.l. in parenthesis) : Oslo –

Blindern (94), Oslo – Disen (136), Oslo – Haugenstua (123), Oslo – Hovin (100), Oslo – 

Lambertseter (135), Oslo – Lilleaker (23), Oslo – Ljabruveien  (92) and Tryvannshøgda 

(514). These eight weather stations were selected because the municipality of Oslo covers 

a large area (454 km2), and it is important to select stations that can represent the entire  

area of the city. Precipitation is often local, and with the eight selected weather stations 

most of Oslo is covered. Weather station in locations that are densely populated were 

selected, as there will be a higher probability of an insurance claim occurring there; all 

other things being equal.  As weather stations can be out of the operations for some 

periods of time, stations with continuous recordings for the period 2008-2020 and as few 

missing values as possible, were selected.   

 
5 See also their website: https://www.met.no/vaer-og-klima/kvaliteten-pa-observasjonene . 

https://www.met.no/vaer-og-klima/kvaliteten-pa-observasjonene


18 
 

The quality of the weather stations used in this study are at least in category “2 C” (i.e. 

exposure class 2 and performance class C. This seems to be in the upper half with regards 

to quality of the weather stations. Exposure class 2 means that the quality of the location 

is unknown but assumed to be good. Performance class C means the sensor type is 

assumed to meet the requirements of WMO but there is a lack of control measurement, 

routines for calibration, or maintenance.   

 

Figure 3.1. Weather stations in Oslo municipality shown in green. The dark green ones 

have been selected for data collection for this study. These eight weather stations were 

selected based on their consistent recordings since 2008, the high quality of their 

equipment to gather precise data and their geographical spread in order to get a 

representative picture of the rainfall and temperature in the municipality of Oslo. Source: 

https://seklima.met.no/stations/ 

 

3.2.3 Population data – Statistics Norway 

The population data were obtained from Statistics Norway (SSB, 2022). SSB is the main 

authority for the preparation and dissemination of official statistics in Norway and 

produces approximately 85% of the official Norwegian statistics (https://www.ssb.no/). 

SSB do admit some errors in their population data under the collection and processing of 

the data but regards the error to be insignificant. There will be some dropout errors due 

to persons staying in Norway while not being registered as residents. SSB mainly uses the 

Central Population Register as their statistical base for population. Some of the 

disadvantage with the Central Population Register is that too many are registered as 

https://seklima.met.no/stations/
https://www.ssb.no/
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residents; but also that certain groups, such as unmarried students are registered as 

residents with their parent(s). SSB revealed in a survey in 1990 that the registered 

residence was incorrect for 5.5 percent of the population. This is relevant for this study as 

there are many students in the municipality of Oslo.  

There are also people that move without reporting their departure, and immigrants that 

leave without reporting their move to the population register. Conversely, there are 

several people arriving in Norway that live here illegally in Norway and most of them live 

in Oslo. Since the two factors pull in opposite directions, SSB assumes that these effects 

largely cancel each other out (SSB, 2022)  
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4.  Results and discussion 

4.1 Descriptive statistics 

Tables 4.1 and 4.2 report descriptive statistics of the dataset for the period 2008-2020 for 

daily data (N=4749 days) and weekly data (N= 678 weeks), respectively. In 3017 days of 

the 4749 days (i.e., 63,53 %) insurance claims due to urban flooding were registered. 

During these 3017 days 10439 claims were recorded, i.e., on average 3.46 claims per day 

with claims recorded. Table 4.1 shows that counting also the days with zero claims, the 

average number of daily claims is 2.14; varying from zero to 362 claims in one day. The 

average damage costs per day is 135,922 2021-NOK; varying from zero to more than 75 

million 2021-NOK6. This clearly illustrates the large variation in both number of claims and 

damage costs per day related to urban flooding in Oslo over this 13-year period.  

Table 4.1. Descriptive statistics of daily data for 2008-2020 (N= 4749 days) 

Variables Mean Std Min Max 

Precipitation day (mm) 4.91 8.42 0 88.60 

Precipitation week (mm) 34.26 32.24 0 207.40 

Precipitation month (mm) 145.93 87.69 7.20 499.00 

Extreme rainfall 0.07 0.25 0 1 

Population (no. of people) 631876 41071 548617 693494 

Temperature days above 0 0.76 0.43 0 1 

Damage cost (2021 - NOK)  135922 1349084 0 75223420 

Claims (no. of claims per day) 2.14 8.77 0 362 

 

 

Table 4.2. Descriptive statistics of the weekly data for 2008-2020 (N= 678 weeks) 

Variables Mean Std Min Max 

Precipitation week t (mm) 34.11 32.22 0 162.80 

Precipitation week t-1 (mm) 34.15 32.30 0 162.80 

Precipitation week t-2 (mm) 34.05 32.10 0 162.80 

Precipitation week t-3 (mm) 33.94 32.01 0 162.80 

Extreme rainfall days week t 0.46 0.81 0 4 

Population (no. of people) 632 214 40 918 560 484 693 494 

Temperature – no. of days 

above 0 in week t 

5.33 2.58 0 7 

Damage cost week (2021- NOK) 948 245 4 335 045 0 92 768 068 

Claims week 14.91 31.50 0 467 

 

 
6 All insurance claim costs (damage costs) for the period 2008-2020 have been converted to 
2021-NOK using the Consumer Price Index (CPI); see SSB https://www.ssb.no/priser-og-
prisindekser/konsumpriser/statistikk/konsumprisindeksen 

https://www.ssb.no/priser-og-prisindekser/konsumpriser/statistikk/konsumprisindeksen
https://www.ssb.no/priser-og-prisindekser/konsumpriser/statistikk/konsumprisindeksen
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Figures 4.1 shows the percentage distribution of damage costs over the months of the 

year as well as precipitation and the number of days with extreme precipitation (defined 

here as 20 mm per day as an example); on average for all 13 years for the period 2008-

2020.  Figure 4.2 shows the same as figure 4.1 but with number of insurance claims 

instead of the damage costs (note that the y-axis is somewhat different in the two figures). 

These figures clearly show that the month of August has the highest percentage of both 

damage costs and the number of insurance claims, followed by the months of September 

and October; and that this pattern follows the same patterns as monthly precipitation and 

monthly number of extreme precipitation days (defined here as 20 mm per day).  

 

 

Figure 4.1. Distribution of damage costs (i.e., insurance claim amounts in 2021-NOK), 

precipitation and number of days with extreme precipitation (defined here as 20 mm per 

day) for each month of the year; average for the period 2008-2020. 
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Figure 4.2. Distribution of number of insurance claims, precipitation and number of days 

with extreme precipitation (defined here as 20 mm per day as an example, but other 

definitions also tested) for each month of the year; average for the period 2008-2020 

While figures 4.1  and 4.2  show percentage distribution over each of the twelve months 

averaged over the 13-year period, figures 4.3 - 4.6  show the damage costs per month (in 

10 million NOK), monthly precipitation, number of claims per month and number of 

extreme rainfall days (> 20 mm) per month, respectively;  for each of the years 2008 -

2020: Note than in figure 4.3, 2016 is not included as in August 6th 2016 there was very 

high daily rainfall of 39.1 mm7, causing very high damage costs of 75 223 420 NOK from 

362 insurance claims just for this day. This extreme observation makes the total damage 

costs for August 2016 very high compared to other years and months and the figure 

difficult to read. This figure, including the data for 2016, can be found in table A-3 in the 

appendix.  

Comparing figures 4.3 and 4.4 we see that there the same common pattern as in figures 

4.1 and 4.2 with both damage costs per month and monthly rainfall peaking in the autumn 

months of August, September and October; and a smaller peak in June. The relative 

annual variation over the months seems to be higher for monthly rainfall than monthly 

damage costs. Further, there seems to no clear increasing trend in neither rainfall nor 

damage costs over time, but then this is a relatively short period of time which easily can 

 
7 See https://www.aftenposten.no/oslo/i/V5Rvr/enorme-nedboersmengder-over-oslo-omraadet 

 

https://www.aftenposten.no/oslo/i/V5Rvr/enorme-nedboersmengder-over-oslo-omraadet
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be affected by natural variation in the weather and is too short a period to see a climate-

induced increase in rainfall and damage costs.    

 

Figure 4.3. Monthly damage costs (in 10 million 2021-NOK) for each year for the period 

2008 -2020; except 2016 (due to an extreme event on August 6th 2016). Figure A-3 in the 

Appendix includes data also for 2016. 

 

 

 

Figure 4.4. Precipitation each month (in mm) each year for the period 2008 -2020. 
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Figure 4.5. Number of insurance claims each month each year for the period 2008 -

2020. 

Figure 4.5 shows that the number of insurance claims each month for each year seems to 

have less variation between years than the damage costs in figure 4.3 (no need to exclude 

2016 for illustrating this) and shows the same pattern as in figure 4.,3 but even clearer.  

Figure 4.6 shows extreme rainfall days each month for each year and there is a large 

variation from year to year and between months both in summer and autumn (and also 

winter) but in many years August, September October still seems to stand out as having 

the highest number of extreme rainfall days.  

 

Figure 4.6. Number of extreme rainfall days (> 20 mm) each month each year for the 

period 2008 -2020. 

As there seems to be no generally agreed definition of an extreme rainfall day, two 

definitions in addition to the “above 20 mm” definition used for Oslo in this study, are 

illustrated in figure 4.7. While the number of days using the strictest definition (i.e., above 
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40 mm daily precipitation), seems to be quite constant over time; the two other 

definitions (above 20 and 25 mm) both indicate an increasing trend the last four years; 

from 2016 to 2020.   

 

Figure 4.7 Annual number of extreme rainfall days for the period 2008 -2020 at three 

different definitions; above 20, 25 and 40 mm per day. 

 

Figure 4.8. Plot of daily data on damage costs (in 10 million NOK/day) and precipitation 

(mm/day) in Oslo 2008-2020. All observations except the extreme rainfall day August 6th 

2016 (N= 4748 days) 

To further illustrate the data, figure 4.8 and 4.9 show damage costs plotted against 

precipitation for daily data (N=4748) and weekly data (N= 677); respectively. Again, the 

extreme observation of August 6th 2016 (and week of this event; week 31 in 2016) is left 

out in order to avoid compressing the other observations and illustrate better the 

distribution. Figures A-4 and A-5 in the appendix shows the plots with all observations 

(including this extreme rainfall day and corresponding week)   
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Figure 4.9.  Plot of weekly data on damage costs (in 10 million NOK/week) and 

precipitation (mm/week) in Oslo 2008-2020. All observations except the week  of the  

extreme rainfall day August 6th 2016; week 31 (N= 678 weeks)  

Finally in this descriptive statistics section, figure 4.10 shows the development of annual 

damage costs and annual precipitation in Oslo for each year from 2008 to 2020. Both 

curves seem relatively flat until 2016 (with the exception of the hike in damage costs in 

2016). Then the annual precipitation seems to increase (especially after 2018) while the 

annual damage costs show much more variation and even decline in 2020 compared to 

2019. It is premature to conclude from this that climate adaption and damage mitigation 

measure that the Oslo municipality, businesses and households have implemented in 

recent years; and longer time series and analyses are needed to test whether this recent 

trend will continue.  

Figure 4.10. Annual damage costs (in 100 million 2021-NOK; in black)  and annual 

precipitation (in mm; in blue) in Oslo for each of the years  2008 -2020. 
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4.2. Description of variables  

Table 4.3 lists and describes the variables used in the regression analyses and their unit 

of measurement. 

Table 4.3. Description of variables 

Variables Unit Description 

Precipitation day  mm The maximum precipitation recorded at 

any of the eight weather station a given 

day. 

 

Precipitation week  mm Total precipitation the seven days 

preceding the given day, using the daily 

precipitation from the weather station 

(out of the eight) that had the highest 

observation. 

 

Precipitation month  mm Total precipitation the 30 days preceding 

the given day, using the daily precipitation 

from the weather station (out of the eight) 

that had the highest observation. 

 

Population  No. of 

people 

No. of people in Oslo Municipality. Annual 

data, at the end of the year.  

 

Damage cost  2021-NOK 

per day 

Insurance claims cost per day. 

Estimated cost related to the insurance 

claim. Includes appraiser, and 

compensations to the insurance customer 

(craftsman, new parts etc.). 

 

Claims  

 

No. of 

claims 

 

Number of insurance claims per day 

Damage cost week 2021-NOK 

per week 

Insurance claim costs per week. Estimated 

cost related to the insurance claim. 

Includes appraiser, and compensations to 

the insurance customer (craftsman, new 

parts etc.). 

 

 

Claims week 

 

 

No. of 

claims 

 

 

Number of insurance claims per week 

Precipitation week t 

 

mm Total precipitation in a week, the given 

week. The maximum precipitation 

recorded at any of the eight weather 

stations a given day; aggregated for all 

days of the given week.  
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Precipitation week t-1 

 

mm Total precipitation in a week; one week 

prior to the given week. The maximum 

precipitation recorded at any of the eight 

weather stations a given day; aggregated 

for all days of the week prior to the given 

week.  

 

Precipitation week t-2 

 

mm Total precipitation in a week, two weeks 

prior to the given week. The maximum 

precipitation recorded at any of the eight 

weather stations a given day; aggregated 

for all days of the week, two weeks prior 

to the given week.  

 

 

Precipitation week t-3 

 

mm Total precipitation in a week, three weeks 

prior to the given week. The maximum 

precipitation recorded at any of the eight 

weather stations a given day; aggregated 

for all days of the week, three weeks prior 

to the given week.  

 

Spring* 

 

0-1 Dummy variable, defined as 1 if the month 

is March, April, or May and 0 otherwise 

   

Summer* 

 

 

0-1 Dummy variable, defined as 1 if the month 

is June, July, or August and 0 otherwise   

 

Autumn* 

 

0-1 Dummy variable, defined as 1 if the month 

is September, October, or November and 

0 otherwise   

 

Extreme rainfall days week t 

 

  

Number of days in a week with extreme 

rainfall; defined here as more than 20 mm 

in a 24h period (00-24). 

 

Population 

 

No. of 

people 

Population in Oslo, annual data  

 

Temperature  

  

 No. of 

days above 

0 in week t 

 

Number of days in the given week with a 

temperature arithmetic mean for a 24h 

period 00-24 being above 0. 

Note: * Seasons were defined according to meteorological seasons; see Season Definition: When 

Do They Start? (timeanddate.com) (Winter, defined as December, January February, is the 

hidden/reference category)  

The correlation matrices for all variables used in the regressions are reproduced in table 

A-1 and A-2 in the Appendix (Chapter 7). Highly correlated independent variables are 

https://www.timeanddate.com/calendar/aboutseasons.html
https://www.timeanddate.com/calendar/aboutseasons.html
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not included in the same regression, and only independent variables having r = 0.4 or 

less were included in the same regression model.  

4.3 Regression analyses 

Ordinary Least Square (OLS) regressions models are run in the form of: 

𝑌𝑖= 𝛽0+ 𝛽1𝐷i𝑖+ 𝛽2W𝑖+ 𝛽3M𝑖 +  𝑒𝑖       (4.1) 

where 𝑌𝑖 is the total insurance claim amounts (referred to as damage costs; in NOK) 

for day i, Di is the rainfall (in mm)  for day i, Wi is the rainfall the preceding seven days 

(week), Mi is the rainfall the preceding 30 days (month), and 𝑒𝑖 is the error term. 

Regression models are also run for 𝑌𝑖 being the number of insurance claims for day i. 

to check whether the three precipitation variables D, W and M are better in predicting 

the number of claims than the total claims costs.  As temperature can also play a role 

(in terms of precipitation in the form of snow causing less flooding) regression 

models with arithmetic mean daily temperature Ti (defined as a dummy with above 

zero temperatures defined as 1 and 0 otherwise) are also run. Further, as increase in 

the population of Oslo over these 13 years could also affect the number of insurance 

claims and thus the damage costs, the annual population of Oslo has also been 

included as a variable in the model.    

The results of all the models using daily data on precipitation and insurance claims 

and damage costs are presented in chapter 4.4.   In chapter 4.5.  regression models are 

run for 𝑌𝑖 being weekly damage costs; and for 𝑌𝑖 being the number of insurance claims 

in week i, A significance level of 5 % will be applied in the interpretation of the 

regression models, but 1% and 10% significance levels are also shown in the tables. 

 

4.4 Multiple regression models for daily data 

Table 4.3B. shows that daily precipitation has a significant effect on damage costs and so 

does rainfall the week before the day in model 2, but not rainfall the month before the 

day as model 3 shows. As expected, and in accordance with previous studies, damage 

costs increase with the amount of rainfall, both per day and week. Out of the three 

models, model 2 seems to perform the best. The predictive power in terms of adjusted R-

squared is, however, low in all models; clearly indicating that there are other factors 

affecting the daily damage costs.  
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Table 4.3B. Damage costs (defined according to the codes in table 3.2) per day and 

impact of daily, weekly, and monthly precipitation for 2008 - 2020 (N =4749 days) 

 Model 1  Model 2  Model 3 

Intercept  55.46 

(22 300.00) 

-  68 660.00** 

(28 800.00) 

- 89 600.00** 

(37 700.00) 

Precipitation day  27 680.00*** 

(2 291.30) 

25 370.00*** 

(2 367.95) 

25 220*** 

(2 374.13) 

Precipitation week - 2 335.84*** 

(618.21) 

1 932.49** 

(755.31) 

Precipitation month 

 

- - 243.15 

(282.04) 

Adj. R-squared  0.030 0.032 0.032 

*** Significant at the 1 percent level.   

  ** Significant at the 5 precent level. 

    * Significant at the 10 percent level.  

 

The number of insurance claims and damage costs vary over the year with the highest 

frequency during late summer and autumn. Thus, models with variables to account for 

this seasonal fluctuation should also be run. This can be done by converting the year into 

four 3-months periods and construct three dummy variables for the four seasons (Winter, 

spring, Summer and Autumn). As the meteorological seasons means that the months July-

October, when the highest number of insurance claims occur, overlap with two of these 

seasons, separate models for a subset of the data has also been run; see table A-2 in the 

Appendix.  Comparing table A-2 with models in the full dataset in table 4.3. we find that 

the same precipitation variables are significant and positive; i.e. daily precipitation and 

precipitation the preceding week, and Adjusted R-square is only slightly higher; increasing 

from 3 to about 5 %. Thus, we continue using the full dataset. 

Adding annual data on the population in Oslo as a variable to model 3 in table 4.3., shows 

that population was not significant at the 5% level, the adj. R-squared remained 

unchanged at 0.032, and only daily precipitation was significant of the three precipitation 

variables.  

 In table 4.4 the same models are run as in table 4.3, but with a less strict definition of 

rainfall-related damage; i.e. including all damages with Source = I but for all codes for 

Installations and Causes; and not only the codes listed in table 3.2) resulting in an increase 

from 3017 to 3270 days with reported insurance claims and an increase in the total 

number of claims from 10 439 to 12 189. The same variables as in table 4 are significant, 

and with the same correct, expected sign, showing that when the precipitation per day 

and the preceding week increase, the damage costs per day increase. 
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Table 4.4. Damage costs per day (wider definition; i.e, all damages coded as Source= I; 

but for all codes of Installation and Cause and not only the ones listed in table 3.2.)  

and impact of daily, weekly, and monthly precipitation for 2008 - 2020 (N =4749 days) 

 Model 5  Model 6  Model 7 

Intercept  9 361.39 

(24 300) 

-  73 180** 

(31 300) 

- 102 700** 

(41 000) 

Precipitation day  31 310*** 

(2 494.11) 

28 540*** 

(2 576.70) 

28 330*** 

(2 583.29) 

Precipitation week - 2 805.89*** 

(672.71) 

     2 238.16*** 

(843.61) 

Precipitation month 

 

- - 342.25 

(306.88) 

Adj. R-squared  0.032 0.035 0.035 

*** Significant at the 1 percent level.   

  ** Significant at the 5 precent level. 

    * Significant at the 10 percent level.  

 

Precipitation the preceding month is still not significant in table 4.4. Thus Model 6 

(equivalent to model 2 in table 4.3) still seems to perform the best, and Adjusted R-

squared have increased just marginally from 0.032 to 0.035. Thus, this test of the 

sensitivity of the models to the definition of rainfall-related damages shows that the 

definition of claims /damage costs in table 3.2 performs well. Thus, in all other model 

runs, urban flooding insurance claims /damage costs will be defined in accordance with 

the VASK codes provided in table 3.2  

Table 4.5 reports the same models as in table 4.3 but separate for insurance claims from 

households and businesses. Out of the 4749 days in these 13 years, 2 588 days had claims 

from households (with damage costs) and a total of 8 046 claims. For businesses the 

respective numbers were 1339 days and 2277 claims. Again, daily and weekly rainfall are 

significant in all models (at the 5 % level), while monthly precipitation is not; and adjusted 

R-square is again low but slightly higher for households. Thus, there seems to be no 

differences between households and businesses in terms of the significant effect of 

rainfall variables on daily damage costs.  
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Table 4.5. Damage cost and impact of daily, weekly, and monthly precipitation for 

households (Models 1-3) and business (Models 4-6) (N =4749) 

                             Households Businesses 

 (1) (2) (3) (4) (5) (6) 

Intercept    -11 360         70 420***   -90 950***   11 420        1 801.03**     1 367** 

  (20 400)       (26 300)        (34 400)        (6 759)        (8 720)          (11 400) 

Precip. 

day  

   22 840***   20 860***    20 710***    4 834***    4 512***       4 508***              

   (2 094)         (2 165)          (2 170)           (694)           (717)              (720) 

Precip. 

week 

-            2008***       1612**               -               327**             319** 

                          (565)             (709)                                  (187)              (235) 

Precip. 

month 

        -                    -                  238.30             -                   -                       5 

                                                 (258)                                                            (85)                                                

Adj. R-

squared  

0.024                0.027            0.027           0.010             0.010             0.010 

*** Significant at the 1 percent level.      

  ** Significant at the 5 precent level.    

    * Significant at the 10 percent level.     

 

Table 4.6. Damage costs per day and impact of extreme rain, defined at 40mm pr day  

(N =4749 days) 

 (1)  (2)  (3) 

Intercept  122 700*** 

(19 600) 

-979 

(28 300) 

-39 450 

(37 700) 

Extreme rain day   1 494 000*** 

(208 000) 

1 368 000*** 

(208 000) 

1 365 000*** 

(208 000) 

Precipitation week - 

 

3643*** 

(605) 

2898*** 

(773) 

Precipitation month - 

 

- 439 

(283) 

Adj. R-squared  0.011 0.018 0.018 

*** Significant at the 1 percent level.   

  ** Significant at the 5 precent level. 

    * Significant at the 10 percent level.  

 

Tables 4.6 – 4.8 show models with the “Extreme rain day” variable instead of daily 

precipitation. “Extreme rain day” is defined as the day having extreme rain (defined as 

a dummy with more than 40, 25, and 20 daily precipitation equal to 1; 0 otherwise; in 

tables 4.6, 4.7. and 4.8, respectively). Note there is no formal definition of an extreme 

rain day, and in Norway this would vary geographically due to different local conditions 

and could be as low as 20 mm in the driest areas but more than seven times this in the 

wettest areas in Western Norway (DSB 2016; p. 9)). As urban areas have built-up areas 

and less green areas that can absorb the rain, 20 mm is used here to define an extreme 
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rain day throughout this thesis, expect in tables 4.6-54.8 where the sensitivity of the 

results to different definitions of an extreme rain day is explored. 

 

For all definitions of “Extreme rain day”, the variable is significant, and has the expected 

positive impact on daily damage costs. Precipitation the preceding week also has a 

significant, positive effect on damage costs per day (see models 2 and 3) for all 

definitions of an extreme rain day. Adjusted R-squared is still low, and in general lower 

than for models using the continuous variable of daily precipitation (in mm). Thus, using 

extreme rainfall days as a dummy variable does not seem to increase the explanatory 

power. 

 

Table 4.7. Damage costs and impact of extreme rain, defined at 25mm pr day, and 

weekly and monthly precipitation (N =4749) 

 (1)  (2)  (3) 

Intercept  93 290*** 

(19 800) 

-10 740 

(28 200) 

-39 200 

(37 500) 

Extreme rain day   1 033 000*** 

(97 300) 

954 600*** 

(98 200) 

949 000*** 

(98 300) 

Precipitation week - 

 

3131*** 

(606) 

2583*** 

(770) 

Precipitation month - 

 

- 325 

(282) 

Adj. R-squared  0.023 0.028 0.028 

*** Significant at the 1 percent level.   

  ** Significant at the 5 precent level. 

    * Significant at the 10 percent level.  

 

Table 4.8. Damage costs and impact of extreme rain, defined at 20mm pr day, and 

weekly and monthly precipitation (N =4749) 

 (1)  (2)  (3) 

Intercept  83 690*** 

(20 000) 

-16 710 

(28 200) 

-40 330 

(37 500) 

Extreme rain day   792 500*** 

(78 100) 

722 600*** 

(79 100) 

717 000*** 

(79 300) 

Precipitation week - 

 

3065*** 

(609) 

2613*** 

(771) 

Precipitation month - 

 

- 270 

(283) 

Adj. R-squared  0.021 0.026 0.026 

*** Significant at the 1 percent level.   

  ** Significant at the 5 precent level. 

    * Significant at the 10 percent level.  
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In tables 4.9 and 4.10, mean daily temperature is added as a variable in the models, as a 

continuous variable (in degrees C) in table 4.9, and in table 4.10 as a dummy variable 

(above zero or not; thought to reflect that the risk of urban flooding and damages could 

be higher if the precipitation is rain rather than snow). The results show that in most of 

the models for the two temperature variables is the temperature variable not significant. 

The only exception is model 1 in table 4.9, where the mean daily temperature has a 

significant and positive effect on daily damage costs.   

Table 4.9. Damage costs and impact of daily, weekly, and monthly precipitation and 

the arithmetic mean daily temperature. Temperature day is calculated as the 

arithmetic mean for a 24h period 00-24. (N =4749 days). 

 (1)  (2)  (3) 

Intercept  -36 810 

(26 200) 

89 950*** 

(30 600) 

-101 600*** 

(37 800) 

Temperature day  

 

6765*** 

(2515) 

5182 

(2557) 

4947 

(2598) 

Precipitation day 26 890*** 

(2309) 

25 000*** 

(2374) 

24 930*** 

(2379) 

Precipitation week - 

 

2100*** 

(629) 

1867** 

(776) 

Precipitation month - 

 

- 147 

(286) 

Adj. R-squared  0.031 0.033 0.033 

 

Table 4.10. Damage costs and impact of daily, weekly, and monthly precipitation and 

whether the arithmetic mean daily temperature was above zero. Temperature day 

above zero is calculated as the arithmetic mean for a 24h period 00-24 is above zero 

equals 1; 0 otherwise (N =4749 days) 

 (1)  (2)  (3) 

Intercept  40 930 

(40 200) 

-88 110** 

(42 200) 

-105 100** 

(47 200) 

Temperature day  

above zero 

 

56 240 

(45 800) 

29 250 

(46 300) 

25 370 

(46 600) 

Precipitation day 27 280*** 

(2313) 

25 230*** 

(2379) 

25 110*** 

(2383) 

Precipitation week - 

 

2272*** 

(626) 

1904** 

(777) 

Precipitation month - 

 

- 227 

(284) 

Adj. R-squared  0.030 0.032 0.032 
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In tables 4.11 and 4.12 variables to account for seasonal variations in rainfall have been 

added to the models. Three dummy variables (Spring, Summer and Autumn; see table 

4.3. for definitions) have been constructed by converting the year into four 3-months 

periods according to the meteorological definition of seasons and leaving Winter out 

as the hidden/reference category. The results show that out of these three seasonal 

dummy variables, only Summer was significant. Thus, Summer has a significant positive 

impact on daily damage costs; showing rainfall occurring in the summer significantly 

increase the damage costs compared to the same rainfall occurring in winter. Looking 

at the number of insurance claims instead of the damage costs, table 4.12 shows that 

now both Summer and Autumn become significant (at the 5 % level).  This indicates that 

the seasons better explains the variation in the daily number claims than the damage 

costs per day.  

 

Table 4.11. Damage costs and impact of daily, weekly, and monthly precipitation and 

the seasons as dummy variables (N =4749 days) 

 (1)  (2)  (3) 

Intercept  -54 470 

(39 800) 

-100 420** 

(42 800) 

-115 100** 

(49 300) 

Precipitation day 26 570*** 

(2325) 

24 930*** 

(2380) 

24 880*** 

(2382) 

Precipitation week - 

 

2033*** 

(643) 

1 838** 

(777) 

Precipitation month 

 

- 

 

- 135 

(303) 

Spring 

 

19 120 

(54 600) 

29 080 

(54 600) 

32 020 

(55 000) 

Summer 

 

150 500*** 

(55 000) 

116 700** 

(56 000) 

112 100** 

(56 900) 

Autumn 

 

69 010 

(54 900) 

45 500 

(55 300) 

39 820 

(56 800) 

Adj. R-squared  0.032 0.033 0.032 

*** Significant at the 1 percent level.   

  ** Significant at the 5 precent level. 

    * Significant at the 10 percent level.  

 

 

 

Table 4.12. Number of insurance claims per day and impact of daily, weekly, and 

monthly precipitation and the seasons as dummy variables (N =4749 days) 

 (1)  (2)  (3) 
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Intercept  0.358 

(0.254) 

-0.339 

(0.272) 

-0.725** 

(0.313) 

Precipitation day 0.260*** 

(0.015) 

0.233*** 

(0.015) 

0.231*** 

(0.015) 

Precipitation week - 

 

0.029*** 

(0.004) 

0.022*** 

(0.005) 

Precipitation month 

 

- 

 

- 0.005** 

(0.002) 

Spring 

 

0.056 

(0.348) 

0.195 

(0.347) 

0.299 

(0.349) 

Summer 

 

1.070*** 

(0.351) 

0.600* 

(0.355) 

0.432 

(0.361) 

Autumn 

 

0.957*** 

(0.350) 

0.628* 

(0.351) 

0.427 

(0.360) 

Adj. R-squared  0.067 0.077 0.078 

*** Significant at the 1 percent level.   

  ** Significant at the 5 precent level. 

    * Significant at the 10 percent level.  

Table 4.13 reports models using only the three precipitation variables in trying to explain 

the variation in the number of insurance claims per day. The results show that all three 

precipitation variables (i.e., rainfall daily, weekly and per month) have a significant impact 

on the number of insurance claims. 

 

Table 4.13. Insurance claims per day and impact of daily, weekly, and monthly 

precipitation for 2008 - 2020 (N =4749 days) 

 Model 1  Model 2  Model 3 

Intercept  0.8326*** 

(0.143) 

- 0.0638 

(0.183) 

- 0.5174** 

(0.239) 

Precipitation day  0.2656*** 

(0.015) 

0.2355*** 

(0.015) 

0.2323*** 

(0.015) 

Precipitation week - 0.0305*** 

(0.004) 

0.0217*** 

(0.005) 

Precipitation month 

 

- - 0.0053*** 

(0.002) 

Adj. R-squared  0.065 0.076 0.078 

*** Significant at the 1 percent level.   

  ** Significant at the 5 precent level. 

    * Significant at the 10 percent level.  

4.5 Multiple regression models for weekly data 

Tables 4.14 – 4.17 report the results from using stepwise regression to explain the 

variation in the weekly damage costs (tables 4.14 and 4.15) and number of insurance 

claims (tables 4.16 og 4.17); starting with all variables in Model 1 and deleting the variable 
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with the smallest correlation, ending up with a model with only significant independent 

variables; e.g. model 8 in table 4.14. 

 As the amount precipitation (in mm) in a week and number of extreme rainfall days are 

highly correlated; r= 0.85, see table A-2 in the Appendix, the regression models include 

just one of these two variables. Thus, tables 4.14 and 4.15 show the results for weekly 

damage costs, using precipitation in week t and extreme rainfall days in week t, 

respectively. In the same way, tables 4.16 and 4.17 report results for the stepwise 

regression for the weekly number of insurance claims using precipitation in week t and 

extreme rainfall days in week t, respectively. 

Table 4.14. Stepwise regression of damage costs per week and the impact of precipitation 

in week t, precipitation in the previous week (t-1), an in the second (t-2) and third week 

(t-3) prior to week t, and annual population data for Oslo. Seasons, and number of 

temperature days above zero in week t (N = 678 weeks) 

      

 (1)  (2)  (3) (4) (5) (6) (7) (8) 

Intercept 
 

-3.2e+6 
(2.5e+6) 

-3.3e+6 
(2.5e+6) 

-3.1e+6 
(2.5e+6) 

-3.1e+6 
(3.5e+6) 

-3.1e+6 

(2.5e+6) 

-7.8e+5*** 

(2.8e+5) 

-9.1e+5*** 

(2.6e+5) 

-8.6e+5*** 

(2.6e+5) 

Precipitation 
week t 
 

4.0e+4*** 
(5361) 

4.0e+4*** 
(5346) 

4.0e+4*** 
(5354) 

4.0e+4*** 
(5257) 

3.9e+4*** 
(5223) 

4.0e+04*** 
(5179) 

3.4e+04*** 
(5157) 

4.1e+04*** 
(5073) 

Precipitation 
week t-1 
 

1.2e+4** 
(5359) 

1.2e+4** 
(5352) 

1.3e+4** 
(5356) 

1.2e+4** 
(5311) 

1.2e+4** 
(5276) 

1.2e+4** 
(5249) 

1.1e+4** 
(5121) 

1.2e+4** 
(5061) 

Precipitation 
week t-2 
 

-7139 
(5360) 

-6806 
(5279) 

-6515 
(5259) 

-6724 
(5234) 

-6984 

(5179) 

-6471 

(5151) 

- - 

Precipitation 
week t-3 
 

1945 
(5311) 

- 
 

- 
 
 

- - - - - 

Spring 
 

4.7e+5 
(5.7e+5) 

4.6e+5 
(5.7e+5) 

2.0e+5 
(4.2e+5) 

1.4e+5 
(4.0e+5) 

- - - - 

Summer 
 

1.0e+6 
(5.3e+5) 

1.0e+5* 
(6.3e+5) 

7.1e+5* 
(4.3e+5) 

6.3e+5* 
(3.9e+5) 

5.9e+5 

(3.7e+5) 

5.7e+5 

(3.7e+5) 

5.2e+5 

(3.7e+5) 

- 

Autumn 
 

3.5e+5 
(5.7e+5) 

3.8e+5 
(5.6e+5) 

- - - - - - 

Population 
 

3.81 
(4) 

3.96 
(3.97) 

3.72 
(3.95) 

3.69 
(3.95) 

3.76 

(3.84) 

- - - 

Temperature 
days above 0 
week t 
 

-6.4e+4 
(8.7e+4) 

-6.4e+4 
(8.7e+4) 

-3.2e+4 
(7.1e+4) 

- - - - - 

Adj. R-
squared  

0.111 0.112 0.113 0.114 0.115 0.115 0.114 0.113 

*** Significant at the 1 percent level.        

  ** Significant at the 5 precent level.      

    * Significant at the 10 percent level.  
 
 

     

The results from the stepwise regression in table 4.14 show that precipitation in week t 

as well as the previous week (t-1) have a significant, positive impact on damage costs per 

week. This corresponds well with results from the regressions based on daily data, 

presented in chapter 4.4. None of the other independent variables are significant (at the 

5 % level). Compared to the models based on daily data in chapter 3.4, the explanatory 
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power is much higher using weekly data, with adjusted R-square around 11 %. Thus, 11% 

of the variation in the damage costs can be explained by these two precipitation variables.  

Using the number of extreme rainfall days in week t (instead of precipitation in week t), 

table 4.15 shows this variable and precipitation the previous week (t-1) are still the only 

significant variables to explain the variation in damage costs per week. The explanatory 

power in terms of adjusted R-square stays higher than with the use of daily data but drops 

by about one percentage point compared to table 4.14.   

Table 4.15. Stepwise regression of damage costs per week and the impact of number of 

extreme rainfall days (> 20 mm) in week t, precipitation in the previous week (t-1), and 

in the second (t-2) and third week (t-3) prior to week t, Seasons, Population and the 

number of temperature days above zero in week t  (N = 678 weeks). 

 (1)  (2)  (3) (4) (5) (6) (7) 

Intercept  -3.8e+6 
(2.5e+6) 

-3.7e+6 
(2.5e+6) 

-3.8e+6 
(2.5e+6) 

-3.8e+6 
(2.5e+6) 

-3.8e+6 
(2.5e+06) 

-3.6e+6 
(2.5e+6) 

-3.1e+5 
(2.4e+5) 

Extreme 
rainfall days 
week t 
 

1.4e+6*** 
(2.1e+5) 

1.4e+6*** 
(2.1e+5) 

1.4e+6*** 
(2.1e+5) 

1.4e+6*** 
(2.1e+5) 

1.4e+6*** 
(2.1e+5) 

1.4e+06*** 
(2.0e+5) 

1.4e+6*** 
(2.0e+5) 

Precipitation 
week t-1 
 

1.4e+4*** 
(5376) 

 

1.4e+4*** 
(5371) 

1.4e+4*** 
(5362) 

1.4e+4*** 
(5203) 

1.4e+4*** 
(5288) 

1.2e+4** 
(5176) 

1.3e+4** 
(5127) 

Precipitation 
week t-2 
 

-7520 
(5402) 

-7420 
(5389) 

-7001 
(5301) 

-7336 
(5231) 

-7392 
(5224) 

- 
 
 

- 

Precipitation 
week t-3 
 

2139 
(5349) 

2337 
(5310) 

- 
 

- - - - 

Spring 
 

3.2e+5 
(5.8e+5) 

2.0e+5 
(4.3e+5) 

1.7e+5 
(4.3e+5) 

- - - - 

Summer 
 

1.0e+6 
(6.3e+5) 

8.6e+5** 
(4.3e+5) 

8.6e+5** 
(4.3e+5) 

8.0e+5** 
(4.0e+5) 

7.5e+5** 
(3.7e+5) 

6.9e+05* 
(3.7e+5) 

- 

Autumn 
 

1.8e+5 
(5.7e+5) 

- - - - - - 

Population 
 

5.82 
(4) 

5.69 
(3.98) 

5.86 
(3.95) 

5.91 
(3.95) 

5.86 
(3.94) 

5.25 
(3.92) 

- 

Temperature 
days above 0 
week t 
 

-4.8e+4 
(8.7e+4) 

-3.3e+4 
(7.2e+4) 

-3.1e+4 
(7.2e+4) 

-2.1e+4 
(6.8e+04) 

- - - 

Adj. R-squared  0.098 0.099 0.100 0.101 0.102 0.101 0.100 

*** Significant at the 1 percent level.       
  ** Significant at the 5 precent level.     
    * Significant at the 10 percent level.     

 

Tables 4.16 and 4.17 shows a similar pattern as tables 4.14 and 4.15 in terms of significant 

precipitation variables, with both precipitation in week t and number of extreme rainfall 

days in week t having a significant positive impact (in table 4.16 and 4.17, respectively) on 

the number of insurance claims per week; and in both regressions precipitation the 

previous week (t-1) is significant.  These results correspond well with previous Norwegian 

studies looking at the correlation between number of insurance claims and precipitation 

(Rohrbek et al 2016, 2018 and Torgersen et al 2015; see chapter 2) and shows that the 

more rain there is the preceding week (t-1), soils will be saturated and  when there is more 

rain in week t the number of insurance claims in week t will increase.  
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Table 4.16. Stepwise regression of number of insurance claims per week and the impact 

of precipitation in week t, precipitation in the previous week (t-1), an in the second (t-2) 

and third week (t-3) prior to week t, and annual population data for Oslo. Seasons, and 

number of temperature days above zero in week t  are dummy variables. A (N = 678 

weeks) 

 (1)  (2)  (3) (4) (5) (6) (7) (8) 

Intercept 
 

-31.77* 
(17.14) 

-31.31* 
(17.1) 

-31.18* 
(17.1) 

-29.79* 
(16.89) 

-29.58* 

(16.88) 

-30.33* 

(16.84) 

-28.99* 

(16.79) 

3.24* 

(1.787) 

Precipitation 
week t 
 

0.366*** 
(0.037) 

0.366*** 
(0.037) 

0.363*** 
(0.036) 

0.365*** 
(0.036) 

0.363*** 
(0.036) 

0.366*** 
(0.036) 

0.373*** 
(0.035) 

0.38*** 
(0.035) 

Precipitation 
week t-1 
 

0.141*** 
(0.037) 

0.139*** 
(0.036) 

0.137*** 
(0.036) 

0.139*** 
(0.036) 

0.137** 
(0.036) 

014*** 
(0.035) 

0.146*** 
(0.035) 

0.151*** 
(0.035) 

Precipitation 
week t-2 
 

-0.016 
(0.037) 

- 
 

- 
 

- 
 

- 

 

- 

 

- - 

Precipitation 
week t-3 
 

0.029 
(0.036) 

0.026 
(0.036) 

0.026 
(0.036) 

 

0.029 
(0.035) 

0.026 

(0.035) 

- - - 

Spring 
 

3.359 
(3.935) 

3.459 
(3.926) 

2.273 
(3.193) 

1.382 
(2.753) 

- - - - 

Summer 
 

5.337 
(4.322) 

5.217 
(4.311) 

3.759 
(3.269) 

2.706 
(2.654) 

2.333 

(2.546) 

2.526 

(2.533) 

- - 

Autumn 
 

3.017 
(3.9) 

2.912 
(3.89) 

1.773 
(3.212) 

- - - - - 

Population 
 

4.3e-5 
(2.8e-5) 

4.2e-5 
(2.7e-5) 

4.1e-5 
(2.7e-5) 

4.0e-5 
(2.7e-5) 

4.1e-5 

(2.7e-5) 

4.3e-5 

(2.7e-5) 

4.1e-5 

(2.7e-5) 

- 

Temperature 
days above 0 
week t 
 

-0.301 
(0.595) 

-0.309 
(0.594) 

- - - - - - 

Adj. R-
squared  

0.205 0.205 0.206 0.207 0.208 0.209 0.209 0.207 

*** Significant at the 1 percent level.        

  ** Significant at the 5 precent level.      

    * Significant at the 10 percent level.       

 

When using the number of insurance claims per week in tables 4.16 and 4.17 instead of 

weekly damage costs as the dependent variables, the explanatory power of the models 

nearly doubles to an adjusted R-square of 19.0 and 20.7 % (models 7 and 8 in tables 4.17 

and 4.16, respectively); and highest when using precipitation per week (table 4.16) 

instead of number of extreme rainfall days (table 4.17). This might be explained by 

damage costs from the same amount of rainfall or the same number of extreme rainfall 

varying more than the number of insurance claims from the same precipitation.  

In table 4.17 Population is also significant (at the 5 % level) and positive, indicating that 

increased population will increase the weekly number of insurance claims. This could be 

due to both more households that can be potentially affect and higher population leading 

to more densely built-up areas with less green areas that can absorb the rain. Note that 

Population does not have a significant effect on the weekly damage costs.  
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Table 4.17. Stepwise regression of number of insurance claims per week and the impact 

of the number of extreme rainfall days (> 20 mm) in week t, precipitation in the previous 

week (t-1), and in the  second (t-2) and third week (t-3) prior to week t, Seasons, 

Population and the number of temperature days above zero in week t  (N = 678 weeks). 

     

 (1)  (2)  (3) (4) (5) (6) (7) 

Intercept  37.24** 
(17.3) 

-37.15** 
(17.28) 

-36.49** 
(17.07) 

-36.36** 
(17.06) 

-35.87** 
(17.03) 

-36.64** 
(16.99) 

-28.99* 
(16.96) 

Extreme 
rainfall days 
week t 
 

13.15*** 
(1.453) 

13.10*** 
(1.44) 

13.15*** 
(1.425) 

13.11*** 
(1.419) 

13.05*** 
(1.414) 

13.17*** 
(1.402) 

13.49*** 
(1.389) 

Precipitation 
week t-1 
 

0.155*** 
(0.037) 

 

0.153*** 
(0.037) 

0.155*** 
(0.037) 

0.154*** 
(0.037) 

0.15*** 
(0.036) 

0.153*** 
(0.036) 

0.163*** 
(0.035) 

Precipitation 
week t-2 
 

-0.02 
(0.037) 

-0.02 
(0.037) 

-0.02 
(0.037) 

-0.021 
(0.037) 

- - 
 
 

- 

Precipitation 
week t-3 
 

0.03 
(0.037) 

0.03 
(0.037) 

0.031 
(0.037) 

0.03 
(0.036) 

0.036 
(0.035) 

- - 

Spring 
 

2.028 
(3.969) 

1.392 
(3.232) 

0.985 
(2.801) 

- - - - 

Summer 
 

5.429 
(4.37) 

4.643 
(3.321) 

4.148 
(2.68) 

3.888 
(2.57) 

3.741 
(2.556) 

3.935 
(2.541) 

- 

Autumn 
 

1.434 
(3.946) 

0.827 
(3.28) 

- - - - - 

Population 
 

6.1e-5** 
(2.8e-5) 

6.1e-5** 
(2.8e-5) 

6.0e-5** 
(2.7e-5) 

6.1e-5** 
(2.7e-5) 

6.0e-5** 
(2.7e-5) 

6.2e-5** 
(2.7e-5) 

6.0e-5** 
(2.7e-5) 

Temperature 
days above 0 
week t 
 

-0.166 
(0.6) 

- - - - -  

Adj. R-squared  0.187 0.188 0.189 0.190 0.191 0.191 0.190 

*** Significant at the 1 percent level.       
  ** Significant at the 5 precent level.     
    * Significant at the 10 percent level.  
 
 

    

    

 

5. Conclusion  

This thesis set out to explore the following four research question: 

i) Is there a correlation between rainfall data and the damage costs for 

insurance claims for urban flooding in Oslo, typically flooding of 

basements in built-up areas? 

ii) Is there a correlation between rainfall data and the number of 

insurance claims for urban flooding in Oslo?  

iii) What type of rainfall data – daily, weekly or monthly rainfall or 

discrete data in terms of number of “extreme rainfall” days (defined 

as having daily precipitation above a certain level) - can predict the 
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observed number of insurance claims and damage costs from urban 

flooding? 

iv) Do other variables affect the observed number of insurance claims 

and damage costs from urban flooding? Both the average daily 

temperature (i.e., increased temperature would lead to more 

precipitation being rain instead of snow) and the size of the 

population (i.e., with higher population, a higher number of 

households could be affected) could affect the insurance claims and 

damage costs. 

 

The results show that there are large fluctuations in annual precipitation and annual 

number of extreme rainfall days over the 13-year period analysed. However, there is a 

clear correlation between rainfall and insurance claims, both in terms of numbers and 

costs.  

Different rainfall indicators have been used and the results show that both for daily and 

weekly data of the number of insurance claims and the resulting damage costs, 

precipitation (in mm) that day/week and the preceding week have a significant (at the 5 

% level) leading to increased number of insurance claims and damage costs. Precipitation 

the preceding month and the second and third week before the incident were included in 

the models, but precipitation more than one week before the incident was not significant. 

Among the other variables, neither temperature nor population was not significant in 

most models. 

The explanatory power of the best models is, however, only around 20 % (in terms of 

adjusted R-square). This indicates that other factors explain a large part of the variation 

in insurance claims and costs. Thus, future research should collect data and investigate 

the effect of local conditions with regards to green areas and implementation of technical 

and nature-based adaptation measures in order to better explain the variation in future 

damager costs and predict the impacts of future adaptation measures.  
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1. Appendix 

 

Table A-1. Average monthly precipitation and damage costs in Oslo by month for the 

period 2008-2020.  

Precipitation and damage cost each month in Oslo 2008 - 2020 

Month  Precipitation in mm Damage cost in 2021-NOK  

January  1 566 21 332 712 

February  1 369 21 253 171 

March  1 058 18 752 528 

April 1 131 18 882 658 

May 1 544 19 255 779 

June 2 263 42 171 189 

July 2 568 42 487 989 

August  3 373 248 262 883 

September 2 305 125 647 346 

October  2 287 49 384 137 

November  2 118 20 467 307 

December  1 734 17 596 373 

 

There are seasonal variations in damage costs, and table A-1 shows clearly that August is 

the month with highest rainfall and highest damage costs, followed by September and 

then October and July which have about the same average precipitation and damage costs 

(although the two months of June and July has somewhat higher average precipitation 

and October somewhat higher damage costs). As these months covers parts of two 

meteorological seasons, regression models for the data from these three months only 

have been run for the period 2008-2020. Table A-2 presents the results and shows that 

this neither results in more variables being (at the 5 % level) nor better model fit than 

models with observations for all months.  
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Table A-2. Damage costs and impact of daily, weekly, and monthly precipitation in the 

months of July, August, and September 2008 – 2020 (N =1196 days) 

 (1)  (2)  (3) 

Intercept  -24 190 

(87 900) 

-199 300** 

(123 000) 

-129 000** 

(191 000) 

Precipitation day  54 010*** 

(6 860.35) 

51 260*** 

(6984.78) 

51 360*** 

(6990.79) 

Precipitation week - 

 

3991.35*** 

(1971.21) 

4600.51*** 

(2351.75) 

Precipitation month - 

 

- -473.11 

(995.39) 

Adj. R-squared  0.049 0.051 0.050 

*** Significant at the 1 percent level.   

  ** Significant at the 5 precent level. 

    * Significant at the 10 percent level.  

 

 

Figure A-1. Correlation matrix for variables used in the regressions using daily data. 
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Figure A-2. Correlation matrix for variables used in the regressions using weekly data. 

 

 

Figure A-3. Monthly damage costs (in 100 million 2021-NOK) for each year for the 

period 2008 -2020 (including 2016 with the extreme event on August 6th 2016) 
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Figure A-4. Plot of daily data on damage costs (in 10 million NOK/day) and precipitation 

(mm/day). All observations (N= 4749 days) 

 

Figure A-5. Plot of weekly data on damage costs (in 10 million NOK/week) and 

precipitation (mm/week). All observations (N = 678 weeks) 

 


