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a b s t r a c t 

In some flexible manufacturing systems, such as semiconductor manufacturing systems, machines must 

be qualified, i.e. certified and eligible, to process a product. This paper investigates a tactical capacity 

planning problem that consists in minimizing the number of (product, machine) qualifications to ensure 

that the manufacturing system is robust against the uncertainty on the product mix. First, we propose a 

deterministic modeling of the problem, followed by a robust modeling based on the robust optimization 

paradigm when demand uncertainty is characterized by product cannibalization. Then, a mathematical 

model, also based on the robust optimization paradigm, to characterize the robustness of a set of quali- 

fications is introduced. Finally, in the computational study on industrial data, we show that the price of 

uncertainty is small, often less than a few additional qualifications by machine whereas the robustness of 

the qualifications determined for the nominal product mix often lead to capacity constraint violations. We 

also show that a restricted number of new relevant qualifications out of all possible new qualifications is 

required to achieve the same robustness as the case where all new qualifications are performed. Consid- 

ering demand uncertainty in qualification management is therefore critical since robustness is relatively 

cheap. 

© 2021 The Author(s). Published by Elsevier Ltd. 
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. Introduction 

.1. Qualification management 

In semiconductor manufacturing, Integrated Circuits (ICs) con- 

ist of transistors that are made in “front-end” factories. ICs are 

uilt on silicon wafers, and up to one thousand operations are 

equired to complete the fabrication of one wafer. Each operation 

s performed in a work center grouping parallel machines. A work 

enter ranges from a few machines to two hundred machines. 

s the number of operations is larger than the number of work 

enters, semiconductor factories are characterized by a high de- 

ree of re-entrant product flows in work centers. A wafer can 

isit more than forty times the same work center. To perform an 

peration, a “recipe” is run by a machine on a wafer. The recipe 
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efines the pressure conditions, temperature conditions, chemicals 

nd associated actions necessary to perform the operation. There 

ight be more than one thousand different operations and recipes 

n a work center. 

However, machines cannot simply run recipes once they are 

urchased and installed in the factory. They must be qualified to 

eet quality and yield requirements. In other words, when a ma- 

hine is qualified, it is certified that the machine can run the 

ecipe without deteriorating the product being manufactured on 

he wafer. If a machine is not qualified for the recipe, the machine 

annot process the product at the operation. A qualification then 

orresponds to a couple (operation, machine). Note that not all 

ecipes are “qualifiable” on a machine, i.e. only a subset of recipes 

an be qualified on a machine. 

Satisfying the demand associated to each product is difficult in 

emiconductor manufacturing. Several hundred products compete 

or the same production machines in high mix manufacturing 

acilities. In addition, the demand by product is time-varying, 

ften significantly from one month to another, and can be highly 

ncertain [45] . There are also manufacturing risks ( e.g. machine 

reakdowns, yield losses) that can prevent manufacturing facilities 

rom satisfying the demand. When such conditions are met, the 
under the CC BY-NC-ND license 
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Fig. 1. Visual comparison of different flexibility designs. 
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eed for flexibility (the ability to respond effectively to changing 

ircumstances, see 49 ) is imperative [22] . Qualification manage- 

ent is closely related to the notion of production flexibility , which 

s defined as all products a factory is able to produce without re- 

uiring additional major capital investment. Production flexibility 

s the result, among others, of process flexibility , which is defined 

s the ability of processing different products at the same time 

14,31,49] . Adding new qualifications improves the level of process 

exibility of work centers and therefore improves the capacity of 

 factory to satisfy the demand. 

In this paper, we are interested in the qualification optimization 

roblem that typically arises at a tactical decision level where the 

lanning horizon is between six and twelve months. The consid- 

red qualification optimization problem is a tactical capacity plan- 

ing problem: The production capacity of a work center must be 

onfigured to satisfy the demand. There are existing machines in 

he work center, and new machines might be installed. Similarly, 

ew products are being introduced in the factory, and new quali- 

cations are necessary to increase the production capacity of new 

roducts and the production capacity of existing products with a 

amp-up demand. This is because new qualifications enable opera- 

ions associated to the product to be processed on more machines. 

ore precisely, a set of new qualifications, i.e. new couples (opera- 

ion, machine) to qualify, must be determined so that the demand 

or all products is satisfied while respecting production capacity 

onstraints. The couple (operation, machine) must be either deter- 

ined as to be qualified or not to be qualified. 

Because qualifications can be expensive and time-consuming, 

etween one week and several months mainly in the form of de- 

ay, the number of new qualifications to perform must be mini- 

ized and anticipated. Moreover, the demand by product, which is 

n external parameter to the company, is affected by uncertainty. 

n factories with a high product mix, i.e. many products, the uncer- 

ainty on the demand by product is particularly strong, as factories 

ace frequent product mix changes with products that have short 

ifetimes. In other words, the set of qualifications determined to 

atisfy a nominal demand by product may be inappropriate if the 

ealized demand by product is too different from the nominal de- 

and by product. A significant change in the demand can signif- 

cantly decrease the manufacturing performances. This is because 

he wafer of a product does not lead to the same workload of a 

afer of another product due to different re-entrant flow factors 

nd throughput rates [36] . Determining a “robust” set of new qual- 

fications, which covers the uncertainty on the demand, is there- 

ore also critical. 

.2. Related work 

.2.1. Process flexibility 

Qualification management is closely related to the notion of 

rocess flexibility. The scientific literature on process flexibility is 

ostly interested in measuring the performances of process flex- 

bility designs (which could be called qualification configurations 

r designs in this paper) in terms of expected service levels us- 

ng notably linear programming and max-flow models. The term 

link” is preferred to the term qualification. In general, the litera- 

ure on process flexibility deals with strategic problems at the sup- 

ly chain level. Links are determined between products and facto- 

ies. The quality of the links (the quality of the process flexibility 

esign) between products and factories is evaluated. Link costs are 

onstrained to a given budget. For instance, if n is the number of 

actories and products, then 2-chain designs considers at most 2 n 

inks. From a general point of view, the literature shows that a pro- 

uction system with limited process flexibility can achieve almost 

he same performances as a fully flexible system [52] . 
2 
Under balanced (same number of factories and products) and 

ymmetrical assumptions (each unit of product leads to the same 

mount of workload at any plant, and plants have the same pro- 

uction capacity), given a set of demand scenarios (demand is as- 

umed to be independent and identically distributed), the seminal 

ork of Jordan and Graves [33] shows that effective sparse flexi- 

ility designs with at most 2 n links can almost achieve the same 

enefits as full flexibility designs. In particular, they show that 2- 

hain designs (also referred as long chain designs in the litera- 

ure) where each product is exactly linked to two factories (see 

ig. 1 a) and where the design forms undirected cycle containing 

ll machines and products, is almost as effective as the full flexi- 

ility designs (see Fig. 1 b) with much fewer links. They also show 

hat there can exist multiple process flexibility designs with simi- 

ar performances. Chain designs perform better than other sparse 

esigns as they pool more products and factories, thus allowing 

o better face demand uncertainty. Based on this work, Boyer and 

eong [14] , Graves and Tomlin [28] , Chou et al. [18] , Simchi-Levi

nd Wei [51] , Wang and Zhang [54] , Désir et al. [24] and Bidkhori

t al. [12] further study, validate and complement the benefits of 

parse, chain and long chain flexibility designs. Interestingly, Chan 

nd Fearing [15] propose an analogy between flexibility in base- 

all, called positional flexibility, and process flexibility: “a base- 

all team can be viewed as a production network in which play- 

rs (plants) produce innings-played to satisfy the demand for all 

ositions (products) on a team.” The authors show that positional 

exibility, mostly through long (sub)chains, can contribute by itself 

o a few wins by season, notably by covering uncertainty sources 

uch as injuries. 

Nevertheless, the main limits of chain flexibility designs for di- 

ect applications to qualification management in a manufacturing 

acility are: 

• Most often, balanced systems (same number of factories and 

products) are studied, which is unrealistic in the work center 

of a semiconductor manufacturing facility. 
• Most often, any factory can be linked to any product. This is 

impossible in qualification management in a manufacturing fa- 

cility due to continuous investment. Machines belong to differ- 

ent generations, have different software and hardware restric- 

tions and can be of different types. They cannot be all qualified 

for the same fabrication operations. Consequently, chain designs 

are unlikely. 
• Most often, only symmetrical systems. In such systems, prod- 

ucts have the same demand distribution, each product unit 

leads to the same workload at any plant, all plants have the 

same production capacity, and the mean demand is equal to 

the total capacity. This is typically not true for instance in semi- 

conductor manufacturing facilities, as two products can require 
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Fig. 2. Illustrative example on the demand profile for one product. 
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different operations with different processing times. In addi- 

tion, the mean demand in terms of workload is always smaller 

than the production capacity to control the fabrication time 

(see 29 and Section 3.1 ). 
• Link delays are not considered. The qualification process of an 

operation on a machine may take several weeks to several 

months. 
• Single period models are often considered. However, demands 

of products are highly dynamic (see e.g. Fig. 2 in Section 2.2 ), 

which cannot be easily captured with single period models. 
• Demand is often assumed to be independent and identically 

distributed. In high-mix (with a large portfolio of products) 

factories, demands are not independent and identically dis- 

tributed. Typically, a few products are associated to most of the 

demand. 

Other works contribute to the process flexibility literature by 

eleasing some of these assumptions (but never all of them at the 

ame time) to study more “general” manufacturing systems. Mak 

nd Shen [40] propose a two-stage stochastic programming ap- 

roach to determine process flexibility designs. The studied set- 

ing is a balanced system. Process flexibility costs are distinguished 

y factory and product and factories have different production ca- 

acities. They show that, when the demand by product is het- 

rogeneous, the flexibility design determined with the stochastic 

rogramming approach generates a better profit than chain de- 

igns. For an unbalanced and unsymmetrical system, Chou et al. 

18] identify underlying conditions such that sparse (not necessar- 

ly chained) flexibility designs achieve most of the benefits of the 

ull flexibility design for an unbalanced and unsymmetrical system 

n a single period setting. They also show that adding a restricted 

umber of links is often sufficient to significantly improve the abil- 

ty of a production system to meet the demand. Deng and Shen 

23] formulate recommendations for process flexibility designs for 

nbalanced but symmetrical systems. Bidkhori et al. [12] derive a 

ower bound for chain designs when systems are unbalanced and 

actories have different production capacities. Chen et al. [17] fur- 

her study unbalanced and unsymmetrical systems by proposing a 

imple scheme to satisfy the expected demand with high proba- 

ility in a single-period setting. Shi et al. [50] study flexibility de- 

igns in a multi-period setting for an unbalanced manufacturing 

ystem. The system is partially unsymmetrical as processing times 

re not differentiated between products. However, the demand is 

ssumed to be identically distributed across time periods, which is 

ot always realistic (see Section 2 ) [56] . propose a distributionally 

obust approach and a dual variable based heuristic to design ef- 
3 
ective sparse structures in a single period setting. From the full 

exibility design, the dual variable based heuristic removes one 

ink at a time while maximizing the total number of products. On 

umerical examples of balanced but unsymmetrical systems (pro- 

essing times between products are not differentiated), they show 

hat the heuristic proposes effective sparse structures, even long 

hain designs are proposed when enough links are removed. The 

euristic performs also well for unbalanced systems [53] . propose 

 promising robust optimization approach to determine effective 

exibility designs for unbalanced and unsymmetrical systems in a 

ingle period setting. Instead of modeling the demand with an un- 

ertainty set and then determining the best flexibility design, the 

pproach builds and ranks flexibility designs that are effective for 

 class of uncertainty sets. However, the studied class of uncer- 

ainty sets (partwise independently symmetric uncertainty sets) is 

ot representative of demand uncertainty in our industrial context. 

iorotto et al. [25] present a deterministic lot-sizing problem moti- 

ated by the semiconductor industry. They propose two different 

ot-sizing optimization models to build the best long chain con- 

guration or to find the best links (the total number of links is 

imited to a given number) while minimizing the setup, produc- 

ion, holding and backlogging costs. They analyze different flexibil- 

ty designs and compare them to different long chain designs [33] . 

hey show that, when the capacity is tight or when inventory and 

acklogging costs are very different from one product to another, 

cenarios that are actually frequently encountered in high-mix fac- 

ories, even the best long chain design is not satisfactory. Flexibility 

inks can be misplaced because backlogging costs and setup times 

re not considered in the long chain principle. The authors show 

hat the optimization obtains better cost effective designs with half 

he links used by the long chain design. 

There are other features of high-mix semiconductor manufac- 

uring that are not considered in the literature. For instance, the 

emand by product is also considered as uncertain, but another 

ayer of complexity is added by the fact that qualifications are car- 

ied out for operations which may be common to some products. 

robability distributions are not easy to obtain as new products 

re frequently introduced and are subject to product cannibaliza- 

ion (see Section 2 ). In addition, qualifying any operation on any 

achine, which is assumed in the literature, is not possible due to 

echnological restrictions. 

To improve the realism and for a relevant usability in semi- 

onductor manufacturing, all of these assumptions should be ig- 

ored. As it is unlikely to determine analytic formulas under such 

onditions to help determine relevant process flexibility designs, 

nd therefore relevant qualification configurations, solving complex 

ombinatorial optimization problems is required as shown in Mak 

nd Shen [40] and Fiorotto et al. [25] . 

.2.2. Qualification management in semiconductor manufacturing 

The literature is scarce on the design of qualification configura- 

ions in semiconductor manufacturing, in particular when the de- 

and is uncertain. Stochastic programming has been a method of 

hoice so far to deal with the uncertainty on the demand. Klemmt 

t al. [35] propose to design qualification configurations for a spe- 

ific work center by covering a few scenarios on the demand by 

roduct, which is a common practice in the semiconductor in- 

ustry. Nevertheless, the approach is not entirely detailed. Chang 

nd Dong [16] propose a stochastic programming optimization ap- 

roach to maximize the weighted expected number of processed 

roduct quantities. The demand and the production capacities are 

ubject to uncertainty. In addition, they consider that new quali- 

cations lead to a stochastic capacity loss that can be described 

ith a distribution probability. However, the approach proposed by 

hang and Dong [16] cannot be used at a tactical level. This is be-

ause their stochastic model does not ensure that the demand by 
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peration has to be satisfied. Then, only a fraction of the opera- 

ions corresponding to a product could be qualified, and the prod- 

ct could potentially never be delivered. Fu et al. [26] also consider 

hat the demand is uncertain in a qualification management op- 

imization problem. Nevertheless, the problem is treated from an 

xtended production planning standpoint and not from a capac- 

ty planning standpoint. Consequently, similarly to Chang and Dong 

16] , the work of Fu et al. [26] cannot be used at a tactical level.

iao et al. [39] propose a two-stage stochastic programming opti- 

ization approach to maximize the total profit of a semiconductor 

ompany. The first stage problem consists in minimizing qualifica- 

ion costs while second stage problem consists in allocating prod- 

ct quantities to production sites to maximize revenue. 

However, stochastic programming implies characterizing de- 

and scenarios and associated probabilities. This is difficult as 

roducts tend to have dependent demands due to product canni- 

alization, which is not mentioned in the literature. Product can- 

ibalization is particularly critical for manufacturers with a high 

roduct mix. Determining nominal demands and plausibility lim- 

ts is a promising alternative: It is as natural as defining demand 

cenarios without requiring probabilities and can consider product 

annibalization. 

.3. Contributions 

Our contributions to the qualification management and robust 

ptimization literature are as follows: 

• We propose a new mixed integer linear programming mathe- 

matical model for the tactical qualification management prob- 

lem when the demand is deterministic and the qualification 

lead times are considered. We show that the studied problem 

is NP-Hard. 
• As the demand by product can be subject to uncertainty, we 

motivate the choice of robust optimization for the considered 

problem. We propose an uncertainty set based on the budget 

of uncertainty (9) to cover the demand uncertainty. A novelty 

of our approach is to take product cannibalization into account, 

rarely considered in the literature. 
• We propose a new static robust reformulation of the determin- 

istic model when the demand is considered as uncertain but 

can be described by D t . 
• We propose a new decision-dependent uncertainty linear pro- 

gram to characterize the robustness of a set of qualifications. As 

the problem is NP-complete, a binary search solution approach 

is proposed when the uncertainty on the demand is symmetri- 

cal. 
• In the computational study, we show on industrial data that 

the price of uncertainty is small, often less than a few qualifi- 

cations, whereas the qualifications determined for the nominal 

demand often lead to capacity constraint violations. 

The remainder of the paper is organized as follows. In Section 2 , 

e describe and motivate the type of demand uncertainty faced 

n semiconductor manufacturing. We motive the use of robust op- 

imization to cover demand uncertainty. In Section 3 , the deter- 

inistic mathematical model is presented. Then, a mathematical 

obust optimization approach is proposed to cover demand uncer- 

ainty. In Section 4 , we propose a mathematical model and dis- 

uss several approaches to determine the robustness of a given set 

f qualifications ( e.g. the set of initial qualifications). In Section 5 , 

 computational study on industrial data is conducted to eval- 

ate the price of uncertainty [27] , the practical tractability of 

he proposed optimization models, and possible the capacity con- 

traint violations and consequences if the set of qualifications ob- 

ained by solving the deterministic optimization problem is used. 

n Section 6 , we discuss how the proposed optimization models 
4 
an be used for a practical use by capacity planners in a decision 

upport system. Finally, in Section 7 , we conclude and give some 

erspectives. 

. Uncertainty on the demand 

.1. Demand uncertainty and product cannibalization 

Processing times, production capacities, qualification lead times 

nd the demand by product can be subject to uncertainty. In this 

aper, only the demand uncertainty is considered, which is criti- 

al to a manufacturing company. The uncertainty on the demand 

s an external uncertainty, which is difficult, if not impossible, to 

ontrol with discount prices and incentives even if the product is 

nnovative. Considering the uncertainty on other parameters is left 

or future research. 

Note that the uncertainty on the demand by operation is a con- 

equence of the uncertainty on the demand by product. In the 

emiconductor industry, operations need to be run to process a 

roduct. However, all products do not share the same operations. 

oreover, although two products share common operations, op- 

rations will not have the same processing times. This is due to 

ifferences in the re-entrant product flows. We are therefore inter- 

sted in characterizing and modeling the demand uncertainty and 

inking it to the uncertainty on the demand by operation. 

Although it is possible to accurately predict the total quantity of 

roducts that a manufacturing facility must complete in the future, 

t is often impossible to exactly know the quantity of each prod- 

ct. One important reason why is that high-tech companies such 

s semiconductor manufacturers with a large portfolio of prod- 

cts often face product cannibalization ( 34,41 ). Product cannibaliza- 

ion occurs when a company manufactures different products that 

ompete with each other on the same market. Consider the fol- 

owing example. A client that seeks to design an electronic sys- 

em has the choice between several micro-controller among those 

hat the company sells. A micro-controller is integrated circuit with 

ssentially the same features as modern computers, i.e. comput- 

ng unit, memory, input and output interfaces, but are dedicated 

o specific applications and require little energy. Several micro- 

ontrollers are suitable for a given application, and the final choice 

ill be made based on cost, energy consumption and memory 

mong other characteristics. The client will probably never buy all 

uitable micro-controllers. Therefore, selling one unit of a product 

ay mean selling fewer units of other products. Nevertheless, a 

roduct cannot be replaced by any other product because all prod- 

cts are not used for the same application. Some products will be 

sed in the automotive industry, whereas others will be used for 

ndustrial applications in factories, or telecommunication applica- 

ions. Products are distinguished by their family . A product family 

s then a set of products that have similar characteristics, can be 

sed for similar applications, and therefore compete on the same 

arket segment. 

.2. Managing the demand uncertainty 

To cover the demand uncertainty, two main methods exist: 

tochastic optimization and robust optimization. Stochastic opti- 

ization assumes that the probability distribution of the demand 

ncertainty is known. Then, in general, the expected value of the 

bjective function is optimized. In this paper, the objective would 

onsist in minimizing the expected number of qualifications after 

enerating, possible many, scenarios from the estimated probabil- 

ty distribution [13] . Robust optimization is different because the 

robability distribution of the uncertainty is not required. In ro- 

ust optimization, the objective consists in minimizing the objec- 
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ive function while ensuring that the constraints are never violated 

3,5,7,27] . 

Robust optimization is more relevant when determining a set 

f qualifications at the tactical decision level. First, estimating the 

robability distribution of the demand of a product when it is 

orrelated to the demands of other products is difficult. Further- 

ore, estimating the probability distribution of the demand for 

ew products is difficult. This is because semiconductor manufac- 

urers may not have enough data on the demands to derive rel- 

vant distribution probabilities as they experience frequent prod- 

ct mix changes [10] , i.e. the demand for a product strongly varies 

rom one month to another. The demand for a product is there- 

ore, in general, not identically distributed over time. Fig. 2 pro- 

ides an illustrative example using historical industrial data on the 

hanges of the demand for one product over 12 months. For confi- 

entially purposes, product names are not mentioned. In addition, 

he monthly demand is divided by the mean demand over the 12 

onths. The mean demand is several hundred units. The demand 

or this product is particularly interesting. There is a large, quick 

nd intense ramp-up demand. Nevertheless, the demand quickly 

ades away. These demand fluctuations are critical, especially since 

heir intensities are extremely difficult to predict in advance. This 

s when a robust optimization based approach is relevant to cover 

he demand uncertainty. 

Second, it is critical to anticipate relevant qualifications to 

over the demand uncertainty. This is because, in general, it is 

mportant to perform the right qualifications and not all uali- 

cations to respect capacity constraints and satisfy the demand 

6,17,18,25,28,32,33] . 

Furthermore, as qualification decisions are made at a tactical 

ecision level, they have a major impact on all production planning 

nd control management issues [29] . For instance, if new qualifi- 

ations are not properly determined, then effective robust produc- 

ion plans may not be found to satisfy the demand. Determining 

he right set of new qualifications is thus critical for manufactur- 

ng and financial performances. 

Third, in practice, a way to deal with uncertainty is to fre- 

uently adjust the current set of qualifications by performing new 

ualifications when the nominal demand is updated. However, this 

s not always possible because the qualification process may some- 

imes take several weeks or months to validate the quality and the 

ield of the operation. Therefore, if the demand is updated late, 

t may be impossible to perform additional qualifications to sat- 

sfy the demand. Then, anticipating the right qualifications to cover 

he demand uncertainty is critical. Also, determining a set of ro- 

ust qualifications could save critical time for capacity planners. 

his is because the set of qualifications would be determined in a 

ess reactive manner but in a more proactive manner against de- 

and changes. Capacity planners could therefore be assigned to 

ther tasks. Note that the set of qualifications would still need to 

e adjusted when completely new products are introduced or old 

roducts are reintroduced because of unnoticed disqualifications. 

. Problem modeling 

.1. Problem description 

Let us consider a work center of M unrelated parallel machines, 

oth in terms of qualifications and throughput rates, which must 

rocess R different operations. Machines are unrelated because 

hey are of different generations. A demand is associated to each 

peration on the considered horizon. The horizon consists of T pe- 

iods. The work center is asymmetrical and unbalanced, i.e. the de- 

and varies from one operation to another and the number of op- 

rations is much greater than the number of machines. A machine 

an only process qualified operations, and a “qualifiable” operation 
5 
an only be processed on a machine if it is qualified. Qualifying 

n operation on a machine induces a qualification cost and is sub- 

ect to a qualification lead time. The qualification matrix defines 

he initial set of active qualifications. A qualification is therefore 

 pair (operation, machine). The initial set of active qualifications 

s known and deterministic. Each machine has a finite production 

apacity that must be respected at each period on the considered 

orizon. 

The objective is to minimize the total cost of the qualifications 

o perform, among the qualifiable pairs (operation, machine) not 

lready qualified, while meeting demand and respecting capacity 

onstraints. 

This problem will be referred as the Minimum Cost Qualifica- 

ion Configuration Problem (MCQCP) in the remainder of the pa- 

er. 

.2. Deterministic modeling 

Parameters : 

M: Number of machines, 

R : Number of operations, 

P : Number of products, 

T : Number of periods, 

q r,m 

: Is equal to 1 if machine m is initially qualified for oper- 

tion r, to 2 if machine m is qualifiable for operation r, to 0 if

achine m cannot be qualified for operation r, 

t p r,m 

: Throughput rate (per hour) of operation r on machine m, 

c t,m 

: Production availability (in hours) of machine m at period 

, 

u max 
t,m 

: Maximum utilization rate allowed for machine m at pe- 

iod t, 

r f p,r : How many times (re-entrant flow factor) operation r

eeds to be run to produce one unit of product p, 

d t,p : Demand for product p at period t, 

l t,r,m 

: Lead time (in number of periods) when starting qualifica- 

ion procedure at period t of operation r on machine m, 

δt : Discount factor at period t, 

cq r,m 

: Cost of qualifying operation r on machine m . 

Decision variables : 

OQ t,r,m 

∈ { 0 , 1 } : Is equal to 1 if there is qualification procedure

o start for operation r at period t on machine m, and 0 otherwise, 

W IP t,r,m 

∈ [0 , 1] : Ratio of the demand for operation r processed 

y machine m at period t . 

min 

∑ 

t,r,m 

δt cq r,m 

OQ t,r,m 

(1) 

.t. 
∑ 

r 

( 
∑ 

p r f p,r d t,p ) W IP t,r,m 

t p r,m 

≤ c t,m 

u 

max 
t,m 

∀ t, ∀ m (2) 

 

m 

W IP t,r,m 

= 1 ∀ t, ∀ r | ∑ 

p 

r f p,r d t,p > 0 (3)

 IP t,r,m 

≤ q r,m 

∀ t, ∀ r, ∀ m | q r,m 

� = 2 (4)

 IP t,r,m 

≤
t ∑ 

t ′ =1 | t −t ′ ≥l t ′ ,r,m 

OQ t ′ ,r,m 

∀ t, ∀ r, ∀ m | q r,m 

= 2 (5)

 IP t,r,m 

≥ 0 ∀ t, ∀ r, ∀ m (6) 

Q t,r,m 

∈ { 0 , 1 } ∀ t, ∀ r, ∀ m (7) 

The objective function (1) minimizes the cost of performing 

ualifications on the planning horizon. The discount factor is used 

o decide if qualifications must be made as soon as possible or as 
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ate as possible. For instance, assume that qualification procedures 

ust be started as late as possible. This is possible by ensuring 

hat δt ≥ δt+1 ∀ t ∈ { 1 , . . . , T − 1 } . Constraints (2) ensure that the

apacity constraint for each machine m and each period t is re- 

pected. Constraints (2) also limit the utilization rate of machine 

 at period t to a maximum of u max 
t,m 

. This controls the mean cycle

ime (fabrication time) in the work center as the mean cycle time 

ncreases exponentially with the utilization rate, and improves the 

esponsiveness of the work center [29] . Constraint (3) are the flow 

onstraints. They ensure that the demand by operation must be 

atisfied. Constraints (3) are active only if there is demand for op- 

ration r at period t , ∀ t , ∀ r | ∑ 

p r f p,r d t,p > 0 . For new operations or

achines, if 
∑ 

p r f p,r d t,p > 0 is not enforced for some periods, then 

ew qualifications will be required because 
∑ 

m 

W IP t,r,m 

= 1 has to 

e satisfied even if there is no demand. This condition is there- 

ore used to avoid qualifying operations on machines in the early 

eriods if the demand is only expected in the late periods. Con- 

traints (4) - (5) are the qualification constraints. They ensure that 

achine m is qualified for operation r at period t, if it has been 

ewly qualified or was initially qualified while considering quali- 

cation lead times. Finally, Constraints (6) are the non-negativity 

onstraints and Constraints (7) are the binary constraints. 

Let us discuss below some important characteristics of our 

roblem: 

• The deterministic optimization model is relevant, although it 

does not consider demand uncertainty, because it considers es- 

sential features of qualifications which are qualification costs 

and delays, and models unbalanced and unsymmetrical sys- 

tems. In the computational study on industrial data, we found 

that the deterministic model is easy to solve (see Section 5 ) for 

the considered work centers. 
• MCQCP can also be solved factory-wide, i.e. by considering all 

work centers simultaneously. However, as two different work 

centers do not share operations, optimality is preserved when 

breaking down the problem by work center to reduce the size 

of the problem in terms of machines and operations. 
• It is important to mention that MCQCP can be infeasible if the 

production capacities of machines are too small and if too few 

qualifiable pairs (operation, machine) exist to better balance the 

workload between the machines. Note that in the numerical 

experiments performed in Section 5 , MCQCP is always feasible 

contrary to its robust counterpart. 
• The deterministic model can still be used to determine a set of 

qualifications even if lead times are not modeled, i.e. if l t,r,m 

= 

0 ∀ t, ∀ r, ∀ m . In this case, decision variables OQ t,r,m 

should be

interpreted as the period at which operation r must be qualified 

on machine m if OQ t,r,m 

= 1 . 
• Time-varying lead times are considered to better consider the 

fact that the periods can have different durations (as it is the 

case in the considered industrial context) and also different de- 

mand quantities, and therefore different loads, which influence 

both fabrication times [29] and qualification times as test lots 

are used for qualifications. Time-varying lead times can also be 

used by capacity planners to simulate the acceleration or decel- 

eration of qualification procedures during certain periods. 
• In order to correctly consider new machines, it is sufficient 

to set c t,m 

to appropriate values until machine m is actually 

started-up in the factory. Start-up periods are notably used 

for qualification purposes. For instance, if the horizon is of 3 

months with 3 periods of one month and the start-up period 

lasts one month, then c t,m 

must be equal to zero for the first 

two months. 
• New qualifications can lead to capacity losses in the consid- 

ered work center as it is required to run quality tasks on ma- 

chines by using test products. Chang and Dong [16] model this 
6 
aspect by using a probability distribution. As it is complex to 

define relevant probability distributions, capacity losses due to 

new qualifications are modeled with available historical data as 

exogenous factors in the production capacity of each machine. 

Note that quality tasks are also frequently run even for exist- 

ing qualifications, which is also considered in the production 

capacity of each machine. 
• There are other sources of capacity loss, such as setups, which 

are considered in the value of the production capacity of each 

machine. 
• In practice, operations are often subject to precedence con- 

straints, i.e. operations must be performed in a precise order. 

In this paper, we are not interested in making detailed schedul- 

ing decisions but, at a tactical level, in verifying from a capacity 

planning standpoint that the demand can be met with the cur- 

rent and potentially new qualifications. Precedence constraints 

are therefore not explicitly considered as in most capacity plan- 

ning models and for instance in [47] for qualification manage- 

ment. 

.3. Computational complexity 

Even for a single period, it is possible to show that MCQCP is 

 NP-Hard problem by reducing MCQCP to the Generalized Assign- 

ent Problem (GAP), known to be NP-Hard (see e.g. 42 ). 

Let us state GAP in terms of tasks and agents, where I is the 

umber of tasks and J the number of agents. Let c i, j be the cost 

f assigning task i to agent j, r i, j the processing time required for 

ask i by agent j, and b j the total capacity of agent j. Task i is as-

igned to agent j when X i, j = 1 , and 0 otherwise. The question is 

is there an assignment of tasks to agents such that the total as- 

ignment cost is equal to K, i.e. 
∑ 

i, j c i, j X i, j = K, and the constraints

re satisfied, i.e. 
∑ 

i r i, j X i, j ≤ b j ∀ j, and 

∑ 

j X i, j = 1 ∀ i ?”. 

Given a general instance of GAP, it is possible to build an in- 

tance of MCQCP as follows: Let T = 1 , P = 1 , the number of oper-

tions be equal to the number of tasks, i.e. R = I, and the num-

er of agents be equal to the number of machines, i.e. M = J. 

et us use the subscripts i and j in the remainder of this sec- 

ion. We can therefore set t p i, j = 

1 
r i, j 

∀ i, ∀ j, c j = b j ∀ j, d 1 = 1 , q i, j =
 ∀ i, ∀ j, l i, j = 0 ∀ i, ∀ j, and r f 1 ,i = 1 ∀ i, u max 

j 
= 1 ∀ j. Finally, let us set

q i, j = g + c i, j ∀ i, ∀ j, with g a large fixed cost such that g > 

∑ 

i, j c i, j .

he question is “is there a set of qualifications such that the to- 

al qualification cost is equal to K + Ig, and the capacity, flow and 

ualification constraints are respected?”

Assume GAP has a yes answer with a total assignment cost of 

. The solution for GAP is also feasible for MCQCP because tasks 

nd operations have the same throughput rates on agents and ma- 

hines, and because the demand for each operation is equal to one 

nit. Therefore, MCQCP also has a yes answer with a total cost of 

 + Ig. 

Assume that MCQCP has a yes answer. Because g is a large fixed 

ost such that g > 

∑ 

i, j c i, j , each operation is qualified on one and

nly one machine, and therefore the total production flow of each 

peration is assigned to one and only one machine. In addition, 

ecause tasks and operations have the same throughput rates on 

gents and machines, GAP also has a yes answer with a total cost 

f K. 

.4. Robust modeling 

.4.1. Polyhedral uncertainty with budget of uncertainty 

To consider demand uncertainty and product cannibalization, a 

olyhedral uncertainty set, based on budget uncertainty proposed 

y Bertsimas and Sim [9] , is used. Let us introduce the new nota-

ions below: 
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Table 1 

Dual variables associated to con- 

straints in the uncertainty set D t 
for a capacity constraint (2) . 

Constraints Dual variables 

(9) y min 
p 

(10) y max 
p 

(11) y gamma 

f 

t

a

u

b  

s

H

p

o

m

p

i

c

∑

r

p

a

p

t

e

p

t

t

i

t

f

s

i

p

f

New parameters : 

F : Number of product families, 

d t,p : Nominal demand for product p at period t, ̂ d t,p ≤ d t,p : Maximum deviation from nominal demand for prod- 

ct p at period t, 

αp, f : Is equal to 1 if product p belongs to product family f, and 

 otherwise, 

�t, f : Budget of uncertainty for product family f at period t . 

The demand d t,p is assumed to be an uncertain parameter 

hat takes values as follows: d t,p ∈ [ d t,p − ̂ d t,p , d t,p + ̂

 d t,p ] ∀ t, ∀ p.

 t,p − ̂ d t,p and d t,p + ̂

 d t,p are the plausibility limits for product p at 

eriod t . The uncertainty set D t that models the effect of product 

annibalization by product family at period t is described below: 

 t = { d t,p | d t,p ≥ d t,p − ̂ d t,p ∀ p, d t,p ≤ d t,p + 

̂ d t,p ∀ p, ∑ 

p| αp, f =1 

d t,p ≤ �t, f ∀ f } (8) 

In D t , the total demand by product family f at period t is lim- 

ted to the budget of uncertainty �t, f , which is the maximum de- 

and to cover for product family f at period t . Therefore, if the 

emand for a product in the product family increases above its 

ominal value, then the increase is made at the expense of another 

roduct in the product family, whose demand must decrease. In 

ddition, if �t, f = 

∑ 

p| αp, f =1 d t,p , then, for each product family f, 

he maximum overall quantity to produce is equal to the overall 

uantity in the nominal case, but the distribution of the demand 

etween the products in the product family is unknown. Setting 

t, f = 

∑ 

p| αp, f =1 d t,p is a practical assumption. This ensures that 

ualifications are not determined to cover extreme cases where the 

uantity by product family would actually be much larger than the 

ominal quantity by product family, which is often unrealistic. In- 

tead, qualifications are optimized to cover any demand realization 

iven an overall quantity by product family. Note that, although the 

ncertainty set D t ensures that the total demand of all products in 

 family is not large, the total demand over all operations arriving 

n work centers can significantly increase as re-entrant flow factors 

ignificantly vary from one product to another. 

Parameters d t,p and 

̂ d t,p do not necessarily reflect the real un- 

ertainty on the demand of product p at period t . They can be de- 

ned in a such way that they correspond to the uncertainty capac- 

ty planners want to manage if the real uncertainty is too expen- 

ive to cover [9] . 

.4.2. Static reformulation 

We investigate a static reformulation of the deterministic op- 

imization problem. We follow Ben-Tal and Nemirovski [5] , Goris- 

en et al. [27] and Yanıko ̆glu et al. [57] to write the robust formu-

ation of MCQCP. First, constraints with uncertain parameters, the 

emand, need to be identified, then the robust counterpart can be 

erived. 

There are two constraints with uncertain parameters: The flow 

onstraints (3) , and the capacity constraints (2) . 

Flow constraints (3) . The demand is used to control when the 

ow constraint must be active. To make sure the flow constraints 

old for any demand realization within D t , it is sufficient to re- 

lace the condition 

 

m 

W IP t,r,m 

= 1 ∀ t, ∀ r | ∑ 

p 

r f p,r d t,p > 0 

y 
 

m 

W IP t,r,m 

= 1 ∀ t, ∀ r | ∑ 

p 

r f p,r ( d t,p + 

̂ d t,p ) > 0 . 

Capacity constraints (2) . If the demand uncertainty is row-wise 

nd the uncertainty set is compact, then an optimal solution for 
7 
he static reformulation problem is also an optimal solution for the 

djustable robust reformulation problem [4,57] . In this paper, the 

ncertainty set D t is compact: The uncertainty set D t is bounded, 

ecause 0 ≤ d t,p ≤ d t,p + ̂

 d t,p ∀ t, ∀ p, and is closed because D t con-

ists of a set of closed half spaces described by linear inequalities. 

owever, the uncertainty is not row-wise because the uncertain 

arameter for period t, i.e. d t,p , is found in the capacity constraint 

f each machine. The uncertainty would be row-wise if the de- 

and for a product also depended on the machine, which is im- 

ossible. Investigating adjustable robust reformulation is therefore 

nteresting but left for future research. 

By considering the uncertainty set D t to model the demand un- 

ertainty, capacity constraints become in a static reformulation: 

 

r 

(∑ 

p r f p,r d t,p 

)
W IP r,m 

t p r,m 

≤ c t,m 

u 

max 
t,m 

∀ t, ∀ m, ∀ d ∈ D t 

Robust counterpart: The next step consists in determining the 

obust counterpart of the capacity constraints. The robust counter- 

art is independently determined from one capacity constraint to 

nother. Consider one capacity constraint for a given machine m at 

eriod t: 

Step 1 (worst-case reformulation): 

max 
d ∈D t 

∑ 

p 

d t,p 

(∑ 

r 

r f p,r W IP t,r,m 

t p r,m 

)
≤ c t,m 

u 

max 
t,m 

Intuitively, covering the worst-case realization in the uncer- 

ainty set D t will conduct to add qualifications to machines for op- 

rations common to many products, or for operations associated to 

roducts with large re-entrant flow factors, as they are the opera- 

ions that will impact the most the utilization rate of machines. 

Step 2 (duality): 

The next step consists in taking the dual of the inner maximiza- 

ion problem. The inner maximization problem and its dual, which 

s a minimization problem, have the same objective value because 

he inner maximization problem is linear. For a given period t, the 

ollowing optimization problem must be solved: 

max 
∑ 

p 

d t,p 

(∑ 

r 

r f p,r W IP t,r,m 

t p r,m 

)
.t. d t,p ≥ d t,p − ̂ d t,p ∀ p (9) 

d t,p ≤ d t,p + 

̂ d t,p ∀ p (10) 

∑ 

p| αp, f =1 

d t,p ≤ �t, f ∀ f (11) 

The dual variables associated to Constraints (9) - (11) are listed 

n Table 1 . 

The dual of the inner maximization problem is a minimization 

roblem. The minimization problem for a given capacity constraint 

or machine m at period t is modeled below: 
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Table 2 

Comparison of the number of variables and constraints between 

MCQCP and MCRQCP. P = 238 , R = 1208 , F = 3 , M = 20 , T = 7 . 

Optimization problem 

Number of MCQCP MCRQCP Increase(%) 

Continuous variables 169,120 202,860 16.6 

Binary variables 169,120 169,120 0.0 

Constraints 685,076 785,456 12.8 
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min 

∑ 

p 

(−( d t,p − ̂ d t,p ) y 
min 
p ) + 

∑ 

f 

(�t, f y 
gamma 

f 
) 

+ 

∑ 

p 

(( d t,p + 

̂ d t,p ) y 
max 
p ) 

.t. − y min 
p + y max 

p + 

∑ 

f | αp, f =1 

y gamma 

f 
≥

∑ 

r 

r f p,r W IP t,r,m 

t p r,m 

∀ p 

y min 
p , y max 

p ≥ 0 ∀ p 

y gamma 

f 
≥ 0 ∀ f 

Step 3 (Robust Counterpart) : The final step consists in omitting 

he minimization term to obtain the robust counterpart. Therefore, 

he robust counterpart of the capacity constraint for a given ma- 

hine m and a given period t can be found below: ∑ 

p 

(−( d t,p − ̂ d t,p ) y 
min 
p ) + 

∑ 

f 

(� f y 
gamma 

f 
) 

+ 

∑ 

p 

(( d t,p + 

̂ d t,p ) y 
max 
p ) ≤ c t,m 

u 

max 
t,m 

− y min 
p + y max 

p + 

∑ 

f | αp, f =1 

y gamma 

f 
≥

∑ 

r 

r f p,r W IP t,r,m 

t p r,m 

∀ p 

 

min 
p , y max 

p ≥ 0 ∀ p 

 

gamma 

f 
≥ 0 ∀ f 

.4.3. Robust optimization model 

By deriving the robust counterpart for each capacity constraint 

nd each time period and indexing the dual variables by period t

nd machine m, the overall robust optimization problem is: 

min 

∑ 

t,r,m 

δt cq r,m 

OQ t,r,m 

(12) 

.t. (4) − (7) ∑ 

p 

(
−
(
d t,p − ̂ d t,p 

)
y min 

t,m,p 

)
+ 

∑ 

f 

(
�t, f y 

gamma 

t,m, f 

)
+ 

∑ 

p 

((
d t,p + 

̂ d t,p 

)
y max 

t,m,p 

)
≤ c t,m 

u 

max 
t,m 

∀ t, ∀ m (13) 

− y min 
t,m,p + y max 

t,m,p 

+ 

∑ 

f | αp, f =1 

y gamma 

t,m, f 
≥

∑ 

r 

r f p,r W IP t,r,m 

t p r,m 

∀ t, ∀ m, ∀ p (14) 

∑ 

m 

W IP t,r,m 

= 1 ∀ t, ∀ r | ∑ 

p 

r f p,r ( d t,p + 

̂ d t,p ) > 0 (15) 

y min 
t,m,p , y 

max 
t,m,p ≥ 0 ∀ t, ∀ m, ∀ p (16) 

y gamma 

t,m, f 
≥ 0 ∀ t, ∀ m, ∀ f (17) 

The objective function (12) minimizes the cost of performing 

ualifications, while Constraints (13) - (14) are the “robustification”

onstraints. Constraints (15) ensure that the demand by opera- 

ion must be satisfied if there is demand. Note that Constraints 

15) are slightly different from Constraint (3) as it must be ac- 

ive when 

∑ 

p r f p,r ( d t,p + ̂

 d t,p ) > 0 for operation r at period t in- 

tead of 
∑ 

p r f p,r ( d t,p ) > 0 . Constraints (16) - (17) correspond to the

on-negativity constraints introduced by the “robustification” pro- 

edure. 

Note that the robust optimization model (12) - (15) can still be 

sed when a product belongs to several product families. Only in- 

ut parameters must be changed. 
8 
The robust optimization problem will referred as the Minimum 

ost Robust Qualification Configuration Problem (MCRQCP) in the 

emainder of the paper. 

Similarly to MCQCP, it is important to mention that MCRQCP 

an be infeasible if the production capacities of machines are too 

mall and if too few qualifiable pairs (operation, machine) exist to 

etter balance the workload between the machines. Note that in 

he numerical experiments performed in Section 5 , MCRQCP is in- 

easible for some values of d t,p and 

̂ d t,p . 

.5. Illustrative example on tractability 

MCQCP and MCRQCP can be both modeled with mixed integer 

inear programs, and thus can be solved by standard solvers. Al- 

hough no new binary variables are required in the robust refor- 

ulation of MCQCP, reformulating capacity constraints can mod- 

fy the problem structure and introduce many more variables and 

onstraints. The reformulation can also worsen the quality of lin- 

ar relaxations, thus increasing the computational time required 

o reach an optimal solution in a branch and cut algorithm. It is 

hen expected that MCRQCP requires more computational time to 

e solved than MCQCP. MCQCP has T × M + T × R + 4 × T × R × M

onstraints, T × R × M continuous variables and T × R × M binary 

ariables. MCRQCP has 2 × T × M × P + T × M × F more continuous 

ariables and 3 × T × M × P + T × M × F more constraints than MC- 

CP. 

Table 2 illustrates the additional computational effort required 

o solve MCRQCP by reformulating capacity constraints with re- 

pect to MCQCP in terms of number of decision variables and 

onstraints. The number of decision variables and constraints of 

CQCP and MCRQCP are given for P = 238 , R = 1208 , F = 3 , M =
0 , T = 7 . These values come from one work center (work cen-

er A) in the computational study. Assuming that the demand and 

orst-case demand are greater than 0 for all products and all pe- 

iods, the increase of the number of continuous variables is equal 

o 16.6% and the increase of the number of constraints is equal to 

2.8%. This makes the robust optimization problem more difficult 

o solve than the deterministic optimization problem as the ro- 

ust optimization problem also tighten the capacity constraints. In 

ractice, the robust optimization problem is much more difficult to 

olve than the deterministic optimization problem although most 

ptimal solutions can be found in one hour (see Section 5.3.2 ). 

. Characterizing the robustness of a set of qualifications 

.1. Motivation 

Determining intuitively relevant values for ̂ d t,p can be difficult. 

he first option consists in using values estimated by decision- 

akers in charge of defining and predicting future demands. How- 

ver, determining relevant values can be difficult for some prod- 

cts, in particular for new products because data can be insuffi- 

ient. 

If it is too difficult to provide relevant ̂ d t,p for each product, 

nother option is to propose initial values for ̂ d t,p . 
̂ d t,p can first 
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oughly initialized, e.g. initialized to d t,p , and then refined by char- 

cterizing the robustness of a set of qualifications (typically the set 

f initial qualifications) with respect to the demand uncertainty. 

ore precisely, characterizing the robustness of a set of qualifi- 

ations means determining to what extent a work center is able 

o correctly absorb the demand uncertainty. Characterizing a set 

f qualifications is similar to determining the largest ̂ d t,p for each 

roduct p at period t . Therefore, determining the robustness of a 

et of qualifications provides capacity planners with the tolerated 

hanges on the demand by a work center. Then, if possible, de- 

and changes should be made in the bounds defined by d t,p and ̂ 

 t,p to limit additional costs with outsourcing or new machines. 

In the context of qualification management, Rossi [46] and 

ubry et al. [2] assume that satisfying the demand by product is 

 key issue to characterize the robustness of a set of qualifica- 

ions. Rossi [46] seeks to characterize the robustness of a set of 

ualifications by determining the minimum additional quantity of 

roducts from the nominal demand that can be absorbed with- 

ut the makespan exceeding a specified value. Robustness is de- 

ned as a distance in Rossi [46] . Similarly, Aubry et al. [2] seeks

o characterize the robustness of a set of qualifications by deter- 

ining the largest perturbation from the nominal demand while 

nsuring that all machines have the same workload and that qual- 

fication costs do not exceed a predefined value. The L-1 norm is 

sed. Similarly to Rossi [46] and Aubry et al. [2] , we assume that

atisfying the demand by product is a key issue when characteriz- 

ng the robustness of a set of qualifications. The major differences 

ith Rossi [46] and Aubry et al. [2] are that: (1) We do not as-

ume that machines are uniform or related; (2) We consider large 

cale production systems with hundreds of products and thousands 

f operations; (3) Product cannibalization and correlated demands 

re considered. To characterize the robustness of a set of qualifi- 

ations, we resort to robust optimization and the uncertainty set 

 t . More precisely, we seek to determine to what extent a set of 

ualifications is able to absorb the demand uncertainty when it is 

escribed by the uncertainty set D t . Assessing the robustness of a 

et of qualifications depends on the utility function used to evaluate 

t. First, we propose a generic mathematical model to model the 

obustness of a set of qualifications with respect to the demand 

ncertainty. Second, we propose a solution approach, based on a 

inary search approach, to determine the robustness of a set of 

ualifications. 

.2. Problem statement 

The problem is mostly identical to the problem introduced in 

ection 3.1 . The only difference is that the objective is to charac- 

erize the robustness of a set of given qualifications. This problem 

ill be referred as the Maximum Robustness Budgeted Qualifica- 

ion Problem (MRBQP) in the remainder of the paper. 

.2.1. Problem modeling 

Let us introduce a new decision variable θt,p ≥ 0 ∀ t, ∀ p that is 

sed to evaluate the robustness of a set of qualifications. Let us 

ssume that d t,p is an uncertain parameter that depends on θt,p : 

 t,p ∈ [ d t,p − d t,p θt,p , d t,p + d t,p θt,p ] ∀ t , ∀ p. Let βt,p ≥ 0 ∀ t , ∀ p be a

eight whose value corresponds the preferences of capacity plan- 

ers when evaluating the robustness of a set of qualifications. The 

arger βt,p , the larger the emphasis on the robustness of prod- 

ct p at period t . Let f ( θ) = 

∑ 

t,p βt,p θt,p be a utility function 

hat evaluates the robustness of a set of qualifications, where θ = 

θ1 , 1 , . . . , θT,P ) . Formally, the problem can be modeled as follows: 

max f ( θ) (18) 
9 
.t. 
∑ 

r 

( 
∑ 

p r f p,r d t,p ) W IP t,r,m 

t p r,m 

≤ c t,m 

u 

max 
t,m 

∀ t, ∀ m, ∀ d ∈ D t ( θ) 

(19) 

∑ 

m 

W IP t,r,m 

= 1 ∀ t, ∀ r | ∑ 

p 

r f p,r ( d t,p + d t,p θt,p ) > 0 (20) 

W IP t,r,m 

≤ q r,m 

∀ t, ∀ r, ∀ m | q r,m 

� = 2 (21) 

W IP t,r,m 

≤ 0 ∀ t, ∀ r, ∀ m | q r,m 

= 2 (22) 

θt,p ≤ 1 ∀ t, ∀ p (23) 

W IP t,r,m 

≥ 0 ∀ t, ∀ r, ∀ m (24) 

θt,p ≥ 0 ∀ t, ∀ p (25) 

The objective function (18) maximizes the utility function f ( θ) . 

he capacity constraints (19) depend on θ, which is used to con- 

rol the demand uncertainty. Constraints (20) model the flow con- 

traints, while Constraints (21) and (24) model the qualification 

onstraints. Constraints (23) ensure that the demand by product 

annot be negative. Finally, Constraints (24) and (25) are the non- 

egativity constraints. 

Solving MRBQP is equivalent to determining the robustness of 

he initial set of qualifications, or any set of qualifications as input 

arameter. 

.2.2. Robust counterpart 

MRBQP is an optimization problem under decision-dependent 

ncertainty because the capacity constraints depend on the matrix 

used to control the demand uncertainty to cover. Optimization 

roblems under decision-dependent uncertainty are known to be 

ifficult to solve. When the uncertainty set is polyhedral, the ob- 

ective function is linear and the constraints are linear, the opti- 

ization problem is NP-Complete [37,43] . 

Nevertheless, as in the classical robust optimization paradigm, 

t is possible to reformulate decision-dependent uncertainty con- 

traints with duality. This is because θ is not a decision variable of 

he inner robust maximization problem. Let us consider the same 

ncertainty set as in Equations (8) . The only difference stems from 

he fact that the plausibility limits of d t,p are now dependent on 

t,p . Similarly to Section 3.4.2 , it is possible to “robustify” the ca- 

acity constraints (19) . 

We follow the same procedure as the one in Section 3.4.2 , and 

he same notations for dual variables are used. Steps 1 and 2 are 

imilar to Section 3.4.2 . By deriving the robust counterpart of each 

apacity constraint, it is possible to write the robust reformulation 

f MRBQP below: 

max f ( θ) (26) 

s.t. ( 20 ) − ( 25 ) ∑ 

p 

(
−
(

d t,p −
−
d t,p θt,p 

)
y min 

t,m,p 

)
+ 

∑ 

f 

(
�t, f y 

gamma 

t,m, f 

)
+ 

∑ 

p 

((
d t,p + 

−
d t,p θt,p 

)
y max 

t,m,p 

)
≤ c t,m u 

max 
t,m ∀ t, ∀ m 

(27) 

− y min 
t,m,p + y max 

t,m,p 
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Table 3 

Nominal demand by month. 

Month 

1 2 3 4 5 6 7 

CV 2.78 1.97 2.88 2.29 2.06 3.58 3.09 
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+ 

∑ 

f | αp, f =1 

y gamma 

t,m, f 
≥

∑ 

r 

r f p,r W IP t,r,m 

t p r,m 

∀ t, ∀ m, ∀ p (28) 

y min 
t,m,p , y 

max 
t,m,p ≥ 0 ∀ t, ∀ m, ∀ p (29) 

y gamma 

t,m, f 
≥ 0 ∀ t, ∀ m, ∀ f (30) 

The objective function (26) maximizes the robustness of a set 

f qualifications. Constraints (27) - (30) correspond to the “robustifi- 

ation” constraints. They ensure that the capacity constraints must 

e respected for any realization in the uncertainty set D t . 

Solving MRBQP leads to determining the largest θt,p for prod- 

ct p at period t, and consequently to characterize the robustness 

f a set of qualifications. The main drawback of MRBQP is that 

t is computationally challenging to solve. This is because MRBQP 

ontains products of variables, θt,p and y max 
t,m,p , and θt,p and y min 

t,m,p , 

hich are introduced by the “robustification” procedure for capac- 

ty constraints. There are other possible MILP reformulations when 

ne the variables is binary ( 37,43 ). To determine an estimate of 

he robustness of a set of qualifications, a binary search solution 

pproach is presented in Section 4.3 . 

.3. Binary search approach 

To characterize the robustness of a set of qualifications, it is 

ossible, for each period, to maximize θt,p assuming that θt,p = 

t ∀ p. For this objective, Algorithm 1 , which a binary search like 

lgorithm, can be used when θ0 , an initial upper bound for θ, is 

rovided. 

The computational difficulty in Algorithm 1 comes from solv- 

ng multiple large-scale linear programs. The computational bur- 

en can be lowered by warm-starts as only the coefficients 

 

min 
t,m,p , y 

max 
t,p,m 

, and y 
gamma 

t,m, f 
variables in the “robustification” con- 

traints must be changed. 

Note that if θ is assumed to be identical for all periods and 

roducts, Algorithm 1 returns the smallest θmin over all periods. 

rom a practical standpoint, some products can be filtered out of 

lgorithm 1 if there is no uncertainty on the product, or if the 

ncertainty on the product does not need to be covered. 
lgorithm 1 Binary search. 

Input data: θ0 

1: procedure Binary search 

2: θmax 
t ← θ0 

t ∀ t 

3: θmin 
t ← 0 ∀ t 

4: θt ← 0 ∀ t 

5: for i = 1 to T do 

6: θi ← 

θmax 
i 

+ θmin 
i 

2 

7: while θmax 
i 

> ε and 

θmax 
i 

−θmin 
i 

θmax 
i 

> ε do 

8: Verify that MRBQP is feasible for θ at period t (no 

capacity constraint violation at period t) 

9: if feasible then 

0: θmin ← θ
11: else 

2: θmax ← θ
3: end if 

14: θi ← 

θmax 
i 

+ θmin 
i 

2 

5: end while 

6: end for 

17: return θmin 

18: end procedure 

q

o

5

a

r

t

i

F

B

c

 

p

u

E

I

d

m

i  

o  

l

t

10 
If Algorithm 1 is run when all new qualifications are started at 

 = 0 , then an ideal value of θ is computed. This is an estimate

f the largest value of θ for which the demand uncertainty can 

e covered in the work center. Reporting this value is interesting 

or capacity planners to assess the robustness of the work center 

gainst an ideal situation. 

. Computational study 

The computational study is performed to answer the following 

uestions: What is the price of uncertainty? Is it risky to use the 

et of qualifications determined by considering only the nominal 

emand? Is the robust optimization problem difficult to solve? 

In Section 5.1 , the instances used for the computational study 

nd generated from industrial data are described. For confidentially 

urposes, raw values by product, by operation, by product family 

nd by machine of parameters are not provided. Instead, means, 

inimums, maximums and standard deviations are presented. In 

ection 5.2 , the design of experiments is presented, and the nu- 

erical results in Section 5.3 . We show that the price of uncer- 

ainty, defined by comparing the number of qualifications deter- 

ined for the robust optimization problem and for the determinis- 

ic optimization problem, when the demand is fully known (perfect 

andsight), is actually very small. Moreover, in a large number of 

xperiments, the robustness of the set of qualifications determined 

y solving the deterministic optimization problem with the nomi- 

al demand is far from the robustness of the set of qualifications 

etermined by solving the robust optimization problem whereas 

oth qualification matrices have about the same number of quali- 

cations. In addition, we show that only considering the nominal 

emand can lead to a large number of capacity constraint viola- 

ions. The computational study highlights that selecting the right 

ualifications is more important for robustness than the number 

f qualifications. 

.1. Instance generation 

In this section, the instances used in the computational study 

re described, and can be used to further generate instances from 

eal industrial data. Note that the instances can be made available 

o the reader by contacting one of the authors. 

Work center: The computational study is performed by using 

ndustrial data from a semiconductor factory located at Crolles, 

rance. Two critical work centers, work center A and work center 

, of the factory are considered. Work center A has M = 20 ma- 

hines. Work center B has M = 30 machines. 

Demand : A horizon of 7 periods, i.e. T = 7 , is considered. Each

eriod corresponds to one month. The nominal demand by prod- 

ct is given by internal forecasts for each period of the horizon. 

xact demand values are not provided for confidentiality reasons. 

nstead, Table 3 illustrates the number of products with a non nul 

emand by period and the Coefficient of Variability (CV) of the de- 

and by period. On the horizon, there are in total 238 products, 

.e. P = 238 . For work center A, these 238 products lead to 1208

perations, i.e. R = 1 , 208 . For work center B, these 238 products

ead to 401 operations. There is no uncertainty on the demand for 

he first month. 
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Production capacities: For work center A, u max 
t,m 

= 0 . 95 ∀ t, ∀ m

n the industrial data. Consider a given period t . For work center B, 

he mean of u max 
t,m 

is equal to 0.80, the minimum of u max 
t,m 

to 0.63,

he maximum of u max 
t,m 

to 0.87, and the standard deviation of u max 
t,m 

o 0.079. Both work centers do not have the same values for u max 
t,m 

ecause machine types are completely different. Note that u max 
t,m 

is 

onstant from one period to another. Similarly, the production ca- 

acity by machine c t,m 

is constant from one period to another, but 

s different from one machine to another. This is mainly because 

achines are non-identical and are of different ages and genera- 

ions. Values for c t,m 

are given based on the length of period t . For

ork center A, the mean of c t,m 

is equal to 59% of the length of the

eriod, the minimum of c t,m 

to 44%, the maximum to 66%, and the 

tandard deviation to 6%. For work center B, the mean of c t,m 

is set

o 75%, the minimum to 36%, the maximum to 85%, and the stan- 

ard deviation to 9%. c t,m 

is not equal to 100% because machines 

ave capacity losses, e.g. due to maintenance operations, engineer- 

ng operations, setup times. 

Re-entrant flow factors : For work center A, the re-entrant flow 

actors vary between 14 and 72, with a mean of 41.2 and a stan-

ard deviation of 11.0. For work center B, the re-entrant flow fac- 

ors vary between 1 and 28, with a mean of 16.0 and a standard

eviation of 4.3. 

Product families : There are three product families, i.e. F = 

 . Each product belongs to exactly one product family. The first 

roduct family contains 120 products. The second product fam- 

ly contains 64 products. The third product family contains 54 

roducts. 

Qualification matrix : The initial set of qualifications is partially 

nitialized, in particular because some machines are already qual- 

fied for existing operations. Consider work center A. The mean 

umber of qualified machines by operation is equal to 4.2, and the 

tandard deviation to 2.0. The minimum, respectively maximum, 

umber of qualified machines for an operation is equal to 1, re- 

pectively 13. The mean number of qualified operations by ma- 

hine is equal to 251.3, and the standard deviation to 188.0. The 

inimum, respectively maximum, number of qualified operations 

or a machine is equal to 25, respectively 645. Note that some op- 

rations cannot be qualified on some machines due to technolog- 

cal restrictions. In total, 2843 new qualifications are possible in 

ork center A. Consider work center B. The mean number of qual- 

fied machines by operation is equal to 3.5, and the standard devia- 

ion to 1.6. The minimum, respectively maximum, number of qual- 

fied machines for an operation is equal to 1, respectively 6. The 

ean number of qualified operations by machine is equal to 48.0, 

nd the standard deviation to 43.8. The minimum, respectively 

aximum, number of qualified operations for a machine is equal 

o 0, respectively 130. Note that some operations cannot be qual- 

fied on some machines due to technological restrictions. In total, 

266 new qualifications are possible in work center B. Some ma- 

hines have no qualified operations because they are being started 

p. 

Qualification costs : We could not access to the qualification 

osts. Therefore, we assume that all qualification costs are identical 

nd equal to one. This is a common assumption made by capacity 

lanners in practice. Hence, in the computational study, the num- 

er of qualifications to perform must be minimized. 

Qualification lead times : Qualification lead times are rough 

stimates of the lead times to perform the qualification proce- 

ures. Qualification lead times vary between several days and two 

onths. For qualification lead times that are smaller than 2 weeks, 

hey are set to 0 because the considered period in the computa- 

ional study is one month. Consider work center A. The minimum 

ead time for all operations and machines is equal to 0 period, the 

ean to 1.6, the standard deviation to 0.8, and the maximum to 2. 

onsider work center B. The minimum lead time for all operations 
11 
nd machines is equal to 0 period, the mean to 1.1, the standard 

eviation to 0.4, and the maximum to 2. 

Throughput rates : Throughput rates strongly vary from one 

achine to another and from one operation to another. Consider 

ork center A. The minimum throughput rate for all operations 

nd machines is equal to 11.4 wafers per hour, the mean to 221.6, 

he standard deviation to 126.7, and the maximum to 527.8. Con- 

ider work center B. The minimum throughput rate for all opera- 

ions and machines is equal to 6.8 wafers per hour, the mean to 

8.0, the standard deviation to 13.9, and the maximum to 83.3. 

.2. Design of experiments 

Different values of θ are studied: 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7. 

alues of 0.2 and 0.3 for θ is not unusual even for early periods 

f the horizon for high mix factories. Larger values of θ are not 

onsidered because the robust optimization problem becomes in- 

easible from θ = 0 . 770 for work center A (see Section 5.3 ). In ad-

ition, the robust optimization problem becomes infeasible from 

= 0 . 294 for work center B. The budget of uncertainty �t, f is set

o 
∑ 

p| αp, f =1 d t,p , ∀ t, ∀ f . The discount factor δt is set to 1 ∀ t in

umerical experiments. This means that there are no incentives on 

erforming qualifications as soon as possible or as late as possible. 

n Algorithm 1 , we consider that θ0 
t,p = 1 ∀ t, ∀ p. 

In the experiments, MCQCP is solved once. The robustness of 

he optimized set of qualifications is evaluated with Algorithm 1 . 

hen, for each possible value of θ, MCRQCP is solved. For each 

alue of θ, 3600 demand scenarios are generated to evaluate the 

apacity constraint violations if the nominal set of qualifications 

as considered, and the price of uncertainty. Because the true dis- 

ribution of the demand is unknown and the demand between 

roducts is correlated, scenarios are randomly generated by using 

 linear program. The linear program, described in Appendix A . The 

inear program generates for a given θ a scenario on the demand 

y product and by period for a given demand level ηt, f by product 

amily and by period. In the experiments, it is assumed that ηt, f is 

qual to the nominal demand by product family. 

For the sake of presentation, in the remainder of the compu- 

ational study, the set of qualifications determined by solving MC- 

CP for the nominal demand are called nominal qualifications, the 

et of qualifications determined by solving MCQCP for the perfect 

andsight demand scenario, perfect handsight qualifications, and 

he set of qualifications determined by solving MCRQCP, robust 

ualifications. 

Note that the robust and nominal qualifications are not com- 

ared in a rolling horizon in the computational study, i.e. where 

ualifications could be updated at each period after demand real- 

zations for the following reasons: (1) It is difficult to known the 

nal practical decision when capacity constraint violations occur; 

2) Qualification decisions must be anticipated due to long qual- 

fication processes; (3) Comparing the robust and nominal set of 

ualifications is possible and fair because both are computed from 

static” optimization models. 

.3. Numerical results 

Mathematical models and Algorithm 1 are implemented in Java 

 on a computer with an Intel Xeon CPU W3530 running at 

.80GHz with 8 threads and 12GB of RAM. Mathematical models 

re solved by using the solver IBM ILOG CPLEX 12.9 with default 

arameters. A computational time limit of one hour is given to the 

olver, ε is set to 0.0 0 01 in Algorithm 1 . 

Section 5.3.1 answers the question “What is the price of un- 

ertainty?”, Section 5.3.2 the question “It the robust optimization 

roblem difficult to solve?”, and Section 5.3.3 , the question “Is it 
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Fig. 3. Work center A. Number of qualifications by θ . 

Table 4 

Price of Uncertainty (PoU). 

Work center A Work center B 

θ Mean Std. Max. Mean Std. Max. 

0.1 1.08 0.30 2 2.88 0.41 5 

0.2 3.10 0.63 4 16.66 0.94 19 

0.3 5.05 0.85 7 - - - 

0.4 7.96 1.11 10 - - - 

0.5 12.70 1.41 15 - - - 

0.6 18.44 1.68 21 - - - 

0.7 31.99 2.03 35 - - - 
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isky to use the set of qualifications determined by considering 

nly the nominal demand?”

.3.1. What is the price of uncertainty? 

The Price of Uncertainty (PoU) is computed by comparing the 

umber of robust qualifications and the number of perfect hand- 

ight qualifications. Gorissen et al. [27] argue that a low mean PoU 

nd standard deviation indicate a good robust solution. Table 4 

hows the mean PoU, its standard deviation (std.) and its maxi- 

um value for each θ . Note that as for θ > 0 . 294 , MCRQCP is in-

easible for work center B, PoU is not presented. 

Consider work center A. The mean PoU varies between 1.08 

ualifications on average for θ = 0 . 1 , with a standard deviation of 

.30, and 31.99 qualifications on average for θ = 0 . 7 with a stan-

ard deviation of 2.03. Note that the increase of PoU when θ in- 

reases is mainly due to the fact that the number of robust qual- 

fications increases (see Fig. 3 ). The standard deviation of PoU is 

mall with respect to the mean PoU. To better put into perspec- 

ive, the meaning of about 30 qualifications, consider θ = 0 . 7 . In

he worst case, PoU is equal to 35. Recall that the number of ma- 

hines in work center A is equal to 20. In other words, to cover the

emand uncertainty, it is required to add 

35 
20 = 1 . 75 qualifications 

n average to each machine, each having a few hundred qualifi- 

ations on average, which seems acceptable in practice. Therefore, 

obust qualifications for work center A appear to be good solu- 

ions. In addition, a small number of additional qualifications, in 

he worst case 35, is required to cover the demand uncertainty. 

his is small compared to the 2843 possible new qualifications. 

his suggests that it is possible to be robust by performing the 

ight qualifications. Robust qualifications are also relevant because 
12 
hey can avoid capacity constraint violations contrary to nominal 

ualifications (see Section 5.3.3 ). 

Similar observations can be observed for work center B (see 

able 4 and Fig. 4 ). The maximum PoU varies between 5 and 19 

ualifications. Similarly to work center A, to better put into per- 

pective the meaning of a PoU of 19 qualifications, recall that the 

umber of machines in work center B is equal to 30. With respect 

o the perfect handsight qualifications, to cover the demand un- 

ertainty, it is required to add 

19 
30 = 0 . 63 qualifications on average 

o each machine, each having a few tens of qualifications on av- 

rage. This is also small compared to the 1266 possible new qual- 

fications. This again suggests that it is possible to be robust by 

erforming the right qualifications. 

Implementing perfect handsight qualifications is impossible be- 

ause it is impossible to know in advance the demand realizations. 

 more practical price of uncertainty can be computed by compar- 

ng the number of robust qualifications and nominal qualifications. 

e found that the actual price of uncertainty is close to the PoU 

resented in Table 4 . This is because, for both work centers, the 

umber of nominal qualifications is equal to 4 and the mean num- 

er of perfect handsight scenarios is also close to 4 (see Figs. 3 and

 ). 

Now consider the case where θ = θmax , where θmax is the 

argest possible value of θ for the considered work center. It can be 

omputed by running Algorithm 1 when all new qualifications are 

tarted at t = 0 . For work center A, this gives θmax = 0 . 77 . When

CRQCP is solved for θ = θmax , 96 new qualifications are required 

the set of new qualifications is optimal). 96 
2 , 843 × 100 = 3 . 37% of all

ew possible qualifications are required to reach the same robust- 

ess than the one when all qualifications are performed. For work 

enter B, θmax = 0 . 294 . When MCRQCP is solved for θ = θmax , 135

ew qualifications are required (optimality gap of 25.0% after 3600 

econds). 135 
1 , 266 × 100 = 10 . 6% of all new possible qualifications are 

equired to reach the same robustness than the one when all qual- 

fications are performed. In the best case, 
 135 − 0 . 25 × 135 � = 102

ew qualifications are required, which corresponds to 8 . 05% of all 

ossible new qualifications. This further suggests that it is possi- 

le to be robust by performing a limited number of qualifications. 

n other words, it can be ineffective to add many qualifications, 

f they are irrelevant. Similar observations can be found in other 

ontributions on flexibility, e.g. on the long-chain and closed-chain 

rinciples [18,33] . Thus, relevant qualifications must be carefully 

ptimized and planned to immunize a work center against demand 

ncertainty. 
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Fig. 4. Work center B. Number of qualifications by θ . 
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One of the reasons why PoU is small is that qualification costs 

re assumed identical in the computational study, which is in fact 

 common assumption in practice. PoU could potentially be larger 

f qualification cost profiles are different from one machine to an- 

ther and from one operation to another. Nevertheless, PoU is not 

ecessarily expected to be significantly larger since new qualifica- 

ions must be paid in the nominal, perfect handsight and robust 

ases for the following reasons: (1) Qualifications are made for new 

perations or new machines, or existing operations that have never 

een qualified on existing machines and (2) A ramp-up demand 

or a product, even uncertain, implies adding new qualifications to 

achines to increase product capacity and balance the workload 

etween the machines. If new qualifications are not performed, 

hen it is impossible to satisfy the demand, and both MCRQCP and 

CQCP are infeasible. If qualification cost profiles are very differ- 

nt, it may be possible to keep a small PoU by performing a lot 

f inexpensive qualifications and avoid performing expensive qual- 

fications whenever possible. Finally, PoU is also small because of 

roduct cannibalization that limits the overall demand of products. 

Now assume that the manufacturer faces an extreme case 

here too many qualifications must be performed to cover the de- 

and uncertainty with respect to the number of nominal qualifi- 

ations. This information is still valuable for capacity planners be- 

ause they will have to refine plausibility limits to limit additional 

utsourcing and machine purchasing costs. In this situation, MR- 

QP is relevant to help refining plausibility limits. 

Finally, from a practical standpoint, as both work centers are 

ocated in the same factory, covering the demand uncertainty for θ
arger than 0.3 in work center A is probably unnecessary as θmax 

s equal to 0.294 for work center B. 

.3.2. Is the robust optimization problem difficult to solve? 

Consider work center A. For all values of θ, a set of optimal 

obust qualifications is determined. However, determining optimal 

obust qualifications is much more time consuming than deter- 

ining optimal nominal qualifications (about 3 seconds). Similarly, 

etermining optimal perfect handsight qualifications requires be- 

ween 2 and 6 seconds in most cases, and never exceeds 13 sec- 

nds. Determining optimal robust qualifications requires between 

6 seconds for θ = 0 . 1 and 1551 seconds for θ = 0 . 7 (see Fig. 5 ).

or θmax , the optimal set of robust qualifications is determined in 

56 seconds. It is also worth mentioning that all optimal nomi- 

al qualifications are determined at the root node by IBM ILOG 

PLEX. Except for θ = 0 . 4 , 0 . 5 , 0 . 7 and θ = θmax , all robust quali-
13 
cations are also determined at the root node by IBM ILOG CPLEX. 

his can be explained by the fact that modern solvers such as IBM 

LOG CPLEX embed advanced preprocessing, probing, heuristic and 

utting plane routines that are used to strengthen the linear relax- 

tion of mixed integer linear problems (see e.g. 1,48 ) and quickly to 

etermine good solutions. It can also be observed that it is faster to 

et the optimal robust qualifications for θ = 0 . 6 than for θ = 0 . 5 . 

For work center B, determining nominal qualifications takes 

bout 1 second, while, similarly to work center A, determining op- 

imal robust qualifications is more difficult. For θ = 0 . 1 , optimal 

obust qualifications are determined in 85 seconds (see Fig. 5 ), and 

n 3472 seconds for θ = 0 . 2 . Branching in IBM ILOG CPLEX is re-

uired for both θ = 0 . 1 and θ = 0 . 2 . 

.3.3. Is it risky to use the set of qualifications determined by only 

onsidering the nominal demand? 

The numerical experiments show that it can be risky to imple- 

ent nominal qualifications because it can lead to capacity con- 

traint violations, which are computed with the following proce- 

ure: 

1. A demand scenario is generated with the linear program in 

Appendix A . 

2. Then, for the set of nominal qualifications and the generated 

demand, the Total Overtime (OT) is minimized with the linear 

program (B.1) - (B.6) in Appendix B . 

3. If OT > 0 , then there is at least one capacity constraint violation 

for the considered scenario. In this case, to put into perspective 

what a positive overtime means, in particular in terms of ma- 

chine utilization rates, we solve the nonlinear utilization bal- 

ancing optimization problem proposed in Rowshannahad et al. 

[47] . This avoids the problem where the total overtime for a pe- 

riod is set to a specific machine whereas, in practice, it would 

be balanbced with similarly qualified machines. The utilization 

balancing optimization problem is parameterized by an utiliza- 

tion balancing exponent γ , which is set to 20 in this paper. 

For scenario i, the procedure enables us to determine what 

ould be the utilization rate U 

i 
t,m 

of machine m at period t for 

 given demand by product and a given set of qualifications (here 

he nominal qualifications) if there is a capacity constraint viola- 

ion. If U 

i 
t,m 

> u max 
t,m 

, then there is a capacity constraint violation for 

cenario i . Repeating this procedure for the 3600 scenarios enables 

s to estimate the capacity constraint violations if only nominal 

ualifications were implemented. 
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Fig. 5. Computational time (in seconds) required to determine the set of robust qualifications by θ . 

Table 5 

Capacity constraint violations. 

Work center A Work center B 

A B C A B C 

θ Mean Max. Mean Max. Mean Max. Mean Max. 

0.1 0.72% 0.058 8 0.004 0.010 15.56% 7.096 11 0.010 0.029 

0.2 15.64% 1.241 8 0.010 0.029 44.28% 8.947 22 0.014 0.048 

0.3 26.19% 2.080 12 0.015 0.046 - - - - - 

0.4 30.78% 2.670 13 0.020 0.066 - - - - - 

0.5 38.39% 3.693 24 0.024 0.086 - - - - - 

0.6 45.31% 5.058 36 0.027 0.106 - - - - - 

0.7 57.83% 7.704 51 0.030 0.126 - - - - - 
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Table 5 shows capacity constraint violations. Column “A”

orresponds to the percentage of scenarios where there is at 

east one capacity constraint violation, Column “B” to the num- 

er of capacity constraint violations. Mathematically, the mean 

umber of capacity constraint violations is computed as fol- 

ows: 1 
3 , 600 ×T ×M×I 

∑ 3 , 600 
i =1 

1 (U 

i 
t,m 

− u max 
t,m 

) , where 1 (x ) = 1 if x > 0 ,

nd 0 otherwise and I = 3 , 600 . The maximum (max.) num- 

er of capacity constraint violations is computed as follows: 

ax i ( 
∑ 

t,m 

1 (U 

i 
t,m 

− u max 
t,m 

)) . Column “C” quantifies capacity con- 

traint violations when there is at least one capacity constraint 

iolation. Mathematically, the mean capacity constraint violation 

s computed as follows: 1 
3 , 600 ×T ×M×I 

∑ 3 , 600 
i =1 

( 
∑ 

t,m 

max (0 , U 

i 
t,m 

−
 

max 
t,m 

)) , and the maximum capacity constraint violation is com- 

uted as follows max i,t,m 

max (0 , U 

i 
t,m 

− u max 
t,m 

) . Columns “B” and “C”

re computed only if there is at least one capacity constraint vio- 

ation. 

Consider work center A, θ = 0 . 1 , 0.72% of the scenarios have

 capacity constraint violation (see Table 5 ), i.e. a relatively small 

umber of scenarios. In addition, the number of capacity constraint 

iolations is relatively small. In the worst case, 8 out of 140 ( T = 7

nd M = 20 ) capacity constraints are violated, capacity constraint 

iolations are not very large, on average 0.004 and at most 0.010. 

his means that if the maximum utilization rate of a machine was 

et to 0.95, then on average, its real utilization rate would be equal 

o 0.9504, at most 0.96. Therefore, for θ = 0 . 1 , using the nomi-

al qualifications is probably acceptable. For θ = 0 . 2 , 15.64% of the 

cenarios have a capacity constraint violation, which is significantly 

arger than for θ = 0 . 1 . On average, the capacity constraint viola-

ion is equal to 0.010, and in the worst case to 0.029, which starts

o be appreciable. For larger values of θ, using nominal qualifica- 

ions is more risky. For instance, consider θ = 0 . 4 where 30.78% of 
14 
he scenarios have at least one capacity constraint violation (see 

able 5 ). In the worst case, 13 out of 140 capacity constraints are 

iolated. In addition, the largest capacity constraint violation is 

qual to 0.0 6 6. This means, that if the maximum utilization rate of 

 machine was set to 0.95, then its real utilization rate would be 

qual to 1.003. The same observations can be made for larger val- 

es of θ . Utilization rates near 1.0 are not sustainable in terms of 

ervice levels. This is due to the fact that the cycle time increases 

lmost exponentially with the utilization rate (queuing theory) and 

ue to production variability [29] . In other words, even small ca- 

acity constraint violations should be avoided. 

Capacity constraint violations are more critical for work cen- 

er B than for work center A. For θ = 0 . 1 , 15.56% of the scenarios

ead to at least one capacity constraint violation, and for θ = 0 . 2 ,

4.28% of the scenarios. In the worst case, there are 11 capacity 

onstraint violations for θ = 0 . 1 and 22 capacity constraint viola- 

ions for θ = 0 . 2 . For θ = 0 . 1 , the mean capacity constraint viola-

ion is equal to 0.010. u max 
t,m 

is set to low values (compared to work 

enter A) because it is known that, in the industrial context, small 

ncreases of utilization rates can lead to much larger cycle times 

ue to production variability. 

Using nominal qualifications can lead to capacity constraint vi- 

lations because nominal qualifications are not robust against de- 

and uncertainty, and are in fact much less robust than robust 

ualifications. For work center A, Algorithm 1 for the nominal 

ualifications gives θ = 0 . 043 , and θ = 0 . 024 for work center B.

ith a limited number of additional qualifications, robust qual- 

fications lead to a much better robustness (see Section 5.3.1 ). 

onsider work center A and θ = 0 . 2 , 7 robust qualifications are 

equired instead of 4 nominal qualifications to avoid capacity 

onstraint violations in 15.64% of the scenarios. For θ = 0 . 3 , 9 
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Table 6 

Number of qualifications (NQ) and robust- 

ness ( θ ) of nominal qualifications when an 

α-flexibility design is enforced. 

Work center A Work center B 

α NQ θ NQ θ

1 4 0.043 4 0.024 

2 84 0.043 14 0.021 

3 251 0.061 77 0.012 

4 611 0.071 224 0.087 

5 1119 0.152 394 0.140 
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obust qualifications are sufficient to avoid capacity constraint 

iolations in 26.19% of the scenarios. Similar observations can 

e made for work center B. For instance, for θ = 0 . 1 , 7 ro-

ust qualifications are required instead 4 of nominal qualifica- 

ions to avoid capacity constraint violations in 15.56% of the 

cenarios. It is worth mentioning that robust qualifications are 

ore robust against demand uncertainty because more qualifica- 

ions are performed. Nevertheless, even by adding a large num- 

er of qualifications, the nominal qualifications are still outper- 

ormed by the robust qualifications in terms of demand uncer- 

ainty coverage. Let us consider the case where α-flexibility de- 

igns are enforced when nominal qualifications are determined 

y the optimization model (1) - (7) . An α-flexibility design en- 

orces that at least α machines must be qualified by operation. 

or operations where it is not possible to have α qualified ma- 

hines, the number of largest number of qualified machines is 

nforced. An α-flexibility design is enforced by adding the two 

ollowing constraints: (1’) 
∑ t 

t ′ =1 | t ′ + l 
t ′ ,r,m ≤t OQ t ′ ,r,m 

≤ 1 ∀ t, ∀ r, ∀ m, 

2’) 
∑ 

m 

∑ t 
t ′ =1 | t ′ + l 

t ′ ,r,m ≤t OQ t ′ ,r,m 

≥ min (α, α′ ) − α′′ ∀ t, ∀ r. α′ is the 

umber of qualifiable and qualified couples (operation, machine) 

or a given period, and α′′ is the number of qualified couples (op- 

ration, machine) for a given period. Constraints (1’) are required, 

therwise Constraints (2’) could be satisfied by performing the 

ew qualification at different periods. Table 6 shows that enforcing 

-flexibility designs for the nominal qualifications does not lead 

o a better robustness against demand uncertainty than the robust 

ualifications even though many qualifications are performed. This 

s because there are many different ways to enforce an α-flexibility 

esign. This reinforces the idea that if qualifications are not opti- 

ized, then even many qualifications may not be effective to tackle 

emand uncertainty. 

Practical consequences of capacity constraint violations are 

ower service levels, larger cycle time and larger inventory holding 

osts. Due to capacity constraint violations, the number of prod- 

cts in the factory would have to be decreased so that the real 

tilization rates of machines violating their capacity constraint in 

he factory is at least lower than 1.0, and ideally lower than u 

max 

o control the cycle times. This can severely affect deliveries and 

he production objectives of the factory. 

In practice, a method to deal with uncertainty is to continu- 

usly updating nominal qualifications each time the demand is up- 

ated. This should be avoided. This is because, as mentioned in 

ection 2.1 , this does not guarantee to find feasible nominal qualifi- 

ations because the qualification process may sometimes take sev- 

ral weeks or months to validate the quality and the yield of the 

peration. As the demand by product for the early months on the 

orizon is also subject to uncertainty, determining and planning 

obust qualifications is preferable for the whole horizon. 

It is worth observing that, if θ is not adequately selected, there 

ay also exist multiple sets of robust qualifications with the same 

umber of qualifications. However, some sets of robust qualifica- 

ions may actually be better to cover a larger demand uncertainty 
15 
han other sets of robust qualifications, which is not captured by 

he robust optimization model because it only seeks to immu- 

ize the work center against the specified uncertainty. This is why 

lgorithm 1 is relevant to identify the most robust set of qual- 

fications among all robust sets of qualifications. These observa- 

ions are consistent with other observations in the literature: There 

ay exist multiple robust solutions to an optimization problem. 

lthough these robust solutions have the same worst-case objec- 

ive value, they can have different performances for the nominal 

cenario [20,21,27,30,57] . 

. Practical use of optimization models 

.1. Determining qualification decisions 

A straightforward use of the robust optimization model (12) - 

14) is to determine new qualifications to perform to satisfy the 

emand while respecting capacity constraints and covering the de- 

and uncertainty. 

.2. Further improving manufacturing performances 

As illustrated on the industrial data in Section 5 , a small num- 

er of qualifications among several hundreds of new qualifications 

s sufficient to cover the demand uncertainty. Consequently, it is 

ikely that there are two different sets of robust qualifications that 

over the demand uncertainty but lead to different performances, 

or instance in terms of utilization balance of the machines or pro- 

uction variability. It is necessary to distinguish them to further 

mprove manufacturing performances. Differentiating identical sets 

f robust qualifications in terms of number of qualifications can be 

one by populating the solution pool after determining the mini- 

um number of qualifications to perform. Modern solvers such as 

BM ILOG CPLEX provide this functionality: 

1. Two sets of robust qualifications may not be identical in terms 

of robustness. Algorithm 1 can be used to identify the most ro- 

bust set of qualifications. 

2. Two sets of robust qualifications may also be different in terms 

of real utilization rates although they all satisfy capacity con- 

straints. Johnzén et al. [32] and Rowshannahad et al. [47] pro- 

pose a “time flexibility measure” to evaluate sets of new qual- 

ifications in terms of total utilization rate and utilization bal- 

ance of the machines. This flexibility measure is interesting as 

maximizing the utilization balance contributes to further con- 

trol and reduce cycle times. However, Johnzén et al. [32] and 

Rowshannahad et al. [47] do not consider that demand uncer- 

tainty. Their model need to be robustifieds. 

3. Robust qualifications can be differentiated in terms of produc- 

tion variability as a large production variability contributes to 

significantly increase cycle times [29] . In semiconductor fac- 

tories, partly due to re-entrant flow, it is unlikely that prod- 

ucts arrive continuously in work centers. Work centers are of- 

ten subject to large Work-In-Process (WIP) peaks leading to 

congestion. To better capture this phenomenon, Johnzén et al. 

[32] propose “a toolset” flexibility measure that captures the 

fact that operations with large demands must be more qualified 

than operations with low demands. Pianne et al. [44] argue that 

qualified process times should be balanced between machines 

in the work center. A machine should not be overqualified at 

the expense of other machines. This is because machines with 

few qualifications must process almost all their qualified prod- 

ucts every qualified to meet the optimized utilization balance, 

which is difficult due to production variability. Associated flex- 

ibility measures are proposed in Pianne et al. [44] . They can 

be seen as ways to measure the quality of the balancing of the 
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qualified process times, and not the quality of the utilization 

balance of the machines. 

4. The principle of large closed chains or long chains can also be 

used to differentiate sets of qualifications. If one set of qualifi- 

cations creates more closed chains or larger closed chains be- 

tween machines and operations than other sets of qualifica- 

tions, it is very likely that the former will deal better with WIP 

peaks than the latter [28,33] . 

5. Another straightforward way of differentiating sets of qualifica- 

tions consists in enforcing α-flexibility designs. However, note 

that enforcing α-flexibility designs without optimizing a crite- 

rion that helps to tackle WIP peaks, such as flexibility mea- 

sures, may not necessarily lead to better performances (see 

Section 5.3.3 ). 

.3. Exploiting dual variables of robust reformulation 

Bertsimas and Thiele [11] report that dual variables correspond 

o the sensitivity of the objective function to changes in param- 

ters of the budget uncertainty set for an inventory management 

roblem. Similarly, dual variables of the robust optimization model, 

amely y min 
t,m,p , y 

max 
t,m,p , y 

gamma 

t,m, f 
, can also be exploited: 

• y min 
t,m,p is the sensitivity of the number of qualifications to per- 

form to changes in the parameter d t,p − ̂ d t,p . In other words, if 

d t,p − ̂ d t,p increases, y min 
t,m,p indicates the potential reduction of 

the number of qualifications. 
• y max 

t,m,p is the sensitivity of the number of qualifications to per- 

form to changes in the parameter d t,p + ̂

 d t,p . In other words, if 

d t,p + ̂

 d t,p decreases, y max 
t,m,p indicates the potential reduction of 

the number of qualifications. 
• y 

gamma 

t,m, f 
is the sensitivity of the number of qualifications to per- 

form to changes in the parameter �t, f . In other words, if y 
gamma 

t,m, f 

decreases, �t, f indicates the potential reduction of the number 

of qualifications. 

Exploiting the values of dual variables is particularly relevant 

rom an industrial standpoint to identify if the demand uncertainty 

n some products or product families is very expensive in terms of 

umber of qualifications. Reporting the values of dual variables can 

e used by capacity planners to refine the uncertainty set, i.e. by 

efining a smaller uncertainty set, and initiate a discussion with 

he departments in charge of defining future demands in the case 

here the number of qualifications to perform is overwhelming. 

apacity planners can also initiate a discussion with the depart- 

ents in charge of defining future demands that the demand un- 

ertainty on some products or product families is not constraining 

or the production system. The departments can therefore consider 

ew future potential product mixes, i.e. by defining a larger uncer- 

ainty set, that would have never been initially considered. 

.4. On infeasibilities 

The optimization problems can be infeasible (see Section 5.3 ). 

or instance, this can be caused by large qualification lead times 

nd too small production capacities to cover the demand uncer- 

ainty. Determining that optimization problems are infeasible is 

lso valuable in practice. 

If the nominal optimization problem is infeasible, it indicates 

o capacity planners that the demand must be changed. An op- 

ion would then consist in adapting the product mix and produc- 

ion quantities, either by producing more products during some 

onths or postponing production to make the best use of the in- 

talled process flexibility and still meet the demand [58] . However, 

t is difficult to anticipate how would be the new demand as it 
16 
epends on different stakeholders ( e.g. capacity planning, demand 

lanning) within a company. For instance, if the nominal optimiza- 

ion problem is infeasible, the demand for products that generate 

 large workload at the work center can be decreased while the 

emand for products that generate a lesser workload can be in- 

reased. In this case, the total number of product units made may 

ot decrease, backlogging costs may be acceptable, but lost sales 

ay be incurred on critical products. 

If both MCQCPLT or MCRQCPLT cannot be solved because ca- 

acity constraints cannot be respected, it is also possible to solve 

 utilization balancing problem where the demand is described by 

he uncertainty D t to highlight critical machines, i.e. machines for 

hich U t,m 

> u max 
t,m 

. We refer the reader to Rowshannahad et al. 

47] and Christ et al. [19] for existing utilization balancing ap- 

roaches. These approaches also need to be robustified. In a deci- 

ion support system, systematically solving a robust utilization bal- 

ncing problem is relevant to either identify infeasibilities or most 

oaded and critical machines. 

. Conclusions and perspectives 

In this paper, we first proposed a new mixed-integer linear pro- 

ramming mathematical model for a tactical qualification manage- 

ent problem, which is shown to be NP-Hard, when the demand 

s deterministic. We showed that the studied problem is NP-Hard. 

econd, we motivated the choice of robust optimization when the 

emand is uncertain, in particular for high mix factories. We pro- 

osed an uncertainty set based on the budget of uncertainty to de- 

cribe product cannibalization and cover the demand uncertainty. 

hird, we proposed a new robust reformulation of the determin- 

stic model when the demand is described by product cannibal- 

zation. Fourth, we proposed a linear program and a binary search 

pproach to characterize the robustness of a set of qualifications 

hen the demand is uncertain. Fifth, we performed a computa- 

ional study by using industrial data from a high mix semiconduc- 

or manufacturer. In particular, we showed that, (1) The price of 

ncertainty is acceptable, often less than a few additional quali- 

cations for each machine, (2) It is possible to achieve the same 

evel of robustness as the case where all new qualifications are per- 

ormed by only performing a restricted number of relevant quali- 

cations, (3) Depending on the forecast uncertainty and the work 

enter, the robust optimization problem can be difficult to solve, 

nd (4) Using the nominal set of qualifications can lead to sig- 

ificant capacity constraint violations, although it can be used for 

ome work centers when the forecast uncertainty is small. Finally, 

ractical applications and implications of the developed models are 

iscussed. 

We believe the following perspectives are worth investigating 

n the future. First, other parameters can also be subject to un- 

ertainty, e.g. production capacities, throughput rates of operations 

n machines, qualification costs and lead times. Studying the rele- 

ance and effect of uncertainty on these parameters can be valu- 

ble. Second, a large number of qualifications can be difficult to 

aintain at an operational level. Including disqualification deci- 

ions, e.g. constraining the number of qualifications by machines, 

r constraining the total number of qualifications in each period, 

ould be relevant. Third, extending the static robust reformulation 

o adjustable robust reformulations may be valuable to further re- 

uce qualification costs. Fourth, for work centers where the num- 

ers of operations and machines are large, efficient solution ap- 

roaches can be valuable. An option consists in using a cutting- 

lane solution approach with lazy constraints as proposed by Bert- 

imas et al. [8] . This might be a viable approach as the computa-

ional time required to solve MCQCP is small. Fifth, as there may 

xist several sets of robust qualifications in terms of number of 

ualifications given an immunization level, it would be interesting 
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o use additional objective functions to select the most set of ro- 

ust qualifications. This leads to considering a multi-objective op- 

imization approach for the studied problem. Sixth, other solution 

pproaches for MRBQP can be considered. Iterated max-min ap- 

roaches are probably relevant not to restrict to the same value 

f θ for all products and periods. Seventh, studying the effect of 

ifferent qualification cost profiles by machine or by machine and 

ime dependent qualification decisions on the price of uncertainty 

an be interesting. Finally, as the ability of qualifications to cover 

he uncertainty on the demand strongly depends on the machines 

n the work center [29] , considering the investment decisions in 

erms of machines could also be investigated to cover the uncer- 

ainty on the demand. In the same vein than in [55] with pricing 

exibility for supply uncertainty or in [38] with capacity reserva- 

ion and quantity flexibility contracts, considering other types of 

exibility should lead to interesting research avenues. 
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ppendix A. Linear programming for scenario generation 

The linear program (A .1) - (A .4) consists in simulating a (perfect 

andsight) scenario on the demand from a nominal demand and 

he uncertainty parameters defined in the uncertainty set D t . The 

 parameters are weights and can be randomly drawn to generate 

 scenario on the demand. Note that d t,p is a decision variable in 

he linear program (A .1) - (A .4) as a scenario on the demand must

e generated. 

min 

∑ 

t,r 

w t,r 

∑ 

p 

r f p,r d t,p (A.1) 

.t. d t,p ≥ d t,p − ̂ d t,p ∀ t, ∀ p (A.2) 

d t,p ≤ d t,p + 

̂ d t,p ∀ t, ∀ p (A.3) 

∑ 

p| αp, f =1 

d t,p = ηt, f ∀ t, ∀ f (A.4) 

Equation (A.1) is the objective function that is used to simulate 

 scenario on the demand from the nominal demand. If weights w 
17 
re randomly generated, e.g. between -1 and 1, the objective func- 

ion can be used to generate random scenarios. Constraints (A.2) - 

A.4) are the constraints that correspond to the uncertainty set D t . 

ppendix B. Total overtime minimization for evaluating 

apacity constraint violations 

Let us introduce the new decision variable O t,m 

for machine m 

t period t . O t,m 

is greater than 0 if there is an overtime on ma-

hine m at period t . The linear program (B.1) - (B.6) minimizes the 

otal overtime over the planning horizon: 

min 

∑ 

t,m 

O t,m 

(B.1) 

.t. 
∑ 

r 

( 
∑ 

p r f p,r d t,p ) W IP t,r,m 

t p r,m 

≤ c t,m 

u 

max 
t,m 

+ O t,m 

∀ t, ∀ m (B.2) 

∑ 

m 

W IP t,r,m 

= 1 ∀ t, ∀ r | ∑ 

p 

r f p,r d t,p > 0 (B.3) 

W IP t,r,m 

≤ q r,m 

∀ t, ∀ r, ∀ m | q r,m 

� = 2 (B.4) 

W IP t,r,m 

≤ 0 ∀ t, ∀ r, ∀ m | q r,m 

= 2 (B.5) 

W IP t,r,m 

≥ 0 ∀ t, ∀ r, ∀ m (B.6) 

Here, q is the initial qualification matrix with new (nominal) 

ualifications. 
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