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a b s t r a c t 

I introduce a method for simulating aggregate dynamics of heterogeneous-agent models 

where log permanent income follows a random walk. The idea is to simulate the model 

using a counterfactual permanent-income-neutral measure which incorporates the effect 

that permanent income shocks have on macroeconomic aggregates. With the permanent- 

income-neutral measure, one does not need to keep track of the permanent-income distri- 

bution. The permanent-income-neutral measure is both useful for the analytical character- 

ization of aggregate consumption-savings behavior and for simulating numerical models. 

Furthermore, it is trivial to implement with a few lines of code. 
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1. Introduction 

The heterogeneous-agent macroeconomic paradigm emphasizes the importance of rich heterogeneity at the micro level 

for macroeconomic aggregates. One of the main challenges for the paradigm is that macroeconomic models with rich de- 

scriptions of the micro environment are computationally challenging to solve and it is therefore important to develop com- 

putational methods that reduce these challenges. In this paper, I provide a simple aggregation method which reduces the 

dimensionality of the state space for the class of macroeconomic models featuring permanent income shocks. The method, 

which only takes a few lines of code to implement, improves the computational performance by several orders of magnitude. 

The class of models under consideration, following Zeldes (1989) , Deaton (1991) , and Carroll (1997) , models income as

subject to fully permanent income shocks and transitory income shocks. 1 An advantage of such an income process with fully 

permanent income shocks is that, combined with CRRA preferences, it permits a simple description of household behavior 

(e.g., consumption) in terms of permanent income P t and normalized cash-on-hand m t := M t /P t (where M t is cash on hand)

on the convenient functional form C t = P t c(m t ) . The unit-root process for log permanent income also closely approximates

the benchmark income process for heterogeneous-agent models, a highly persistent AR (1) . 2 
� I am grateful for helpful comments from editor Thomas Lubik, the associate editor, the referee, Jeppe Druedahl, Kasper Kragh-Sørensen, and Erik Öberg. 

I am also grateful to Tomas Björk for teaching me the mathematics of equivalent probability measures. 
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E-mail address: kha.eco@cbs.dk 
1 Zeldes (1989) , Deaton (1991) , and Carroll (1997) , as well as, e.g., Gourinchas and Parker (2002) and Campbell and Cocco (2007) use an income process 

with permanent income shocks to study micro-level household behavior. More recently, the setup has been used to study aggregate macroeconomic 

behavior by McKay (2017) , Carroll et al. (2017) , Carroll et al. (2020) and Harmenberg and Öberg (2021) . 
2 Although there is a growing literature emphasizing the importance of accurately capturing the full richness of income dynamics, see, e.g., 

Browning et al. (2010) , De Nardi et al. (2020) and Guvenen et al. (2021) , an income process with near-permanent income shocks remains the baseline in 
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Being able to describe micro-level consumption behavior in terms of normalized cash on hand, without explicit refer- 

ence to permanent income, helps keep the computational problem tractable since a state variable in the household problem 

can be eliminated. Furthermore, the elimination of permanent income as a state variable has permitted a relatively pre- 

cise theoretical description of household behavior ( Carroll, 2021 ). However, the computational tractability and theoretical 

clarity seemed to be lost when describing macro-level consumption behavior. For aggregate variables such as aggregate con- 

sumption, it is not sufficient to keep track of the distribution of households along the normalized cash-on-hand dimension 

since one needs to weigh the households by their permanent income. It was thought to be necessary to keep track of the

distribution of households both with respect to normalized cash on hand and with respect to permanent income, and the 

tractability gained at the micro level was lost when aggregating over all households. 

This paper shows a way to recover both computational tractability and theoretical clarity for the macro-level behavior 

of models with fully permanent income shocks. I introduce a sufficient statistic for aggregate variables such as aggregate 

consumption, the permanent-income-weighted distribution , and show that there is a simple way to characterize the law of 

motion for the permanent-income-weighted distribution. The law of motion for the permanent-income-weighted distribu- 

tion is equivalent to the law of motion for the distribution of normalized cash-on-hand with the adjustment that permanent 

income shocks are drawn using a counterfactual permanent-income-neutral measure which oversamples the positive perma- 

nent income shocks and undersamples the negative permanent income shocks. To be precise, if the objective distribution 

of permanent income shocks is given by a density function f η(η) , then the permanent-income-neutral measure is given by
˜ f η(η) := η f η(η) . 

Using the permanent-income-neutral measure together with Szeidl (2013) ’s characterization of when a stable invariant 

distribution of cash on hand exists for buffer-stock savings model, I characterize when a stable invariant permanent-income- 

weighted distribution exists. I then prove the conjecture from Carroll (2021) that, in the long run, aggregate consumption 

grows at the same rate as aggregate income in buffer-stock savings models. 

The permanent-income-neutral measure also yields computational improvements. I use the permanent-income-neutral 

measure to compute aggregate savings in an Aiyagari model both through Monte Carlo simulation and non-stochastic sim- 

ulation. In both cases, the computation of aggregate savings is faster using the permanent-income-neutral measure. With 

non-stochastic simulation, the permanent-income-neutral measure yields a thousandfold improvement in computation time 

and the Aiyagari model can be solved in less than a third of a second. The implementation of the permanent-income-neutral

measure is trivial, simply replace f η(η) by ˜ f η(η) in the code when aggregating the model. 

The disposition of the paper is as follows. In Section 2 , I introduce notation and prove the main theorem of the paper, a

characterization of the law of motion for the permanent-income-weighted distribution. In Section 3 , I use the main theorem

to theoretically characterize the aggregate behavior of buffer-stock savings models. In Section 4 , I show how the permanent-

income-neutral measure can be used to improve computations. Section 5 comments on the similarities with the risk-neutral 

measure used in asset pricing, comments on how to use the permanent-income-neutral in continuous time, and concludes. 

2. Main theorem 

In this section, I consider the problem of aggregating models with fully permanent income shocks. It is assumed that 

behavior at the micro level has been solved for through, e.g., value-function iteration or other methods. 

In preparation for the main theorem, I introduce the class of models under consideration. The models are ones such 

that the state space m × P consists of a normalized-state dimension m (e.g., normalized cash on hand) and a permanent-

income dimension P . The law of motion for permanent income only depends on previous-period permanent income and 

the permanent-income shock while the law of motion for the normalized-state dimension depends on the previous-period 

normalized-state dimension, possibly other shocks, and the permanent income shock but not the previous-period perma- 

nent income. This relatively abstract formulation nests, e.g., the canonical buffer-stock savings model ( Carroll, 1997 ), models 

with risky assets ( Haliassos and Michaelides, 2003 ), and models with durable goods subject to non-convex adjustment costs 

( Harmenberg and Öberg, 2021 ) (in this case, the normalized state is two dimensional). For simplicity, the exposition pre-

sumes no aggregate shocks but aggregate dynamics can easily be accommodated by introducing time subscripts for the law 

of motion. 

Formally, a model with permanent-income shocks that allows normalization is described by 

1. a multiplicative law of motion for permanent income P t ∈ P = R + given by P t+1 = Gηt+1 P t where G is the growth rate of

permanent income and the shock ηt+1 is drawn from the probability density function f η(ηt+1 ) such that Eηt+1 = 1 

2. and a law of motion for the normalized state as described by a density kernel φ(m t+1 , m t , ηt+1 ) , i.e., the probability

density function for the normalized state m t+1 ∈ m ⊆ R 

k given the previous state m t ∈ m and the permanent-income

shock η ∈ R . 
t+1 + 

the heterogeneous-agent macroeconomic literature. For example, in their handbook chapter on macroeconomics and household heterogeneity, Krueger, Mit- 

man and Perri (2016) model income as subject to persistent shocks with quarterly autocorrelation 0.99. In the recent HANK literature, McKay et al. (2016) , 

Bayer et al. (2019) , Auclert et al. (2018) , and Kaplan et al. (2020) all model household income as an AR (1) in logs with high persistence and the income 

process of Kaplan et al. (2018) features a rare income shock with a half-life of 18 years. 
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With these primitives, the Markov operator that maps a distribution ψ t ∈ D (m × P ) to the next-period distribution

ψ t+1 ∈ D (m × P ) is explicitly described by 

ψ t+1 (m t+1 , P t+1 ) = 

∫ 
φ
(

m t+1 , m t , 
P t+1 

GP t 

)
f η

(
P t+1 

GP t 

)
1 

GP t 
ψ t (m t , P t ) dm t dP t . (1) 

Often, we are interested in the distribution of households along the normalized-state dimension, “forgetting” the 

permanent-income dimension. The following definition introduces the distribution of households along the normalized-state 

dimension. 

Definition 1. The marginal distribution (along the normalized-state dimension) is defined as ψ 

m 

t (m t ) := 

∫ 
ψ t (m t , P t ) dP t . 

The evolution of the marginal distribution is easy to simulate, just simulate the evolution of many households and do 

not bother keeping track of the permanent-income dimension. However, for computing aggregates such as aggregate con- 

sumption, a different distribution along the normalized-state dimension is needed. Intuitively, we need to weigh households 

by their permanent income. Since consumption scales with permanent income, the consumption of a household i is given 

by the consumption function C it = c(m it ) P it . Therefore, aggregate consumption is given by 

C t = 

∫ 
c ( m t ) P t ψ t ( m t , P t ) dm t dP t 

= 

∫ 
c ( m t ) 

(∫ 
P t ψ t ( m t , P t ) dP t 

)
dm t . 

Capturing the integral inside the parenthesis, we introduce the following notation: 

Definition 2. The permanent-income-weighted distribution is defined as ˜ ψ 

m 

t (m t ) := G 

−t 
∫ 

P t ψ t (m t , P t ) dP t . 

The inclusion of the detrending factor G 

−t in the definition of the permanent-income-weighted distribution is not essen- 

tial but yields a cleaner statement of the main theorem. The detrending is analogous to, e.g., the detrending of the Solow

model by productivity and population growth. 

Total consumption is given as a growth factor G 

t times the integral of normalized consumption over the permanent- 

income-weighted distribution, 

C t = G 

t 

∫ 
c(m t ) ˜ ψ 

m 

t (m t ) dm t . (2) 

Note that the permanent-income-weighted distribution is a sufficient statistic for computing aggregate consumption, 

aggregate savings and similar aggregate variables where household behavior is weighted by permanent income. The main 

result of this paper is that there exists an explicit characterization of the law of motion of the permanent-income-weighted

distribution 

˜ ψ 

m 

t without reference to the full state ψ t . Furthermore, the law of motion for the permanent-income-weighted 

distribution 

˜ ψ 

m 

t is similar to the law of motion for the marginal distribution ψ 

m 

t . 

Theorem 1. The law of motion for ψ 

m 

t is given by 

ψ 

m 

t+1 (m t+1 ) = 

∫ 
φ( m t+1 , m t , ηt+1 ) f η( ηt+1 ) ψ 

m 

t ( m t ) dm t dηt+1 (3) 

and the law of motion for ˜ ψ 

m 

t is given by 

˜ ψ 

m 

t+1 (m t+1 ) = 

∫ 
φ( m t+1 , m t , ηt+1 ) ̃  f η( ηt+1 ) ˜ ψ 

m 

t (m t ) dm t dηt+1 (4) 

where ˜ f η(ηt+1 ) := ηt+1 f η(ηt+1 ) . We call the distribution ˜ f η the permanent-income-neutral measure. 

Proof. Write ˜ ψ 

m,ρ
t := G 

−ρt 
∫ 

P 
ρ
t ψ t (m t , P t ) dP t . The two distributions ψ 

m 

t and 

˜ ψ 

m 

t are the special cases with ρ = 0 and ρ = 1

respectively. The law of motion for ˜ ψ 

m,ρ
t is given by 

˜ ψ 

m,ρ
t+1 ( m t+1 ) = G 

−ρ( t+1 ) 
∫ 

P 
ρ
t+1 

ψ t+1 ( m t+1 , P t+1 ) dP t+1 

= G 

−ρ( t+1 ) 
∫ 

P 
ρ
t+1 

φ
(
m t+1 , m t , 

P t+1 

GP t 

)
f η

(
P t+1 

GP t 

)
1 

GP t 
ψ t ( m t , P t ) d m t d P t d P t+1 

= G 

−ρ( t+1 ) 
∫ 

ηρ
t+1 

G 

ρP 
ρ
t φ( m t+1 , m t , ηt+1 ) f η( ηt+1 ) ψ t ( m t , P t ) d m t d P t d ηt+1 

= 

∫ 
φ( m t+1 , m t , ηt+1 ) η

ρ
t+1 

f η( ηt+1 ) 
(
G 

−ρt 
∫ 

P 
ρ
t ψ t ( m t , P t ) dP t 

)
d m t d ηt+1 

= 

∫ 
φ( m t+1 , m t , ηt+1 ) η

ρ
t+1 

f η( ηt+1 ) ˜ ψ 

m,ρ
t ( m t ) d m t d ηt+1 , 

where the first equality is true by definition, the second equality by Eq. 1 , the third equality by the change of variable

ηt+1 = 

P t+1 
GP t 

, the fourth by Fubini’s theorem, and the fifth by definition. �

Remark 1. With CRRA utility, household period utility is given by C 1 −γ / (1 − γ ) . By setting ρ = 1 − γ , the proof of

Theorem 1 also describes the law of motion for ˜ ψ 

m, 1 −γ
t which is the sufficient statistic for aggregate welfare. Similarly, 

the proof explicitly characterizes the law of motion for ˜ ψ 

m, 2 
t , the sufficient statistic for computing consumption squared. It 

is therefore possible to compute cross-sectional consumption variance by keeping track of ˜ ψ 

m and 

˜ ψ 

m, 2 . 
t t 

3 
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The law of motion for the permanent-income-weighted distribution is obtained by formally replacing the permanent- 

income shock distribution f η(η) with the permanent-income-neutral shock distribution 

˜ f η(η) := η f η(η) . What is the intu-

ition behind this result? Consider a setup where all households have the same permanent income 1.0 at time t = 0 . Of these

households, half receive an increase in their permanent income by 50 percent and half receive a fall in their permanent in-

come by 50 percent. In period t = 1 , half of the households therefore have permanent income 1.5 and half have permanent

income 0.5. Although only 50 percent of households received the positive shock to permanent income, 1 . 5 × 50 percent

= 75 percent of permanent income resides with these households. For the purposes of determining aggregate consump- 

tion, tracking permanent income rather than the households is sufficient. The permanent-income-neutral shock distribution 

combines the objective probability of the shock ( p = . 5 ) with the ex-post weight assigned to the households that receive

the shock ( η = 1 . 5 ), describing the law of motion for “units of permanent income” (a share ˜ p = p × η = 0 . 75 of permanent

income resides with the households that received the positive shock). Therefore, if we want to keep track of the distribution

of permanent income, rather than households, along the normalized-state dimension, we use the permanent-income-neutral 

measure. 

Theorem 1 suggests an immediate way to simulate the permanent-income-weighted distribution, and thereby the evo- 

lution of aggregate variables. Take any method that simulates the evolution of households along the normalized-state di- 

mension. It can straightforwardly be adapted to simulate the evolution of the permanent-income-weighted distribution: just 

change the probability distribution for permanent income shocks from f η to ˜ f η when simulating the distribution. 

3. Theoretical characterization of aggregate behavior in buffer-stock saving models 

Theorem 1 is the main result of the paper. In this section, I show how the theorem allows a characterization of aggregate

behavior in buffer-stock savings models, extending the work of Szeidl (2013) and Carroll (2021) . 

Consider the following buffer-stock savings model from Carroll (1997) . There is a continuum of infinitely-lived households 

with stochastic labor income who can consume and save in a risk-free bond subject to a no-borrowing constraint. The 

households solve the problem 

max E 0 

∞ ∑ 

t=0 

βt C 
1 −γ
t 

1 − γ
s.t. C t + B t+1 = M t , (5) 

M t+1 = RB t + Y t+1 , 

Y t+1 = wP t+1 εt+1 , 

P t+1 = P t Gηt+1 , 

B t ≥ 0 , 

where M t is the cash on hand of the household. The household’s permanent income is denoted P t and grows at rate G ,

subject to a permanent income shock ηt . Labor income is also subject to a transitory income shock εt . Both ηt ∼ f η and

εt ∼ f ε are non-negative, independent and i.i.d. with mean 1. 

The consumer problem can be reformulated in terms of normalized variables m t = M t /P t , c t = C t /P t and consumer be-

havior scales linearly with permanent income. Reformulating the problem in its recursive formulation, the households are 

solving the following problem: 3 

v (m ) = max 
b,c 

c 1 −γ

1 − γ
+ βE 

[
(Gη′ ) 1 −γ v (m 

′ ) 
]

s.t. b + c = m, (6) 

m 

′ = 

Rb 

Gη′ + wε′ , 

b ≥ 0 , 

where primed variables ( m 

′ , η′ , ε′ ) denote next-period variables. 

Szeidl (2013) provides a characterization of when a stable invariant distribution of normalized cash on hand m t , ψ 

m ,

exists for this problem. The characterization is in terms of the asymptotic marginal propensity to consume as the household’s 

assets tend to infinity, which we denote by mpc ∗. Szeidl (2013) shows that this asymptotic marginal propensity to consume

can be solved for analytically by considering an auxilliary model without labor income (i.e., a “cake eating problem”), in our

setting mpc ∗ = 1 − (βR ) 1 /γ

R . With these preliminaries, Szeidl (2013) proves the following result: 

Proposition 1 ( from Szeidl (2013) ) . There exists a stable invariant marginal distribution ψ 

m if 

log [ R (1 − mpc ∗)] < E log [ Gη′ ] . (7) 

Furthermore, if 

log [ R (1 − mpc ∗)] > E log [ Gη′ ] (8) 
3 Write the value function in terms of normalized cash on hand m = M/P and permanent income P. It is then straightforward to guess and verify that 

the value function is on the form V (m, P) = v (m ) P 1 −γ , allowing us to eliminate P as a state variable in the household problem. 

4 
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then there does not exist an invariant marginal distribution. 

The proof, mutatis mutandi, directly translates to a characterization of when a stable invariant permanent-income- 

weighted distribution, ˜ ψ 

m , exists for this environment. Using Theorem 1 , the following proposition which is a simple exten- 

sion of Szeidl (2013) ’s result, provides a characterization of when a stable invariant permanent-income weighted distribution 

exists: 

Proposition 2 ( adapted from Szeidl (2013) ) . There exists a stable invariant permanent-income weighted distribution ˜ ψ 

m if 

log [ R (1 − mpc ∗)] < 

˜ E log [ Gη′ ] (9) 

where the expectation ˜ E is taken with respect to the permanent-income-neutral measure given by the density function ˜ f η(ηt+1 ) = 

ηt+1 f (ηt+1 ) . Furthermore, if 

log [ R (1 − mpc ∗)] > 

˜ E log [ Gηt+1 ] (10) 

then there does not exist an invariant permanent-income-weighted distribution. 

Proof. By Theorem 1 , the law of motion for ψ 

m 

t is the same as the law of motion for ˜ ψ 

m 

t , except f η is replaced by ˜ f η .

Therefore, the condition of Szeidl (2013) translates except the expectation is taken with respect to the permanent-income- 

neutral measure. �

Note that E log [ Gη′ ] < 

˜ E log [ Gη′ ] so the existence of a stable invariant marginal distribution is sufficient but not nec-

essary to ensure the existence of a stable invariant permanent-income-weighted distribution. For some parameter values, 

there does not exist a stable invariant marginal distribution but there exists a stable invariant permanent-income-weighted 

distribution. Intuitively, a stable invariant marginal distribution does not exist if sufficiently many households have their 

normalized cash on hand m t increasing in an unbounded fashion. This happens for households who see their permanent in- 

come falling many times in a row. However, for the permanent-income-weighted distribution, these households contribute 

much less to the aggregate (since their permanent income fell) and therefore the condition for the existence of a stable

invariant permanent-income-weighted distribution is less restrictive. 

Armed with Proposition 2 , we can now prove a conjecture from Carroll (2021) . 

Proposition 3 ( conjecture from Carroll (2021) ) . Under the conditions of Proposition 2 , aggregate consumption grows at the

same rate as permanent income in the long run. 

This conjecture may strike the reader as obvious. However, natural as it may look, it evaded being proven because the

right way to approach the conjecture, with the permanent-income-neutral measure, was not available. 

Proof. Recall that C t = G 

t 
∫ 

c(m t ) ˜ ψ 

m 

t (m t ) dm t . Given the existence of a stable invariant permanent-income-weighted distri-

bution 

˜ ψ 

m , in the long run we have 

C t+1 = G 

t+1 

∫ 
c(m ) ˜ ψ 

m (m ) dm = G 

(
G 

t 

∫ 
c(m ) ˜ ψ 

m (m ) dm 

)
= GC t (11) 

so 
C t+1 

C t 
= G . �

Following Carroll (2021) , denote by M t [ ·] the cross-sectional average operator at time t , that is, the expected value from

drawing a household at random using the density ψ t (m t , P t ) . We can compute aggregate consumption in two ways. First,

we can use the objective measure, 

C t = 

∫ 
c(m t ) P t ψ t (m t , P t ) dm t dP t = M t [ c(m t ) P t ] = G 

t 
M t [ c(m t )] + Cov t (c(m t ) , P t ) , (12) 

where the covariance Cov t is also taken with respect to the cross-sectional distribution of households ψ t (m t , P t ) . The last

equality in Equation (12) corresponds to the remark in Carroll (2021) where he writes that “[a] proof that the covariance

shrinks fast enough would mean that the term could be neglected” in his discussion of a proof strategy for the conjecture

proven in Proposition 3 . 

We can also compute aggregate consumption using the permanent-income-weighted distribution, 

C t = G 

t 

∫ 
c(m t ) ˜ ψ 

m 

t (m t ) dm t = G 

t ˜ M [ c(m t )] (13) 

where the cross-sectional average ˜ M t [ ·] is taken with respect to the permanent-income-weighted distribution 

˜ ψ 

m 

t . Therefore, 

we get the result that 

Cov t (c(m t ) , P t /G 

t ) = −
(
M t [ c(m t )] − ˜ M t [ c(m t )] 

)
. (14) 

In other words, the covariance between permanent income and consumption is the gap in average normalized consump- 

tion between the marginal distribution and the permanent-income-weighted distribution. In particular, the covariance be- 

tween normalized consumption and permanent income does not shrink asymptotically, and the proof strategy suggested by 
5 
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Fig. 1. The steady-state permanent-income-weighted distribution of normalized wealth plotted together with the marginal distribution. The densities are 

jagged near the borrowing constraint because the shock distributions are discrete valued.. 

 

 

 

 

Carroll (2021) is bound to fail. Instead, a shift to the permanent-income-weighted measure provides an easy way to prove 

the conjecture. 

In terms of the distribution of permanent income shocks, the permanent-income-neutral measure stochastically domi- 

nates the objective measure since it overweights the positive permanent income shocks and underweights the negative per- 

manent income shocks. Therefore, the resulting dynamics in cash on hand under the permanent-income-neutral measure is 

stochastically dominated by the dynamics under the objective measure. Fig. 1 shows the permanent-income-weighted distri- 

bution and the marginal distribution of normalized wealth from the Aiyagari model of Section 4 , note that the permanent-

income-weighted distribution has substantially less normalized wealth. Since the permanent-income-weighted distribution 

is stochastically dominated by the marginal distribution along the permanent-income dimension, the aggregate economy is 

more financially constrained than the average household in the economy. 

4. Using the permanent-income-neutral measure for computations 

To compute aggregate behavior of heterogeneous-agent models, an integral part is to compute model aggregates such 

as aggregate consumption and aggregate investment. By simulating the law of motion for the permanent-income-weighted 

distribution 

˜ ψ 

m 

t instead of the law of motion for the (full) distribution ψ t , we reduce the dimensionality of the relevant

state space needed to compute model aggregates. Furthermore, since the permanent-income dimension of the state space 

is unbounded with the permanent-income distribution featuring a fat tail, eliminating this dimension is associated with 

sizeable computational improvements. 4 In this section, I solve an Aiyagari model with and without using the permanent- 

income-neutral measure. 

The Aiyagari model is a minimal example where computation of cross-sectional aggregates is needed to solve for the 

equilibrium, and it therefore serves as an introduction to the application of the permanent-income-neutral measure. Note 

however that the method is applicable in all settings where cross-sectional aggregates are needed for the computation of 

equilibria, for example when computing aggregate dynamics in the presence of aggregate shocks using, e.g., the Krusell and 

Smith (1998) algorithm. The model is similar to Carroll et al. (2017) and in comparison with Aiyagari (1994) , there are

two differences. First, the income process features fully permanent income shocks. Second, to maintain a stationary income 

distribution, I introduce a perpetual-youth structure as in Blanchard (1985) . 

In the literature, e.g., McKay (2017) , Carroll et al. (2017) and Carroll et al. (2020) , it is necessary to introduce a

perpetual-youth structure to maintain a stationary income distribution and compute aggregate variables. However, using 

the permanent-income-neutral measure, it is not necessary to have a well-defined income distribution in order to compute 
4 The permanent-income distribution features a fat tail in McKay (2017) , Carroll et al. (2017) and Carroll et al. (2020) . 

6 
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model aggregates. 5 I nonetheless introduce the perpetual-youth structure in order to compare simulating the model with 

and without the permanent-income-neutral measure. 

Model environment We are looking for a stationary equilibrium to a stationary environment where households are facing 

the household problem described by Equation (5) , or equivalently Equation (6) . Since the environment is stationary, the 

expected growth rate of permanent income is set to zero, i.e., G = 1 . 

• Household block/asset demand: There is a continuum of perpetual-youth households solving the household problem de- 

scribed by Equation (5) , or equivalently Equation (6) . For this problem, household optimal behavior is summarized by a

consumption function c(·) such that a household with normalized cash on hand m and permanent income P consumes 

c(m ) P . All households face a probability ω of dying each period. When a household dies, it is replaced by a newborn

with no initial assets and permanent income P = 1 . 6 

• Production block/asset supply: Factor prices are determined by a Cobb-Douglas aggregate production function Y = K 

α . The 

interest rate also incorporates that the assets of the deceased households are distributed among the living households, 

e.g., through actuarially fair annuity markets. 

R = 

αK 

α−1 + (1 − δ) 

1 − ω 

, 

w = (1 − α) K 

α. 

• Equilibrium/resource constraint: Aggregate capital is equal to aggregate savings. For an individual household, savings are 

equal to cash on hand minus consumption, b = m − c(m ) , so in aggregate we have 

K = 

∫ 
(m − c(m )) P ψ(m, P ) d md P 

where ψ is the stationary distribution of households implied by the solution to the household problem. 

Structure of the equilibrium 

An equilibrium is a tuple (K, w, R, c(·) , ψ) such that: 

1. The factor prices are R = 

αK α−1 +(1 −δ) 
1 −ω and w = (1 − α) K 

α . 

2. The consumption function c(·) solves Equation (6) , given R and w . 

3. The stationary distribution ψ is given by the law of motion implied by the consumption function c(·) and the factor 

prices R and w . 

4. The capital stock K equals aggregate savings K = 

∫ 
(m − c(m )) P ψ(m, P ) d md P . 

Solution algorithm Any solution algorithm for this problem involves computing a stationary distribution. The permanent- 

income-neutral measure and the results in this paper allow us to only compute the one-dimensional permanent-income- 

weighted distribution rather than the two-dimensional joint distribution of cash on hand and permanent income. 

I implement a solution algorithm in Python (using NumPy, SciPy and Numba) on a MacBook Pro-2019 with details in 

Appendix A . The full code is available as an Online Appendix. 7 The algorithm consists of two layers. The inner layer is a

function that returns the implied (partial equilibrium) aggregate savings, given a level of capital. The high-level outline of 

the code for this function is as follows: 

1. Take K, the level of capital, as an input. 

2. Compute factor prices R = 

αK α−1 +(1 −δ) 
1 −ω and w = (1 − α) K 

α given capital K. 

3. Compute the optimal consumption function c(·) given factor prices R and w using a combination of the endogenous-grid 

method ( Carroll, 2006 ) and Howard’s improvement algorithm. 

4. Compute the stationary distribution ψ from the law of motion implied by the consumption function c(·) and the factor 

prices R and w , using non-stochastic simulation ( Young, 2010 ). 

5. Compute aggregate savings 
∫ 
(m − c(m )) P ψ(m, P ) d md P given the consumption function c(·) and the stationary distribu-

tion ψ . 

6. Return aggregate savings. 

In the outer layer, the algorithm solves for the level of capital for which implied savings equal the capital stock. I find

the level of capital using Broyden’s method. 

Parameter values In what follows, I use parameter values from Carroll et al. (2017) . The household discount factor is set

to β = 0 . 99 and the risk aversion to γ = 1 . 0 . The transitory shock is log-normally distributed with σε = 

√ 

0 . 01 × 4 and the
5 This is reminiscent of Constantinides and Duffie (1996) ’s model of asset prices. In their model, the income distribution is degenerate but asset prices 

are well defined. 
6 Strictly speaking, the household problem described by Equation (6) was formulated for infinite-horizon households. However, if we interpret the dis- 

count rate β in Equation (6) as the combination of pure discounting ̂ β and the mortality risk ω, β = ̂

 β(1 − ω) , then Equation (6) describes the household 

problem for a perpetual-youth household. 
7 The code is also available through the author’s homepage, including an interactive Python notebook. 
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permanent shock is log-normally distributed with ση = 

√ 

0 . 01 × 4 / 11 . The mortality risk is set to ω = 0 . 00625 yielding and

average work life of 40 years. The capital share is set to α = 0 . 36 and the depreciation rate to 0.025. 

Discretization for computations Both the permanent and transitory income shocks are discretized using Gauss-Hermite 

quadrature with five nodes. The grid for the normalized cash-on-hand dimension has 300 grid points with more grid points 

for low levels of cash on hand. 

Computing the optimal consumption function Optimal consumption behavior is solved for using the endogenous-grid 

method together with Howard’s improvement algorithm, with an error tolerance of 10 −10 using the L 1 norm between the 

value functions of two subsequent iterations of the combination of the endogenous-grid method and Howard’s improvement 

algorithm. Details for the computation of optimal consumption is provided in Appendix A . 

4.1. Computing the stationary distribution 

The law of motion without the permanent-income-neutral measure The law of motion for the joint distribution ψ t is implied

by the household-level stochastic law of motion 

m 

′ = 

{
R 

(m −c(m )) 
η′ + wε′ if χ ′ = 0 , 

wε′ if χ ′ = 1 , 

P ′ = 

{
P η′ if χ ′ = 0 , 

1 if χ ′ = 1 , 

where the death shock χ ′ is equal to 0 with probability 1 − ω and equal to 1 with probability ω, the transitory shock is 

drawn using its distribution ε′ ∼ f ε and the permanent income shock is drawn using its distribution η′ ∼ f η . 

The law of motion with the permanent-income-neutral measure The law of motion for the permanent-income-weighted 

distribution 

˜ ψ t is implied by the household-level stochastic law of motion 

m 

′ = 

{
R 

(m −c(m )) 
η′ + wε′ if χ ′ = 0 , 

wε′ if χ ′ = 1 , 

where the death shock χ ′ is equal to 0 with probability 1 − ω and equal to 1 with probability ω, the transitory shock

is drawn using its distribution ε′ ∼ f ε while the permanent income shock is drawn using the permanent-income-neutral 

measure η′ ∼ ˜ f η . 

For completeness, the law of motion (or lack thereof) for permanent income under the permanent-income-neutral mea- 

sure is 

P ′ = 1 . 

Computations The simplest strategy for computing either distribution, Monte Carlo simulation, is to simulate long time series 

of (m t , P t ) using the above stochastic laws of motion and then view the long time series as representative of the stationary

distribution. A better method, following Young (2010) , is to discretize the state space and describe the transition probabilities

between different grid points with a matrix M. The stationary distribution is then the unique eigenvector, normalized to sum 

to 1, associated with the eigenvalue 1. 

I explore the computational benefits of using the permanent-income-neutral measure for both Monte Carlo simulation 

and non-stochastic simulation below. The factor prices are set to R = 1 . 00965 and w = 2 . 67369 (these are, as will later be

shown, the equilibrium values for the factor prices). I compute implied aggregate savings by both Monte Carlo simulation 

and non-stochastic simulation. 

4.1.1. Performance of the permanent-income-neutral measure under Monte C arlo simulation 

With and without the permanent-income-neutral measure, I simulate histories of length 1 0 0 0 0 0 0 periods and compute

the implied aggregate savings, viewing the 1 0 0 0 0 0 0 periods as draws from the steady state distribution. I repeat this

exercise 100 times, reporting the mean aggregate capital and the standard deviation of aggregate savings divided by 
√ 

100 

(i.e., the standard error). The implementation of the permanent-income-neutral measure only requires changing a few lines 

of code in the simulation code. In the Appendix, I display the Python code for stochastic simulation (see Fig. A.4 ). When the

permanent-income-neutral measure is used, the permanent income shocks are drawn with the permanent-income-neutral 

probabilities. 

Aggregate savings are computed as the average asset holdings over time, 1 
T 

∑ T 
t=1 b t P t . The results of the simulation ex-

ercise are displayed in Table 1 , the simulation of 100 draws of the 1 0 0 0 0 0 0 periods takes approximately 90 seconds. The

simulated aggregate savings are not statistically different from each other but the standard error of the two estimates are 

different. The standard error without the permanent-income-neutral measure is 2.40 times larger than the standard error 

when using the permanent-income-neutral measure. Since the standard error falls of by 1 / 
√ 

N , this means that the simula-

tion with the permanent-income-neutral measure only requires 1 / 2 . 40 = 17 . 4% as many draws for a given level of precision.

Why is precision increased? One of the nuisances with simulating the model without the permanent-income-neutral 

measure is that the permanent-income distribution features a fat tail. Some households have much greater permanent in- 

come than others and are therefore disproportionately important for aggregates. However, much simulation time is spent 
8 
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Table 1 

The mean and standard error of aggregate savings from simulating 1 0 0 0 0 0 0 

periods for 100 households. Without the permanent-income-neutral measure, 

the standard error of aggregate savings is 2.40 times as large. For a given 

precision, simulations with the permanent-income-neutral measure therefore 

only need 1 / 2 . 40 2 = 17 . 4% as many Monte Carlo draws as simulations without 

the permanent-income-neutral measure. 

Monte Carlo w/o Monte Carlo w/ 

P-I-N measure P-I-N measure Ratio 

Mean aggregate savings 52.94 52.85 

SE of aggregate savings (0.15) (0.06) 2.40 

if weighting_scheme == ’None’:
weight = prob

if weighting_scheme == ’Aggregate’:
weight = params.eta_val[eta_i]*prob

Fig. 2. For non-stochastic simulation using the permanent-income-neutral measure, it is sufficient to change one line of code in pre-existing code for 

creating the transition matrix of non-stochastic simulation of the marginal distribution of cash on hand. 

Table 2 

Aggregate savings using non-stochastic simulation with 31 grid points in the permanent- 

income dimension, 101 grid points in the permanent-income dimension, and with the 

permanent-income-neutral measure. The permanent-income-neutral measure yields a 

thousandfold speedup compared to 101 grid points and a hundredfold speedup compared 

to 31 grid points. While 101 grid points and the permanent-income-neutral measure yield 

very close values for aggregate savings, the discrepancy from 31 grid points is substantial. 

Non-stochastic w/o Non-stochastic w/o Non-stochastic w/ 

P-I-N measure P-I-N measure P-I-N measure 

(31 grid points) (101 gridpoints) 

Aggregate savings 50.86 53.11 53.12 

Computation time 1.17s 12.58s 0.01s 

 

 

 

simulating the households with low permanent income that do not contribute much to aggregates. The permanent-income- 

neutral measure in effect oversamples the permanent-income-rich households and thereby gains substantially better preci- 

sion. 8 

4.1.2. Performance of the permanent-income-neutral measure under non-stochastic simulation 

Next, I implement non-stochastic simulation of the model, following Young (2010) . There are N 

m = 300 grid points in

the cash-on-hand dimension. For the permanent-income dimension, I use N 

P = 31 grid points. The discretized state space is 

thus of size N 

m × N 

P = 300 × 31 = 9300 . 

Non-stochastic simulation for computing the steady state savings amounts to writing down the implied transition matrix 

M for the law of motion and then finding the eigenvector of M associated with eigenvalue 1. The transition matrix M has 

(N 

m × N 

P ) 2 = 9300 2 = 8 . 649 × 10 7 entries, and although the matrix is sparse and can be saved as a sparse matrix, it is

a serious computational enterprise to find its eigenvector associated with eigenvalue 1 (I use Scipy’s own sparse matrix 

eigenvalue routine scipy.sparse.linalg.eigs which calls the ARPACK routine written in Fortran 77). 

By using the permanent-income-neutral measure, I only need to track the cash-on-hand dimension and the state space is 

thus of size N 

m = 300 . Implementing non-stochastic simulation with a one-dimensional state space is marginally easier than 

implementing non-stochastic simulation with a two-dimensional state space. It is therefore somewhat easier, in terms of 

programming, to implement non-stochastic simulation using the permanent-income-neutral measure than without. Further, 

non-stochastic simulation of the permanent-income-weighted distribution only requires a minimal modification of (poten- 

tially pre-existing) code for non-stochastic simulation of the marginal distribution for m , as shown in Fig. 2 . Finally, because

of the lower dimensionality of the state space, the transition matrix ˜ M under the permanent-income-neutral measure only 

has (N 

m ) 2 = 300 2 = 90 0 0 0 entries. 

Table 2 shows the computation time for non-stochastic simulation, with and without the permanent-income-neutral 

measure. Without the permanent-income-neutral measure (with 31 grid points), computing aggregate savings takes approx- 

imately one second, while it only takes 0.01 seconds using the permanent-income-neutral measure. However, there is a 

noticeable discrepancy in aggregate savings between the two methods. Without the permanent-income-neutral measure, 

aggregate savings are computed to be 50.86 while aggregate savings are 53.12 when using the permanent-income-neutral 
8 This is in close analogy with importance sampling used for Monte Carlo integration in Bayesian econometrics, see, e.g., Kloek and van Dijk (1978) . 
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measure. This discrepancy is due to 31 grid points providing an insufficient approximation of the permanent-income dimen- 

sion. When we increase the number of grid points in the permanent-income dimension to 101, aggregate savings without 

the permanent-income-neutral measure are very close to aggregate savings with the permanent-income-neutral measure. 

The increase in grid points does however lead to an even larger state space, of size 30 0 0 0 , yielding a transition matrix with

9 × 10 8 entries. The increase in the size of the state space leads to an increase in computational time to over ten seconds,

three orders of magnitude slower than the computation time when using the permanent-income-neutral measure. 

4.2. Computing the equilibrium with the permanent-income-neutral measure 

In the previous section, we studied the performance of the permanent-income-neutral measure for computing a sta- 

tionary distribution and the implied aggregate savings. In this subsection, I report the results from using Broyden’s method 

together with non-stochastic simulation and the permanent-income-neutral measure to solve for the equilibrium level of 

capital. 

The algorithm finds the equilibrium level of capital, K = 53 . 12 , in 0.25 seconds, with a difference between aggregate

savings and the capital stock less than 10 −12 . This involves 8 outer iterations with Broyden’s method, for which less than

0.08 seconds are spent in total on aggregating the model. In other words, using the permanent-income-neutral measure, 

we solve for the equilibrium level of capital much faster than we compute aggregate savings for one single iteration of

the outer algorithm if we do not use the permanent-income-neutral measure. The equilibrium permanent-income-weighted 

distribution and the (unweighted) marginal distribution of normalized assets are both shown in Fig. 1 . 

The model considered in this paper is purposefully kept simple but the method is general. For a given level of compu-

tational complexity, eliminating permanent income as a state variable allows researchers to introduce an additional state 

variable. In Harmenberg and Öberg (2021) , we use the permanent-income-neutral measure together with non-stochastic 

simulation to solve for aggregate dynamics of a model which has a three-dimensional state space (savings, durable goods, 

permanent income) and non-convex adjustment costs. By using the permanent-income-neutral measure, the state space is 

only two dimensional and computing aggregate dynamics is easy. 

5. Discussion 

The role of the permanent-income-neutral measure is analogous to the role of the risk-neutral measure in asset pricing. 

In asset pricing, the price of an asset, e.g. a stock, S depends on the payoff d and the stochastic discount factor �, 

S ︸︷︷︸ 
Price 

= E[�d] = R 

−1 E[ d] ︸ ︷︷ ︸ 
Discounted expected return 

+ cov ( �, d ) ︸ ︷︷ ︸ 
Risk premium 

(15) 

where R = 1 /E[�] . Notice the structural similarity with Equation (12) . In asset pricing, the main challenge is the covariance

between the stochastic discount factor and the payoff, i.e., pricing risk. In heterogeneous-agent macroeconomics, the main 

difficulty is the covariance between permanent income and the normalized state. In both cases, it helps to perform a change

of measure to the risk-neutral measure/permanent-income-neutral measure. 

Lately, following Achdou et al. (2021) , there has been an explosion of work with heterogeneous-agent models in continu- 

ous time. How can we use the permanent-income-neutral measure in this setting? The mathematical machinery necessary, 

Girsanov’s theorem, is well known in mathematical finance and directly applicable (for a textbook treatment of Girsanov’s 

theorem for economists, see Björk (2019) ). Let permanent income follow a geometric Brownian motion, d P t = gP t d t + σP t d W t .

Aggregate consumption is given by E [ P t c(m t )] . Girsanovs theorem states that E [ P t c(m t )] = e gt 
E 

Q [ c(m t )] where the dynamics

under the equivalent-martingale measure Q is given by replacing d W t = σd t + d W 

Q . Therefore, to simulate the model under

the permanent-income-neutral measure, formally replace dW t by σd t + d W 

Q in the stochastic differential equation for the 

evolution of m t . 

To conclude, the permanent-income-neutral measure both provides a simple computational improvement for simulating 

heterogeneous-agent models with permanent income shocks and helps clarify the theoretical properties of these models. 

The improvement in computational performance is as close to a free lunch as possible, since it only requires replacing f η

with 

˜ f η in pre-existing code for simulating the model. 

Appendix A. Details of computations 

The full source code, including an interactive Python notebook, is available as an Online Appendix and through the 

author’s homepage. 

Grids The grid in normalized cash on hand m consists of 300 grid points from 0.1 to 400 spaced quadratically (the square

of an array with equispaced grid points from 

√ 

0 . 1 to 
√ 

400 ). The grid in normalized end-of-period assets b consists of 300 

grid points with 399 of the grid points from 0.1 to 400 spaced quadratically (the square of an array with equispaced grid

points from 

√ 

0 . 1 to 
√ 

400 ), and an additional grid point at 0.0. 

Computing the optimal consumption function 

The computation of the optimal consumption function uses a combination of the endogenous-grid method and Howard’s 

improvement algorithm. The code, displayed in Fig. A.1 , alternates between the following two steps until convergence: 
10 
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def compute_optimal_consumption_function(initial_v, R, wage, params):
v = initial_v

error = 1.0
iterations = 0

while error > 1e-10:
consumption_function = egm_iteration(v, R, wage, params)
transition_matrix_howard = \

create_transition_matrix(consumption_function, ’Howard’,
params, R, wage)

v_new = howard_improvement_algorithm(consumption_function,\
transition_matrix_howard, params)

error = np.sum(np.abs(v-v_new))
v = v_new
iterations += 1

print("Iterations needed= ", iterations)

return consumption_function, v

Fig. A.1. The code for computing optimal consumption. 

def howard_improvement_algorithm(consumption_function, transition_matrix, params):
period_utility = u(consumption_function, params.gamma)
v = spsolve(eye(params.Nm)-params.beta*transition_matrix, period_utility)

return v

Fig. A.2. The implementation of Howard’s improvement algorithm. 

Fig. A.3. The equilibrium consumption function. 

11 
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def simulate_agent_one_period(m, P, consumption_function,
params, R, wage,
distorted_probabilities):

#Transitory shock

epsilon_shock = random_choice(params.epsilon_val, params.epsilon_prob)

if distorted_probabilities == False:
#Permanent-income shock if not using the

#permanent-income-neutral measure

eta_shock = random_choice(params.eta_val,
params.eta_prob)

else:
#If using the permanent-income-neutral measure, the shock

#probability distribution is adjusted

eta_shock = random_choice(params.eta_val,
params.eta_prob*params.eta_val)

#Death shock

death_shock = random_choice(np.array([0,1]),
np.array([1-params.death_prob, params.death_prob]))

if death_shock == 0:
#Savings are cash on hand minus (linearly intepolated) consumption

b = (m-linint(m, params.mgrid, consumption_function))
m_new = wage*epsilon_shock + R*b/eta_shock

if distorted_probabilities == False:
P_new = eta_shock*P

else:
P_new = 1.0 #With permanent-income-neutral measure, the permanent

#income should not be updated.

else:
b = 0.0

m_new = wage*epsilon_shock
P_new = 1.0

return m_new, P_new, b

Fig. A.4. Python code for simulating the evolution of one agent for one period. This code is called repeatedly to generate a sample path of normalized cash 

on hand m and permanent income P. The permanent-income-neutral measure is used when distorted_probabilities is set to True. When the permanent- 

income-neutral measure is used, the permanent income shock (eta_shock) is drawn using the permanent-income-neutral me asure ˜ f (η) = η f (η) and per- 

manent income (P and P_new) is kept at 1.0. 

 

 

• Given the current guess for the value function, compute optimal consumption by the endogenous-grid method. 

• Given the current guess for optimal consumption, use Howard’s improvement algorithm to compute the implied value 

function from the consumption function. Use the implied value function as the new guess for the value function. 

The application of the endogenous-grid method is completely standard. The application of Howard’s improvment algo- 

rithm uses the transition matrix T , implied by the shocks and the consumption function, and matrix algebra. Letting u

denote the vector of per-period utilities, the vector v of values is given by v = u + uβT + uβ2 T 2 + . . . = u (I − βT ) −1 . The

code for the implementation of Howard’s improvement algorithm is shown in Fig. A.2 . 

The method only needs roughly ten iterations before convergence. The equilibrium consumption function is shown in 

Fig. A.3 . 

Discretization of the permanent-income dimension Since the permanent-income dimension features a fat tail, the grid in 

permanent-income consists of 31 or 101 grid ponts exponentially distributed from exp (−10) to exp (10) (or equivalently, the 

grid for log permanent income is equispaced from −10 to 10). Since the stationary distribution for permanent income is 
12 
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double Pareto, the implied distributions for the permanent-income dimension captures the peak of the distribution better 

with an odd number of grid points. 

Stochastic simulation 

The stochastic simulation generates a permanent-income-weighted distribution in accordance with the distribution ob- 

tained from non-stochastic simulation. The code for stochastically simulating one period for one agent is shown in Fig. A.4 . 

Supplementary material 

Supplementary material associated with this article can be found, in the online version, at 10.1016/j.jedc.2021.104185 
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