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We study collusion in a second-price auction with two bidders in a dynamic environment. 
One bidder can make a take-it-or-leave-it collusion proposal, which consists of both an 
offer and a request of bribes, to the opponent. We show that there always exists a robust 
equilibrium in which the collusion success probability is one. In the equilibrium, for each 
type of initiator the expected payoff is generally higher than the counterpart in any robust 
equilibria of the single-option model (Esö and Schummer (2004)) and any other separating 
equilibria in our model.
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1. Introduction

Under standard assumptions, auctions are a simple yet effective economic institution that allows the owner of a scarce 
resource to extract economic rents from buyers. Collusion among bidders, on the other hand, can ruin the rents and hence 
should be one of the main issues that are always kept in the minds of auction designers with a revenue-maximizing objec-
tive. In the literature, collusion in auctions is typically modeled as a static game in which bidders have already agreed to 
form a cartel and the mission of the cartel is to select a representative bidder (to win the object at a low price in the auc-
tion) and decide on the side-payments (e.g., Graham and Marshall (1987), Mailath and Zemsky (1991), Marshall and Marx 
(2007), and McAfee and McMillan (1992)). Although collusion can be implemented through a revelation game, the working 
of such a cartel typically requires the aid of an incentiveless third party. Furthermore, the static model misses a realistic and 
important scenario in which a particular bidder has strong bargaining power and thus is interested in monetizing it through 
some bargaining process with other bidders.

In a pioneering work, Esö and Schummer (2004) (hereafter ES) consider a dynamic model of bidder collusion in a second-
price auction, before which a bidder has the opportunity to make a take-it-or-leave-it offer of a bribe in exchange for the 
opponent’s absence from the auction (or bidding zero). Since their work, alternative models in the same vein have been 
proposed. For example, Rachmilevitch (2013) considers the same bargaining protocol in first-price auctions and Rachmile-
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vitch (2015) considers a model of alternating offers between two bidders with unequal bargaining power. Troyan (2017)
extends ES’s model to interdependent values and affiliated signals.

The papers cited above share a common feature–namely, the collusion proposal specifies a positive transfer from the 
initiator to the opponent. However, it is natural that if offering a bribe to the opponent is feasible, then requesting a bribe 
from the opponent should also be available in the initiator’s toolbox.

Suppose the collusion initiator commits to a double-option scheme–i.e., a proposal consisting of both a bribe and a 
request. Compared with the single-option scheme, such a double-option scheme seems to give a higher expected payoff for 
the initiator, provided it can be successfully implemented.

With the additional option, a multidimensional signaling game emerges and the problem of adverse selection may be 
more severe, so that the existence and robustness of equilibria are at stake. To examine the implementability, we consider 
a second-price auction with two bidders, as in ES. Specifically, we assume that a bidder has an opportunity to make a take-
it-or-leave-it collusion proposal, consisting of both a bribe and a request, to the opponent before a second-price auction 
starts. The opponent can accept at most one option in the proposal, in which case both bidders follow the proposal and 
bid cooperatively in the auction. If the opponent rejects the proposal, then both bidders compete noncooperatively in the 
auction.

The solution concept we use is weak perfect Bayesian equilibrium (hereafter equilibrium). If an equilibrium survives the 
D1 criterion (Cho and Sobel (1990)), the same standard refinement used in ES, it is said to be robust.2 To illustrate our 
main points, we focus on separating equilibria. Although there may exist a multiplicity of separating equilibria, we show 
that there always exists a robust separating equilibrium in which the initiator’s request is equal to his valuation. In the 
equilibrium, the opponent always accepts the collusion proposal (accepting one of the two options), that is, for each type 
of initiator, the probability of a successful collusion is one. The significance of this result is threefold. First, a separating 
equilibrium does not exist in ES.3 Second, in ES the initiator typically cannot be guaranteed a successful collusion because 
the best response of the opponent is to accept the bribe if her type is low and reject it otherwise. Hence, in our model such 
a double-option scheme leads to a qualitatively different prediction about the outcome of bargaining than that of ES. Third, 
and perhaps more importantly, the result shows that second-price auctions in this dynamic environment are as vulnerable 
as in the static model; namely, a successful collusion is guaranteed, even though now the bidders do not agree on collusion 
beforehand and both act strategically.4

Given that the equilibrium always exists, it is interesting to investigate the performance of the scheme from the per-
spective of the initiator. We next compare the expected payoff of the initiator in our model with the counterpart in ES. On 
one hand, it seems that the additional option alone represents an additional channel through which the initiator can extract 
more surplus from the opponent. On the other hand, the additional option tends to intensify the adverse selection prob-
lem. An interesting feature of the separating equilibrium is that the bribe may exceed the initiator’s valuation. In particular, 
the equilibrium bribing function in Proposition 1 implies that if the lowest possible valuation of the initiator is zero, then 
the bribing function has an infinite derivative at zero. Hence, it may be very costly for some types of initiator to signal the 
strength. We show that in the identified robust equilibrium for each type of initiator, the expected payoff is generally higher 
than the counterpart in any robust equilibria of ES.

As mentioned above, in our model there may exist a multiplicity of separating equilibria. Hence, it is natural to ask 
whether there exist any other separating equilibria in which (at least) for some types of initiator the expected payoff can 
be even higher. It turns out that for each type of initiator the expected payoff in the identified equilibrium is also generally 
higher than the counterpart in any other separating equilibrium in our model.

For convenience of exposition, our main results are derived in the absence of a reserve price in the auction. As explained 
in Section 5.1, a positive reserve price essentially does not change the results.

Although in this paper we focus on second-price auctions, we also discuss briefly the situation in which the auction 
format is changed to a first-price auction. It turns out that in this case, even though bidders have no incentive of on-path 
deviation, the initiator has an incentive to deviate off the path and thus there are no separating equilibria if his lowest type 
is zero. This result is a reminiscence of the ones in Rachmilevitch (2013) which considers a bribing model as ES but with a 
first-price auction. The driving forces for the nonexistence are also similar, i.e., the informational link between the bribing 
stage and the bidding stage. On the other hand, in his model the equilibrium unraveling happens on the path, while in our 
model it happens off the path.

The rest of the paper is organized as follows. This Section continues with a brief review of related literature. In Section 2
we describe the model. In Section 3 we characterize the separating equilibrium and show its robustness. In Section 4 we 
compare the payoff of the initiator in our model with the counterpart in any robust equilibria in ES and other separating 

2 Milgrom and Roberts (1986) apply the intuitive criterion (Cho and Kreps (1987)), which is weaker than the D1 criterion, for their multidimensional 
signaling model of price and advertising expenditure decisions by a firm trying to convey information about its product quality to consumers.

3 Log-concavity is assumed in Esö and Schummer (2004) to ensure the existence of nondecreasing equilibria. Common support for type distributions is 
assumed in Esö and Schummer (2004), which implies that an equilibrium, if it exists, is only nondecreasing, but not fully separating. If asymmetry in value 
support is allowed in their model, then a fully separating equilibrium may exist.

4 In Rachmilevitch (2015), under some conditions, there exists an efficient equilibrium in which a successful collusion is also guaranteed. However, in 
that model the two bidders engage in two rounds of alternating offers of bribes and thus the information leakage from the first round facilitates collusion.
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equilibria in our model. In Section 5 we briefly discuss of the role of a reserve price and a switch to a first-price auction 
and Section 6 concludes. All proofs are relegated to the appendices.

Related literature
Our paper contributes to the growing literature of collusion in auctions. As stated in the introduction, the traditional 

approach is to consider a static game before which some bidders have already agreed to participate in collusion. On the 
other hand, ES-like dynamic models typically assume the single-option collusion proposal–i.e., an offer of a bribe from 
the bidder with the move to the opponent, in exchange for the latter’s cooperation. For example, apart from the papers 
cited in the introduction, Chen and Tauman (2006) address the potential collusion problem of the opponent who cheats 
by using shill bidders in second-price auctions. Kivetz and Tauman (2010) consider a complete information model of a 
first-price auction. Balzer (2019) considers a more general set of mechanisms for first price and second price auctions. The 
main difference is that we consider a simple and natural double-option proposal in a second-price auction and focus on 
its implementability and profitability for the initiator, while Balzer’s main objective is to examine the difference between 
a first price and a second-price auction in terms of the possibility of efficient collusion. Zheng (2019) considers a model 
of first-price auctions before which a third party proposes a transfer between two bidders who then decide whether to 
accept the proposed transfer. He characterizes the necessary and sufficient condition under which both bidders accept the 
proposed transfer almost surely (with respect to their priors).

More broadly, our paper is related to the strand of mechanism-design literature that studies the informed-principal prob-
lem, based on the seminal work of Myerson (1983); Maskin and Tirole (1990); and Maskin and Tirole (1992). In particular, 
Maskin and Tirole (1990) consider a private value setting in which the principal proposes a contract that itself is a game 
to be played when it is accepted by the agent, and the whole game ends if it is rejected. They show that the principal is 
generally better off compared with the scenario in which his type is of complete information.

Our paper is also related to the literature of multidimensional signaling games pioneered by Milgrom and Roberts (1986)
and Wilson (1985). In particular, Milgrom and Roberts (1986) study the problem of a firm that can use both price and 
advertising expenditure to signal its product quality to consumers. In their model, the firm has only two types and the 
advertising expenditure is dissipative. In contrast, in our model the initiator has a continuum of types and neither of the 
signals is dissipative.

2. The model

Two risk-neutral bidders are about to attend a second-price auction in which there is a single indivisible object and no 
reserve price.5 Before the auction starts, bidder 1 (he) has an opportunity to make a take-it-or-leave-it proposal to bidder 
2 (she). The proposal consists of a nonnegative bribe and a nonnegative request, denoted by (b, r) with b, r ≥ 0. If bidder 2 
accepts the bribe, then bidder 1 pays b to her and she bids zero in the auction so that bidder 1 wins the object at a price 
of zero. If bidder 2 accepts the request, then she pays r to bidder 1, who then bids zero in the auction and she wins the 
object at a price of zero. If bidder 2 rejects the proposal, then both bidders bid non-cooperatively in the auction.

We assume bidders’ valuation (or type) distributions are independent, but allow for asymmetry. For i = 1, 2, bidder i’s 
valuation vi is independently distributed according to Fi(vi) on [vi, ̄vi]. Each distribution function Fi admits a continuous 
and differentiable density function f i(vi) ∈ (0, ∞) for all vi . We assume vi ≥ 0 and v̄ i < ∞.

Our model is a dynamic game with incomplete information. We focus on pure strategy separating equilibria and thus 
both bidders do not randomize over actions whenever they are supposed to take the move. A pure strategy of bidder 1 
specifies a proposal and a bid in case of competition in the auction for each type v1; a pure strategy of bidder 2 specifies 
a choice from the choice set C ≡ {accept b, accept r, reject the proposal} and a bid in case of competition in the auction 
for each type v2. An equilibrium of the game is a profile of strategies accompanied by a belief system of the bidders 
such that the strategies and the beliefs of both bidders are rational and consistent with each other, both on and off the 
equilibrium path.6 If an information set may be reached in the equilibrium, then it is said to be on the equilibrium path; 
if an information set can never be reached in the equilibrium, then it is said to be off the equilibrium path.7 For each 
information set on the equilibrium path, bidders form their beliefs according to Bayes’s rule and the bidders’ equilibrium 
strategies; for each information set off the equilibrium path, bidders form their beliefs according to Bayes’s rule and the 
bidders’ equilibrium strategies whenever possible. In particular, in an equilibrium of our game, the reason that bidder 1 has 
no incentives to deviate to an off-path proposal must be that following that proposal, there exist some beliefs of bidder 2 
such that the resulting best responses of bidder 2 make it not profitable for any type of bidder 1 to deviate to that off-path 
proposal (compared with the equilibrium payoffs). On the other hand, upon receiving an off-path proposal, bidder 2 can 
form arbitrary beliefs because Bayes’s rule does not apply there. But once an off-path belief is formed (which should then 
be the common belief for both bidders), the optimal choices from C and the optimal bid in case of competition in the 
auction must be consistent with the belief and bidder 1’s best responses in the auction.

5 A reserve price is discussed in Section 5.1.
6 For a more formal definition of a weak perfect Bayesian equilibrium, see, e.g., Gibbons (1992).
7 Because our game involves continuous type spaces, “reached with positive probability” as in the standard definition for discrete type spaces is not 

appropriate here.
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We assume that if bidder 2 rejects the proposal, then both bidders bid truthfully in the second-price auction since it is 
a weakly dominant strategy in the auction.

We let b(v1) and r(v1) be the bribing and requesting functions in an equilibrium. An immediate observation of our 
model is that if v1 ≥ v̄2, there always exists a separating equilibrium in which b(v1) = 0 and r(v1) = v1. In the equilibrium, 
all types of bidder 2 accepts the zero bribe and bidder 1 realizes his valuation.8 Hence, below we focus on the nontrivial 
case of v1 < v̄2.

3. A separating equilibrium

Suppose there exists a separating equilibrium in which bidder 1’s request is not greater than his own valuation. We as-
sume that bidder 2 is willing to accept a proposal if she is indifferent between accepting and rejecting it. In the equilibrium, 
upon receiving a separating proposal (b, r) from type v1, for bidder 2, accepting b gives a payoff of b, accepting r gives a 
payoff of v2 − r, and rejecting the proposal gives a payoff of v2 − v1. Thus, if r ≤ v1, it is optimal for bidder 2 to accept b if 
v2 ≤ b + r and accept r if v2 > b + r.9 That is, if bidder 1 requests no more than his own valuation, then the best response 
of bidder 2 is to always agree to collude. If her valuation is low, she accepts the bribe; if her valuation is high, she accepts 
the request. These characterizations lay the foundation for our subsequent analysis of the collusive equilibrium. Following 
the cutoff strategy of bidder 2, the expected payoff of bidder 1 with valuation v1 from a separating proposal (b, r) with 
r ≤ v1 is π(v1, b, r) = F2(b + r)(v1 − b) + (1 − F2(b + r))r, which can be rewritten as

π(v1,b, r) = F2(b + r)(v1 − (b + r)) + r.

For convenience of exposition, let v1 be the smallest value such that, if it exists,

b(v1) + v1 = v̄2, (1)

and thus F2(b(v1) + v1) = 1. To save notation, we let π(v1) ≡ π(v1, b(v1), r(v1)).
For any type v1 < v1, the on-path incentive compatibility (IC) condition for an equilibrium in which r(v1) ≤ v1 is

v1 ∈ arg max
t

π(v1,b(t), r(t)) = F2(b(t) + r(t))(v1 − (b(t) + r(t))) + r(t), (2)

which implies

[ f2(b(v1) + r(v1))(v1 − (b(v1) + r(v1))) − F2(b(v1) + r(v1))](b′(v1) + r′(v1)) + r′(v1) = 0. (3)

The following proposition shows that for any distribution F1 and F2, there always exists a separating equilibrium in 
which bidder 1 requests his own valuation.

Proposition 1. There exists a separating equilibrium in which

• for any type v1 ≤ v1 , b(v1) is given by

b′(v1) = 1

f2(b(v1) + v1)b(v1) + F2(b(v1) + v1)
− 1, (4)

with an initial condition b(v1) = max{v2 − v1, 0}, which always admits a unique solution. For any type v1 > v1 , b(v1) =
b(v1).10

• for any type v1 , r(v1) = v1 .11

• upon receiving any given equilibrium proposal (b(v1), v1), bidder 2 always accepts it, i.e., accepts b(v1) if v2 ≤ b(v1) + v1 and 
accepts the request v1 if v2 > b(v1) + v1 .

Proof. See Appendix A. �
Below, we show that there exists an equilibrium with the same on-path behavior as in Proposition 1 and a system of 

reasonable off-path beliefs such that given the resulting best responses of bidder 2, it is not profitable for bidder 1 to deviate 
to any off-path proposals. In particular, the off-path beliefs of bidder 2 are reasonable in the sense of the D1 criterion.

8 The single-option model in ES shares the same equilibrium in this case, i.e., b(v1) = 0 for all v .
9 Although type v2 = b + r is indifferent between accepting b and accepting r , for simplicity we let her accept b when she accepts the proposal.

10 Because (4) implies b(v1) + v1 is strictly increasing, b′(v1) = 0 for all v1 > v1.
11 Technically, for any type v1 > v1, r(v1) can be any value such that b(v1) + r(v1) ≥ v̄2 and r(v1) takes different values for different v1. Alternatively, 

in an equilibrium, for any type v1 > v1, r(v1) can be equal to v1 so that there is a pooling segment on the top. However, the equilibria are essentially 
equivalent.
4
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Cho and Sobel’s D1 criterion says that if, upon observing an off-path action, any best responses of the receiver (based on 
some beliefs about the sender’s type) that imply a profitable deviation for a sender type also imply a profitable deviation 
for another sender type and the converse is not true, then, upon observing that off-path action, the receiver’s posterior 
beliefs should place zero probability on the former type. Roughly speaking in an alternative way, if a type of the sender 
is dominated by another type in terms of the expected payoff of the sender for possible best responses of the receiver, 
then the former type should be excluded from the set of reasonable beliefs of the receiver. Hence, if for an off-path action 
there exists some type of the sender that is not dominated by any other type, then a reasonable belief of the receiver is 
that it is the sender’s type. If for each off-path action there exists such a reasonable belief that the best response of the 
receiver based on the belief implies that it is not profitable for any type of sender to deviate to the off-path action, then 
the equilibrium survives the D1 criterion.

We first describe the set of best responses of bidder 2 upon receiving an off-path proposal (b, r).

Lemma 1. Upon receiving an off-path proposal (b, r), the best response of bidder 2 can be described as a pair of critical values (vb
2, v

r
2)

such that she accepts b if v2 ≤ vb
2 , rejects the proposal if vb

2 < v2 < vr
2 , and accepts r if v2 ≥ vr

2 . In particular,

vb
2 ≤ min{b + r, v̄2} ≤ vr

2 ≤ v̄2. (5)

Proof. See Appendix B. �
For an off-path proposal (b, r), given a best response (vb

2, vr
2) of bidder 2 as described in Lemma 1, the expected payoff 

of type v1, denoted by π(v1, b, r, vb
2, v

r
2), is given by

π(v1,b, r, vb
2, vr

2) ≡ F2(vb
2)(v1 − b) +

min{vr
2,v1}∫

min{vb
2,v1}

(v1 − v2) f2(v2)dv2 + (1 − F2(vr
2))r. (6)

For convenience, we record the following fact that follows directly from the envelope theorem and (4).12

Fact 1. π ′(v1) = F2(b(v1) + v1), π(v1) = v1 − F2(b(v1) + v1)b(v1) and b(v1) + v1 is strictly increasing. Type v1 earns his 
valuation, i.e., π(v1) = v1.

Fact 2. For an off-path proposal (b, r) and a best response (vb
2, vr

2) of bidder 2, if π(vb
2, b, r, vb

2, v
r
2) ≤ π(vb

2), then for any 
type v1 > vb

2, π(v1, b, r, vb
2, v

r
2) < π(v1).

The next two facts identify some off-path proposals that would never be made by any type of bidder 1.

Fact 3. Consider an off-path proposal (b, r). If r ≤ v1, then it is not profitable for any type v1 to deviate to (b, r) for any 
belief of bidder 2.

Intuitively, since bidder 1’s value for bidder 2 is at least v1, bidder 1 does not have an incentive to request an amount 
lower than v1. Fact 3 implies that we can restrict attention to proposals with r > v1.

The following fact further excludes proposals (b, r) with r > v1 and b ≥ v̄2 − v1.

Fact 4. Consider an off-path proposal (b, r). If r > v1 and b ≥ v̄2 − v1, then it is not profitable for any type v1 to deviate to 
(b, r) for any belief of bidder 2.

Fact 3 and Fact 4 together imply that we can restrict attention to proposals with r > v1 and b < v̄2 − v1.

Fact 5. Consider an off-path proposal (b, r) with r > v1 and b < v̄2 − v1. If b > 0 or v1 > 0, then π(v1, b, r, b + v1, ̄v2) <
π(v1) for any type v1.

We are now ready to show that there exists an equilibrium with the same on-path behavior as in Proposition 1 and it 
survives the D1 criterion.

Proposition 2. There exists an equilibrium that shares the same bribing function and requesting function as in Proposition 1 and 
survives the D1 criterion.

12 The proofs of the facts are given in Appendix C.
5
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Fig. 1. The equilibrium bribing and requesting functions when F2(x) = x and v1 = 0. (For interpretation of the colors in the figure(s), the reader is referred 
to the web version of this article.)

Proof. See Appendix D. �
The following example sheds light on the equilibrium.

Example 1. Suppose F2(x) = x on [0, 1]. Suppose v1 is distributed on [0, 1]. Then for all v1 satisfying b(v1) + v1 ≤ 1, (4)
becomes

b′(v1) = 1

2b(v1) + v1
− 1.

The solution is

b(v1) = 1

2

(
2W

(
−e− v1

2 −1
)

− v1 + 2
)

,

where W (x) solves

x = W (x)eW (x).

With the initial condition b(0) = 0, the equilibrium bribing function b(v1) is plotted in Fig. 1.

The example above illustrates two interesting features of the equilibrium bribing function, which help to distinguish our 
model from that of ES.

First, unlike in the single-option model of ES, here, for some low types of bidder 1, the bribe may exceed his valuation 
in the equilibrium. Intuitively, in the example, for low types of bidder 1, both the bribes and the requests are low (in the 
sense of absolute magnitude). Upon receiving a proposal of low bribe and low request, with high probability bidder 2 would 
decline the bribe and accept the request. Since the bribe is accepted with a low probability, for bidder 1 it is a “low cost” 
signal. The low types of bidder 1 are thus incentivized to gamble with a bribe that is potentially higher than his valuation 
to signal their values. On the other hand, type zero of bidder 1 earns zero in the equilibrium and his expected payoff 
from mimicking some other type v1 > 0 is π(0, v1) = −(b(v1) + v1)b(v1) + (1 − (b(v1) + v1))v1, which is equivalent to 
v1 − (b(v1) + v1)

2. Thus, in order for π(0, v1) to be nonpositive, b(v1) should be at least as large as 
√

v1 − v1, which 
exceeds v1 for small v1. That is, the incentive compatibility of type zero actually requires that the bribes of low types of 
bidder 1 exceed their values.

Second, the bribing function can be nonmonotonic for high types of bidder 1, while the bribing function in ES must be 
nondecreasing. In our model, both the bribe and the request are costly signals. As stated above, for low types of bidder 1, 
their requests are low and thus will be accepted with high probabilities. These low types of bidder 1 need to rely more 
on relatively high but less costly bribes for signaling. For higher types of bidder 1, the probabilities of their requests being 
accepted are low, and thus the request becomes a less costly signal. With a higher request being offered together, a bribe 
is accepted with a high chance and thus becomes a relatively more costly signal. As the value of bidder 1 gets higher, his 
request gets higher and his bribe gets more costly. The higher types of bidder 1 can thus have less incentive to offer higher 
bribes, which makes it possible that the bribing function can even decrease in types. Indeed, the differential equation in 
(4) implies that for type v1 = v1 (if it exists), we must have b′(v1) = 1

f2(v̄2)b(v1)+1
− 1 < 0. In other words, we must have a 

locally decreasing bribing function to the left of v1 = v1.

4. The expected payoff of the initiator

In this section we first compare the expected payoff of bidder 1 in the identified robust equilibrium in our model with 
the counterpart in ES.
6
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In ES, bidder 1 commits to offering a variable take-it-or-leave-it bribe to bidder 2. For separating bribes, let the bribing 
function be Bes(v1) in their model. Then the incentive compatibility condition for type v1 with a separating bribe is

v1 ∈ arg max
t

�(v1, t) = F2(Bes(t) + t)(v1 − Bes(t)) +
v1∫

min{Bes(t)+t,v1}
(v1 − x) f2(x)dx,

which implies

B ′
es(v1) = f2(v1 + Bes(v1))(v1 − Bes(v1))

F2(v1 + Bes(v1)) − f2(v1 + Bes(v1))(v1 − Bes(v1))
. (7)

Under some regularity conditions, ES identify the set of equilibria that survive the D1 criterion. In such an equilibrium, for 
some v̂1, the bribing function, denoted by B(·), is

B(v1) =
{

Bes(v1) if v1 < v̂,

B̂ ≡ v̂1 − F2(v̂1 + Bes(v̂1))(v̂1 − Bes(v̂1)) otherwise,
(8)

where B̂ ≥ v̄2 − E[v1|v1 ≥ v̂]. The expected payoff function of bidder 1, denoted by �(·), in such an equilibrium is

�(v1) =
{

F2(v1 + B(v1))(v1 − B(v1)) if v1 ≤ v̂,

v1 − B̂ otherwise.
(9)

Proposition 3. Suppose there exists a robust equilibrium in ES. Then π(v1) ≥ �(v1) for any v1 .

Proof. See Appendix E. �
So far, we have focused on the separating equilibrium in which bidder 1’s request is his valuation. Clearly, there may be 

some other pairs of (b(v1), r(v1)), with r(v1) ≤ v1, that satisfy the incentive compatibility condition in (3) and thus may 
sustain a separating equilibrium if (b(v1), r(v1)) is separating. Moreover, there may also exist some separating equilibria 
in which, for some type v1, r(v1) > v1 so that the request is never accepted. A natural question is whether the expected 
payoff of bidder 1 can be improved in some of those separating equilibria against the equilibrium identified above. We show 
below that for each type of bidder 1, the expected payoff in any separating equilibrium in which r(v1) 
= v1 is generally 
lower than the counterpart in the equilibrium identified above.

Proposition 4. Suppose that in our model there exists a different separating equilibrium with a pair of bribing and requesting functions 
(β(v1), γ (v1)). Let the expected payoff of bidder 1 in the different equilibrium be π(v1; β, γ ). Then π(v1) ≥ π(v1; β, γ ).

Proof. See Appendix F. �
5. Discussion

5.1. Reserve price

We note that the previous results remain essentially unchanged even if there is a reserve price in the auction. Specifically, 
given a positive reserve price, there exists a robust separating equilibrium in which, conditional on the object being sold–i.e., 
at least one of the bidders’ valuations exceeds the reserve price–the collusion success probability is one. The intuition is the 
following. Let the reserve price be R . Observe that any type of bidder 1 below R is not interested in winning the object 
and he has no value for bidder 2. In the separating equilibrium similar to the above, these types are correctly identified as 
below R . So for any type v1 < R , the equilibrium bribe b(v1) = 0, which is never accepted by any v2 > R , and any request 
r(v1) > 0 (= 0) will be rejected (accepted) by any type of bidder 2. On the other hand, for any type v1 ≥ R , the equilibrium 
request is r(v1) = v1 − R , i.e., the valuable part for bidder 2, since if bidder 2 accepts the request, she still needs to pay R
to the auctioneer.

More formally, when a proposal (b, r) from type v1 is separating and r ≤ v1 −R , then bidder 2 accepts b if v2 ≤ b +r +R
and accepts r if v2 > b + r + R . So the expected payoff of bidder 1 with type v1 is π(v1) = F2(b + r + R)(v1 − b − R) +
(1 − F (b + r + R))r, which can be rewritten as

π(v1) = F2(b + r + R)(v1 − (b + r + R)) + r.
7
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The IC condition for the separating equilibrium with r(v1) ≤ v1 − R becomes

[ f2(b(v1) + r(v1) + R)(v1 − (b(v1) + r(v1) + R))

− F2(b(v1) + r(v1) + R)](b′(v1) + r′(v1)) + r′(v1) = 0.

In the equilibrium with r(v1) = v1 −R for type v1 ≥ R , it is the same as (4). The only difference is that the initial condition 
is changed into b(max{v1, R}) = max{v2 − max{v1, R}, 0} and r(max{v1, R}) = max{v1, R} − R .13 Hence, the equilibrium 
proposal of any type of bidder 1 is always accepted by bidder 2 (although a zero request has no value for her if her valuation 
is not higher than the reserve price).

5.2. First-price auction

In this section we briefly discuss the situation in which the auction format is changed to a first-price auction.
Rachmilevitch (2013) considers the same single-option scheme as in Esö and Schummer (2004), but with first-price 

auctions. The important result from his model is that the existence of a separating equilibrium is generally impossible 
and there may even be no pooling equilibrium. In his model, an important feature of the (pure strategy) equilibrium of 
the continuation games is that when a proposal reveals the initiator’s type perfectly and is rejected, the initiator bids his 
valuation, v1, and the rejectors submit the “minimally winning” bid if they find winning worthwhile–i.e., a value of v+

1 , 
which wins with certainty against any v ′

1 ≤ v1 (but pays v1) and loses against any v ′
1 > v1. The driving force for his results 

of the nonexistence of equilibrium is that a high-type initiator has the incentive to cheat the opponent by mimicking a low 
type v1, because on the path the bribe b(v1) of the low type v1 can be rejected, and once it is rejected, the high type can 
bid a value marginally higher than v+

1 and win the auction at a low price.
Suppose now that a hypothetical separating equilibrium exists in the double-option model for a first price auction. In that 

case, we note that if, in the hypothetical equilibrium, bidder 1 believes that the rejector types of his separating proposal are 
all higher than his type, then truthful bidding after being rejected is a best response (in the same sense as in Rachmilevitch 
(2013)). This then implies that upon receiving a separating proposal, the best response of the opponent would be the same 
as the one in the case of a second-price auction. Hence, the expected payoff of the initiator would also be the same as 
the one in the case of a second-price auction, which means that the on-path incentive compatibility condition is satisfied 
as in the case of a second-price auction. Since in the hypothetical separating equilibrium the separating proposals would 
always be accepted on the path, the continuation games would never be played and thus become off-path events. Hence 
the driving force for the nonexistence of a separating equilibrium in Rachmilevitch (2013) would disappear on the path in 
the hypothetical equilibrium in the double-option model.

However, as shown below, when the lowest type of bidder 1 is zero, i.e., bidder 1 may have no value for the object, no 
separating equilibria with full acceptance exist.

Proposition 5. Suppose the auction format is first-price auction. Suppose bidder 1’s valuation is distributed on [0, v̄1] and bidder 2’s 
valuation is independently distributed on [0, ̄v2]. There exist no separating equilibria in which bidder 1’s proposals are always accepted.

Proof. See Appendix G. �
The reason for such a nonexistence result for the case of a first-price auction is similar to that of Rachmilevitch (2013). 

In a first-price auction, the equilibrium unraveling is due to the strategic link between the bargaining stage and the bidding 
stage. In particular here, if the opponent rejects a proposal, then she will not bid more than the requested amount at the 
bidding stage (otherwise it would be better to accept the request at the bargaining stage). In a second-price auction, it re-
mains a weakly dominant strategy for the opponent to bid truthfully, and thus the initiator is not able to trick the opponent 
at the bargaining stage. As shown in the proof of Proposition 5, there is an obvious difference here; in Rachmilevitch (2013)
unraveling happens on the path, while in our model it happens off the path. A more complete analysis of the first-price 
auction scenario is beyond the scope of this paper, and we leave that for future work.

6. Conclusion

We examine a collusion model for second-price auctions in which a bidder has the opportunity to propose a combination 
of an offer and a request of bribes to the other bidder. The bidders are involved in a multidimensional signaling game. Even 
when asymmetry is allowed, we show that the collusion initiator with full bargaining power can always secure a successful 

13 So b(max{v1, R}) + r(max{v1, R}) + R ≥ v2. Again, since b(v1) + r(v1) + R is strictly increasing in v1, by similar arguments in the proof of Propo-
sition 1, the IC condition admits a unique solution for all v1 ≥ max{v1, R}. For any v1 < max{v1, R}, we require b(v1) = r(v1) = 0. Observe that only if 
v1 < R, will there be a positive measure of type v1 < R. In that case, r(R) = 0 and for any v1 > R, r(v1) > 0. Because any type v1 < R is not interested 
in winning the object and he has no value for bidder 2, he earns zero payoff in the equilibrium. Any type v1 < R has no incentive to mimic any type 
v1 > R because by the IC condition, type v1 = R has no incentive to do so.
8
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collusion in such a dynamic environment, as in previous literature with a static environment. This result confirms the 
susceptibility of second-price auctions to collusion in dynamic environment, but has a qualitatively different nature than 
the previous dynamic model with a single-option considered by Esö and Schummer (2004). Finally, we show that for each 
type of initiator the payoff from such a double-option scheme is generally higher than the counterpart from the single-
option scheme.

Appendix A. Proof of Proposition 1

In the equilibrium with r(v1) = v1, the bribing function b(v1) satisfies

[ f2(b(v1) + v1)b(v1) + F2(b(v1) + v1)](b′(v1) + 1) = 1,

which in turn can be rewritten as (4).
When v1 < v2, b(v1) = max{v2 − v1, 0} = v2 − v1 > 0 and b′(v1) = 1/[ f2(v2)(v2 − v1)] − 1, which is finite. Observe that 

although b′(v1) can be negative and thus b(v1) is decreasing in the neighborhood of v1, b(v1) is strictly positive in the 
neighborhood of v1. Furthermore, (4) implies b(v1) + v1 is strictly increasing for all v1. Thus, for all v1 > v1, b(v1) + v1 > v2
and thus F2(b(v1) + v1) > 0. So for all v1 > v1, the denominator in (4) is strictly positive and thus the fraction is finite. 
Thus b′(v1) is finite. On the other hand, whenever b(v1) is small enough (but positive) such that the denominator in (4) is 
smaller than one for some v1 > v1, b′(v1) is positive and finite for v1 < v1 and thus b(v1) bounces back to higher positive 
values. So b(v1) > 0 for all v1. Together we can now conclude that in this case (4) admits a unique solution.14

If v1 > v2, then by the similar arguments above (the bouncing-back property of b(v1) and finiteness of b′(v1)), it is 
straightforward to see that (4) also admits a unique solution.

Suppose now that v1 = v2. In this case we have the initial condition b(v1) = 0 and thus b′(v1) = ∞. This implies in 
the neighborhood of v1, b(v1) is strictly increasing; thus for each candidate local solution there exists an inverse function, 
denoted by v1(b), with zero derivative which is finite. Consider the inverse function version of (4), given by15

v ′
1(b) = f2(b + v1(b))b + F2(b + v1(b))

1 − [ f2(b + v1(b))b + F2(b + v1(b))] , (10)

which admits a unique local solution with the initial condition v1(0) = v1, in the neighborhood of zero. Hence, (4) admits 
a unique local solution in the neighborhood of v1. Then, again by the similar arguments above (the bouncing-back property 
of b(v1) and finiteness of b′(v1)), the right side of (4) is well defined and continuous for all b(·) > 0 and v1 > v1. So (4)
also admits a unique solution throughout the support of F1.16

Because of the positiveness of b(v1), the solution is an admissible bribing function. The equilibrium is separating because 
the requesting function r(v1) = v1 is strictly increasing.

Observe that in any case above, type v1’s request is accepted with probability one and thus he earns his valuation v1. 
For any type v1 > v1, b(v1) + v1 > v2, so the bribe is accepted with positive probability and is a costly signal. Then the 
envelope theorem implies π ′(v1) = F2(b(v1) + v1), and thus π(v1) ≥ 0 for all v1.

Thus, the bribing function and the requesting function described in the proposition also satisfy the interim individual 
rationality condition. Next, we show that they satisfy on-path incentive compatibility.

We now show that there is no profitable on-path deviation for any type v1–i.e., given that all other types of bidder 1 are 
following the equilibrium proposals, it is not profitable for type v1 to send any on-path proposal (b(t), t), t 
= v1. Consider 
the expected payoff of type v1 from deviating to (b(t), t), i.e., π(v1, b(t), t). While π ′

v1
(v1, b(t), t) = F2(b(t) + t) for any 

given t , the envelope theorem implies that π ′(v1) = F2(b(v1) + v1). Because b(v1) + v1 is strictly increasing, this implies 
that for any given t , π ′(v1) − π ′

v1
(v1, b(t), t) ≷ 0 for any v1 ≷ t . Hence π(v1) > π(v1, b(t), t) for any v1 
= t .

In the equilibrium, as explained above, upon receiving an on-path proposal, clearly it is not profitable for any type v2
to deviate on the path–i.e., it is not profitable for type v2 ≤ b(v1) + v1 to accept r nor for type v2 > b(v1) + v1 to accept 
b(v1). Thus the continuation games are never played and become off-path events. We next turn to off-path deviations.

There are two types of off-path deviations in the equilibrium. First, there are many unsent off-path proposals by bidder 
1. Second, because in the equilibrium, given an on-path proposal, bidder 2 on the path is supposed to accept the proposal 
with probability one, rejection becomes an off-path deviation as well. However, for the latter type of off-path deviations, it 
is straightforward to see that for any belief of bidder 1 it is not profitable for any type of bidder 2 to reject the received 
equilibrium proposal, since it is a weakly dominant strategy for bidder 1 to submit a bid of his valuation in the auction. So 
the only nontrivial type of off-path deviations is the former.

A simple belief to prevent the off-path deviation of bidder 1 is the lowest type belief, i.e., for any off-path proposals, 
bidder 2 believes that bidder 1’s type is v1. To see this, consider an arbitrary off-path proposal (b, r).

14 That is, the usual arguments for the existence and uniqueness of a solution–e.g., Theorem 24.5 in Simon and Blume (1994)–apply.
15 v1(b) is the inverse function of b(v1).
16 Again, (4) implies b(v1) + v1 is strictly increasing for all v1. So f2(b(v1) + v1) = 0 and F2(b(v1) + v1) = 1 for all v1 > v1. It follows from (4) that for 

any type v1 > v1, b′(v1) = 0 and b(v1) = b(v1). Intuitively, for these types the equilibrium proposals must be such that b(v1) is always accepted by all 
types of bidder 2 and the equilibrium payoff of such types is v1 − b(v1).
9
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If the request is higher than v1, then with a belief v1 = v1 the best response of bidder 2 is to accept the bribe if 
v2 ≤ b + v1 and reject the proposal otherwise and then bid truthfully in the auction. The expected payoff of type v1 is then

π(v1,b, r; v1) = F2(b + v1)(v1 − b) +
min{v̄2,v1}∫

min{b+v1,v1}
(v1 − v2) f2(v2)dv2.

Thus

π ′
v1

(v1,b, r; v1) =
{

F2(b + v1) if v1 ≤ b + v1,

F2(v1) if v1 > b + v1.

Therefore, π(v1, b, r; v1) is linear for v1 ∈ [v1, b + v1] and convex on v1 ≥ b + v1. Recall that π(v1) is convex and π ′(v1) =
F2(b(v1) + v1). For v1 ∈ [v1, b + v1], π(v1) − π(v1, b, r; v1) is minimized at some v̂1 at which π ′

v1
(v̂1, b, r; v1) = F2(b +

v1) = F2(b(v̂1) + v̂1) = π ′(v̂1). Since v̂1 ≥ v1, we have b(v̂1) ≤ b, which implies π(v̂1, b, r; v1) = F2(b + v1)(v̂1 − b) ≤
F2(b(v̂1) + v̂1)(v̂1 −b(v̂1)) + (1 − F2(b(v̂1) + v̂1)))v̂1 = π(v̂1). Consequently, for all v1 ∈ [v1, b + v1], π(v1, b, r; v1) ≤ π(v1). 
On the other hand, since for v1 > b + v1, π ′

v1
(v1, b, r; v1) = F2(v1) ≤ F2(b(v1) + v1) = π ′(v1), we have π(v1, b, r; v1) ≤

π(v1) as well.
If the request is below or equal to v1, then with the belief v1 = v1 the best response of bidder 2 is to accept b if 

v2 ≤ b +r and accept r otherwise. The expected payoff of bidder 1 is thus π(v1, b, r; v1) = F2(b +r)(v1 −b) +(1 − F2(b +r))r, 
which is linear in v1. Again, π(v1) − π(v1, b, r; v1) is minimized at some v̂1 at which π ′

v1
(v̂1, b, r; v1) = F2(b + r) =

F2(b(v̂1) + v̂1) = π ′(v̂1). Since v̂1 ≥ r, we have b(v̂1) ≤ b, which implies π(v̂1, b, r; v1) = F2(b +r)(v̂1 −b) +(1 − F2(b +r))r ≤
F2(b(v̂1) + v̂1)(v̂1 − b(v̂1)) + (1 − F2(b(v̂1) + v̂1)))v̂1 = π(v̂1). Consequently, for all v1, π(v1, b, r; v1) ≤ π(v1).

In summary, with the belief that bidder 1’s type is v1, it is not profitable for any type v1 to deviate to any off-path 
proposals. This completes the proof.

Appendix B. Proof of Lemma 1

Observe that bidder 2 never accepts r if her type v2 ≤ b +r and never accepts b otherwise. That is, for any type v2 ≤ b +r, 
her best response is either to accept b or reject the proposal (and thus compete with bidder 1 in the auction). Similarly, for 
any type v2 > b + r, her best response is either to accept r or reject the proposal.

As shown in ES, when bidder 2’s decision-making problem is to determine whether to accept or reject a bribe b (and 
thus compete non-cooperatively with bidder 1 in the auction), the decision rule requires that for any type v2 and vb

2, if 
type vb

2 accepts b, then any type v2 < vb
2 accepts b.

We show below that when bidder 2’s decision-making problem is to determine whether to accept or reject a request r
(and thus compete non-cooperatively with bidder 1 in the auction), the decision rule requires that for any type v2 and v ′

2, 
if type v ′

2 accepts r, then any type v2 > v ′
2 accepts r.

First we suppose b + r < v̄2. Let the set of types of bidder 1 sending proposal (b, r) be Q b,r . Suppose v2, v ′
2 ≥ b + r and 

v2 > v ′
2. For bidder 2 with type v2, the difference between the expected payoffs from accepting r and rejecting the proposal 

is �v2 ≡ v2 − r − E[(v2 − v1)1v1<v2 |v1 ∈ Q b,r], where 1X is the indicator function for event X . Thus,

�v2 − �v ′
2
= v2 − v ′

2 − (E[(v2 − v1)1v1<v2 |v1 ∈ Q b,r] − E[(v ′
2 − v1)1v1<v ′

2
|v1 ∈ Q b,r])

≥ v2 − v ′
2 − (E[(v2 − v1)1v1<v2 |v1 ∈ Q b,r] − E[(v ′

2 − v1)1v1<v2 |v1 ∈ Q b,r])
= v2 − v ′

2 − E[(v2 − v ′
2)1v1<v2 |v1 ∈ Q b,r]

= (v2 − v ′
2)(1 − E[1v1<v2 |v1 ∈ Q b,r])

≥ 0.

Therefore, there exists a vr
2 ≥ b + r such that any type v2 ≥ vr

2 accepts r and any type v2 ∈ (b + r, vr
2) rejects the proposal.

It also follows from above that if b + r ≥ v̄2, then the statement in the lemma is automatically true. This completes the 
proof.

Appendix C. Proofs of the facts

Proof of Fact 1. The fact π ′(v1) = F2(b(v1) + v1) can be obtained directly from the envelope theorem. It follows directly 
from (2) that π(v1) = v1 − F2(b(v1) + v1)b(v1) and from (4) that b(v1) + v1 is strictly increasing.

In either the case of v1 < v2 or v1 ≥ v2, type v1 requests his own valuation, which is accepted by bidder 2 with 
probability one and thus π1(v1) = v1.
10
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Proof of Fact 2. The derivative of π(v1, b, r, vb
2, v

r
2) w.r.t. v1 is

π ′
v1

(v1,b, r, vb
2, vr

2) =

⎧⎪⎨
⎪⎩

F2(vb
2) if v1 ≤ vb

2,

F2(v1) if v1 ∈ (vb
2, vr

2],
F2(vr

2) if v1 > vr
2.

(11)

Recall that π ′(v1) = F2(b(v1) + v1). Because b(v1) > 0 for any type v1 > v1, (11) implies that given any vb
2 and vr

2, 
π ′

v1
(v1, b, r, vb

2, v
r
2) < π ′(v1) for any type v1 ≥ vb

2. This completes the proof.

Proof of Fact 3. Recall that when bidder 2 receives a proposal (b, r), accepting r gives a payoff v2 − r, while rejecting the 
proposal gives a payoff v2 − v1. Thus, if r ≤ v1, then the proposal is never rejected.

Suppose b + r < v̄2. Then for type v2 < b + r, it is more profitable to accept b than r. Hence, if r ≤ v1, bidder 2’s best 
response is to accept b if v2 ≤ b + r and accept r if v2 > b + r, i.e., vb

2 = b + r = vr
2. So the expected payoff of type v1 is 

π(v1, b, r, b + r, b + r) = F2(b + r)(v1 − (b + r)) + r. Then

π(v1) − π(v1,b, r,b + r,b + r) = v1 − F2(b(v1) + v1)b(v1) − [F2(b + r)(v1 − (b + r)) + r]
= (1 − F2(b + r))(v1 − r) + F2(b + r)b − F2(b(v1) + v1)b(v1).

If b(v1) < b and b(v1) + v1 < b + r, then obviously π(v1) − π(v1, b, r, b + r, b + r) > 0. Because r ≤ v1, if b(v1) < b and 
b(v1) + v1 ≥ b + r, or b(v1) ≥ b, then π ′

v1
(v1, b, r, b + r, b + r) = F2(b + r) ≤ F2(b(v1) + v1) = π ′(v1). Since r ≤ v1, we have 

that

π(v1,b, r,b + r,b + r) = F2(b + r)(v1 − b) + (1 − F2(b + r))r

≤ F2(b + r)v1 + (1 − F2(b + r))r

≤ v1 = π(v1).

Hence, π(v1) ≥ π(v1, b, r, b + r, b + r) for any v1 if r ≤ v1.
Suppose b + r ≥ v̄2. Then vb

2 = vr
2 = v̄2. Then π(v1, b, r, ̄v2, ̄v2) = v1 − b. So

π(v1) − π(v1,b, r, v̄2, v̄2) = b − F2(b(v1) + v1)b(v1).

If b ≥ b(v1), then obviously π(v1) − π(v1, b, r, ̄v2, ̄v2) ≥ 0. If b < b(v1), then since r ≤ v1, we have b(v1) + v1 ≥ b + r ≥ v̄2, 
which implies π ′(v1) = F2(b(v1) + v1) = 1 = π ′

v1
(v1, b, r, ̄v2, ̄v2). Again, since π(v1) ≥ π(v1, b, r, ̄v2, ̄v2), we have π(v1) ≥

π(v1, b, r, ̄v2, ̄v2) for any v1.

Proof of Fact 4. If r > v1 and b ≥ v̄2 − v1, then the bribe is accepted by all types of bidder 2, since b ≥ v2 − v1 implies that 
for any type v2, accepting b is more profitable than competing with bidder 1 in the auction, and b ≥ v̄2 − v1 > v2 −r implies 
that accepting b is more profitable than accepting r–i.e., the best response of bidder 2 is described by vb

2 = v̄2 = vr
2. So the 

expected payoff of bidder 1 with type v1 is π(v1, b, r, ̄v2, ̄v2) = v1 −b. If v̄1 < v̄2, then π(v̄1, b, r, ̄v2, ̄v2) = v̄1 −b < v̄2 −b ≤
v1 = π(v1). Since π(v1, b, r, ̄v2, ̄v2) is non-decreasing in v1 and π(v1) is strictly increasing, π(v1, b, r, ̄v2, ̄v2) < π(v1) for 
any type v1 ∈ [v1, ̄v1]. If v̄1 ≥ v̄2, then for v1 = v̄2, π(v̄2, b, r, ̄v2, ̄v2) = v̄2 − b ≤ v1 = π(v1). By the monotonicity of 
π(v1, b, r, ̄v2, ̄v2) and π(v1), we have π(v1, b, r, ̄v2, ̄v2) ≤ π(v1) for any type v1 ≤ v̄2. Then by Fact 2, π(v1, b, r, ̄v2, ̄v2) ≤
π(v1) for any type v1 ∈ [v1, ̄v1].

Proof of Fact 5. From (6),

π(v1,b, r,b + v1, v̄2) = F2(b + v1)(v1 − b) +
v1∫

min{b+v1,v1}
(v1 − v2) f2(v2)dv2.

If b > 0, then b + v1 > v1. Since π(v1, b, r, b + v1, ̄v2) is non-decreasing and π(v1) is strictly increasing, if v̄1 ≤ b + v1, 
then π(v̄1, b, r, b + v1, ̄v2) = F2(b + v1)(v̄1 − b) ≤ v1 = π(v1), which in turn implies that π(v1, b, r, b + v1, ̄v2) < π(v1) for 
any type v1 ∈ [v1, ̄v1]. If v̄1 > b + v1, then π(b + v1, b, r, b + v1, ̄v2) = F2(b + v1)v1 ≤ v1 = π(v1). By the monotonicity 
of π(v1, b, r, b + v1, ̄v2) and π(v1), we have π(v1, b, r, b + v1, ̄v2) < π(v1) for any type v1 ≤ b + v1. Then by Fact 2, 
π(v1, b, r, b + v1, ̄v2) < π(v1) for any type v1 ∈ [v1, ̄v1].

If b = 0 and v1 > 0, then π(b + v1, b, r, b + v1, ̄v2) = F2(v1)v1 < v1 = π(v1) since we assume v1 < v̄2. By the similar 
arguments in the case of b > 0, we also have π(v1, b, r, b + v1, ̄v2) < π(v1) for any type v1 ∈ [v1, ̄v1]. This completes the 
proof. �
11
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Appendix D. Proof of Proposition 2

By Fact 3 and Fact 4, we can focus on off-path proposals (b, r) with r > v1 and b < v̄2 − v1. Thus b + v1 < b + r and 
b + v1 < v̄2. For convenience of exposition, below we consider only the case of b + r ≤ v̄2. The analysis of the case of 
b + r > v̄2 is identical and omitted.17

The lowest belief of bidder 2 is v1 = v1. If bidder 2 believes v1 = v1, accepting b gives b and rejecting the proposal gives 
v2 − v1. So any type v2 ≤ b + v1 < b + r always accepts b, i.e., vb

2 ≥ b + v1. Hence, below we can focus on the beliefs such 
that vb

2 ∈ [b + v1, b + r] and vr
2 ∈ [b + r, ̄v2].18

Suppose b = 0 and v1 = 0. When vb
2 = v1 = 0 and vr

2 = v̄2–i.e., the proposal is rejected by all types of bidder 2 and 
both bidders compete in the auction–only type v1 is indifferent between the equilibrium payoff and the payoff from the 
deviation, while all other types of bidder 1 are strictly worse off. To see this, the expected payoff from the deviation is 
the one from a standard second-price auction, which has a slope F2(v1), which in turn is strictly smaller than π ′(v1) =
F2(b(v1) + v1). Hence, type v1 = 0 cannot be excluded by the D1 criterion, and a reasonable belief of bidder 2 is that 
bidder 1’s type is v1 = v1 = 0. Since b = 0, the best response of bidder 2 with this belief is then to reject the proposal and 
compete with bidder 1 in the auction. Then the above confirms that it is not profitable for any type of bidder 1 to deviate 
to the off-path (b = 0, r). Hence, below we only need to examine the event b > 0 or v1 > 0.

For a given pair of (b, r), let

M(vb
2, vr

2) = max
v1

π(v1) − π(v1,b, r, vb
2, vr

2). (12)

Clearly, for any given vb
2 ∈ [b + v1, b + r] and vr

2 ∈ [b + r, ̄v2], π(v1) − π(v1, b, r, vb
2, v

r
2) is well defined on [v1, ̄v1] and 

continuous in v1. By the extreme value theorem, it admits a maximum for any vb
2, v

r
2 in the relevant intervals. The solution 

to the maximization problem in (12) is continuous and thus M(vb
2, vr

2) is continuous.
Suppose that for a given proposal (b, r), there exists no vb

2 ∈ [b + v1, b +r] and no vr
2 ∈ [b +r, ̄v2] such that M(vb

2, v
r
2) > 0. 

Then π(v1, b, r, vb
2, v

r
2) ≤ π(v1) for any type v1–i.e., it is not profitable for any type of bidder 1 to deviate to (b, r) for any 

belief of bidder 2, and we are done.
Suppose for a given proposal (b, r), for some vb

2 = vb′
2 ∈ [b + v1, b + r] and vr

2 = vr′
2 ∈ [b + r, ̄v2], M(vb′

2 , vr′
2 ) > 0. Observe 

that Fact 5 implies M(b + v1, ̄v2) < 0. By the intermediate value theorem, there exists some vb
2 = vb∗

2 ∈ [b + v1, vb′
2 ] and 

vr
2 = vr∗

2 ∈ [vr′
2 , ̄v2] such that M(vb∗

2 , vr∗
2 ) = 0. Let V1 be the set of v1 such that M(vb∗

2 , vr∗
2 ) = 0. Then by the fact that 

π ′(v1) − π ′
v1

(v1, b, r, vb
2, v

r
2) > 0 for all v1 ≥ vb

2 (from (11) and Fact 1), we can conclude that for any v1 = v∗ ∈V1,

v∗ < vb∗
2 ≤ b + r. (13)

By the fact that π ′
v1

(v1, b, r, vb
2, v

r
2) = vb

2 for all v1 ≤ vb
2 and π(v1) is strictly convex (again from (11) and Fact 1), V1 is a 

singleton.
Thus, if for some type v1 there exists some vb

2 ∈ [b + v1, b + r] and vr
2 ∈ [b + r, ̄v2] such that π(v1, b, r, vb

2, v
r
2) ≥ π(v1), 

then there must exist a pair of (vb∗
2 , vr∗

2 ) such that π(v1, b, r, vb∗
2 , vr∗

2 ) is tangent to π(v1) at some unique v1 = v∗ , in the 
sense that for all v1 
= v∗ , π(v1, b, r, vb∗

2 , vr∗
2 ) < π(v1) and π(v∗, b, r, vb∗

2 , vr∗
2 ) = π(v∗). Hence, type v∗ is not excluded by 

the D1 criterion. So a reasonable belief of bidder 2 is that bidder 1’s type is v1 = v∗ and we adopt this belief for the analysis 
below.

Suppose the tangency point is at v1 and thus a reasonable belief of bidder 2 is v1 = v1. Then for bidder 2, accepting b
gives b, accepting r gives v2 − r, and rejecting the proposal gives v2 − v1. Since r > v1 and b < v̄2 − v1, it is optimal for 
bidder 2 to accept b if v2 ≤ b + v1 and reject the proposal otherwise. Then Fact 5 implies that it is not profitable for any 
type of bidder 1 to deviate to the proposal.

It follows, then, that below we can focus on interior tangency points, i.e., v∗ ∈ (v1, vb∗
2 ). It in turn follows that 

π ′
v1

(v∗, b, r, vb
2, v

r
2) = π ′(v∗), which implies vb∗

2 = b(v∗) + v∗ .

Suppose vb∗
2 = b + r = vr∗

2 , which implies b(v∗) + v∗ = b + r. If v∗ ≥ r, then the best response of bidder 2 is to ac-
cept b if v2 ≤ b + r and accept r otherwise. Then the expected payoff of any type v1 from the best response is exactly 
π(v1, b, r, vb∗

2 , vr∗
2 ), which, by tangency, is no greater than π(v1) and we are done. The sub-case v∗ < r is analyzed below 

together with the case of vb∗
2 < b + r or b + r < vr∗

2 .
Suppose vb∗

2 < b + r or b + r < vr∗
2 . Then we can always conclude v∗ < r. To see this, observe that type v∗ is indifferent 

between π(v∗, b, r, vb∗
2 , vr∗

2 ) and π(v∗), i.e.,

F2(vb∗
2 )(v∗ − b) + (1 − F2(vr∗

2 ))r = v∗ − F2(b(v∗) + v∗)b(v∗),

17 See footnote 18.
18 When b + r > v̄2, only the bribe will be seriously considered by bidder 2. Thus, in this case, vb

2 ∈ [b + v1, ̄v2] and vr
2 = v̄2. So the analysis for this case 

is the direct translation from the current one–i.e., replacing b + r and vr
2 by v̄2 appropriately.
12
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which, by the fact that vb∗
2 = b(v∗) + v∗ , can be rearranged into

v∗ − r = F2(vb∗
2 )(b(v∗) + v∗ − b) − F2(vr∗

2 )r.

Thus, if vb∗
2 < b + r or if b + r < vr∗

2 , then vb∗
2 < vr∗

2 and vb∗
2 = b(v∗) + v∗ ≤ b + r, which in turn implies v∗ < r.

Therefore, below we can focus on the belief v1 = v∗ < r, with which the best response of bidder 2 is to accept b if v2 ≤
b + v∗ and reject the proposal otherwise. The expected payoff of bidder 1 from the proposal is then π(v1, b, r, b + v∗, ̄v2).

By Fact 2, we can for now restrict our attention to type v1 ≤ b + v∗ . For any type v1 ≤ b + v∗ , the expected payoff is

π(v1,b, r,b + v∗, v̄2) = F2(b + v∗)(v1 − b).

The tangency condition says that for any type v1,

π(v1,b, r, vb∗
2 , vr∗

2 ) = F2(b(v∗) + v∗)(v1 − b) + (1 − F2(vr∗
2 ))r

≤ v1 − F2(b(v1) + v1)b(v1)

= π(v1).

Suppose b ≤ b(v∗). Then clearly π(v1, b, r, b + v∗, ̄v2) ≤ π(v1, b, r, vb∗
2 , vr∗

2 ) ≤ π(v1) for any type v1.
Suppose b > b(v∗). Then

π(v∗) − π(v∗,b, r,b + v∗, v̄2) = v∗ − F2(b(v∗) + v∗) − F2(b + v∗)(v∗ − b)

= v∗(1 − F2(b + v∗)) + F2(b + v∗)b − F2(b(v∗) + v∗)b(v∗)
≥ 0.

Furthermore, recall that π(v1) is strictly convex and observe that π(v∗, b, r, b + v∗, ̄v2) has a constant slope for v1 < v∗ . 
Thus b + v∗ > b(v∗) + v∗ implies π ′

v1
(v1, b, r, b + v∗, ̄v2) = F2(b + v∗) > F2(b(v1) + v1) = π ′(v1) for any type v1 < v∗ . So 

for any type v1 < v∗ , π(v1, b, r, b + v∗, ̄v2) < π(v1). For any type v1 ∈ (v∗, b + v∗],
π(v1) − π(v1,b, r,b + v∗, v̄2) = v1(1 − F2(b + v∗)) + F2(b + v∗)b − F2(b(v1) + v1)b(v1).

If b(v1) < b and b(v1) + v1 < b + v∗ , then obviously π(v1) −π(v1, b, r, b + v∗, ̄v2) > 0. If b(v1) < b and b(v1) + v1 ≥ b + v∗ , 
or if b(v1) ≥ b, then π ′(v1) = F2(b(v1) + v1) > F2(b + v∗) = π ′

v1
(v1, b, r, b + v∗, ̄v2) for any type v1 ∈ (v∗, b + v∗]. Since, 

from the above, π(v∗) > π(v∗, b, r, b + v∗, ̄v2), we have that for any v1 ∈ (v∗, b + v∗], π(v1) > π(v1, b, r, b + v∗, ̄v2). Fact 2
then implies π(v1) > π(v1, b, r, b + v∗, ̄v2) for any v1 ∈ [v1, ̄v1].

Aggregating all of the above cases, the proof of the equilibrium that survives the D1 criterion is completed.

Appendix E. Proof of Proposition 3

In our model the expected payoff of bidder 1 is π(v1) = v1 − F2(b(v1) + v1)b(v1) and π ′(v1) = F2(b(v1) + v1). In a 
robust equilibrium with a bribing function B(v1) in ES, the expected payoff of bidder 1 is �(v1) = F2(B(v1) + v1)(v1 −
B(v1)) and the envelope theorem implies that �′(v1) = F2(B(v1) + v1) for type v1 ≤ v̂1, which is also true for type v1 > v̂1

in fact. Thus

π(v1) − �(v1) = v1(1 − F2(B(v1) + v1)) + F2(B(v1) + v1)B(v1) − F2(b(v1) + v1)b(v1).

Thus, whenever B(v1) ≥ b(v1), π(v1) − �(v1) ≥ 0. On the other hand, whenever B(v1) < b(v1), π ′(v1) > �′(v1). Since 
π(v1) = v1 ≥ �(v1), π(v1) ≥ �(v1) for any type v1.

Appendix F. Proof of Proposition 4

Suppose first that γ (v1) ≤ v1 for any type v1. Clearly, π(v1; β, γ ) = F2(β(v1) + γ (v1))(v1 − (β(v1) + γ (v1))) + γ (v1). 
The envelope theorem implies that π ′(v1; β, γ ) = F2(β(v1) + γ (v1)). Thus,

π(v1) − π(v1;β,γ ) = v1 − F2(b(v1) + v1)b(v1)

− [F2(β(v1) + γ (v1))(v1 − (β(v1) + γ (v1))) + γ (v1)]
= (v1 − γ (v1))(1 − F2(β(v1) + γ (v1)))

+ F2(β(v1) + γ (v1))β(v1) − F2(b(v1) + v1)b(v1).

If b(v1) < β(v1) and b(v1) + v1 < β(v1) +γ (v1), then obviously π(v1) −π(v1; β, γ ) > 0. If b(v1) < β(v1) and b(v1) + v1 ≥
β(v1) + γ (v1), or if b(v1) ≥ β(v1), then π ′(v1) = F2(b(v1) + v1) ≥ F2(β(v1) + γ (v1)) = π ′(v1; β, γ ). Since π(v1) = v1 ≥
π(v1; β, γ ), π(v1) ≥ π(v1; β, γ ) for any type v1.
13
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Suppose now that γ (v1) > v1 for some type v1. For any such type v1, the request is never accepted and the bribing 
function β(v1) must satisfy the incentive compatibility condition in ES’s model. Consequently, the expected payoff of any 
such type v1 must be no greater than the one in the equilibrium with r(v1) = v1. This completes the proof.

Appendix G. Proof of Proposition 5

Suppose there exists an arbitrary separating equilibrium in which r(v1) ≤ v1, and thus the proposals are accepted with 
certainty. In particular, if b(v1) + r(v1) < v̄2, then any type v2 ≥ b(v1) + r(v1) accepts the request. In the equilibrium, for 
type v1 = 0, b(0) = r(0) = 0, and he earns zero payoff. Clearly, for any type v1 > 0, if b(v1) = 0, then r(v1) > 0; otherwise 
type v1 is pooling with type zero. So in any such separating equilibrium, if there exists a type v1 > 0 offering b(v1) = 0, 
then r(v1) = r̃ for some r̃ > 0. Let the set of such r̃ be R̃ . Suppose R̃ is not empty. Suppose inf{R̃} = 0. Then obviously 
there exists some on-path proposal with b(v1) = 0 and r(v1) < v̄2. Then any type v2 > r(v1) accepts r(v1)–i.e., a positive 
measure of type v2 accepts r(v1). But then it is profitable for type zero to deviate to this on-path proposal and is thus a 
contradiction. So if R̃ is not empty, then in any such separating equilibrium with r(v1) ≤ v1, there exists some r̂ = inf{R̃} > 0
such that proposals 

(
b = 0, r ∈ (0, r̂)

)
are off the path. On the other hand, if R̃ is empty, then any proposal with zero bribe 

is off the path.
Consider an off-path proposal (b = 0, r > 0) from some small r. In order for type v1 = 0 to not benefit from the proposal, 

bidder 2’s best response must involve no acceptance of request r. That is, some types of bidder 2 accept b = 0, and the 
other types must reject the proposal (except possibly for a zero-measure of types accepting b). If bidder 1 meets a type 
v2 accepting b = 0, then any type v1 > 0 realizes his valuation. Now suppose there is a positive measure (e.g., denoted 
by P2r ) of types that reject the proposal and both bidders are in the continuation game–i.e., the first-price auction. In 
the auction, the highest bid of bidder 2 must not exceed r, since otherwise it is more profitable to accept r in the first 
place. Therefore, the highest type of bidder 1 can at least bid r + ε and win the object and the payoff is v̄1 − (r + ε). So 
the expected payoff from deviating to the off-path proposal is at least (1 − P2r)v̄1 + P2r[v̄1 − (r + ε)], the minimum of 
which is v̄1 − (r + ε). In the separating equilibrium, the expected payoff of type v̄1 is π1(v̄1) = F2(b(v̄1) + r(v̄1))(v̄1 −
b(v̄1)) + (1 − F2(b(v̄1) + r(v̄1))) r(v̄1). Since b(v̄1) > 0 and r(v̄1) ≤ v̄1, π1(v̄1) < v̄1. Therefore, for low enough r + ε, we 
have v̄1 − (r + ε) > π1(v̄1)–that is, the highest type of bidder 1 earns a higher payoff from the off-path proposal than the 
equilibrium payoff. This completes the proof.
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