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This paper introduces a new dynamic panel model with multi-layer network effects.
Series-specific latent Markov chain processes drive the dynamics of the observable
processes, and several types of interaction effects among the hidden chains allow for
various degrees of endogenous synchronization of both latent and observable processes.
The interaction is driven by a multi-layer network with exogenous and endogenous
connectivity layers. We provide some theoretical properties of the model, develop a
Bayesian inference framework and an efficient Markov Chain Monte Carlo algorithm for
estimating parameters, latent states, and endogenous network layers. An application to
the US-state coincident indicators shows that the synchronization in the US economy is
generated by network effects among the states. The inclusion of a multi-layer network
provides a new tool for measuring the effects of the public policies that impact the
connectivity between the US states, such as mobility restrictions or job support schemes.
The proposed new model and the related inference are general and may find application
in a wide spectrum of datasets where the extraction of endogenous interaction effects
is relevant and of interest.
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1. Introduction

This paper introduces a new Markov-switching model for panel data. The dynamics of each series is driven by its
wn hidden Markov chain process, which interacts with the other chains of the panel within a multi-layer network. One
f the most interesting theoretical properties of the proposed model is that the network interaction effects naturally
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llow for the endogenous synchronization of the time series, irrespective of the exogenous, or endogenous nature, of
he interaction network. Moreover the multi-layer structure of the networks allows us to specify or identify different
hannels of interaction. The model is well suited to fitting complex dynamics and extracting the nonlinear dependence
tructures present in panel data. Below, we provide a more detailed discussion of the contributions of this paper in terms
f modeling, inference and application.
Markov switching (MS) models have been extensively used in macroeconomics and finance to extract the different

hases, or regimes, of the market. Originally, MS models were applied to univariate series (Hamilton, 1989), or to small
ets of series, and the hidden Markov chains were assumed with constant transition probabilities, thus not varying over
ime. These assumptions have been challenged by recent literature. The use of large databases has been shown to be
ery important in achieving better forecasting (Bańbura et al., 2010) and fitting (Stock and Watson, 2014) performances.
econdly, time-varying MS processes provide more accurate fitting. This is particularly true when different units of the
anel (e.g. countries or states) are grouped together (Kaufmann, 2010) and common factors drive the transition, (e.g., see
aufmann, 2015; Billio et al., 2016). So far, modeling solutions have focused on medium-sized panels with series-specific
hains driven by a common factor (e.g., see Billio et al., 2016; Casarin et al., 2018), or on reducing the number of latent
hains by assuming a clustering model for the observed series (e.g., see Hamilton and Owyang, 2012; Kaufmann, 2015;
rancis et al., 2017; Owyang et al., 2019). We expand upon this literature in various directions.
First, we assume dependent hidden Markov chains while preserving tractability in large-sized panels. Modeling

ependence through interaction effects has been successfully used in many contexts, such as in random fields, graphical
odels and MS literature (e.g., see Brémaud, 2013). In this paper, we provide a new general model for Markov chains

nteraction based on network theory. See Allen and Babus (2009) for a review of network models in economics and finance.
he interaction of the chains on a network produces endogenous synchronization effects with time-varying clustering
f the series. This model feature expands upon the literature that assumes static clustering effects. The tractability is
reserved thanks to a linear parametrization of the transition probabilities and to the use of networks to represent the
ependence structure. Linear parametrization has several advantages. The first advantage relates to inference aspects. The
ultivariate logistic transformation, widely used in the literature, implies a non-linear transformation of the parameters
hich makes the inference task more difficult. In a Bayesian setting, non-linear parametrization can lead to the poor
erformance of the Markov Chain Monte Carlo (MCMC) sampler used for posterior approximation (e.g., see Scott (2011)).
ur model, on the other hand, is not exposed to these inferential issues. The drawback of linear parametrization concerns
he constraints one needs to introduce to the parameters, but these constraints can be easily handled through the
se of standard prior distributions. The second advantage is that linear parametrization allows us to provide some
f the theoretical properties of the multiple-chain model under a broader class of interaction mechanisms, including
diosyncratic, local and global interactions (Föllmer and Horst, 2001).

Secondly, the model allows for multiple interaction effects thanks to the use of multi-layer networks. The network
ayers are defined as a set of nodes representing the unit-specific chains, and a set of edges representing pairs of chains.
ach edge encodes a dependence relationship between panel units (e.g., the US states) and each layer corresponds to
ifferent dependence structures among the chains (e.g., the business cycles of the US states). We consider both exogenous
ayers observed by the researcher, such as geographical, sectoral and economic proximity of the units, or endogenously
stimated from a set of node- and edge-specific covariates. The specification of the layers depends on the researcher’s
nderstanding of the economic and social relationships (e.g., information, trade, labor and financial interactions) among
he economic actors and of their effects on the economic activity. A model selection procedure could be applied to choose
he most relevant layers. Another feature of our model is the chain interaction mechanism. We assume that the chains can
nteract either globally or locally. In particular, a global interaction effect assesses the importance of common movements
n the panel, while a local one captures the co-movements of a chain with other chains, which are directly, or indirectly,
onnected to the layer. The increased data availability allows researchers to employ multiple-layer networks and calls
or the development of new econometric tools for networks. To the best of our knowledge, this is the first model with
arkov switching processes interacting within a multi-layer network. In this sense, this study contributes to the recent,
nd expanding, stream of literature on network econometrics (e.g. Billio et al. (2012), Ahelegbey et al. (2016), Bianchi
t al. (2019), Diebold and Yilmaz (2014, 2015)).
Another contribution of this paper consists in the proposal of a new efficient MCMC algorithm for the posterior

pproximation based on the Metropolis–adjusted Langevin (MALA) sampling method (Girolami and Calderhead, 2011),
hich exploits the information on the gradient of the target distribution. This method has been successfully applied to
any fields, such as statistics, physics and recently even in econometrics by Burda and Maheu (2013), Burda (2015)
nd Virbickaite et al. (2015).
Finally, we contribute to the study of US regional business cycles. We collect monthly coincident indices from 50 US

tates. With respect to previous studies (see Hamilton and Owyang (2012), Camacho and Leiva-Leon (2014), Leiva-Leon
2014)), we are able to identify the role of the global and local interaction factors in the cycle co-movements. Also, we shed
ight on the role of the exogenous and endogenous channels of transmission of shocks across the US states and show that
he network interaction effects play a key role in making slowdowns and recessions deeper and longer, contrary to what
s predicted by an aggregate index. We find evidence that not only direct, but also indirect, network effects contribute to
he spread of recession and expansion across states.

The remainder of the paper is structured into seven sections. Section 2 describes the panel Markov switching model
ith interacting chains and the regime switching transition probabilities. In Section 3, we discuss some properties of the
roposed model and present examples of the model outputs. In Section 4 we provide a Bayesian estimation procedure.

ection 5 applies it to regional US business cycles. Section 6 concludes the paper.
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Fig. 1. Illustration of 2-layer networks G = (V ,D1,D2), with four nodes in the vertex set V = {1, 2, 3, 4}. Left: the graphical representation with
odes (circles), edges (solid lines) and layers (different hyperplanes). The size of a circle is proportional to the node degree, that is the number of
ncident edges. Center: network representation with binary matrices Ar . Right: matrices Wr,q those elements are the number of walks and cycles of
ength q = 2 between pairs of nodes in a layer r = 1, 2.

. Panel Markov switching with interacting chains

Denote with {yit}, t = 1, . . . , T the i-th time series, i = 1, . . . , n of our panel MS model with interacting hidden Markov
hains (PMS-IC). We assume each series follows a conditionally linear and Gaussian process with mean and variance driven
y a unit-specific Markov chain sit , t = 1, . . . , T with values in the finite set {1, . . . , K }.
The measurement equation is written as:

yit =

⎧⎪⎪⎨⎪⎪⎩
µi1 + σi1εit , εit

iid
∼ N (0, 1) if sit = 1

...

µiK + σiKεit , εit
iid
∼ N (0, 1) if sit = K

(1)

here K represents the number of unobserved latent regimes and the symbol IA(X) is the indicator function, which takes
alue 1 if X ∈ A and 0 otherwise.
Let st = (s1t , s2t , . . . , snt) ∈ S be a state vector with all chain states at time t , with S = {1, . . . , K }

n. The joint transition
robabilty of st is given by the product of the (K ×K ) time-varying transition matrices Pit i = 1, . . . , n. For the i-th chain,
he (l, k)-th element of the transition matrix pit,lk is defined as:

pit+1,lk = P
(
sit+1 = l|sit = k, s−i,t

)
(2)

hich represents the conditional probability that unit i moves to the regime l ∈ {1, . . . , K } at time t + 1 conditionally to
it = k and s−i,t , where s−i,t = {sjt , j = 1, . . . , n; j ̸= i} a state vector with the states of all chains but the i-th chain.

.1. Chains interaction on multi-layer networks

We represent different connectivity channels between units with a multi-layer network defined by an ordered
equence of sets G = (V ,D1, . . . ,DN ). The vertex set V = {1, . . . , n} represents the units of the panel, each edge
set Dr ⊂ V × V represents the unit pairs {i, j}, i, j ∈ V , which are connected in the layer r . Each connectivity layer
corresponds to a different shock transmission channel between panel units and may either be exogenous or endogenous.
The connectivity structure of a layer Dr is encoded by a binary matrix, called adjacency matrix, Ar , with (i, j)-th entry
given by

ar,ij =

{
1 if {i, j} ∈ Dr
0 if {i, j} /∈ Dr

Fig. 1 provides an illustration of a 2-layer network with layers of geographical and economic proximity of panel units
(panel a) and the corresponding adjacency matrices (panel b).

The network representation of the interaction channels allows for either direct or indirect connections. We denote
with Vrq(i) ⊂ V the sets of nodes directly (q = 1) or indirectly (q > 1) connected to the node i in the layer Dr ,
i.e. Vq(i) = {j ∈ V | ∃ D(i, j) ⊂ Dr} where D(i, j) = ({j0, j1}, {j1, j2}, . . . , {jq−1, jq}, {jq, jq+1}) is the sequence of connections,
i.e. a walk on the graph, joining the unit j0 = i to the unit jq+1 = j in the layer Dr . If shocks propagate at a higher
frequency than the observation frequency, then the indirect connections do matter. For example, if unit 1 is connected

to unit 2 and 2 is connected to 3, and we observe the variables of interest at a monthly frequency, we can expect that a

3
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hock originating from unit 3 and spreading faster than monthly, e.g. at a weekly frequency, will hit unit 1 through unit 2
n the same month. In our model we define q-th as the order interaction effect between two nodes if there exists at least
ne walk of length q joining the two nodes. In formulas, let Wr,q = (Ar )q, then i, j ∈ Vq(i) if the (i, j)-th entry of Wr,q > 0.

See panel (c) of Fig. 1 for an illustration.
We assume the unit-specific Markov chains interact on a multi-layer network and propose the following linear

parametrization of the transition probability:

pit+1,lk = αplk +

N∑
r=1

M∑
q=1

βrqmirq,k (st)+ γmk (st) (3)

where plk ∈ [0, 1] represents the fixed transition probability, mirq,k (st) ∈ [0, 1] the local interaction factor and mk (st) ∈

[0, 1] the global interaction factor, which is constant across units. The following constraints exist on the interaction
parameters: 0 < α ≤ 1, 0 ≤ βrq < 1, r = 1, . . . ,N , q = 1, . . . ,M , 0 ≤ γ < 1 and α +

∑N
r=1

∑M
q=1 βrq + γ = 1

and on the time-invariant transition probabilities: pl1 + · · · + plK = 1 ∀i, l are sufficient conditions for the positivity of
the transition probability.

The fixed transition probability plk determines the long-run behavior of the processes in our PMS-IC (see Section 3)
and if the parameter α is equal to 1 then we obtain a Markov-switching panel model with time-homogeneous transition
common to the panel units.

The local interaction factor mirq,k (st) reflects the connectivity of the unit i in the layer r and is given by the proportion
of neighboring units, i.e. the elements of Vrq(i), which are in the state k at time t:

mirq,k (st) =
1

|Vrq(i)|

∑
j∈Vrq(i)

I{k}(sjt ) (4)

If a unit i has in its neighbor Vrq(i) a high proportion of units in regime k at time t , then it will have a larger probability
of transiting to regime k at time t + 1. The local interaction factor with q > 1 is a non-linear term which accounts for
shocks transmission due to indirect connections.

The global interaction factor mk (st) is given by the proportion of chains in regime k at time t that is:

mk (st) =
1
n

n∑
j=1

I{k}(sjt ) (5)

If a large proportion of units is affected by a global shock at time t , it is highly likely that the other units, including unit
i, will be affected by the shock.

In a macroeconomic perspective, our PMS-IC has the potential to analyze the co-movement of regional business cycles.
It does not only help to characterize the unit-specific cycles but also shows the importance of global and local factors
(global and local interaction), and of the long-term business cycle (fixed transition).

2.2. Endogenous network interaction effects

For the endogenous layers of the multi-layer network, we specify a random network model with node-specific
covariates. Without loss of generality, in the following we assume the first layer D1 is endogenous and the remaining
are exogenous. In the random layer, the edge existence is given by the Bernoulli variable a1,ij which is equal to 1 if
{i, j} ∈ D1 and 0 otherwise. The edge probability P(a1,ij = 1) = qij is given by

qij =
exp(g(xi, xj)′ϕ)

1 + exp(g(xi, xj)′ϕ)
(6)

where g(xi, xj) ∈ Rn is the distance function between the n-dimensional feature vectors xi = (x1i, . . . , xni), which is a map
from Rn to Rr , and ϕ ∈ Rr is a parameter vector. In this model, the ability of a vertex i to attract edges in the network
(node fitness) varies across nodes and is driven by the node-specific feature vector xi and the fitness parameter ϕ. The
larger the value of the l-th element ϕl, the higher the fitness of the nodes is with respect to the l feature.

Following Holmes and Held (2006) and Hamilton and Owyang (2012), we use a convenient data augmentation
representation of the edge indicator and introduce the latent variables

ζij = g(xi, xj)′ϕ + 2ψijηij, ηij
iid
∼ N (0, 1), (7)

ψij
iid
∼ f (ψij), f (ψij) = 8

∞∑
j=1

(−1)j+1j2ψ exp(−2j2ψ) (8)

where f (ψij) is the Kolmogorov–Smirnov distribution. The probability in Eq. (6) corresponds to the distribution of the
random variable a = I(ζ > 0).
ij ij
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. Properties of the model

.1. Theoretical properties

The use of linear parametrization for the time-varying transition probabilities allows us to study the convergence of the
rgodic probabilities. The following result provides a characterization of the macroscopic dynamic of the set of Markov
hains for diverging n and shows that the interacting transition kernel defined in Eq. (3) is generating a deterministic
equence of empirical averages. These quantities can be used to find the limiting behavior of the set of chains as t tends
o infinity and to give an interpretation of the parameters of the transition probabilities.

The relationship between the local interactions factor and the global one is summarized by the following. Let us define
he empirical averages:

m (st) = (m1 (st) , . . . ,mK (st))′

and the proportion of chains which are in a given regime k at time t in some finite neighborhood Vrq(i) of i:

mirq (st) =
(
mirq,1 (st) , . . . ,mirq,K (st)

)′
where

mk (st) = lim
n→∞

1
n

n∑
i=1

I{k}(sit ), k = 1, . . . , K

mirq,k (st) =
1

|Vrq(i)|

∑
j∈Vrq(i)

I{k}(sjt ), k = 1, . . . , K

with sit being a Markov chain with transition probabilities

πi(sit+1 = k|st ) = αpsit k +

N∑
r=1

M∑
q=1

βrqmirq,k (st)+ γmk (st)

here
∑K

k=1 πi(sit+1 = k|st ) = 1 for all st . Then the sequence of empirical averages of mirq (st) converge to m (st).
The theoretical relationship between the global interaction factor and the fixed transition probability matrix is given

in Proposition 3.1.

Proposition 3.1. Let S1 = {st ∈ S| ∃mt+1} a subset of S and Π (·|st ) =
∏

∞

i=1 πi(·|st ) the product kernel of the population of
chains, then

lim
n→∞

1
n

n∑
i=1

I{k}sit+1 = lim
n→∞

1
n

n∑
i=1

πi (sit+1 = k|st) Π (·|st ) − a.s., (9)

the sequence of empirical averages almost surely satisfies the recurrence relation

mk (st+1) = α

K∑
j=1

pjkmj (st)+ (1 − α)mk (st) (10)

nd the global interaction process {m (st)}t∈N converges almost surely to the unique invariant probability of the fixed transition
robability matrix

P =

⎛⎜⎝ p11 · · · pK ,1
...

. . .
...

p1,K · · · pK ,K

⎞⎟⎠
roof. See Appendix A.1.

The convergence of the Markov chain process of the population of time series with time-varying transition probabilities
s present in the following.

roposition 3.2. The process {st}t∈N converges in law to the unique product kernel

Πm(·|st ) =

∞∏
i=1

πmi(·|st )

Proof. See Appendix A.2.
5
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Fig. 2. Endogenous synchronization effects. Heat-map of 50 trajectories (vertical axis) of 5000 observations each (horizontal axis) for the weak global
nteraction model M2 (α = 0.3, β11 = 0 and γ = 0.7, top plot) and the strong global interaction model M3 (α = 0.7, β11 = 0 and γ = 0.3,
bottom plot). Colors represent the value of the series, with white, green and red indicating expansion, moderate expansion and recession regimes,
respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

3.2. Numerical illustration

We illustrate the synchronization effects of our PMS-IC model through some simulated examples. Consider a PMS-IC
model with n = 50 time series of length T = 5000, one layer (N = 1), only linear interaction effects (M = 1), and
three regimes (K = 3). Fig. 2 shows the heat-maps of a realization of the dynamic panel (50 trajectories of length 5000
each) with weak (α = 0.7, β11 = 0 and γ = 0.3, top chart) and strong (α = 0.3, β11 = 0 and γ = 0.7, bottom chart)
global interaction effects. For further details on the parameter settings, see M2 and M3 in Table E.1 of the Supplementary
Material. Colors represent the value of the series, where white, green and red indicate expansion, moderate expansion
and recession regimes, respectively. If two chains are in the same regime, then their trajectories appear with the same
color on the heat-map. In the strong interaction case, vertical-colored bars suggest that a large proportion of chains in the
population is in the same regime. The results indicate that the level of synchronization increases with the values of both
the global and the local interaction parameters. Our PMS-IC model allows for various degrees of synchronization and for
time-varying transition probabilities. Also, the convergence of the ergodic averages to the ergodic probabilities is reached
at different speeds and is usually faster for strong global interaction, than for strong local interaction (see Figs. E.1–E.5 in
the Supplementary Material).

We study the impact of the local connectivity structure of the networks on the endogenous synchronization effects
and provide a Monte Carlo estimate of the synchronization level for different values of the local and global interaction
parameters. We use the bivariate concordance index of Harding and Pagan (2002)

ci,j =
1
T

T∑
t=1

I{0}(sit − sjt ) (11)

to assess the impact of the local and global parameters on the synchronization of chains. This index describes the fraction
of times that two Markov chains, i and j, are in the same state. The relationship between the local and global interaction
6
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Fig. 3. Chains synchronization level, measured by c (vertical axis), as a function of the local interaction parameter β (horizontal axis) for different
neighbors size: 4 (blue line), 16 (orange line) and 24 (yellow line) units. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

parameter and the level of synchronization among the chains can be measured by:

c =
2

n(n − 1)

n∑
i=1

n∑
j=i+1

ci,j (12)

which is in the unit interval. The closer the value of c is to one, the greater the extent of synchronization within the panel
of series.

Three neighborhood systems are designed for a model with only local interactions. In each model, the neighbors are
made up of 4, 16 and 24 units. The rate of synchronization increases with the size of the neighborhood and the value of
β , as well as γ (different lines in Fig. 3).

4. BayesIan inference

4.1. Likelihood function and prior distributions

Let θ = (µ1, . . . ,µK , σ1, . . . , σK , vec(P), vec(Q ), α,β, γ ,ϕ) be the vector of parameters with µl = (µ1l, . . . , µnl),
σ l = (σ1l, . . . , σnl), Q = (q11, . . . , q1n, . . . , qn1, . . . , qnn) and β = (β11, . . . , β1M , . . . , βN1, . . . , βNM ). Let us define the
latent state variable ξk,it = I{k}(sit ), which takes value 1 if the state of the chain sit is k and 0 otherwise, then the model
in Eq. (1) can be written as

yit =

K∑
k=1

ξk,itµik + εit

K∑
k=1

ξk,itσik, εit
iid
∼ N (0, 1) (13)

Let y = (y1, . . . , yT ) be the collection of all observations, and Ψ = (ψ11, . . . , ψ1n, . . . , ψn1, . . . , ψnn) and Z =

(ζ11, . . . , ζ1n, . . . , ζn1, . . . , ζnn) the two matrices of latent variables for the latent network G with connectivity structure
given by the adjacency matrix A = (a11, . . . , a1n, . . . , an1, . . . , ann). Let Ξ = (ξ1, . . . , ξT ) the K × nT matrix of latent
variables for the panel of hidden Markov chains, where Ξt = (ξ1t , . . . , ξnt ) is the K × n matrix of latent variables at time
t with ξit = (ξ1,it , . . . , ξK ,it ) where ξk,it = Ik(sit ).

By using the sequential factorization of the likelihood, the complete likelihood of the PMS-IC model is:

L(y,Ξ , A, Z,Ψ | θ) = f (y|Ξ , θ)f (Ξ |A, θ)f (A|Z)f (Z |Ψ , θ )f (Ψ ) (14)

where the factors in the complete-data likelihood are:

f (y|Ξ , θ) =

T∏
t=1

n∏
i=1

f (yit |ξit , θ) (15)

f (Ξ |A, θ) =

n∏
t=1

n∏
i=1

f (ξit |Ξt−1, A, θ) (16)

f (A|Z) =

n∏ n∏
I(ζij > 0)aij (1 − I(ζij > 0))1−aij (17)
i=1 j=1

7
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f (Z |Ψ , θ) =

n∏
i=1

n∏
j=1

(2πλij)−
1
2 exp

{
−

1
2λij

(ζij − g(xi, xj)ϕ)2
}

(18)

f (Ψ ) =

n∏
i=1

n∏
j=1

f (ψij) (19)

here λij = 4ψ2
ij and f (ψij) is give in Eq. (8) and

f (yit |Ξ , θ) =

K∏
l=1

(2πσ 2
il )

−
ξl,it
2 exp

{
−
ξl,it

2σ 2
il
(yit − µil)2

}
(20)

f (ξit |Ξt−1, A) =

K∏
l=1

K∏
k=1

pξl,it ξk,it−1
it,lk (21)

pit,lk = (αplk +

N∑
r=1

M∑
q=1

βrqmirq,k (st)+ γmt,k)ξl,it ξk,it−1 . (22)

n order to complete the specification of the Bayesian model, we discuss the choice of the prior distribution. We consider
onjugate prior distributions based on proper distributions. We assume independent priors for the unit-specific and the
ommon parameters:

µil ∼ N (mil, s2il) (23)

σ 2
il ∼ IG(ail, bil) (24)

(pl1, . . . , plK ) ∼ Dir(v1, . . . , vK ) (25)
(α,β′, γ ) ∼ Dir(r1, r′1+NM , r2+NM ) (26)

ϕ ∼ N (m, S) (27)

ith l = 1, . . . , K and i = 1, . . . , n, where IG(a, b) denote the inverse gamma distribution with shape and rate parameters
and b, respectively and Dir(d1, . . . , dK ) the K dimensional Dirichlet distribution with parameters: d1, . . . , dK .
One of the main problems of Bayesian analysis using Markov switching processes is the non-identifiability of the

arameters. That is, the posterior distributions of the parameters of resulting Markov switching model is invariant to
ermutations in the labeling of the parameters, if this latter follows exchangeable priors. Consequently, the marginal
osterior distributions for the parameters are identical for each switching component and the symmetry of the posterior
istributions affect the MCMC simulation and the interpretation of the labels switch. For more details about the effects that
abel switching and non-identification have on the results of a MCMC-based Bayesian inference, see, among others, Celeux
1998), Frühwirth-Schnatter (2001), and Frühwirth-Schnatter (2006). One way to address the label switching problem is
o consider the permutation sampler proposed by Frühwirth-Schnatter (2001) under some specific conditions. Another
lternative is to impose identification constraints on the parameters. This practice is widely used in macroeconomics
ecause it is naturally related to the interpretation of the different states (e.g. recession and expansion) of the business
ycle. We follow the latter approach and impose the identification restrictions µi1 ≤ µi2 ≤, . . . ,≤ µiK .

4.2. Posterior simulation

The joint posterior distribution is

π (θ,Ξ , A, Z,Ψ | y) ∝ L(y,Ξ , A, Z,Ψ | θ)π (θ) (28)

where π (θ) is the joint prior distribution defined in Eq. (23)–(27). Since the posterior is not tractable, we approximate
the posterior quantities of interest by applying a Monte Carlo method. We develop a Gibbs sampling algorithm based on
the full conditional posterior distributions. The derivation and the details of the conditional distributions are provided in
Appendix B. The model in Eq. (1) is estimated by adapting the multi-move Gibbs-sampling procedure for the Bayesian
estimation of Markov switching models presented in Frühwirth-Schnatter (2006). At the d-th iteration, the Gibbs sampler
iterates over the following steps for the parameters.

1. Draw (α,β′, γ )(d), from f (α,β′, γ | y,Ξ (d−1), A(d−1), P (d−1)).
2. Draw (pl1, . . . , plK )(d) from f (pl1, . . . , plK | y,Ξ (d−1), A(d−1), (α, β, γ )(d)), l = 1, . . . , K .
3. Draw µ

(d)
il ,from f (µil | y,Ξ (d−1), σ

(d−1)
il ), i = 1, . . . , n, l = 1, . . . , K .

4. Draw σ
(d)
il , from f (σil | y,Ξ (d−1), µ

(d)
il ), i = 1, . . . , n, l = 1, . . . , K .

(d) (d−1) (d−1)
5. Draw ϕ , from f (ϕ | Z ,Ψ )

8
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e exploit the following factorization for the joint distribution of the latent variables and the network

f (A, Z,Ψ | θ,Ξ ) ∝ f (Ψ | Z, A, θ,Ξ )
∫

f (Z,Ψ | A, θ,Ξ )dΨ
∫∫

f (A, Z,Ψ | θ,Ξ )dZdΨ

∝ f (Ψ | Z, A, θ)f (Z | A, θ)f (A | Ξ , θ) ∝ f (Ψ | Z, θ)f (Z | A, θ)f (A | Ξ , θ)

nd use a collapsed Gibbs step

6. Draw A(d), from f (A | Ξ (d−1),ϕ(d))
7. Draw Z (d), from f (Z | A(d), θ(d))
8. Draw Ψ (d), from f (Ψ | Z (d),ϕ(d)).

n the last step of the Gibbs sampler, the switching indicator variables are sequentially drawn

9. Draw Ξ
(d)
i,1 , . . . ,Ξ

(d)
i,T from f (Ξi,1, . . . ,Ξi,T | y, A(d), θ(d)), i = 1, . . . , n.

Regarding the sampling methods, the standard sampler based on independent proposal distributions poorly estimates
he parameter (α, β, γ ). A straightforward implementation of the Metropolis–Hastings (MH) algorithm with the prior
istribution applied as proposal distribution becomes inefficient, resulting in a high rate of acceptance, followed by poor
ixing of the chain. Thus, we apply a Metropolis–adjusted Langevin (MALA) sampling algorithm as an efficient method

or solving the issues described above. We simulate (α,β′, γ ) from f
(
α,β′, γ |Y ,Ξ , A, P

)
, where the prior is chosen to

e Dirichlet Dir(ϕ1,ϕ′

1+NM , ϕ2+MN ). Since by definition (α, β, γ ) ∈ [0; 1]3; when dealing with random walk proposals,
e need to use the transformation of α, βrq, ∀ r, q and γ to the real line, which introduces a Jacobian factor to the
cceptance probability of the MALA. We assume α = g(α̃), β = g(β̃rq), γ = g(γ̃ ), where g(x) = 1/(1 + exp(−x)) is the

logistic transformation. For the MALA, we need the partial derivatives of the complete log-likelihood with respect to the
transformed parameters. A similar strategy is applied to get samples from the full conditional distribution of (pl1, . . . , plK ),
l = 1, . . . , K . See Appendix D.

The proposal distribution at the n-th iteration of the MALA is given by the following equation

ω∗
= ω(n)

+
ϵ2

2
M∇ωl

(
ω(n))

+ ϵM
1
2 z(n) (29)

here ω = (α̃, β̃
′

, γ̃ )′, l(ω) = log f (ω|y,Ξ , A, P) is the log-full conditional, ϵ is the integration step and z ∼ N (0, 1). M
s a preconditioning matrix which helps to circumvent issues that appear when the elements of ω have very different
cales, or if they are strongly correlated.

√
M can be obtained via Cholesky decomposition, such that M = UU ′ and√

M = U . The convergence to stationary distribution p(ω) is ensured by employing a Metropolis acceptance step.
The proposal distribution q(ω∗

|ωn) is N (µ(ωn, ϵ), ϵ2I) with µ(ωn, ϵ) = ωn
+

ϵ2

2 ∇ωp (ωn) and acceptance probability
given by min{1, p(ω∗)q(ωn

|ω∗)/p(ωn)q(ω∗
|ωn)}. The choice of the preconditioning matrix does not follow any systematic

and principled manner. For instance, Christensen et al. (2005) showed that a global level of preconditioning can be
inappropriate for the transient phase of the Markov process.

The full conditional distributions of µil, ϕ, and σil are normal and inverse gamma and can be simulated exactly.
We sample from the full conditional distribution of the adjacency matrix A of the latent network G by MH, which

explores all configurations of the binary entries of A. At the second step of the collapsed Gibbs, we sample from f (Z,Ψ |A, θ)
by adapting the sampler of Holmes and Held (2006) and Hamilton and Owyang (2012).

Regarding the allocation variables ξi,t i = 1, . . . , n and t = 1, . . . , T , of the hidden Markov chain process, multi-move
sampling cannot be directly implemented since the full conditional posterior distribution of the unit-specific allocation
variable depends on the other-country allocations. We apply an efficient MH procedure developed in Billio et al. (2016)
for a panel of interacting chains, where the candidates of the allocation variables are generated by forward filtering
backward sampling (FFBS). We check the effectiveness of the sampling procedure on simulated data (see Appendix F
in the Supplementary Material).

5. US states coincident indices

We apply our model to business cycle of US states and network of states . Not all US states are identical and, for
example, the US financial crisis has shown that some states were heavily affected by the crisis, e.g. Michigan, while other
states were essentially unaffected, such as Texas, which benefited from high oil prices in 2009 and 2010. Furthermore, the
US labor force is often considered to be mobile and keen to move from one region to another when economic situations
differ across states. This may strengthen the regional effect by creating a network of states that attract population and
other states that lose population. We believe that our model is very well suited to investigating such mechanisms and
deriving state and US global country cycles.

We work with the US-state monthly coincident indices datasets produced by the Federal Reserve Bank of Philadelphia
(FED), see Crone and Clayton-Matthews (2005). The database covers 50 states in the US and our sample dates from October
1979 to June 2010. An index of business cycle diffusion is available for each state. A global US index is also constructed. The
state-level diffusion indices are constructed on the scale −100 to 100, where a negative number is related to the spread
9
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f a national recession and a positive number to national expansion. Owyang et al. (2005) apply a Bayesian univariate
ndependent Markov switching model to the same dataset.1

We study the importance of the local interactions across the US states by specifying three connectivity settings. The first
setting considers the network generated by contiguous states (geographical network). The second setting considers four
statistical US regions defined by the United States Census Bureau: the West, the Midwest, the South and the North-east
(economic network). We follow Bernile et al. (2017), Bernile et al. (2015) and Garcia and Norli (2012) and use firm-level
information based on the 10-K filings on the Securities and Exchange Commission’s EDGAR system to identify economic
connections among US states.2 The final setting estimates a network (endogenous network) driven by the same variables
of Hamilton and Owyang (2012), namely the share of total state employment accounted for by small firms (x1i in Eq. (6)),
anufacturing employment share (x2i), financial activities employment share (x3i), and barrels of oil produced per 100
ollars of state GDP (x4i).
The three networks are used in the local-interaction of three types of model specifications: single-layer with first-order

nteraction effects (MGEO
11 , MECO

11 , MEND
11 models), single-layer with up to the second-order interaction effects (MGEO

12 , MECO
12 ,

END
12 models), and multi-layer with first-order interaction effects (MGEO,ECO

11 , MEND,GEO
11 , MEND,ECO

11 models). In addition, we
include a specification with only global interactions, which ignores contagion effects between cycles of connected US
states (M0 model).

Fig. 4, panels (a), (b) and (c), provides the direct (left) and indirect (right) connectivity structure of the three networks.
The geographic and endogenous networks are connected graphs, whereas the economic one is not and presents three
connected components. In a connected graph, it is possible to get from every vertex to every other vertex through a
series of edges (path). This implies that recessions in a state can propagate to the entire economy only in the geographic
and endogenous networks.

The average number of connections (average degree) in the direct geographical and economic networks are 4.36
and 13.12, respectively; on the contrary, the endogenous network is more dense with an average degree of 25.12.
Thus, the propagation of recession and expansion is faster in the endogenous network since the number of direct
connections is larger. Nevertheless, the propagation also depends on indirect connections between states. Thus for low-
degree networks, such as the geographical and economic ones, indirect connections can become relevant in models, which
account for second-order interaction effects (MGEO

12 , MECO
12 ). The right column in Fig. 4 shows that indirect connectivity

differs substantially from the direct ones for the geographical and economic networks, whereas the difference is smaller
for the endogenous. For example, following degree centrality (see Table G.1 in Appendix G of the Supplementary Material,
and thicker circles in Fig. 4), the most central nodes are Missouri (MO) and Tennessee (TN) in the geographical network,
and Rhode Island (RI) and Vermont (VT) in the economic network, where they play a key role in connecting the West
and North-east regions. In the indirect-connection network (right panel), these central nodes become less central, a new
connectivity structure and new most central nodes appear. Similarly, all states in the West and North-east regions appear
more connected and central and thus more exposed to contagion effects.

The endogenous network has a substantially different structure than the geographic and economic networks, with
several central nodes, such as California (CA), New Hampshire (NH), Montana (MO), Washington (WA), Rhode Island (RI)
and Utah (UT). This indicates that the exogenous variables proposed by Hamilton and Owyang (2012) can be used in
our framework to capture some relevant contagion channels between US states. As regards the effects of the covariates
on the network formation, negative coefficients (small firms employment share (−1.371), manufacturing employment
share (−1.828), financial activities employment share (−1.221)) imply that states with similar features and those that are
contiguous are more connected. The positive coefficient of the oil production (0.532) implies that oil-producing states,
which have different economic features and are not contiguous in the geographical network, are closer in the endogenous
network.

The results in Table 1 indicate that a single-layer specification model with economic and endogenous proximity
presents the highest marginal log-likelihoods; models with geographical proximity the second highest, and the model
with only global interaction gives the lowest marginal likelihood. Among the multi-layer specifications, the best model in
terms of marginal log-likelihood is the PMS-IC multiple-layer model that includes an endogenous layer and an exogenous
economic layer (MEND,ECO

21 ). There is evidence of substantial contagion effect in both the endogenous (β̂11 = 0.321)
and the exogenous (β̂21 = 0.601) layers. This indicates that the information on business relations encoded in the
economic network are relevant for explaining contagion, confirming the results obtained with single-layer first- and
second-order interaction (MECO

11 and MECO
12 ). Nevertheless, they are not enough to explain contagion effects and a latent

endogenous layer is needed to provide additional information about the spread of contagion cross the US states. The results
for the model MEND,GEO

11 indicate that the geographical network has a smaller yet still significant impact on contagion

1 More information and data are available at https://philadelphiafed.org/research-and-data/regional-economy/indexes/coincident.
2 The federal securities laws require companies issuing publicly traded securities to disclose information on an ongoing basis. Notably, Section 13

and 15(d) of the Securities Exchange Act of 1934 requires companies with more than 10 million dollars as assets and whose securities are held by
more than 500 owners to file an annual report (Form 10-K) providing a comprehensive overview of the company’s business and financial condition.
As in Bernile et al. (2017), we do not make explicit assumptions about the nature of the economic connections but rather count the number of
times a US state is cited in items 1, 2, 6 and 7 of the 10-K filings. Such items are design to focus on the firm’s economic activities. By comparing
information for firms in two different states, we can derive an economic network between the two states.
10
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Fig. 4. Geographical (a), economic (b) and endogenous (c) networks of direct (left) and 2-step indirect (right) connections. In the network plots: lines
ndicate connections between pairs of nodes (colored circles); thicker circles and large labels mean that a node has a larger number of connections;
olors indicate USCB geographical regions with light blue for North-east, orange for Midwest, pink for South, and green for West. Node labels
epresent states labels. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

hen compared with the endogenous economic network. Another interesting result regards the second-order effect
pecification. Comparing the marginal log-likelihood of models MGEO

12 and MECO
12 with those of models MGEO

11 and MECO
11 ,

we can conclude that indirect effects should be accounted for in the specification of network interaction models. As in
the geographical network model with second-order interaction (β̂11 = 0.011 and β̂12 = 0.801), higher order interaction

effects may be more relevant than direct effects in spreading contagion. In conclusion, data support the estimation of

11
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able 1
omparison of the US states regional data for the PMS-IC models. First column: model label. Second column: marginal log-likelihood (m(y)). Remaining

columns: posterior mean of βrq r = 1, . . . ,N , q = 1, . . . ,M and 95% high posterior density interval (in parenthesis). Panel (a): only global interaction
(M0) and global and local interactions with geographical proximity (MGEO

NM ), exogenous economic proximity (MECO
NM ), endogenous economic proximity

(MEN
NM ), with first (M = 1) and second order (M = 2) interaction effects and with one layer (N = 1). Panel (b): local multilayer interaction (Ma,b

NM )
with first order (M = 1) interaction and two layers (N = 2) with first layer a ∈ {GEO, ECO} and second layer b ∈ {ECO, END}, where GEO is the label
of the exogenous geographical proximity graph, ECO the exogenous USCB economic proximity and END the endogenous economic proximity graph.

(a) First and second order interaction effects.

m(y) α β11 β12 β21 γ

M0 8.797 · 102 0.724 0.276
(0.712, 0.733) (0.267, 0.288)

MGEO
11 1.198 · 103 0.159 0.829 0.012

(0.149, 0.170) (0.816, 0.841) (0.004, 0.028)
MGEO

12 3.533 · 103 0.174 0.012 0.801 0.013
(0.074, 0.311) (0.010, 0.013) (0.653, 0.915) (0.004, 0.029)

MECO
11 8.695 · 103 0.028 0.970 0.002

(0.026, 0.031) (0.967, 0.973) (0.001, 0.003)
MECO

12 1.838 · 104 0.026 0.739 0.229 0.006
(0.026, 0.028) ( 0.735, 0.743) (0.227, 0.231) (0.002, 0.006)

MEND
11 2.220 · 104 0.057 0.936 0.007

(0.004, 0.233) (0.751, 0.994) (0.002, 0.016)
MEND

12 1.156 · 104 0.021 0.966 0.001 0.012
(0.018, 0.023 ) (0.910, 0.979) (0.001, 0.002 ) (0.01, 0.021)

(b) Multi-layer interaction effects.

m(y) α β11 β12 β21 γ

MGEO,ECO
21 1.767 · 104 0.102 0.098 0.691 0.109

(0.101, 0.115) ( 0.078, 0.112) (0.611, 0.701) (0.101, 0.129)
MEND,GEO

21 2.669 · 104 0.005 0.739 0.217 0.039
(0.001, 0.020) (0.7201, 0.7518) (0.203, 0.236) (0.023, 0.057)

MEND,ECO
21 2.811 · 104 0.043 0.3211 0.601 0.0349

(0.028, 0.061) (0.305, 0.337) (0.585, 0.617) (0.017, 0.052)

locally-interacting chains which cannot simply proxy with exogenous geographical and economic proximity perspectives
or with direct interaction effects. Our findings pose challenges to the view that crises can be restricted and limited locally.

We also study the ability of the model to detect the turning points of the US business cycle. Fig. 5 plots the global
nteraction of recessions of US-state business cycles obtained from our model together with the diffusion index of the
S national cycle phases published by the Federal Reserve of Philadelphia. We present two different measures from
ur model output: (i) a recession probability computed as equal average of the smoothed recession probabilities of all
tates; (ii) a recession probability computed as equal average of the filtered recession probabilities of all states. The former
ndicates how ex-post our model can call recessions; the latter one can be seen as an ex-ante measure of recessions where
robabilities for time T +1 are computed at time T (assuming parameters are known). The two probabilities behave very
imilarly, with the one based on filtered probabilities just marginally more volatile. Usually, filtered probabilities vary more
han smoothed, but we remember our indicator is an average of 50 state probabilities. The individual state probabilities
re quite different in several periods, see their distribution in the bottom panel of Fig. 5. This is particularly evident in the
iddle of the 1980s, when NBER does not register a recession; however they are more similar when entering and exiting

ecessions. On average, our PMS-IC with global and local interactions of cycles matches better the national recessions
iven by the NBER, as the receiver operating characteristic curve (Berge and Jordà, 2011; Aastveit et al., 2016) in Figure
.1 in the Supplementary Material G.
Our model allows for us to assess the effects of policy interventions using connectivity among US states. We illustrate

he approach through two counterfactual exercises by recomputing the expansion probabilities under alternative network
onfigurations, while keeping all the other parameters unchanged. The baseline scenario corresponds to the historical
ecession probability of the model MEND,ECO

21 , where the average degree of USCB and endogenous networks are 13.12 and
5.12 respectively.
In the first exercise, we investigate the effects of negative shocks on employment in small firms, manufacturing and

inancial activities, and mobility restrictions across US states, which have become relevant during the COVID-19 pandemic
vent. The employment contraction increases the average degree of the endogenous network to 33.4. Moreover, we design
mobility scenario where US states with high contagion risk (Connecticut, New Jersey, Massachusetts, Rhode Island,

elaware, Minnesota, Maryland, Illinois, Nebraska, Iowa) are restricted in lockdown. The risk level is measured as the

12
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Fig. 5. Top: The diffusion index of the Federal Reserve of Philadelphia (black dashed, left axis) and the global interaction factor of the model MEND,ECO
21

estimated with the smoothed (red dotted, right axis) and the filtered (black solid, right axis) expansion probabilities. For all variables, lower values
indicate higher recession probabilities. Gray bars represent the US national recession periods following the official dating of the National Bureau
of Economic Research (NBER). Middle: Global interaction factor (red dotted) and cross-sectional inter-quantile ranges, at 90% (dark gray area) and
60% (light gray area), of the US states filtered probabilities. Bottom: Filtered expansion probabilities under different network configuration scenarios:
baseline (black solid), employment contraction with mobility restrictions (blue dashed), and job support schemes with mobility restrictions (red
dotted). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

per-capita infection rate on June 1, 2020, estimated by combining documented case reports at the county level. See Figure
1 in Chande et al. (2020). The mobility restrictions reduce the average degree of the USCB network to 8.08.

In the second scenario, mobility restrictions are still in place, but job support schemes are implemented and
employment does not reduce and therefore the endogenous network is kept unchanged. The results in the bottom panel
13
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n Fig. 5 indicate that job support schemes (second scenario) reduce the length and intensity of the recessions despite
he mobility lockdown. On the contrary, recessions can be longer and deeper when employment is not preserved (first
cenario).

. Conclusion

We propose a new dynamic panel Markov switching model with Markov chains interacting on a multi-layer network
nd provide a suitable parametrization and an efficient Markov Chain Monte Carlo (MCMC) algorithm for the posterior
pproximation. Our original model naturally accounts for the endogenous synchronization of the series, time-varying
lustering of the hidden states, and time-varying transition probabilities. The synchronization effects are induced by the
nteraction mechanism. The interaction effects can either be local (i.e. in some neighborhoods) or global (i.e. among all
nits in the panel), direct or indirect. The underlying network can be exogenously given (e.g., geographical or economic
roximity) or endogenously estimated.
We illustrate the usefulness of our PMS-IC model by applying it to the US regional business cycle. We find evidence of

ocal interaction and of endogenous network effects which cannot simply proxy with exogenous proximity perspectives
r with only direct interaction effects. The approach can be used to assess the effects of policy interventions in a
ounterfactual analysis. Our methodology is motivated by and applied to a macroeconomic dataset, however it is general
nd could be applied to a wide spectrum of research where endogenous interaction effects are of interest.

ppendix A. Properties of the PMS-IC model

.1. Proof of proposition 1

Without loss of generality let assume K = 2. Define ξit = I{2}(sit ), wit,1 = ξit − µit where µit = πit (st , 2) and
st ∈ S1. Then {wit,1}i≥1 is a sequence of independent random variables, conditioning on Ft−1 = σ

(
{su}u≤t−1

)
, such that

E(wit,1|Ft−1) = 0 and V(wit,1|Ft−1) = µit (1 − µit ) which satisfies
∑

∞

i=1
µit (1−µit )

i2
< ∞. Then by the Strong Law of Large

umbers it follows that
∑n

i=1wit,1 converge a.s. to zero for n → ∞ (see Williams (1991), p. 118, Theorem 12.8).
From the previous result we have

mt+1,2 = lim
n→∞

1
n

n∑
i=1

πit (st , 2) (30)

= lim
n→∞

1
n

n∑
i=1

⎛⎝ξitαp22 + (1 − ξit )αp12 +

N∑
r=1

M∑
q=1

βrqmirqt,2 + γmt,2

⎞⎠
=
(
mt,2αp22 + (1 − mt,1)αp12 + (1 − α − γ )mt,2 + γmt,2

)
.

since
∑N

r=1
∑M

q=1 βrqmirqt,2 = mt,2(1 − α − γ )/β . The limits of the recursion can be easily find by setting mt,2 = m∗ and
olving the equation

m∗
= α

(
m∗p22 + (1 − m∗)p12

)
+ (1 − α)m∗

in m∗.

A.2. Proof of proposition 2

See Föllmer and Horst (2001).

Appendix B. Parameter full conditional distributions

1. The full conditional distribution of (α,β, γ ) according to the likelihood in Eq. (19) and the prior in Eq. (26) density
function:

f
(
α,β, γ |Ξ , θ−(α,β,γ )

)
∝

(
αr1−1β

r2−1
1 . . . β

r1+NM−1
NM γ r2+NM−1

) K∏
k=1

K∏
l=1

n∏
i=1

∏
t∈Tilk

⎛⎝αplk +

N∑
r=1

M∑
q=1

βrqmirq,k (st )+ γmt,k

⎞⎠

where Tilk = {t = 1, . . . , T |ξl,it−1ξk,it = 1}.
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2. The full conditional distribution of the regime dependent intercept µil (where l = 1, . . . , K and i = 1, . . . , n)
according to the likelihood in Eq. (19) and the prior in Eq. (23) has a normal distribution with density function:

f (µil|y,Ξ , θ−µil ) ∝ exp
(

−
1
2s2il

(µil − mil)
2
) T∏

t=1

exp
(

−
ξl,it

2σ 2
il
(yit − µil)

2
)

∝ exp

⎛⎝−
1
2
µ2

il

(
1
s2il

+
Til
σ 2
il

)
− 2µil

⎛⎝mil

s2il
+

1
σ 2
il

∑
t∈Til

yit

⎞⎠⎞⎠
∝ N (mil, s2il)

with mil = s2il

(
mil
s2il

+
1
σ2
il

∑
t∈Til

yit

)
and s2il =

(
1
s2il

+
Til
σ2
il

)−1

.

We defined Til = {t = 1, . . . , T |sit = l}, Til = card(Til). The notation θ−r indicates that element r is excluded from
the vector θ.

3. The full conditional distribution of the regime-specific volatilities σil, l = 1, . . . , K and i = 1, . . . , n, according to
the likelihood in Eq. (19) and the prior in Eq. (24) has inverse gamma distribution with density function:

f
(
σ 2
il |y,Ξ , θ−σil

)
∝

(
1
σ 2
il

)ail+Til+1

exp

⎛⎝−
1
σ 2
il

⎛⎝bil +
∑
t∈Til

(yit − µil)2

⎞⎠⎞⎠
∝ IG

⎛⎝ail + Til, bil +
∑
t∈Til

(yit − µil)
2

⎞⎠
4. The full conditional distribution of each l-th row of the transition matrix Pl,1:K = (Pl1, . . . , PlK ) according to the

likelihood in Eq. (19) and the prior in Eq. (25) density function:

f
(
pl,1:K |y,Ξ , θ−(pl,1:K )

)
∝

(
K∏

k=1

p(vk−1)
lk

)
T∏

t=1

n∏
i=1

K∏
k=1

⎛⎝αplk +

N∑
r=1

M∑
q=1

βrqmirq,k (st)+ γmk (st)

⎞⎠ξk,it ξl,it−1

∝

(
K∏

k=1

p(vk−1)
lk

)
K∏

k=1

n∏
i=1

∏
t∈Tilk

⎛⎝αplk +

N∑
r=1

M∑
q=1

βrqmirq,k (st)+ γmk (st)

⎞⎠
∝

K∏
k=1

⎛⎝p(vk−1)
lk

n∏
i=1

∏
t∈Tilk

⎛⎝αplk +

N∑
r=1

M∑
q=1

βrqmirq,k (st)+ γmk (st)

⎞⎠⎞⎠
5. If we stack vertically the elements of Z and ηij forming the two n2-dimensional column vectors z and η, then the

latent regression can be written as z = Xϕ + 2Wη, where X is a n2
× 4 matrix and W = diag{vec(Λ)} is a n2-

dimensional diagonal matrix where Λ = ((λ11, . . . , λn1)′, . . . , (λ1n, . . . , λnn)′) and λij = 4ψ2
ij . The full conditional

distribution of the latent regression parameters ϕ is

f (ϕ|X,Λ, Z) ∝ N
(
m̄, S̄

)
where

m̄ = S̄
(
S−1m + X ′W−1z

)
, S̄ = (S−1

+ X ′W−1X)

6. The full conditional distribution of A is

f (A|Ξ , θ) ∝ f (Ξ |A, θ)f (A|θ)

with support set {0, 1}n
2
. We sample from f (A|Ξ , Z, θ) by Metropolis–Hastings. Given two nodes i and j selected

at random in the vertex set of G, if there exists an edge between them, then we propose to remove the link. Also,
we propose to add an edge between i and j if there is no path linking i to j (we verify this using the reachability
matrix, see Wasserman (1994)). The validity of the proposed MCMC is granted by the fact that (i) the probability
of selecting a node is strictly positive for all nodes, and (ii) the chain may remain in the current state with positive
probability. Together, these conditions guarantee irreducibility and aperiodicity of the Markov chain.
15
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ppendix C. Latent variables full conditional distributions

.1. State allocation variables

In our inference procedure, a multi-move sampling is needed to sample from the joint posterior distribution
(Ξi,1:T |Ξ−i,1:T , A, y, θ). We apply a forward-filtering and backward-sampling (FFBS) algorithm. By means of dynamic

factorization, the full conditional distribution of the unit specific hidden state is

P(Ξi,1:T |Ξ−i,1:T , A, y, θ) = P(ξiT |Ξ−i,1:T , A, y, θ)P(Ξi,1:T−1|ξiT ,Ξ−i,1:T , A, y, θ)

= P(ξiT |Ξ−i,1:T , A, y, θ)
T−1∏
t=1

P(ξi,t |Ξi,t+1:T ,Ξ−i,1:T , A, y, θ)

∝ P(ξiT |Ξ−i,1:T , A, y, θ)
T−1∏
t=1

P(ξi,t+1|ξi,t ,Ξ−i,t , A)P(ξi,t |Ξ−i,1:T , A, y1:t , θ)

∝

(
P(ξiT |Ξ−i,1:T , A, y, θ)

T−1∏
t=1

P(ξi,t |Ξ−i,1:t , A, y1:t , θ)

)(
T−1∏
t=1

P(ξi,t+1|ξi,t ,Ξ−i,t , A, θ)

)
With this factorization, a Metropolis–Hastings (MH) procedure is needed to take into account the proportionality factor
with the FFBS algorithm as proposal for the unit specific hidden state. The filtering probability for unit i at time t ,
t = 1, . . . , T , algorithm gives the prediction probability, the one step-ahead forecast density and the updated probability.
Recalling the one-to-one mapping between sit and ξl,it = Il(sit ), the prediction probability of sit is:

P(sit = 1|Ξ−i,1:t , y1:t−1, θ) =

=

K∑
k=1

P(sit = l|sit−1 = k,Ξ−it−1, A)P(si,t−1 = k|Ξ−i,1:t−1, A, y1:t−1, θ)

=

K∑
k=1

Pit−1,klP(si,t−1 = k|Ξ−i,1:t−1, A, y1:t−1, θ) (31)

for l = 1, . . . , K , where Pit−1,lk is the conditional probability that unit i moves from regime k at time t − 1 to regime l at
time t . Ξ−i,t = {ξjt , j = 1, . . . , nj ̸= i}. We initialize for t = 1, P(si,0 = k|y0, θ) to be equal to the ergodic probabilities.

The filtered probability for all l = 1, . . . , K is computed as:

P(sit = l|Ξ−i,1:t , A, y1:t , θ)
∝ P(sit = l|Ξ−i,1:t−1, A, y1:t−1, θ)f (yit |sit = l, y1:t−1, θ)

∝ P(sit = l|Ξ−i,1:t−1, A, y1:t−1, θ)N (µil, σ
2
il ) (32)

The smoothing probabilities are obtained recursively and backward in time, once all the filtered probabilities P(sit =

l|Ξ−i,1:t , A, y1:t , θ) for t = 1, . . . , T are calculated. If t = T , smoothing probability and filtered probability are equal. For
t = T − 1, T − 2, . . . , 1 and for all l = 1, . . . , K the smoothing algorithm proceeds as follows:

P(sit = l|Ξ−i,1:T , A, y, θ) =

K∑
k=1

P(sit = l, sit+1 = k|Ξ−i,1:T , A, y, θ)

=

K∑
k=1

P(sit = l|sit+1 = k,Ξ−i,1:T , A, y1:t , θ)P(sit+1 = k|Ξ−i,1:T , A, y, θ)

=

K∑
k=1

pit,lkP(sit = l|Ξ−i,1:T , A, y1:t , θ)P(sit+1 = k|Ξ−i,1:T , A, y, θ)∑K
j=1 pit,jkP(sit = j|Ξ−i,1:T , A, y1:t , θ)

(33)

C.2. Network latent regression variables

1. The full conditional distribution of the latent regression variable Z is

f (ζ11t , . . . , ζnnt |A, θ) ∝

n∏
i=1

n∏
j=1

f (ζij|aij,ϕ) (34)

where f (ζij|aij,ϕ) is a logistic distribution with mean g(xi, xj)′ϕ and truncated by ζij ≥ 0 if aij = 1 and by

ζij < 0 if aij = 0. Random samples from this distribution can generated exactly by applying the following

16
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B

B
B

transform ζij = g(xi, xj)′ϕ − log(u−1
ij − 1) where uij is generated from the following mixture of two uniforms distri-

butions

uij ∼ U[0,d]I(aij = 0) + Ud,1I(aij = 1) (35)

where U[a,b] denotes the uniform distribution over the interval [a, b] and d = (1 + exp(g(xi, xj)′ϕ))−1.
2. The full conditional distribution of the latent regression variable Λ is

f (Λ|Z, θ) ∝

n∏
i=1

n∏
i=1

1√
2πλij

exp{−
1

2λij
(ζij − g(xi, xj)′ϕ)2}f (λij) (36)

where f (λij) is equal to f (ψij)/(8
√
(λij)) with ψij =

√
(λij)/4. As in Holmes and Held (2006) we apply an accept/reject

sampling method with a Generalized Inverse Gaussian proposal distribution

λ∗

ij ∼ GIG(1/2, 1, r2)

where r2ij = (ζij − g(xi, xj)′ϕ)2.

Appendix D. Metropolis–adjusted Langevin algorithm

The implementation of the Metropolis–adjusted Langevin algorithm (MALA) requires some necessary expressions
which we discuss in this section. We consider the logistic transformation of the parameters p̃lk, k = 1, . . . , K , α̃, β̃rq
and γ̃ to impose constrains on the parameters space, that is α = g(α̃)/c , βrq = g(β̃rq)/c , γ = g(γ̃ )/c , plk = g(p̃lk)/d
where g(x) = exp(x), c = g(α̃) + g(β̃11) + · · · + g(β̃NM ) + g(γ̃ ), d = g(p̃l1) + · · · + g( ˜plK ), and p̃lk, k = 1, . . . , K , α̃, β̃rq, γ̃
take value in the set of the real numbers.

The partial derivatives of the complete data log-likelihood with respect to the new parametrization are:

∂ log L
∂α̃

= g(α̃)(1 − g(α̃))
1
c2

n∑
i=1

T∑
t=1

K∑
l=1

K∑
k=1

ξl,itξk,it−1
plk
pit,lk

(37)

∂ log L

∂β̃
= g(β̃rq)(1 − g(β̃rq))

1
c2

n∑
i=1

T∑
t=1

K∑
l=1

K∑
k=1

ξl,itξk,it−1
mirq,k(st )

pit,lk
(38)

∂ log L
∂γ̃

= g(γ̃ )(1 − g(γ̃ ))
1
c2

n∑
i=1

T∑
t=1

K∑
l=1

K∑
k=1

ξl,itξk,it−1
mk(st )
pit,lk

(39)

∂ log L
∂ p̃lk

= g(p̃lk)(1 − g(p̃lk))
1
d2

n∑
i=1

T∑
t=1

ξl,itξk,it−1
α

pit,lk
(40)

here ξl,it = I{l}(sit ).

ppendix E. Supplementary data

Supplementary material related to this article can be found online at https://doi.org/10.1016/j.jeconom.2021.04.004.
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