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a b s t r a c t 

Preference aggregation in Group Decision Making (GDM) is a substantial problem that has received a 

lot of research attention. Decision problems involving fuzzy preference relations constitute an important 

class within GDM. Legacy approaches dealing with the latter type of problems can be classified into in- 

direct approaches, which involve deriving a group preference matrix as an intermediate step, and direct 

approaches, which deduce a group preference ranking based on individual preference rankings. Although 

the work on indirect approaches has been extensive in the literature, there is still a scarcity of research 

dealing with the direct approaches. In this paper we present a direct approach towards aggregating sev- 

eral fuzzy preference relations on a set of alternatives into a single weighted ranking of the alternatives. 

By mapping the pairwise preferences into transitions probabilities, we are able to derive a preference 

ranking from the stationary distribution of a stochastic matrix. Interestingly, the ranking of the alter- 

natives obtained with our method corresponds to the optimizer of the Maximum Likelihood Estimation 

of a particular Bradley-Terry-Luce model. Furthermore, we perform a theoretical sensitivity analysis of 

the proposed method supported by experimental results and illustrate our approach towards GDM with 

a concrete numerical example. This work opens avenues for solving GDM problems using elements of 

probability theory, and thus, provides a sound theoretical fundament as well as plausible statistical inter- 

pretation for the aggregation of expert opinions in GDM. 

© 2021 The Authors. Published by Elsevier B.V. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

Group decision making (GDM) settings involve a group of indi- 

iduals (experts), where each member of the group expresses her 

references over a set of alternatives. Illustrative examples range 

rom parliamentary groups working to converge on a political deci- 

ion, to groups of friends deciding on the best choice of restaurant 

or a dinner. The aim of GDM is to identify the most preferred al- 

ernative for the whole group of individuals, or to derive a ranking 

f the alternatives that reflects the preferences of the group. 
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with fuzzy preference relations, European Journal of Operational Resea
The literature proposes many different forms of expressing pref- 

rences of experts ( Capuano, Chiclana, Fujita, Herrera-Viedma, & 

oia, 2017 ). Some of the most popular ones are the following: 

• Rankings , which are ranked lists of the alternatives from the 

most preferred to the least preferred one ( Seo & Sakawa, 1985 ). 
• Utility vectors , where each component of the vector describes 

the utility of the corresponding alternative, which can be seen 

as its ordinal strength ( Tanino, 1990 ). These are sometimes 

called priority vectors or weighted rankings . We use the latter 

expression throughout this paper. 
• Preference relations , where preference is expressed as a binary 

relation on the set of alternatives ( Kitainik, 2012 ). 
• Fuzzy Preference Relations (FPRs) , which relax the binary pref- 

erence relations with the possibility of expressing degrees of 
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preference among the alternatives ( Pedrycz, Ekel, & Parreiras, 

2010 ). Preference degrees can be assessed using linguistic term 

sets which can be more natural for human expert to articulate 

( Ureña, Kou, Wu, Chiclana, & Herrera-Viedma, 2019 ). 

FPR is the most commonly used representation for expressing 

references in a set of alternatives, in which an expert expresses 

er preferences as degrees of preference assigned to each pair of 

lternatives. The most common way to store these pairwise pref- 

rences is in the form of a preference matrix. The main reason 

ehind the popularity of the preference relations comes from a 

nown fact from psychology studies that human beings are better 

t comparing pairs of alternatives than at coming up with a com- 

lete preference ordering of a set of alternatives ( Ureña, Chiclana, 

orente-Molinera, & Herrera-Viedma, 2015 ). 

Within GDM involving FPR, there are two main families of ap- 

roaches: direct approaches and indirect approaches. The indirect 

pproaches first compute the group opinion in the form of an FPR 

we will call it a group or a collective FPR), usually expressed as a 

reference matrix, and then find a solution which is a (weighted) 

anking of the different alternatives based on the collective FPR. 

he collective preference matrix is generally derived by apply- 

ng an aggregation operator to the individual ones. On the other 

and, the direct approaches do not involve constructing a collec- 

ive preference matrix describing the group opinion as an inter- 

ediate step. They first compute an individual ranking for each 

xpert based on her FPR, and then the group ranking is obtained 

rom the individual rankings of the experts using an aggregation 

perator. For excellent surveys on consensus processes and pref- 

rence aggregation we refer the reader to the comprehensive sur- 

eys ( Cabrerizo, Moreno, Pérez, & Herrera-Viedma, 2010; Herrera- 

iedma, Cabrerizo, Kacprzyk, & Pedrycz, 2014 ) and to the book by 

errera-Viedma et al. (2011) . 

While studies on indirect approaches for aggregating pairwise 

references abound, the direct approaches are not as popular, al- 

hough there are a few exceptions ( Dong, Xu, & Yu, 2009; Fan, Ma,

iang, Sun, & Ma, 2006 ). Herrera and his collaborators ( Herrera, 

errera-Viedma, & Verdegay, 1996 ) pioneered the first direct ap- 

roach towards GDM based on FPR. However, the work in this di- 

ection is very scarce, although it is known that direct approaches 

sually possess two desirable properties, internal consistency and 

areto principle of the social choice theory ( Dong & Zhang, 2014 ). 

One of the few available direct approaches in the literature was 

ecently presented by Dong et al. in ( Dong & Zhang, 2014 ). There,

he authors extended the original direct approach presented in 

 Herrera et al., 1996 ) in order to support (i) different preferences 

epresentations, and (ii) a consensus process in the form of rounds 

here experts are required to adjust their pairwise preferences. In- 

erestingly, in order to achieve consensus, Dong et al. resort to a 

orm of a feedback based on measuring consensus using the indi- 

idual weighted rankings of the experts. This is distinct from the 

ain stream of research in FPR since consensus degree computa- 

ion is not based on weighted rankings of individual experts but 

ather based on elements from the preference matrices. The ap- 

roach by Dong et al. allows the experts to update their prefer- 

nce matrices in order to reach a consensus, defining two quan- 

ities, namely the cardinal consensus degree, based on the vec- 

or representation inspired by ( Chiclana, Herrera, Herrera-Viedma, 

 Martínez, 2003; Dong, Xu, Li, & Feng, 2010 ) and the ordinal 

onsensus degree inspired by ( Herrera-Viedma, Alonso, Chiclana, & 

errera, 2007; Herrera-Viedma, Herrera, & Chiclana, 2002 ). 

In this article, we take a direct approach towards group de- 

ision making given fuzzy preferences over a set of alternatives. 

e propose a method for aggregating the opinions of several 

xperts, which are expressed as FPRs, into a single weighted 

anking of the alternatives. Similarly to the work in ( Dopazo & 
2 
artínez-Céspedes, 2017 ), we transform the preference matrices 

nto stochastic matrices, and then use the theory of Markov chains 

nd random walks to compute rankings over the alternatives, as 

mplemented in the PageRank algorithm ( Gleich, 2015 ). One main 

ifference in this paper compared to the method in ( Dopazo & 

artínez-Céspedes, 2017 ) lays in the definition of the stochastic 

atrix. In ( Dopazo & Martínez-Céspedes, 2017 ) the stochastic ma- 

rix is simply a column-normalization of the preference matrix so 

hat its entries are proportional to the corresponding preferences 

nd represent the probabilities (relative strengths) of dominance 

etween the alternatives. In our framework we determine the en- 

ries of the stochastic matrix similarly as in ( Negahban, Oh, & Shah, 

012; 2016 ) and they represent the probabilities of transiting be- 

ween the corresponding alternatives in the way that the prob- 

bility of transition from alternative x to alternative y is propor- 

ional to the degree of preference of y to x . The stationary vectors, 

owever, have similar interpretation in both our approach and the 

pproach in ( Dopazo & Martínez-Céspedes, 2017 ) as their entries 

epresent preference strengths of the corresponding alternatives in 

oth the cases. The difference is that the normalization we use 

eads to a stationary vector that satisfies the global balance prop- 

rty with respect to the preference matrix: the preference strength 

f an alternative depends on whether the alternative dominates 

eak or strong alternatives. This is the core idea of the Rank Cen- 

rality method ( Negahban et al., 2012; 2016 ) and we discuss it in

ore detail in Section 3.1 . 

Notice that assigning and interpreting a degree of preference is 

ot straightforward. Using a probability value to quantify an FPR 

ives an intuitive interpretation of FPR itself and, moreover, en- 

bles to establish a link between probability theory and preference 

ggregation. Furthermore, we prove that the weighted ranking ob- 

ained as a result of the method presented in this paper corre- 

ponds to the result of Maximum Likelihood Estimation (MLE) of 

he Plackett-Luce model ( Plackett, 1975 ). 

There is a body of literature on methods that compute weighted 

anking from preference matrices based on optimization tech- 

iques such as least square method ( Gong, 2008 ), least deviation 

ethod ( Xu & Da, 2005 ), multiobjective optimization ( Fernandez 

 Leyva, 2004 ), new fuzzy linear programming method (FLPM) 

 Zhu & Xu, 2014 ), goal programming ( Fan et al., 2006 ), etc. Al-

hough these methods are shown to provide good results, they re- 

ay on human-engineered techniques or heuristics and do not pro- 

ide plausible theoretical interpretation of their computation and 

odelling steps. Our work is distinct from the latter works as the 

ay we derive a ranking vector can be explained using probabil- 

ty theory and thus we provide a theoretical interpretation of our 

ramework. 

Indeed, as mentioned above, our work is directly inspired by a 

ecent work on Rank Centrality algorithm ( Negahban et al., 2012; 

016 ), which aggregates a set of pairwise comparisons of alterna- 

ives into a global weighted ranking. In ranking based on pairwise 

omparisons, the goal is to rank, for example, football teams based 

n results of played matches between them. This problem has an 

bvious analogy with ranking of alternatives based on pairwise ex- 

ressed preferences, but despite the vast amount of work on rank- 

ng alternatives based on preferences, to the best of our knowl- 

dge, the ideas of Rank Centrality have not yet been adopted in the 

ontext of fuzzy preference aggregation. We argue that by properly 

ransforming the fuzzy preferences into probabilities of transition 

etween alternatives, probability theory can naturally be applied in 

reference aggregation and, consequently, we hope that our frame- 

ork can inspire further research in that direction. 

The remainder of this paper is structured as follows. In 

ection 2 we introduce the relevant background and the fun- 

amental concepts of the state of the art in fuzzy preferences. 

ection 3 presents our approach for aggregating preferences based 
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n the concept of Markov chains and discusses the conditions un- 

er which some desirable properties for the aggregation processes 

old. In Section 4 we provide a theoretical sensitivity analysis 

f the proposed aggregation method. Concrete numerical example 

howing the consistency of our framework followed by an exper- 

mental sensitivity analysis is given in Section 5 . Final discussions 

nd conclusions are provided in Section 6 . 

. Background and preliminary concepts 

In the following we assume that E = { e 1 , . . . , e m 

} is a set of

xperts and X = { x 1 , . . . , x n } is a set of alternatives. We use the

ollowing definition of a fuzzy preference relation as provided in 

 Herrera-Viedma, Herrera, Chiclana, & Luque, 2004 ). 

A Fuzzy Preference Relation (FPR) P on a set of alternatives X is 

 fuzzy set on the product set X × X , i.e. a relation on X character- 

zed by a membership function 

P : X × X → [0 , 1] . (1) 

p i j = μP (x i , x j ) is interpreted as the preference degree of the alter-

ative x i over the alternative x j . A usual natural assumption is that 

p i j + p ji = 1 , for every i, j ∈ { 1 , . . . , n } , i.e. that P is additive recip-

ocal . If p i j > 0 . 5 , we say that x i is preferred to x j ; if p i j = 0 . 5 , we

ay that we are indifferent between x i and x j ; and p i j = 1 indicates

hat x i is absolutely preferred to x j . The additive reciprocity prop- 

rty ensures that p ii = 0 . 5 and p i j > 0 . 5 iff p ji < 0 . 5 . 

When the set X is not too big, it is convenient to represent 

 as an n × n matrix of preference values, where n = | X| , i.e. P =
 p i j ] n ×n . We call this a preference matrix . For convenience, we use

he same notation for both the fuzzy preference relation and the 

orresponding preference matrix. 

We assume that each of the m experts expresses her prefer- 

nces independently of each other and in the form of a fuzzy pref- 

rence relation. Let us denote by P (k ) the FPR of the k -th expert

nd let P (k ) = [ p (k ) 
i j 

] n ×n be the corresponding preference matrix. 

An indirect approach to GDM aims at reaching a collective opin- 

on by first aggregating all the individual preference matrices into a 

ollective FPR. A direct approach would predict the collective opin- 

on or a GDM-”target”, in general, by turning experts’ FPR matrices 

nto vectors whose entries measure the ranking of the alternatives. 

ore formally, a weighted ranking can be defined as a function 

 : X �→ R , which maps each alternative in X into its absolute pref-

rence strength. 1 Aggregating the individual ranking vectors yields 

 possible consensus target for the set of individuals. 

Whatever approach one chooses, direct or indirect, there are 

wo main phases in GDM based on FPR, an aggregation phase and 

n exploitation phase . 

In the aggregation phase, the corresponding individual prefer- 

nce values (corresponding entries in FPR matrices or ranking vec- 

ors) are aggregated into a collective preference value using an ag- 

regation operator . 

There are many aggregation operators, such as weighted aver- 

ge (WA), fuzzy majority, etc. One popular example is the opera- 

or called Ordered Weighted Averaging (OWA) due to ( Yager, 1988 ). 

he WA and the OWA operators presume we have a list of weights 

 = (w 1 , . . . , w m 

) , w k ∈ [0 , 1] , k = 1 , . . . , m , such that 
∑ 

w k = 1 . Let

p 1 , . . . , p m 

be a list of preference values to be aggregated. While

he WA operator is defined as a simple weighted average of the 

references: 

A ( p 1 , . . . , p m 

) = 

m ∑ 

k = 1 
w k p k , (2) 
1 The ordering of the alternatives is implicit in each weighted ranking and follows 

rom the linear order of the real numbers: Alternatives assigned a higher number 

ank higher, and alternatives assigned the same number rank the same. 

f

M

3 
he OWA operator is defined as 

WA ( p 1 , . . . , p m 

) = 

m ∑ 

k = 1 
w k p σ ( k ) , (3) 

here σ is a permutation of the set { 1 , . . . , m } such that p σ (k +1) ≥
p σ (k ) for k ∈ { 0 , . . . , m − 1 } . 

In the case of WA, the weights w = (w 1 , . . . , w m 

) can be as-

umed to be corresponding to the importance of the experts in 

he group with respect to the particular decision making problem, 

r to the confidence of the experts in their opinions. In the case 

f OWA, assigning weights w enables weighting differently prefer- 

nces of different strength, giving more value to stronger prefer- 

nces, for example. By choosing different w in WA and OWA, one 

an implement different aggregation operators. 

The exploitation phase is the phase of deducing a (weighted) 

anking vector based on a fuzzy preference relation (matrix). 

Two relevant approaches towards defining the ranking in this 

hase are ( Herrera et al., 1996 ): Quantifier-Guided Dominance De- 

ree (QGDD), where the rank of each alternative represents the 

ominance or importance of the alternative over the rest of the al- 

ernatives; and Quantifier-Guided Non-Dominance Degree (QGNDD), 

here the rank of each alternative represents the degree to which 

he alternative is not dominated by the rest of the alternatives. An 

lternative to QGDD and QGNDD is the Netflow method ( Bouyssou, 

992 ) which is also based on dominance of an alternative. 2 More 

recisely, this method defines the rank of an alternative as the 

ifference between the inflow and the outflow of preference from 

t, which, under the additive reciprocity assumption ( p i j + p ji = 1 ),

educes to the following expression: 

F ( x i ) = 

n ∑ 

j =1 , j � = i 
p i j −

n ∑ 

j =1 , j � = i 
p ji 

= 

n ∑ 

j =1 , j � = i 
2 p i j − n + 1 

= 2 

( 

n ∑ 

j =1 , j � = i 
p i j −

n − 1 

2 

) 

. (4) 

otice that the Netflow method is related to the Copeland vot- 

ng rule in ( Marchant, 1996 ). An axiomatic characterization of the 

opeland rule can be found in ( Henriet, 1985 ). 

The indirect and the direct approaches towards GDM with FPR 

iffer in the way the phases of aggregation and exploitation are 

ombined: In the indirect approaches, one first applies the aggre- 

ation phase to the set of individual FPRs in order to obtain one 

ollective FPR. Then the exploitation phase is applied to the col- 

ective FPR to give the final (weighted) ranking. In the direct ap- 

roaches, the exploitation phase is applied first at each individual 

PR to give the individual rankings. Then the aggregation phase is 

pplied at the individual rankings to find the final collective rank- 

ng ( Herrera et al., 1996 ). Fig. 1 highlights these differences be- 

ween the two approaches. 

Note that aggregating opinions of experts into a group opin- 

on by any of the above approaches does not necessarily amount 

o reaching a consensus. To guarantee agreement between the ex- 

erts, one could consider a third phase after the two phases de- 

cribed above, in which one forces the individual opinions of the 

xperts to get close to each other ( Palomares, Estrella, Martínez, & 

errera, 2014 ). This narrowing phase can be implemented in two 

ifferent ways: (i) through automatic approaches without expert 

eedback, or (ii) through approaches with feedback on preferences 
2 Note that the Netflow method has also been defined in ( García-Lapresta, 

artínez-Panero, & Meneses, 2009 ) as the broad Borda count. 
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Fig. 1. Tensor representation of methods for GDM. Indirect method (above); direct method (below). 
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3 In the remainder of the paper we will use the terms alternative and state inter- 

changeably. 
here there is a moderator that will try to reduce the divergence 

f opinions between the experts. In both of these approaches con- 

ensus is considered to be a stage where all the individual opin- 

ons are sufficiently close to each other. Quantitatively, the close- 

ess can be measured as a distance in the “space of opinions” ei- 

her between each opinion and the collective (aggregated) opinion, 

r between pairs of individual opinions. 

Having described briefly the decision framework and the main 

pproaches for quantitative analysis in GDM, in the next section 

e propose a new method to address the aggregation and ex- 

loitation processes and we analyse its properties. 

. A rank centrality-based preference aggregation method 

In this section we introduce a method for aggregating the 

uzzy preference relations of the experts e 1 , . . . , e m 

into a collective 

eighted ranking of the alternatives x 1 , . . . , x n . We start by provid-

ng a way of transforming a preference matrix over the alterna- 

ives into a weighted ranking vector of the alternatives, which will 

e used in the exploitation phase of the general method. Then we 

rovide the full GDM procedure. At the end we prove that, un- 

er the assumption that detailed balance relation is satisfied, the 

roposed method satisfies some desirable properties of aggrega- 

ion processes. 

.1. From preference matrices to ranking vectors 

We consider an n × n preference matrix P over the alternatives 

 1 , . . . , x n ( n ≥ 2 ) which is additive reciprocal, i.e. a matrix whose

lements p i j are in the unit interval and obey the condition 

p i j = 1 − p ji . (5) 

 value p i j > 0 . 5 means that the alternative x i is preferred over x j ,

hile p i j = 0 . 5 means that no preference between x i and x j exists.

Inspired by recent work on ranking based on a dataset of pair- 

ise comparisons ( Negahban et al., 2012; 2016 ), our approach is 

ased on a transformation of the given preference matrix P into a 

tochastic matrix S defined in the following way: 

 i j = 

1 

n − 1 

p ji , (6a) 
4 
 ii = 1 − 1 

n − 1 

n ∑ 

j =1 , j � = i 
p ji . (6b) 

The division by n − 1 is introduced for normalization purposes, 
 

j s i j = 1 , and to guarantee that each element s i j is proportional 

o the corresponding p ji and fulfills the condition 0 ≤ s i j ≤ 1 . Each 

ow can then be seen as a probability distribution and the matrix 

as the matrix of transition probabilities of a Markov chain with n 

tates. 3 The element s i j corresponds to the probability of transiting 

rom a state x i to a state x j and, as defined in Eq. (6a) , this prob-

bility equals the product of the probability of choosing randomly 

he state x j among the n − 1 states different from x j and adopting 

hat state with probability p ji . This ensures that the probability of 

ransition from alternative x i to alternative x j is proportional to the 

reference of x j over x i . Notice that it is always possible to con- 

truct such a stochastic matrix, even if there are missing entries 

n the preference matrix P , i.e. if there is incomplete information 

 Herrera-Viedma et al., 2007 ). 

We impose that the preference matrix P fulfills the condition 

p i j � = 0 , (7) 

or every i, j ∈ { 1 , . . . , n } , and therefore also p i j � = 1 , for every i, j ∈
 1 , . . . , n } , which means that an alternative is never completely

excluded” against another one and also never “fully dominates”

nother one. (This may be achieved by replacing a zero prefer- 

nce with an arbitrarily small ε > 0 preference). It is easy to see 

hat under this particular condition the matrix S is irreducible and 

periodic (see Appendix A ). Then, according to Perron-Frobenius 

heorem ( Horn & Johnson, 1990; MacCluer, 20 0 0 ), S being an ir- 

educible aperiodic stochastic matrix, there is a unique stationary 

olution π satisfying: 

= πS . (8) 

The stationary distribution π can be computed iteratively via 

 random walk on the Markov chain defined by the stochastic ma- 

rix S, or analytically via the computation of the eigenvector associ- 
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π

f

ted with the highest eigenvalue of the matrix S. We will interpret 

he stationary distribution π as a weighted ranking, where each 

omponent of the vector π (each “weight”) represents the impor- 

ance of the corresponding alternative with respect to the whole 

et of alternatives, and we will refer to this method for computing 

ankings as a Rank Centrality (RC) method ( Negahban, Oh, & Shah, 

016 ). We call the corresponding matrix S a centrality matrix . 

To justify the above interpretation of the stationary vector π , 

e analyse its relation with the initially given preference matrix P . 

ccording to Eq. (8) , the components of the vector π read: 

i = 

n ∑ 

j=1 

π j s ji . (9) 

he product π j s ji in the above sum represents the probability of 

ransitioning from x j to x i adjusted by the weight of x j and, simi- 

arly as in ( Dopazo & Martínez-Céspedes, 2017 ), can be interpreted 

s the relative importance of alternative x i with respect to the al- 

ernative x j . Then, since πi , according to Eq. (9) , is a sum of such

roducts, it can be interpreted as the (absolute) importance of x i . 

ow, according to Eq. (6a) , the transition probabilities s ji are pro- 

ortional to preferences p i j , hence we can interpret π j s ji as rela- 

ive preference strength of x i with respect to x j , and πi as (absolute) 

reference strength of x i . 

There are two important properties of the RC method. The first 

roperty is that the ranking dynamics follows a continuous time 

arkov chain in global balance, and the respective balance equa- 

ion can be easily derived from Eq. (6) and Eq. (8) . Namely, from

q. (9) we obtain: 

i = πi s ii + 

n ∑ 

j =1 , j � = i 
π j s ji , (10) 

hich is equivalent to 

1 − s ii ) πi = 

n ∑ 

j =1 , j � = i 
π j s ji . (11) 

rom Eq. (6) we have 

 − s ii = 

n ∑ 

j =1 , j � = i 
s i j , (12) 

hich together with Eq. (11) and Eq. (6a) leads to the following 

quations 

n ∑ 

j =1 , j � = i 
s i j πi = 

n ∑ 

j =1 , j � = i 
s ji π j 

n ∑ 

j =1 , j � = i 
p ji πi = 

n ∑ 

j =1 , j � = i 
p i j π j , (13) 

hich we call the global balance equations. Notice that the stronger 

ondition which assumes a term-by-term equality between the 

ums in Eq. (13) , for every i ∈ { 1 , . . . , n } , is called a detailed balance .

e discuss the case of a detailed balance in a subsequent section. 

The second property is given by the relation between the com- 

onents of the stationary solution (ranking) and the initial prefer- 

nce degrees that follows directly from the second global balance 

quation: 

i = 

1 ∑ n 
j =1 , j � = i p ji 

n ∑ 

j =1 , j � = i 
p i j π j . (14) 

Note that if we did not have the terms π j on the right hand- 

ide of the Eq. (14) , then the method would have been equivalent 

o the Netflow method since πi would be proportional to 
∑ n 

j � = i p i j 
5 
hich is the case for NF (x i ) too as seen in Eq. (4) . However, hav-

ng π j on the right-hand side of Eq. (14) reflects the idea of cen- 

rality ranking. Namely, the importance of each alternative x j � = x i 
uantified by π j is taken into account when determining πi . Thus, 

eak alternatives that have low π j due to being dominated by 

any other alternatives will not contribute much to the increase 

f πi even if p i j is large, because one needs to consider the prod- 

ct p i j π j and not only p i j as in the classical Netflow method. In- 

ormally, this means that beating weak alternatives, i.e. alternatives 

ith low π j , does not increase much the ranking. This is one of the 

ore ideas of the Rank Centrality method ( Negahban et al., 2016 ). 

.2. The GDM method 

Our framework for preference aggregation consists of the fol- 

owing subsequent steps: 

1. Consider a set of m experts E = { e 1 , . . . , e m 

} . Each expert e k ,

1 ≤ k ≤ m , has a pairwise preference matrix P (k ) over the set 

of alternatives X = { x 1 , . . . , x n } . 
2. Using Eq. (6) , for each matrix P (k ) we compute the correspond- 

ing stochastic matrix S (k ) . 

3. We solve Eq. (8) for each expert e k , i.e. we solve π = πS (k ) , for

k = 1 , . . . , m , and denote the unique solution by π(k ) . The vector

π(k ) = [ π(k ) 
1 

, . . . , π(k ) 
n ] defines a weighted ranking of the alter- 

natives corresponding to the preferences of the expert e k over 

the set of n alternatives. As observed in the previous section, 

π(k ) 
i 

can be interpreted as the preference strength of the alter- 

native x i according to expert e k . Then, since π(k ) is a probability 

distribution over X , it can be seen as representing the expert 

e k ’s distribution of preference strengths over X . 

4. We define the collective ranking vector as the arithmetic aver- 

age of the individual ranking vectors, determining its compo- 

nents as follows: 

π(c) 
i 

= 

1 

m 

m ∑ 

k =1 

π(k ) 
i 

. (15) 

Notice that, by taking the arithmetic average of the individual 

anking vectors as the aggregated state π(c) , one naturally defines 

he consensual stage with respect to that aggregated state: perfect 

onsensus occurs when all the experts arrive at the same opinion 

iven by π(c) . Moreover, such definition of perfect consensus state 

eflects the assumption that the perfect consensus state should 

ot be near to some specific expert and in prejudice to the other. 

rom a more physical perspective, one can take π(c) as the cen- 

er of mass of the set of opinions of the m experts (expressed as 

eighted rankings), in the space of all the possible opinions, i.e. it 

s the unique point from which all the experts’ opinions are seen 

qually distributed, 
∑ m 

k =1 (π
(k ) 
i 

− π(c) 
i 

) = 0 , for every i = 1 , . . . , n . In

ther words, using the arithmetic average in the aggregation phase 

f the GDM process provides a safe alternative to reaching a con- 

ensus, in the absence of a special third phase for that purpose in 

he process. 

An extension to WA or OWA is straightforward and does not 

ompromise the bulk of our framework: For any choice of weights, 

hich should depend on the specific set of experts and/or the spe- 

ific decision making context, rankings and preferences will still be 

reatable within our framework. 

.3. The detailed balance case 

Recall that the stationary vector satisfies the detailed balance 

time reversibility) property if the following equation holds: 

i s i j = π j s ji , (16) 

or every i, j ∈ { 1 , . . . , n } . 
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In this section we assume that Eq. (16) holds for the elements 

f the stochastic matrix S and the components of the correspond- 

ng stationary vector obtained in steps 2. and 3. in the previous 

ection. Then, combining Eq. (5) , Eq. (6) and Eq. (16) , one arrives

o the following equation equivalent to Eq. (16) : 

p i j = 

πi 

πi + π j 

. (17) 

q. (17) highlights the correspondence between pairwise expressed 

references in the form of a preference matrix and the prefer- 

nce strengths assigned to the alternatives in the corresponding 

eighted ranking vector. Note that Eq. (17) implies transitivity 

f the preference matrix P (from p i j > 0 . 5 and p jk > 0 . 5 follows

p ik > 0 . 5 ). 

Notice that Eq. (17) means that the preference relation P satis- 

es the Bradley-Terry-Luce (BTL) model ( van Berkum, 1997 ). It was 

emonstrated also by Rajkumar and Shivani ( Rajkumar & Agarwal, 

014 ) that the time-reversibility of S is equivalent to the existence 

f an underlying BTL model that describes the preferences in P ac- 

ording to their preference strengths π . 

At this juncture, we shall present a theorem that provides 

 mathematical interpretation of the stationary distribution of 

he centrality matrix S corresponding to the preference matrix P , 

amely that the stationary distribution of S is a maximum likeli- 

ood estimate of the BTL model underlying P . 

heorem 1. Let the BTL pairwise comparison model be defined by 

 parameter vector π = [ π1 , . . . , πn ] , πi ∈ (0 , 1) , i.e. p i j = 

πi 
πi + π j 

, for

, j ∈ { 1 , . . . , n } , where p i j = P (x i > x j ) . 
4 Let P = [ p i j ] be a preference

atrix and let S be its corresponding centrality matrix defined by Eq. 

6a) and Eq. (6b) . Then the Maximum Likelihood Estimate (MLE) of 

he BTL model satisfies the global balance equation with P . 

The proof of the above theorem can be found in Appendix B . 

he theorem states that the MLE of the parameter vector π of the 

TL model for pairwise comparisons of n alternatives, π ∗, satisfies 

he global balance property given in Eq. (13) with the ground truth 

robabilities P of the model. This means that π ∗ is a stationary 

istribution of the centrality matrix S corresponding to P , since the 

lobal balance equations in Eq. (13) are derived from the stationary 

istribution in Eq. (9) through a series of equivalence steps. Finally, 

ince the stationary distribution of S is unique on the unit interval, 

e can conclude that it is equal to π ∗, the MLE of the BTL model

n which P describes the probabilities of the pairwise comparisons. 

In Section 3.1 we discussed two general properties of the RC 

ethod. Here, we observe that in the special case when the rank- 

ng vectors determined in step 3. of the GDM procedure satisfy de- 

ailed balance, i.e. the equations (16) and (17) , two desirable prop- 

rties of the aggregation processes are satisfied: internal consis- 

ency and the Pareto principle. We interpret these properties simi- 

arly as in ( Dong & Zhang, 2014 ) and ( Chiclana, Herrera, & Herrera-

iedma, 2002 ). 

Internal Consistency. In our setting, internal consistency can 

e understood as the consistency of the process that transforms 

ach expert’s opinion from its initial form of a preference matrix, 

hrough a stochastic matrix, to its end form of a weighted ranking 

ector. In other words, the property of internal consistency is sat- 

sfied if the following holds: The derived individual ranking of the 

 -th expert by the procedure described in Section 3.1 , reflects her 

nitial preference relation, ranking higher (assigning higher weights 

o) the alternatives she prefers more: p (k ) 
i j 

≥ p (k ) 
ji 

if and only if 
4 x i > x j can be interpreted as “x i wins over x j ”, “x i is preferred to x j ”, etc., and 

(x i > x j ) is the probability of this event that is to be estimated from a number of 

airwise comparisons in the set of alternatives X = { x 1 , . . . , x n } . 

s

t

6 
(k ) 
i 

≥ π(k ) 
j 

, for every i, j ∈ { 1 , . . . , n } . This property follows imme-

iately from Eq. (17) . 

Pareto principle. The general interpretation of the Pareto princi- 

le (unanimity) in the social-choice theory is as follows: If all the 

xperts agree upon a certain issue, then this agreement is reflected 

n the derived collective opinion. In our framework, it can be inter- 

reted as the following requirement: If all the experts prefer the 

lternative x i over the alternative x j in their individual preference 

elations, then x i ranks higher than x j in the collective ranking. 

ore formally, if p (k ) 
i j 

≥ p (k ) 
ji 

, for every k = 1 , . . . , m , then π c 
i 

≥ π c 
j 
.

his is a consequence of Eq. (17) and Eq. (15) : If p (k ) 
i j 

≥ p (k ) 
ji 

, for

very k = 1 , . . . , m , then, from Eq. (17) it follows that π(k ) 
i 

≥ π(k ) 
j 

,

or every k = 1 , . . . , m . From the last and Eq. (15) , it follows that
(c) 
i 

≥ π(c) 
j 

. 

Note that the above two properties are based on qualitative 

omparisons between preferences where neither the magnitude 

f preferences and preference strengths nor the information on 

hether the dominated alternatives are weak or strong, is taken 

nto account. Since these are crucial elements in the Rank Central- 

ty method that enable deriving meaningful rankings, they justify 

he violation of the properties of internal consistency and Pareto 

ptimality in the general case. This is clearly demonstrated by our 

xample in Section 5.1 . It would be interesting, however, to exam- 

ne the sensitivity of the latter properties to changes in the initial 

atrices. 

. Sensitivity Analysis (SA) 

In this section we perform a theoretical sensitivity analysis of 

he Rank Centrality method. More specifically, we analyse the sen- 

itivity of the output of the procedure described in Section 3.1 in 

ace of small variations of the input, i.e. small variations in the val- 

es of the matrix parameters. The aim of this analysis is to under- 

tand how the centrality-based ranking of the alternatives is af- 

ected by small changes in the experts’ opinions. As a basis for our 

nalysis we use the derivatives of the output, and we largely apply 

esults from Golub and Meyer ( Golub & Meyer, 1986 ). 

Recall that the input of the RC ranking method is an n × n pref- 

rence matrix P ( n ≥ 2 ) that is additive reciprocal, i.e. a matrix 

hose elements p i j are in the unit interval and obey the condi- 

ion 

p i j = 1 − p ji . (18) 

We consider an ε-perturbation of the matrix P resulting in a 

ew matrix ˜ P (ε) , where the preferences associated with one par- 

icular pair of alternatives (x k , x l ) change as follows: 5 

˜ p kl = p kl + ε (19) 

ith 0 < ε 	 1 , and consequently, from Eq. (5) , 

˜ p lk = 1 − ˜ p kl = p lk − ε. (20) 

Let S and 

˜ S (ε) be the centrality matrices of P and 

˜ P (ε) respec- 

ively. Note that ˜ P (0) = P and 

˜ S (0) = S. Whenever there is no con-

usion, we will omit the dependency on ε from the notation. Ac- 

ording to Eq. (6) , the corresponding entries of ˜ S (ε) are then given 

y: 

˜ 
 kl = 

1 

n − 1 

˜ p lk = s kl −
ε

n − 1 

, 

˜ 
 lk = s lk + 

ε

n − 1 

. 
5 For simplicity, but also for clarity of the observations we make, we restrict to 

he case of varying the preferences related to only one pair of alternatives. 
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a  
As for the diagonal terms, the only terms affected by the per- 

urbation in the preference matrix are ˜ s kk and ˜ s ll : 

˜ 
 kk = s kk + 

ε

n − 1 

, 

˜ s ll = s ll −
ε

n − 1 

. 

All these variations can be written in a compact form for the 

entrality matrix as 

˜ 
 (ε) = S + S ε

here 

 ε = 

k l ⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

0 . . . 0 . . . 0 . . . 0 

. . . 
. . . 

. . . 
. . . 

. . . . . . 
. . . 

0 . . . ε
n −1 

. . . − ε
n −1 

. . . 0 k 
. . . . . . 

. . . 
. . . 

. . . . . . 
. . . 

0 . . . ε
n −1 

. . . − ε
n −1 

. . . 0 l 
. . . . . . 

. . . 
. . . 

. . . 
. . . 

. . . 
0 . . . 0 . . . 0 . . . 0 

(23) 

heorem 2. Let ˜ π(ε) be the stationary distribution of ˜ S (ε) . Then 

∂ ˜ πi (ε) 

∂ε
= 

˜ πk + ˜ πl 

n − 1 

(t li − t ki ) πi , (24) 

here t ji denotes the mean first passage time from x i to x j , i.e. the

xpected number of steps to reach state x j for the first time starting 

rom state x i , in the unperturbed centrality matrix ˜ S (0) = S. 

The proof of Theorem 2 is given in Appendix C . Note that Eq.

24) implies
∂ ˜ πk (ε) 

∂ε
= 

˜ πk + ̃  πl 
n −1 t lk πk > 0 and

∂ ̃  πl (ε) 

∂ε
= − ˜ πk + ̃  πl 

n −1 t kl πl < 0 

hich is expected. 

The perturbation of the preference associated with the pair 

x k , x l ) affects every component ˜ πi in the stationary distribution 

˜ (ε) of the centrality matrix ˜ S (ε) . For sufficiently small ε these 

omponents can be written as 6 

˜ i 
 πi + ε

(
∂ ˜ πi 

∂ε

)
ε=0 

= πi 

(
1 + ε

˜ πk + ˜ πl 

n − 1 

(t li − t ki ) 

)
. (25) 

quation (25) can be interpreted as follows: For similar first pas- 

age times between alternatives, the perturbation of preferences in 

 single alternative-pair has an effect in the stationary distribution 

hat is proportional to the amplitude of its components: dominant 

lternatives (higher rank) are more affected than other alternatives. 

One important consequence of Eq. (25) is that one can estimate 

rst passage times for all possible transitions between alternatives. 

ndeed, for k = i and l = i , since t kk = t ll = 0 by definition of first

assage time, Eq. (25) yields respectively 

 lk = 

(
˜ πk 

πk 

− 1 

)
n − 1 

ε

1 

˜ πk + ˜ πl 

, (26a) 

 kl = 

(
1 − ˜ πl 

πl 

)
n − 1 

ε

1 

˜ πk + ˜ πl 

. (26b) 

Equation (25) can be used to estimate the global deviation of 

˜ (ε) from the ”unperturbed” stationary distribution ˜ π(0) : 

| ̃  π(ε) − ˜ π(0) || 2 
 ε2 ( ̃  πk + ˜ πl ) 
2 

n − 1 

〈 (t li − t ki ) 
2 π2 

i 〉 i , (27) 
6 It is worth mentioning that those two equations can be obtained too by apply- 

ng Proposition 2.1 due to Cho and Meyer ( Cho & Meyer, 20 0 0 ) 

t

w

m

7 
here 

 (t li − t ki ) 
2 π2 

i 〉 i ≡ 1 

n − 1 

n ∑ 

i =1 

(t li − t ki ) 
2 π2 

i . (28) 

his equation can be interpreted as follows. The global deviation of 

˜ (ε) from the unperturbed stationary distribution ˜ π(0) increases 

ith a ”weighted” second moment of the components of the un- 

erturbed stationary distribution. The weights for the component 

i are given by the difference between the first passage times from 

he corresponding alternative x i to the ”perturbed altrenatives” x k 
nd x l . 

This observation has two main consequences. First, the result 

n Eq. (27) uncovers another intuitive consequence: the compo- 

ents of the stationary distribution which remain unchanged by 

erturbing the preference for a pair of alternatives (x k , x l ) are 

hose for which the mean first passage times from the corre- 

ponding alternative x i to each alternative in the perturbed pair 

s equal, i.e. t ki = t li . In particular, perturbing the preference for 

airs of alternatives (x k , x l ) , which are evenly chosen in front of

ll other alternatives x i , i.e. t ki = t li for all i � = k and i � = l, will

ave no impact on the global preference strengths of the al- 

ernatives. Their impact is reduced to local changes of the am- 

litudes of each alternative in the perturbed pair, namely ˜ πk 

nd ˜ πl . 

Second, since deviations between perturbed and unperturbed 

tationary distribution are easy to measure in practice, Eq. (25) and 

27) provide new insight for establishing a framework to assess, 

t least at a qualitative level, the impact of local perturbations in 

he global dynamics towards consensus. Namely, the results of this 

ection have some implications when it comes to reaching consen- 

us worth pursuing as future work. In fact, we can formalize the 

onsensus problem as a gradient descent optimization where ex- 

erts need to do small adjustment to their preference matrices. 

he sensitivity of Markov chains to their transition probabilities 

an be used for computing the gradient in order to make the in- 

ividual stationary distribution of each expert move towards col- 

ective stationary distribution, by only adjusting the corresponding 

reference matrices. 

. Testing GDM with FPR: numerical experiments 

In this section we provide a concrete example of a GDM with 

PR using our method. We first compare the results of using our 

ethod against the results of using the popular Netflow method. 

hen, we perform an experimental sensitivity analyses to ex- 

lore what happens to the resulting ranking vector if we vary 

he entries of the initial preference matrices 1. by several values 

f ε > 0 applied to the same pair of alternatives; and 2. by a 

mall fixed ε > 0 applied to different pairs of alternatives in the 

atrix. 

We start by a numerical example highlighting the similarities 

nd differences between our algorithm and an algorithm that uses 

he standard Netflow (NF) method. 

.1. A numerical example 

We consider a first scenario with two experts ( m = 2 ) and four

lternatives ( n = 4 ) 7 The experts’ opinions are expressed in the fol-
7 The code for performing the computations involved in the examples of this sec- 

ion is available at https://github.com/FMZennaro/GDM . The code can be straightfor- 

ardly changed for another number of experts. We have also tested for m = 3 and 

 = 4 , observing the same qualitative results. 

https://github.com/FMZennaro/GDM
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owing preference matrices: 

 1 = 

⎡ 

⎢ ⎣ 

0 . 50 0 . 60 0 . 30 0 . 10 

0 . 40 0 . 50 0 . 25 0 . 05 

0 . 70 0 . 75 0 . 50 0 . 55 

0 . 90 0 . 95 0 . 45 0 . 50 

⎤ 

⎥ ⎦ 

, (29a) 

 2 = 

⎡ 

⎢ ⎣ 

0 . 50 0 . 55 0 . 25 0 . 05 

0 . 45 0 . 50 0 . 25 0 . 05 

0 . 75 0 . 75 0 . 50 0 . 58 

0 . 95 0 . 95 0 . 42 0 . 50 

⎤ 

⎥ ⎦ 

. (29b) 

The entries of the preferences matrices P 1 and P 2 differ by 5% or 

ore, in a scale from 0 to 1. They can be provided by experts di-

ectly as numerical values or obtained, for example, by qualitative 

reference modelling. 8 

Assuming, for the sake of illustration, that these preferences 

epresent relationships between pairs of four different sport teams 

n two different leagues, the relationships in both leagues share 

wo common features: (i) the third team is moderately better than 

he first and the second team, while the fourth team is much bet- 

er than the first and the second team, and (ii) the third team 

eems, against intuition, to be better than the fourth team. We ob- 

erve what happens with the ranking vectors derived from these 

wo matrices when we apply our method. 

First of all, we normalize the preference matrices into stochastic 

atrices applying the Eq. (6) from Section 3.1 . This produces the 

ollowing centrality matrices: 

 1 = 

⎡ 

⎢ ⎣ 

0 . 33 0 . 13 0 . 23 0 . 30 

0 . 20 0 . 23 0 . 25 0 . 32 

0 . 10 0 . 08 0 . 67 0 . 15 

0 . 03 0 . 02 0 . 18 0 . 77 

⎤ 

⎥ ⎦ 

, 

 2 = 

⎡ 

⎢ ⎣ 

0 . 28 0 . 15 0 . 25 0 . 32 

0 . 18 0 . 25 0 . 25 0 . 32 

0 . 08 0 . 08 0 . 69 0 . 14 

0 . 02 0 . 02 0 . 19 0 . 77 

⎤ 

⎥ ⎦ 

. 

Then we apply two direct methods to derive a group ranking of 

he alternatives: 

• (NF+WA) : exploitation is performed by computing a per-expert 

ranking using Netflow, and then aggregation is performed by 

computing the final collective ranking using WA with uniform 

weights. 
• (RC+WA) : exploitation is performed by computing a per-expert 

ranking using Rank Centrality, and then aggregation is per- 

formed by computing the final collective ranking using WA 

with uniform weights. 

The output weighted rankings produced by these methods are 

he following: 

utput NF+WA = 

[
−0 . 383 −0 . 517 0 . 36 0 . 54 

]

utput RC+WA = 

[
0 . 087 0 . 069 0 . 388 0 . 456 

]
, 
8 One can, for example, use linguistic preference modelling ( Herrera, Alonso, Chi- 

lana, & Herrera-Viedma, 2009 ), and even give each individual expert the possibility 

o use different preference domains to express their respective preferences. This is- 

ue is studied in ( Delgado, Herrera, Herrera-Viedma, & Martinez, 1998 ) where it is 

hown that in such heterogeneous decision contexts, it is possible to achieve a so- 

ution by first making the preferences uniform by converting them into FPRs over 

0,1] by means of transformation functions. 

f

t

t

o

b

d

a

t

8 
orresponding to the following qualitative rankings: 

ank NF+WA = 

[
4 3 1 2 

]
ank RC+WA = 

[
4 3 1 2 

]
, 

here the i-th element is the index of the alternative with the i- 

h best preference strength (in this case, the 4-th alternative is the 

ost preferred, the 3-rd alternative is the second most preferred, 

nd so on). The results are identical, and they rank the fourth al- 

ernative at the top, which captures the intuition in the football 

eams example. Note that in the above example, we have violation 

f both Internal Consistency and Pareto Optimality at the alterna- 

ives 3 and 4, but we still obtain a meaningful ranking. 

We now consider a second scenario, again with two experts 

 m = 2 ) and four alternatives ( n = 4 ), but with the following pref-

rence matrices: 

 3 = 

⎡ 

⎢ ⎣ 

0 . 50 0 . 60 0 . 20 0 . 10 

0 . 40 0 . 50 0 . 15 0 . 05 

0 . 80 0 . 85 0 . 50 0 . 55 

0 . 90 0 . 95 0 . 45 0 . 50 

⎤ 

⎥ ⎦ 

, 

 4 = 

⎡ 

⎢ ⎣ 

0 . 50 0 . 55 0 . 15 0 . 05 

0 . 45 0 . 50 0 . 2 0 . 05 

0 . 85 0 . 8 0 . 50 0 . 58 

0 . 95 0 . 95 0 . 42 0 . 50 

⎤ 

⎥ ⎦ 

. 

otice that this new set of preference matrices preserves the rela- 

ionships of dominance described in i) and ii) above; however the 

egrees by which the third alternative dominates the first and the 

econd one have been increased, although they remain lower than 

he corresponding ones of the fourth alternative. 

After normalization according to Eq. (6) from Section 3.1 we ob- 

ain the following stochastic centrality matrices: 

 3 = 

⎡ 

⎢ ⎣ 

0 . 30 0 . 13 0 . 27 0 . 30 

0 . 20 0 . 20 0 . 28 0 . 32 

0 . 07 0 . 05 0 . 73 0 . 15 

0 . 03 0 . 02 0 . 18 0 . 77 

⎤ 

⎥ ⎦ 

, 

 4 = 

⎡ 

⎢ ⎣ 

0 . 25 0 . 15 0 . 28 0 . 32 

0 . 18 0 . 23 0 . 27 0 . 32 

0 . 05 0 . 07 0 . 74 0 . 14 

0 . 02 0 . 02 0 . 19 0 . 77 

⎤ 

⎥ ⎦ 

. 

Again we apply the two GDM strategies described above 

NF+WA and RC+WA). The outcomes are: 

utput NF+WA = 

[
−0 . 45 −0 . 567 0 . 477 0 . 54 

]
utput RC+WA = 

[
0 . 065 0 . 054 0 . 441 0 . 439 

]
, 

ith corresponding rankings: 

ank NF+WA = 

[
4 3 1 2 

]
ank RC+WA = 

[
3 4 1 2 

]
. 

his time, the results differ in the ordering of the third and the 

orth alternative. The difference in the results between the first and 

he second scenario shows that the approach based on rank cen- 

rality has a distinctive sensitivity to the magnitude of the relations 

f preference among the alternatives. In particular, the approach 

ased on RC+WA may rank higher alternatives that marginally 

ominate weak alternatives but also marginally dominate strong 

lternatives. This is consistent with the interpretation of rank cen- 

rality provided in ( Negahban et al., 2012; 2016 ). 
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Fig. 2. Output of the two GDM strategies (NF+WA and RC+WA) when applied to ˜ P 1 (ε) and P 2 as a function of the parameter ε. See Eq. (29a) and (30) . 
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Table 1 

Estimates of all first passages times ˆ t i j according to Eq. (26) for matrix S 1 , com- 

pared with the values computed directly from the respective Markov chain simu- 

lation. 

k/l 1 2 3 4 

1 — ˆ t 12 = 11 . 7042 ˆ t 13 = 12 . 7304 ˆ t 14 = 15 . 1242 
ˆ t 21 = 16 . 3057 ˆ t 31 = 4 . 8454 ˆ t 41 = 4 . 1701 

t 12 = 11 . 7039 t 13 = 12 . 7326 t 14 = 15 . 1259 

t 21 = 16 . 3063 t 31 = 4 . 8463 t 41 = 4 . 1706 

2 ˆ t 21 = 16 . 3057 — ˆ t 23 = 16 . 8106 ˆ t 24 = 19 . 8224 
ˆ t 12 = 11 . 7024 ˆ t 32 = 4 . 7643 ˆ t 42 = 4 . 1132 

t 21 = 16 . 3063 t 23 = 16 . 8135 t 24 = 19 . 8258 

t 12 = 11 . 7039 t 32 = 4 . 7653 t 42 = 4 . 1140 

3 ˆ t 31 = 4 . 8473 ˆ t 32 = 4 . 7665 — ˆ t 34 = 5 . 3176 
ˆ t 13 = 12 . 7349 ˆ t 23 = 16 . 8167 ˆ t 43 = 5 . 2789 

t 31 = 4 . 8463 t 32 = 4 . 7653 t 34 = 5 . 3184 

t 13 = 12 . 7326 t 23 = 16 . 8135 t 43 = 5 . 2797 

4 ˆ t 41 = 4 . 1713 ˆ t 42 = 4 . 1148 ˆ t 43 = 5 . 2805 —
ˆ t 14 = 15 . 1280 ˆ t 24 = 19 . 8291 ˆ t 34 = 5 . 3192 

t 41 = 4 . 1706 t 42 = 4 . 1140 t 43 = 5 . 2797 

t 14 = 15 . 1259 t 24 = 19 . 8258 t 34 = 5 . 3184 

e

w

p

s

t  

t  

r

c

e

p

R

s

a

t  

−
t

p 32 12  

9 Thus the aggregated preference strength of the alternative 3 will increase. 
.2. Experimental sensitivity analysis 

In this section we perform experimental sensitivity analysis, in- 

estigating how the result of the group decision making changes 

nder a perturbation of amplitude ε in the initial preference matri- 

es. We restrict to the case when only one of the initial preference 

atrices changes in only one pair of alternatives, and we observe 

ow various degrees of change affect the result. We consider again 

he first scenario we presented in the previous simulation, but this 

ime we instantiate a parametric version of the matrix P 1 for the 

rst expert: 

˜ 
 1 (ε) = 

⎡ 

⎢ ⎣ 

0 . 50 0 . 60 0 . 30 − ε 0 . 10 

0 . 40 0 . 50 0 . 25 0 . 05 

0 . 70 + ε 0 . 75 0 . 50 0 . 55 

0 . 90 0 . 95 0 . 45 0 . 50 

⎤ 

⎥ ⎦ 

(30) 

ith the parameter ε assuming values in the interval [0,0.3) in or- 

er to satisfy the requirement that, for every entry, 0 < p i j < 1 . The

parameter allows us to increase the margin of the preference of 

he third alternative over the first, and, consequently, to narrow 

he gap between the third and the fourth alternative. The prefer- 

nce matrix of the second expert is taken to be the same fixed 

atrix P 2 used in the previous section. We then apply the two di- 

ect methods we considered before (NF+WA and RC+WA) to the 

atrices ˜ P 1 (ε) and P 2 , while changing the value of the parameter 

. 

Fig. 2 shows the variation in the output of the two methods as 

 function of the parameter ε. The results show that the two direct 

ethods respond differently to similar changes. As the parameter 

increases, the gap between the third and the fourth alternative 

arrows more significantly when using RC+WA instead of NF+WA. 

his change also leads to a decrease in the value of the first al- 

ernative that is more marked for the RC+WA method; indeed, for 

alues of ε around 0.20 the first alternative becomes less prefer- 

ble than the second one; for the range of ε that we considered, 

e do not notice a similar change in the ordering of the first and

he second alternative in the NF+WA method. 

When applying RC+WA in a scenario with many alternatives 

here we only perturb one pair of them, it is not always obvi- 

us how this perturbation will reflect on the resulting preference 

trengths of the alternatives: which of them will have their pref- 
9 
rence strengths increased or decreased and for how much. As we 

ill see, our theoretical perturbation analysis given by Eq. (24) can 

redict and interpret the changes based on the mean first pas- 

age times and the magnitudes of the preference strengths. The 

rue mean first passage times are given in Table 1 . In our case,

he pair that is changed is (x k , x l ) = (3 , 1) . As per our theoretical

esults, the preference strength of the alternative 3 for expert 1 

omputed by RC will increase proportionally to t 13 = 12 . 7326 mod- 

rated by the strength π(1) 
3 

of the alternative itself. 9 Similarly the 

reference strength of the alternative 1 for expert 1 computed by 

C will decrease proportionally to t 31 = 4 . 8463 moderated by the 

trength π(1) 
1 

of the alternative itself. But what about the rest of 

lternatives? The changes in the preference strength of the alterna- 

ive 4 for expert 1 is proportional to t 34 − t 14 = 5 . 3184 − 15 . 1259 =
9 . 8075 moderated by π(1) 

4 
, meaning it will decrease. For alterna- 

ive 2, the changes in the preference strength for the first expert is 

roportional to t − t = 4 . 7653 − 11 . 7039 = −6 . 9386 moderated
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Fig. 3. Deviation of each component of the perturbed stationary distribution ˜ π(ε) 

in percentage of the respective component of the unperturbed stationary distribu- 

tion π(0) , when the preference matrix is changed for one single pair of alternatives 

(x k , x l ) . In all cases ε = 0 . 001 . See Eq. (25) . 
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y the strength the alternative itself π(1) 
2 

. Since π(1) 
2 

is small, the 

agnitude of the latter changes is small too as can be seen in the 

ggregated weighted ranking given in Fig. 2 . 

To end the sensitivity analysis for this particular numerical 

xperiment, we fix the perturbation amplitude at a small value, 

amely ε = 0 . 001 , and apply it to each pair of alternatives (x k , x l )

n the matrix P 1 . The results are shown in Fig. 3 . While the larger

eviations are typically observed for the components of the sta- 

ionary distribution associated with the perturbed pair, namely πk 

nd πl , one also observes significant changes in the other compo- 

ents. For example, when perturbing the pair (4,2) one observes 

lso a significant change in the amplitude of the first component, 

nd when perturbing the pair (3,4), all components are signifi- 

antly affected. Note that, in all cases the deviations for (x k , x l ) and

x l , x k ) are symmetric, as expected from Eq. (25) . 

Finally, in Fig. 4 we show the difference of the first passage 

imes, t li − t ki , for each perturbated pair of alternatives (x k , x l ) con-

idered in Fig. 3 , as computed directly from Eq. (25) . Similarly, one

lso observes cases where the perturbation of one particular pair 

f alternatives induces a change in the transitions from another al- 
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ig. 4. For each perturbation of the preference matrix shown in Fig. 3 one plots the 

ifference of first passage times, t li − t ki , from each alternative x i to each alternative 

f the perturbed pair (x k , x l ) . The values were obtained by solving Eq. (25) for t li −
 ki . 
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10 
ernative to the alternatives in the perturbed pair. Moreover, ap- 

lying Eq. (26) we estimate the first passage times for all pairs of 

lternatives. Notice that, repeating the numerical experiment in- 

erchanging the role of k and l enables to make two estimates for 

ach first passage time. As shown in Tab. 1 , in all the cases both

stimates are close to each other, showing the ability of our pro- 

edure for estimating this dynamical property of consensus pro- 

esses. 

. Conclusions and future work 

In this paper we have presented a direct approach to aggregat- 

ng fuzzy preference relations proposing a GDM method based on 

ank centrality. The method has the advantage of providing a natu- 

al interpretation of the preference degrees as transition probabil- 

ties in a Markov chain and obtaining the corresponding weighted 

ankings by well-established computational methods. Moreover, as 

e show with our numerical examples, our approach shows more 

ensitivity to small variations in the preference values compared to 

ther similar approaches. 

The natural next step is to design an experiment to test our 

ramework and compare it with other GDM with FPR frameworks 

n the literature. We have implemented an online platform for col- 

ecting data during an iterative process towards consensus, which 

ill enable to investigate the distances in the opinion space, either 

o the collective opinion, or pairwise distances between experts’ 

pinions. In this way we can test our framework for modelling 

rocesses towards reaching a consensus, and examine which ini- 

ial preference matrices lead to a consensual opinion. Finally, such 

xperimental setup will also enable to investigate the time inter- 

al needed for achieving consensus in various real-life applications, 

nd determine which framework enables the fastest converging it- 

rative processes. Moreover, investigating the inconsistency ( Kou, 

rgu, & Shang, 2014; Kou & Lin, 2014; Lin, Kou, Peng, & Alsaadi, 

020 ) directly from a centrality matrix is a future research direc- 

ion worth investigating. 

We hope that the current work can fuel more research interest 

n bridging the gap between the GDM community and researchers 

n probability theory and its applications. 
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ppendix A. Irreducibility and aperiodicity of the stochastic 

atrix 

A Markov chain is irreducible if it is possible to get to any 

tate from any state. Clearly, if the stochastic matrix S of a Markov 

hain with n states satisfies the condition: s i j > 0 , for every i, j ∈
 1 , . . . , n } , then it (and so the Markov chain) is irreducible. The

bove condition is easy to prove under the assumption we made 

n Eq. (7) . Namely, from Eq. (6a) and the assumption p i j > 0 (fol-

owing from Eq. (7) ), it follows that s i j > 0 , for every i � = j. If we

uppose that s ii = 0 for some i , then, from Eq. (6b) , it will follows

hat 
∑ 

i � = j p i j = n − 1 . From this and the fact that p i j ∈ [0 , 1] , it fol-

ows p i j = 1 , for i � = j, which is in contradiction with the assump-

ion p i j � = 1 (again following from Eq. (7) ). 

It is easy to observe that the centrality matrix and the corre- 

ponding Markov chain are aperiodic. For a Markov chain to be 

periodic, every state has to be aperiodic, that is, for any state i 

he greatest common divisor of the number of steps k that it may 

ake to return to i is 1. Now, from Eq. (6) and from the discus-

ion on irreducibility, we have that s i j > 0 for all i, j. Therefore, for
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10 Matrix A ∗ is also called ”Drazin inverse” of Laplacian, which according to 

Mahadevan et al. (2009) ”reveals a great deal of information about the structure of 

the Markov chain ”. 
ny state i , there is a non-zero probability of returning to state i 

n k steps, for k = { 1 , 2 , 3 , . . . } . The greatest common divisor of this 

umber of steps is then 1. Thus every state i is aperiodic, and the 

arkov chain with its associated centrality matrix is aperiodic. 

ppendix B. Proof of Theorem 1 

To prove Theorem 1 , let us consider a BTL model with parame- 

er vector π such that p i j = 

πi 
πi + π j 

. Let M i j be the number of sam-

le comparisons between x i and x j and m i j the samples in which 

lternative x i wins over x j . Hence, there is a real number, M, such

hat 

 i j = m i j + m ji ≡
⌈

M(πi + π j ) 
⌉

. (B.1) 

here � . � denotes the operator that rounds to nearest integer. In 

hat follows we will only need the limit of large values of M i j 

i.e. M i j → ∞ ) for which M → ∞ and 

⌈
M(πi + π j ) 

⌉
→ M(πi + π j ) . 

Under the assumption of independent and identically dis- 

ributed samples, the likelihood function of the BTL model is given 

y: 

 (π ) = 

n ∏ 

i =1 

n ∏ 

j=1 
j � = i 

p 
m i j 

i j 
= 

n ∏ 

i =1 

n ∏ 

j=1 
j � = i 

(
πi 

πi + π j 

)m i j 

, (B.2) 

here we disregard the case πi = 0 , which only occurs in the 

pathological” case where for some j � = i , p i j = 0 . We take the log-

ikelihood function of (B.2) 

og L (π ) = 

n ∑ 

i =1 

n ∑ 

j =1 , j � = i 
m i j log 

πi 

πi + π j 

. (B.3) 

o find the Maximum Likelihood Estimate (MLE) of the BTL model 

e take the partial derivative of the likelihood function with re- 

pect to the parameters of the model: 

∂ log L (π ) 

∂πi 

= 

n ∑ 

j =1 , j � = i 

(
m i j 

1 

πi 

− (m i j + m ji ) 
1 

πi + π j 

)

= 

n ∑ 

j =1 , j � = i 

(
m i j ( 

1 

πi 

− 1 

πi + π j 

) − m ji 

1 

πi + π j 

)

= 

n ∑ 

j =1 , j � = i 

(
m i j 

1 

πi 

π j 

πi + π j 

− m ji 

1 

πi + π j 

)

= 

1 

πi 

n ∑ 

j =1 , j � = i 

(
m i j 

π j 

πi + π j 

− m ji 

πi 

πi + π j 

)

We determine the MLE π ∗ as the value of π at which the par- 

ial derivatives are zero, that is: 

n ∑ 

j =1 , j � = i 
m i j 

π ∗
j 

π ∗
i 

+ π ∗
j 

= 

n ∑ 

j =1 , j � = i 
m ji 

π ∗
i 

π ∗
i 

+ π ∗
j 

(B.4) 

y applying the law of large numbers, p i j can also be defined as: 

p i j = lim 

M i j →∞ 

m i j 

M i j 

= lim 

M→∞ 

m i j 

M(πi + π j ) 
= lim 

M→∞ 

m i j 

M(π ∗
i 

+ π ∗
j 
) 

lease note that we used the argument that π ∗
i 

+ π ∗
j 

≈ πi + π j by 

irtue of the MLE. Similarly, 

p ji = lim 

M→∞ 

m ji 

M(π ∗
i 

+ π ∗
j 
) 

ence in the limit of M → ∞ 

 i j = p i j M(π ∗
i + π ∗

j ) (B.5) 

nd 

 ji = p ji M(π ∗
i + π ∗

j ) . (B.6) 
11 
y substituting Eq. (B.5) and Eq. (B.6) in Eq. (B.4) we obtain 

n ∑ 

j =1 , j � = i 
p i j M(π ∗

i + π ∗
j ) 

π ∗
j 

π ∗
i 

+ π ∗
j 

= 

n ∑ 

j =1 , j � = i 
p ji M(π ∗

i + π ∗
j ) 

π ∗
i 

π ∗
i 

+ π ∗
j 

, 

hich yields the following global balance equation: 

n ∑ 

j =1 , j � = i 
p i j π

∗
j = 

n ∑ 

j =1 , j � = i 
p ji π

∗
i . 

ppendix C. Proof of Theorem 2 

Let A 

∗ be the group inverse of A = I − S ( Golub & Meyer, 1986 ),

.e. A 

∗ is the unique matrix 10 satisfying the three equations AA 

∗A = 

 , A 

∗AA 

∗ = A 

∗ and A 

∗A = AA 

∗. Let a ∗
i j 

denote the entries of A 

∗, and

et A 

∗
∗i 

be the i-th column of A 

∗. Then, we can apply Theorem 3.2

rom Golub and Meyer ( Golub & Meyer, 1986 ) to study the sensi-

ivity of the ranking to changes of ε, namely: 

∂ ˜ πi (ε) 

∂ε
= ˜ π(ε) 

∂ ̃  S (ε) 

∂ε
A 

∗
∗i = ˜ π(ε) 

∂S ε (ε) 

∂ε
A 

∗
∗i , (C.1) 

here 

∂S ε (ε) 

∂ε
= 

k l ⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

0 . . . 0 . . . 0 . . . 0 

. . . 
. . . 

. . . 
. . . 

. . . . . . 
. . . 

0 . . . 1 
n −1 

. . . − 1 
n −1 

. . . 0 k 
. . . . . . 

. . . 
. . . 

. . . . . . 
. . . 

0 . . . 1 
n −1 

. . . − 1 
n −1 

. . . 0 l 
. . . . . . 

. . . 
. . . 

. . . 
. . . 

. . . 
0 . . . 0 . . . 0 . . . 0 

(C.2) 

Let e i = (0 , . . . , 0 , 1 , 0 , . . . , 0) T be the unit vector with entries δik 

or k = 1 , . . . , n . Then, ∂S ε (ε) 
∂ε

can be written as 

∂S ε (ε) 

∂ε
= 

1 

n − 1 

[ e k � e k − e k � e l − e l � e l + e l � e k ] , 

here � denotes the tensor product between unit vectors. Substi- 

uting this expression in Eq. (C.1) yields 

∂ ˜ πi (ε) 

∂ε
= 

1 

n − 1 

n ∑ 

r=1 

n ∑ 

s =1 

˜ πr 

[ 
(e k � e k ) rs − (e k � e l ) rs 

−(e l � e l ) rs + (e l � e k ) rs 

] 
a ∗si 

= 

1 

n − 1 

n ∑ 

r=1 

n ∑ 

s =1 

˜ πr (δkr δks − δkr δls 

−δlr δls + δlr δks ) a 
∗
si 

= 

1 

n − 1 

( ̃  πk a 
∗
ki − ˜ πk a 

∗
li − ˜ πl a 

∗
li + ˜ πl a 

∗
ki ) 

= 

˜ πk + ˜ πl 

n − 1 

(a ∗ki − a ∗li ) , (C.3) 

here δi j is the Kronecker-delta, δi j = 1 if i = j and zero otherwise. 
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According to Cho and Meyer ( Cho & Meyer, 20 0 0 ), A 

∗ is diago-

ally dominant over the columns, meaning that for all pairs (i, j) 

 

∗
ji = a ∗ii − t ji πi (C.4) 

here t ji denotes the mean first passage time from x i to x j . Intro-

ucing Eq. (C.4) in Eq. (C.3) yields Eq. (24) in Theorem 2 . 
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