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A B S T R A C T

In some manufacturing contexts, such as semiconductor manufacturing, machines must be qualified, or eligible,
to process a product, and machines cannot be qualified for all products. This paper investigates the problem
of optimizing a given number of new qualifications of products to machines to maximize a flexibility measure
that evaluates the balance of the qualification configuration of a work center in terms of utilization rate
of machines on a set of non-identical parallel machines. Motivated by empirical observations, new solution
approaches, notably inspired by heuristics for discrete location problems and based on the analysis of dual
variables, are proposed and compared on industrial data from a semiconductor manufacturing facility and on
randomly instances. The use of dual variables leads to heuristics that are effective both in terms of solution
quality and computational time. The best proposed approach is currently used in the decision support system
of a semiconductor manufacturing facility.
1. Introduction

In some manufacturing contexts with a large variety of products,
machines performing the same type of operations are not always qual-
ified (also called eligible in the literature) to process all products. This
is in particular the case in semiconductor manufacturing, where oper-
ations on many different products (wafers in front-end manufacturing
facilities and integrated circuits in back-end manufacturing facilities)
at different stages of their manufacturing process need to be performed
in different work centers. Each work center may include more than
100 machines that are usually non identical, i.e. the process time on
a machine differs from one product to another. This is because, to
apply a manufacturing process on a given product, a machine must
follow a recipe that defines for instance the pressure, the temperature
conditions and the chemicals that must be used. Recipes can be very
different from one product to another, leading to very different process
times. In manufacturing facilities with a large variety of products, the
recipe count can be of several hundreds in a single work center. In the
remainder of the paper, we use the term product and not recipe.

Moreover, before being allowed to run a product, a machine must
undergo a product-to-machine qualification procedure. Hence, machines
cannot process all products, i.e. a machine is only qualified for a
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limited number of products. For new machines or products, qual-
ification procedures are expensive, time-consuming, can be energy-
consuming and may sometimes take up to several months. Once the
qualification procedure is completed, the machine is qualified for the
product. To maximize manufacturing performances, in particular in
terms of throughput and cycle time, an efficient design and follow-up
of the qualification configuration of each work center is required (see
e.g., Johnzén et al. (2007, 2011); Kabak et al. (2013); Rowshannahad
et al. (2015); Chang and Dong (2017) and Kopp et al. (2018)).

A machine qualified for a product does not remain qualified through-
out its operation in the factory. Qualifications are dynamic, i.e., time-
varying. A machine no longer qualified for a product is said to be
disqualified for the product. A disqualification can occur for different rea-
sons, in particular because of unexpected events, e.g. a consumable be-
comes empty, or following a (scheduled or unscheduled) maintenance
operation. A product can also be disqualified on a machine because
the product has not been processed for a long time (qualification time
window, Obeid et al. (2014) and Kopp et al. (2016)). Contrary to the
initial qualification procedures, re-qualification procedures are usually
less expensive, time-consuming and energy-consuming. Moreover, the
machine is not necessarily down and can run products that are still
qualified. In a work center, disqualifications can be frequent and have
vailable online 14 April 2022
305-0548/© 2022 The Author(s). Published by Elsevier Ltd. This is an open access ar
c-nd/4.0/).

https://doi.org/10.1016/j.cor.2022.105813
Received 27 December 2020; Received in revised form 9 March 2022; Accepted 23
ticle under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-

March 2022

http://www.elsevier.com/locate/cor
http://www.elsevier.com/locate/cor
mailto:antoine.perraudat@emse.fr
mailto:dauzere-peres@emse.fr
mailto:philippe.vialletelle@st.com
https://doi.org/10.1016/j.cor.2022.105813
https://doi.org/10.1016/j.cor.2022.105813
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cor.2022.105813&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


Computers and Operations Research 144 (2022) 105813A. Perraudat et al.

q
m
t
‘
T
d
i
s

q
a
t
S
g
a

2

t
c
f
a
q
g
d
a
t
t
o

2

c
o
s
f
o

b
m
o
o
t
u
m

serious consequences on factory performances, if they are not managed
properly or anticipated (Kopp et al., 2018).

In this paper, we are pursuing the work of Johnzén et al. (2011)
and Rowshannahad et al. (2015) on qualification management on
non-identical parallel machines to optimize flexibility of work cen-
ters. Johnzén et al. (2011) propose a nonlinear qualification manage-
ment optimization model to determine a single optimal qualification
for a ‘‘time’’ flexibility measure that evaluates how balanced are the
workloads between the machines. This work is extended in Rowshan-
nahad et al. (2015) by considering the finite production capacity of
machines to a capacitated time flexibility measure that evaluates how
balanced are the utilization rates of the machines. To our knowledge,
the qualification management optimization problem to optimize the
capacitated ‘‘time’’ flexibility measure of Rowshannahad et al. (2015)
with multiple qualifications has never been considered.

In this paper, we put ourselves in the shoes of a work center man-
ager who must decide the best re-qualifications to perform. Therefore,
we propose and evaluate new efficient optimization approaches that
determine in real time, i.e. in small computational times, the best re-
ualifications of products in a work center with non-identical parallel
achines. The number of re-qualifications and the product quantities

o process are given, and the objective is to maximize the capacitated
‘time’’ flexibility measure proposed by Rowshannahad et al. (2015).
he most relevant approach has been implemented in an operational
ecision support system, which determines and proposes effective qual-
fication plans to work center managers twenty minutes before every
hift (every 8 h).

The paper is organized as follows. In Section 2, the literature on
ualification management is reviewed. Our problem is formalized as
Mixed Integer NonLinear Program (MINLP) in Section 3, and solu-

ion approaches are proposed in Section 4. In Section 5, respectively
ection 6, numerical results on industrial data, respectively randomly
enerated instances, are presented and discussed. Finally, we conclude
nd give perspectives in Section 7.

. Literature review

From a general standpoint, little work has been done on qualifica-
ion management to improve the manufacturing performances of work
enters in semiconductor manufacturing. This can be explained by the
act that the semiconductor industry is a complex process industry
nd, because qualification take time and can be expensive, changing
ualifications or adding costly qualifications may have not been of
reat importance in the past. However, with the normalization and
evelopment of custom products, with the short life cycles of products,
nd because of the fierce competition, manufacturers are more prone
o change or add new qualifications on machines to keep or increase
heir competitive advantage (Johnzén et al., 2007). In the remainder
f the section, closely related works are reviewed.

.1. Assessing the qualification setting of a work center

The literature has studied the definition of Key Performance Indi-
ators (KPIs) to measure the quality of the qualification configuration
f a work center and to guide qualification decisions, in particular for
hort-term operational decisions. Most KPIs in the literature concern
lexibility measures, and mathematical models are also introduced to
ptimize the KPIs.

Johnzén et al. (2011) propose ‘‘WIP’’, ‘‘time’’ and ‘‘toolset’’ flexi-
ility measures. The ‘‘WIP’’, standing for Work-In-Process, flexibility
easure evaluates how balanced are the workloads, not in number

f time units but in number of product units, between the machines
f the work center. Similarly, the ‘‘time’’ flexibility measure evaluates
he balance of the workloads on the machines in number of time
nits. The ‘‘toolset’’ flexibility measure evaluates the risk of having too
any products with a small number of qualified machines. A system
2

flexibility measure is also introduced, which is a weighted sum of
the three flexibility measures. Flexibility measures are used to identify
bottlenecks, the lack of flexibility and to assess the impact of a qualifi-
cation or disqualification on the performance of a work center. Johnzén
et al. (2011) propose a nonlinear qualification management optimiza-
tion model to determine a single optimal qualification for ‘‘WIP’’ and
‘‘time’’ flexibility measures. Rowshannahad et al. (2015) extends the
uncapacitated time flexibility measure proposed by Johnzén et al.
(2011) to a capacitated time flexibility measures by considering the
finite production capacity of each machine. In this case, the utilization
rate of the machine is considered instead of its workload. No solution
approach is proposed to solve the multi-qualification version of the
capacitated qualification management problem of Rowshannahad et al.
(2015).

Rowshannahad and Dauzère-Pérès (2013) extend the ‘‘time’’ flex-
ibility measure by considering batch size constraint. Rowshannahad
et al. (2014) propose another measure to assess the utilization vari-
ability between machines in a work center. Numerical experiments
show that reducing the utilization variability between machines with
additional qualifications significantly improves the utilization balance.
Finally, Pianne et al. (2016) introduce ideal and potential flexibility
measures, and also consider the work center robustness.

More recently, Perraudat et al. (2019) propose a bilevel optimiza-
tion approach partly based on the capacitated time flexibility measure
introduced in Rowshannahad et al. (2015). The utilization balance of
the machines is optimized in the follower problem, as in Rowshannahad
et al. (2015), and then the throughput of the work center is computed
from the utilization rates of the machines. Perraudat et al. (2019)
compare single and multi-period settings and conclude that considering
multiple periods may lead to more relevant qualification decisions due
to production variability. Optimizing the time flexibility measure is
then also a way to optimize the throughput.

2.2. Decision support systems

Interestingly, although the literature is rare on qualification man-
agement, there exist cooperation projects on qualification management
between academics and semiconductor manufacturers (Leachman et al.,
2002; Johnzén et al., 2009; Liao et al., 2017). Leachman et al. (2002)
present a project and a decision support system (DSS) that enabled
a wafer manufacturing facility to significantly reduce the mean cycle
time and make substantial savings. A key element for this success was
the preparation of the right qualifications with respect to the produc-
tion plan. Johnzén et al. (2009) describe a qualification management
software that implements the WIP, time, toolset and system flexibility
measures to recommend a single qualification decision to work center
managers. Finally, Liao et al. (2017) consider a strategic qualification
management problem that consists in adding, or modifying, qualifica-
tions to product sites in order to improve on time deliveries. The project
and the DSS are described in the paper. The qualification management
problem is modeled as a MILP. A greedy heuristic is used to solve the
model and recommend new qualifications.

2.3. Contributions and practical relevance

In this paper, we are pursuing the work of Johnzén et al. (2011)
and Rowshannahad et al. (2015) on qualification management on non-
identical parallel machines. To our knowledge, no efficient solution
approach has been proposed to solve the time flexibility measure
with multiple qualifications and finite production capacity. The time
flexibility measure has several practical applications. It can be used
to identify poorly balanced work centers, therefore identify bottleneck
work centers and machines. Maximizing the time flexibility measure
can be used to increase the throughput by maximizing the machine
utilization balance. Note that our objective differs and is complemen-
tary to the one in Christ et al. (2019), where the utilization balance is
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optimized for a fixed set of qualifications, usually both the qualified and
qualifiable pairs (product, machine). Our approach aims at proposing
new qualifications at the operational level to improve the work center
capacity.

We are particularly interested in embedding the optimization ap-
proach in a Decision Support System, where numerous scenarios should
be evaluated before taking a final decision. Highlighting critical qual-
ifications helps to improve manufacturing performances, and short
computational times are necessary to solve the optimization problem.
In the remainder of the paper, re-qualifications will be referred as
qualifications for the sake of simplicity, as solution approaches cannot
only be used for determining re-qualifications on short horizons (one
day to a few weeks) but also to determine new qualifications on long
horizons (a few months).

3. Problem definition and analysis

Let us consider a work center of 𝑀 non-identical parallel machines
which must process 𝑅 different products with a strictly positive de-
mand. Machines are non-identical, both in terms of qualifications and
throughput rates. More precisely, machines are unrelated, i.e. there is
no machine that is systematically faster than another machine for all
products. Machines performing the same type of operations were most
often not acquired together, and thus belong to different generations.
In addition, machines do not have the same core competencies, i.e.
all machines do not process the same types of products. A machine
can only process qualified products, and a qualifiable product can be
processed on a machine if it is already qualified. The qualification
matrix between products and machines is known, and each product
has a throughput rate on the machines on which it is qualifiable.
Each machine has a finite capacity, which can be different from other
machines. Among the qualifiable pairs (product, machine) not already
qualified, the objective is to determine a qualification plan consisting
of 𝑘 new feasible qualifications in order to maximize the capacitated
time flexibility measure.

The capacitated time flexibility measure, 𝐹 𝑇 𝑖𝑚𝑒
𝐶𝑎𝑝𝑎 , evaluates the bal-

nce of the qualification configuration of a work center in terms of
tilization rates of machines. 𝐹 𝑇 𝑖𝑚𝑒

𝐶𝑎𝑝𝑎 is between 0% and 100% and en-
bles a decision maker to evaluate potential productivity gains induced
y qualifiable pairs from an initial situation. Concretely, maximizing
he time flexibility measure improves the utilization balance of the
achines, and therefore improves productivity as more products can

e produced in less time. A better utilization balance of the machines
eans a better throughput and less backlog.

Finally, note that we are not interested in detailed scheduling
ecisions, as we focus on optimizing the utilization balance of the
achines.

.1. Problem modeling

The notations used in the paper are listed below.
Sets and indices:
 = {1,… , 𝑟,… , 𝑅},
 = {1,… , 𝑚,… ,𝑀},
1 = {(𝑟, 𝑚) ∣ 𝑞𝑟,𝑚 = 1},
2 = {(𝑟, 𝑚) ∣ 𝑞𝑟,𝑚 = 2}.
Parameters:
𝑞𝑟,𝑚 ∈ {0, 1, 2}: Is equal to 1 if machine 𝑚 is currently qualified for

product 𝑟, is equal to 2 if machine 𝑚 is qualifiable for product 𝑟, and is
equal to 0 if machine 𝑚 cannot be qualified for product 𝑟,

𝑘: Number of new qualifications,
𝑎𝑟,𝑚: Throughput rate (in number of products per hour) of product

𝑟 on machine 𝑚,
𝑐𝑚: Production availability or capacity (in hours) of machine 𝑚,
𝑑𝑟: Quantity of product 𝑟 to produce,
𝛾: Utilization balancing parameter, which is strictly greater than 1.
3

Variables:
𝑌𝑟,𝑚 ∈ {0, 1}: Is equal to 1 if product 𝑟 should be qualified on

machine 𝑚, and is equal to 0 otherwise,
𝑈𝑚: Utilization rate of machine 𝑚,
𝑃𝑟,𝑚: Quantity of product 𝑟 assigned to machine 𝑚.
Let us introduce the following optimization problem:

𝑓1(𝒒, 𝑘,𝒂, 𝒄,𝒅, 𝛾) = min
∑

𝑚
(𝑈𝑚)𝛾 (1)

s. t.
∑

𝑟,𝑚∣(𝑟,𝑚)∈2

𝑌𝑟,𝑚 ≤ 𝑘 (2)

𝑈𝑚 = 1
𝑐𝑚

∑

𝑟∣(𝑟,𝑚)∈1

𝑃𝑟,𝑚

𝑎𝑟,𝑚
∀𝑚 (3)

∑

𝑚∣(𝑟,𝑚)∈1

𝑃𝑟,𝑚 = 𝑑𝑟 ∀𝑟 (4)

𝑃𝑟,𝑚 ≤ 𝑑𝑟 ∀(𝑟, 𝑚) ∈ 1 (5)

𝑃𝑟,𝑚 ≤ 𝑑𝑟𝑌𝑟,𝑚 ∀(𝑟, 𝑚) ∈ 2 (6)

𝑃𝑟,𝑚 ≥ 0 ∀(𝑟, 𝑚) ∈ 1 ∨2 (7)

𝑌𝑟,𝑚 ∈ {0, 1} ∀(𝑟, 𝑚) ∈ 2 (8)

The objective function (1) aims at maximizing the utilization bal-
ance of the machines, i.e. at minimizing the sum of the utilization
rates of machines as defined in Constraints (3). Constraint (2) limits the
number of new qualifications, i.e. the size of the optimized qualification
plan, to at most 𝑘. Constraints (3) compute the utilization rate for
each machine in the work center. In this paper, the machine utilization
rate should be understood as the ‘‘implied’’ machine utilization rate by
the product quantities assigned to the machine. A machine utilization
rate is not necessarily lower than or equal to 1 if the machine cannot
process all its assigned product quantities on the horizon. Constraints
(4) ensure that the demand of each product is fully assigned to the
machines. Constraints (5)–(6) ensure that machine 𝑚 can only process
product 𝑟 if 𝑟 is currently qualified on 𝑚 (𝑞𝑟,𝑚 = 1) or is both qualifiable
and proposed to be qualified (𝑞𝑟,𝑚 = 2 and 𝑌𝑟,𝑚 = 1). Note that
the dual prices of Constraints (5)–(6) indicate the potential gain in
terms of utilization balance (Bazaraa et al., 2013), and will be used
in some of the heuristics proposed in Section 4. Finally, Constraints (7)
are the non-negativity constraints, and Constraints (8) are the binary
constraints.

Extending Rowshannahad et al. (2015), the capacitated time flex-
ibility measure 𝐹 𝑇 𝑖𝑚𝑒

𝐶𝑎𝑝𝑎 is equal to 𝑓1(𝒒,∞,𝒂,𝒄,𝒅,𝛾)
𝑓1(𝒒,𝑘,𝒂,𝒄,𝒅,𝛾)

∈ [0%, 100%]. As 𝑓1(𝒒,

∞,𝒂, 𝒄,𝒅, 𝛾) is a constant term (computed by solving a nonlinear
optimization problem) because all possible qualification decisions are
made, maximizing 𝐹 𝑇 𝑖𝑚𝑒

𝐶𝑎𝑝𝑎 then requires to solve a Mixed Integer Non-
Linear (MINLP) optimization problem.

Let us discuss below some important characteristics of our problem:

• All qualifications require the same cost and time. This assumption
comes from work center managers that can hardly differentiate
between re-qualifications at the operational level. On a longer
horizon of several weeks or months, where new qualifications
need to be planned, considering different costs and times for
qualifications would be relevant, although the information might
not be easy to obtain.

• Demand and production capacity varying over time and dis-
qualifications are not considered. This is because the problem
is solved regularly, once every shift of 8 h for the next 24 h,
and the qualifications are frequently updated given the current
disqualifications and a new estimate of the quantities of products
to process. Including disqualifications and time varying demand
and production capacity in the problem on a longer planning
horizon is left for future research.
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3.2. Illustrative example: Influence of 𝛾

𝛾 is a critical parameter in the capacitated time flexibility measure
hat measures the distance between the current utilization balance and
he ideal utilization balance of the machines. Rowshannahad et al.
2015) recommend adjusting 𝛾 according to the real workload distri-
ution in the shop floor, for instance by using historical data. In the
onsidered manufacturing system, for an horizon of 24 h, 𝛾 = 4 to 𝛾 = 6
re appropriate values. In the remainder of the paper, 𝛾 is set to 4.

In general, increasing 𝛾 leads to an increase of the total process
ime of machines and to a decrease of the maximum process time of
achines (see Rowshannahad et al. (2015)). When 𝛾 = 1, the objective

unction does not maximize the utilization balance of the machines,
nd instead only leads to the allocation of each product on its fastest
ualified machine, which is not the goal in practice.

Let us consider the following example to illustrate the influence of 𝛾
n the utilization rates of machines. Consider a work center consisting
f four machines and seven products and the following parameters:

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 0 2 0
0 1 1 2
0 1 1 2
1 2 2 0
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0 1 0 1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, 𝑎 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 0 0.2 0
0 0.8 0.2 0.8
0 0.2 0.8 0.7
1 0.1 0.8 0
0.5 0 0.2 0
1 0 0 0
0 0.2 0 1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

=
(

100 200 200 100 100 100 300
)

,

𝑐 =
(

300 200 200 300
)

Fig. 1 illustrates the influence of 𝛾 on the utilization rates of the
achines. For instance, when 𝛾 = 1, machine 4 is never used whereas,
hen 𝛾 = 6, the utilization rate of machine 4 is larger than the one of
achine 3.

.3. Computational complexity

Determining optimal qualification plans to maximize 𝐹 𝑇 𝑖𝑚𝑒
𝐶𝑎𝑝𝑎 , or

quivalently to minimize 𝑓1, is complex as the throughput rates sig-
ificantly vary from one product to another and from one machine to
nother, and the numbers of products and machines are large. More-
ver, the effect of multiple additional qualifications on the utilization
alance of the machines is difficult to capture as an initially overloaded
achine can become less loaded than an initially underloaded machine

fter several qualifications.
Johnzén (2009) shows that optimizing the ‘‘WIP’’ flexibility mea-

ure is a strongly NP-Hard problem by reduction from the 3-partition
roblem (Garey and Johnson, 1979). The proof is based on the proof
iven in Aubry et al. (2008) for the Minimum Cost Load Balanced
onfiguration Problem (MCLBCP). Optimizing the ‘‘WIP’’ flexibility
easure is a special case of our problem, even when 𝑎𝑟,𝑚 = 𝑎 ∀𝑟, ∀𝑚,

nd 𝑐𝑚 = 1 ∀𝑚.
The studied optimization is NP-Hard. In addition, we want to tackle

arge scale industrial instances (see Section 5.1). Efficient solution
pproaches must thus be designed to propose effective qualification
lans that can be used by work center managers in factories.

.4. Outer linearization algorithm for solving the nonlinear program

In this paper, solving the continuous relaxation (or when 𝑘 = 0)
f the MINLP (1)–(8) is performed by using an outer linearization
lgorithm, which can also be interpreted as a tangential approximation.

The outer linearization algorithm is motivated by the fact that the
onlinearity only comes from the objective function. Hence, the objec-
ive function is separable on the decision variables 𝑈𝑚, and it is possible
o give realistic bounds to 𝑈𝑚. The outer linearization algorithm is used
4

n all the solution approaches proposed in Section 4.
Consider Fig. 2 for a given machine 𝑚, which illustrates how
(𝑈𝑚) = (𝑈𝑚)𝛾 can be linearized using outer linearization. Outer lin-
arization constraints of 𝑓 (𝑈𝑚) = (𝑈𝑚)𝛾 are given for 𝑈𝑚 = 0.5 and 𝑈𝑚 =
.0. At 𝑢𝑜, the outer linearization equation is equal to 𝑢𝛾𝑜+𝛾𝑢

𝛾−1
𝑜 (𝑈𝑚−𝑢𝑜).

y adding a sufficient number of outer linearization constraints, the
ontinuous relaxation (or when 𝑘 = 0) of the MINLP (1)–(8) can be
olved. Nevertheless, adding all possible outer linearization constraints
s unpractical, as it will lead to adding an infinite number of constraints.
dding the most relevant outer linearization constraints is therefore
ritical to quickly solve the MINLP.

The outer linearization is performed for all machines separately.
onsider that 𝑂𝑚 = max𝑜∈𝑚

(𝑢𝛾𝑜 + 𝛾𝑢𝛾−1𝑜 (𝑈𝑚−𝑢𝑜)), where 𝑚 is the set of
uter linearization points for machine 𝑚. Intuitively, 𝑂𝑚 represents the
alue of (𝑈𝑚)𝛾 when it is linearized by outer linearization. The objective
unction (1) then becomes min

∑

𝑚 𝑂𝑚, where 𝑂𝑚 ≥ 𝑢𝛾𝑜 + 𝛾𝑢𝛾−1𝑜 (𝑈𝑚−𝑢𝑜)
∀𝑚, ∀𝑜 ∈ 𝑚. The linear program (9)–(11) below provides a lower
bound on the objective function:

min
∑

𝑚
𝑂𝑚 (9)

s. t. 𝑂𝑚 ≥ 𝑢𝛾𝑜 + 𝛾𝑢𝛾−1𝑜 (𝑈𝑚 − 𝑢𝑜) ∀𝑚,∀𝑜 ∈ 𝑚 (10)

(2)–(8) (11)

Eq. (9) is the objective function. Constraints (10) are the outer lin-
earization constraints. Constraints (11) are the qualification constraints,
the utilization rate computation constraints, and the constraints ensur-
ing that the total demand of products must be assigned to qualified
machines.

First, each set 𝑚 is initialized with 0 ≤ 𝑢 ≤ 8. This is because,
in industrial data and by experience, it is very unlikely for 𝑈𝑚 to be
larger than 8, even in a factory subject to high production variability.
Once the linear program (9)–(11) is solved, 𝑼 can be extracted from
the incumbent solution to compute an upper bound on the objective
function ∑

𝑚(𝑈𝑚)𝛾 . Then, additional outer linearization constraints are
added to the sets 𝑚 ∀𝑚 until the stopping condition, i.e. a small
relative gap 𝜖 between the lower and upper bounds, is met. The outer
linearization is detailed in Algorithm 1.

Algorithm 1 Outer linearization algorithm.
1: procedure Outer linearization algorithm
2: 𝑢𝑚𝑖𝑛 ← 0
3: 𝑢𝑚𝑎𝑥 ← 8
4: 𝑢𝑠𝑡𝑒𝑝 ← 0.1
5: for 𝑚 = 1 to 𝑀 do
6: 𝑢𝑜 ← 𝑢𝑚𝑖𝑛
7: while 𝑢𝑜 ≤ 𝑢𝑚𝑎𝑥 do
8: 𝑚 ← 𝑚 ∪ 𝑢𝑜
9: 𝑢𝑜 ← 𝑢𝑜 + 𝑢𝑠𝑡𝑒𝑝

10: end while
11: end for
12: gap ← ∞
13: while gap > 𝜖 do
14: Solve Linear Program (9)–(11) and compute 𝐿𝐵 ←

∑

𝑚 𝑂𝑚
5: 𝑳 ← 𝑼
6: 𝑈𝐵 ←

∑

𝑚(𝐿𝑚)𝛾

7: gap ← 𝑈𝐵−𝐿𝐵
𝐿𝐵

18: for 𝑚 = 1 to 𝑀 do
19: 𝑚 ← 𝑚 ∪ 𝐿𝑚
20: end for
21: end while
22: end procedure

For 𝛾 = 4, a gap of 1.10−4 and the values of 𝑢𝑚𝑖𝑛, 𝑢𝑚𝑎𝑥 and 𝑢𝑠𝑡𝑒𝑝
in Algorithm 1, empirical observations on the industrial instances of
Section 5 show that the algorithm converges in less than ten iterations.
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Fig. 1. Influence of 𝛾 on the utilization rates of machines.
Fig. 2. Outer linearization example for 𝑓 (𝑈𝑚) = (𝑈𝑚)𝛾 for machine 𝑚.
Comparing solution approaches to solve nonlinear programs could be
valuable, but is beyond the scope of this study and is left for future
research.

Note that, if 𝛾 = 1, then the outer linearization algorithm is
unnecessary as the objective function is linear. In this case, minimizing
∑

𝑚 𝑈𝑚 subject to (2)–(8) is sufficient. However, as already discussed in
Section 3.2, when 𝛾 = 1, the objective function does not maximize the
utilization balance of the machines, and each product will be assigned
to its fastest qualified machine.
5

4. Solution approaches

In this section, new solution approaches are proposed to solve
the optimization problem with multiple qualifications formalized in
Section 3.

4.1. Constructive greedy heuristic

The first proposed algorithm is a greedy heuristic, which is inspired
by the ‘‘ADD’’ heuristics for discrete location problems (Daskin, 2011).
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The pseudo code of the algorithm can be found in Algorithm 2. The
greedy heuristic returns a set of qualifications  and 𝑓 ∗ the value of
the objective function 𝑓1 associated to .

The greedy heuristic is a constructive heuristic that, at each iter-
ation, selects the single best qualification (𝑟∗, 𝑚∗), among all possible
qualifications, that minimizes the nonlinear objective function 𝑓1. At
the end of each iteration,  is updated such that  =  ∪ (𝑟∗, 𝑚∗).

Selecting the single best qualification (𝑟∗, 𝑚∗) is performed by it-
erating through all possible qualifications in the qualification matrix.
For each new candidate qualification (𝑟, 𝑚) that is not already in ,
the outer linearization algorithm is run for 𝑘 = 0 and a temporary
qualification matrix 𝒒′, where 𝑞′𝑟′ ,𝑚′ = 𝑞𝑟′ ,𝑚′ ∀(𝑟′, 𝑚′) ≠ (𝑟, 𝑚),∉ , and
𝑞′𝑟,𝑚 = 1. The procedure is between lines 6 and 18 in Algorithm 2.
The procedure is repeated until no new candidate qualification can be
found, because either || = 𝑘 or  includes all possible qualifications,
Algorithm 2 returns . For some instances, || can therefore be smaller
than 𝑘.

Algorithm 2 Greedy heuristic (𝒒, 𝑘, 𝒂, 𝒄, 𝒅, 𝛾)
Input data: 𝒒, 𝑘, 𝒂, 𝒄, 𝒅, 𝛾
Output data: , 𝑓 ∗

1: procedure Greedy heuristic
2:  ← ∞
3: 𝑓 ∗ ← ∞
4: for 𝑖 = 1 to 𝑘 do
5: (𝑟∗, 𝑚∗) ← ∞
6: for 𝑟 = 1 to 𝑅
7: for 𝑚 = 1 to 𝑀 do
8: if 𝑞𝑟,𝑚 = 2 and then (𝑟,𝑚) ∉  do
9: 𝒒′ ← 𝒒

10: 𝑞′𝑟,𝑚 ← 1
11: 𝑓 ′ ← 𝑓1(𝒒′, 0,𝒂, 𝒄,𝒅, 𝛾)
12: if 𝑓 ′ < 𝑓* then
13: (𝑟∗, 𝑚∗) ← (𝑟, 𝑚)
14: 𝑓 ∗ ← 𝑓 ′

15: end if
16: end if
17: end for
18: end for
19: if (𝑟∗, 𝑚∗) ≠ ∞ then
20: 𝑞𝑟∗ ,𝑚∗ ← 1
21:  ←  ∪ (𝑟∗, 𝑚∗)
22: else
23: return , 𝑓 ∗

24: end if
25: end for
26: return , 𝑓 ∗

27: end procedure

4.2. Local search

The local search heuristic is inspired by the ‘‘ADD–REMOVE’’ heuris-
tics for discrete location problems (Daskin, 2011), and its pseudo code
can be found in Algorithm 3. Similarly to the greedy heuristic of
Section 4.1, the local search heuristic returns a set of qualifications 
and 𝑓*, the value of the objective function 𝑓1 associated to .

The first step consists in determining a feasible qualification plan ′

f value 𝑓* with the greedy heuristic. The local search heuristic then
emoves one qualification at a time from ′ and tries to swap it with a
etter qualification. The heuristic terminates when there is no longer a
ualification that improves the objective function.

More formally, two indices 𝑖 and 𝑗 are introduced: 𝑖 keeps track of
he qualification that must be replaced, i.e. of the 𝑖th qualification to

′

6

wap in  , and 𝑗 keeps track of the number of swaps that are tried s
ithout improvement. Both indices 𝑖 and 𝑗 are initialized to 0. At each
teration of the local search heuristic, 𝑖 is incremented. A subset ′′

of ′ such that ′′ = ′ ⧵ ′
𝑖 is used to remove one qualification from

′, the 𝑖th qualification, to swap it with hopefully a better qualification.
lgorithm 2 is then run with 𝑞′𝑟,𝑚 = 𝑞𝑟,𝑚 ∀(𝑟, 𝑚), and 𝑞′𝑟,𝑚 = 1 ∀(𝑟, 𝑚) ∈ ′′

nd 𝑘 = 1. At this step, Algorithm 2 returns a new (potentially) best set
f qualifications ′′′ of value 𝑓 ∗∗ such that |′′′

| = 1. If 𝑓 ∗∗ < 𝑓 ∗,
hen an improving qualification has been found, 𝑗 is then set to 0 and
′ = ′′ ∪ ′′′. Otherwise, 𝑗 is incremented. When 𝑖 = |′

|, then 𝑖 is
set back to 0 to avoid accessing elements that do not exist in ′. When
𝑗 = |′

|, then the local search heuristic terminates because this means
that all qualifications in ′ were unsuccessfully swapped.

Algorithm 3 Local search (𝒒, 𝑘, 𝒂, 𝒄, 𝒅, 𝛾)
Input data: 𝒒, 𝑘, 𝒂, 𝒄, 𝒅, 𝛾
Output data: , 𝑓 ∗

1: procedure Local search
2: ′, 𝑓 ∗ ← Greedy Heuristic (𝒒, 𝑘, 𝒂, 𝒄, 𝒅, 𝛾)
3: 𝑗 ← 0
4: 𝑖 ← 0
5: 𝑛 ← min(|′

|, 𝑘)
6: while 𝑗 ≠ 𝑛 do
7: ′′ ← ′ ⧵ ′

𝑖
8: 𝒒′ ← 𝒒
9: 𝑞′𝑟′ ,𝑚′ = 1 ∀(𝑟′, 𝑚′) ∈ ′′

0: 𝑖 ← 𝑖 + 1
1: ′′′, 𝑓 ∗∗ ← Greedy Heuristic (𝒒′, 1, 𝒂, 𝒄, 𝒅, 𝛾)
2: if 𝑓 ∗∗ < 𝑓 ∗ then
3: ′ ← ′′ ∪ ′′′

4: 𝑓 ∗ ← 𝑓 ∗∗

5: 𝑗 ← 0
6: else
7: 𝑗 ← 𝑗 + 1
8: end if
9: if 𝑖 = 𝑛 then
0: 𝑖 ← 0
1: end if
2: end while
3: return ′, 𝑓 ∗

4: end procedure

4.3. Dual prices

Although heuristics presented in Sections 4.1 and 4.2 are starting
points to determine good qualification plans, the number of qualifi-
cations to evaluate from one iteration to another can be substantial
when the number of products and machines are large. On industrial
instances, a few thousand qualifications have to be evaluated, which is
not acceptable when short computational times are required. Given the
problem structure and the nature of the data, we know from practical
(industrial) experience that only a restricted set of qualifiable pairs
(product, machine) can lead to valuable qualification plans in terms
of utilization balance.

For instance, let us consider the illustrative example in Section 3.2
when 𝛾 = 4. The initial utilization balance is presented in Fig. 1.
Machine 1 is critical (i.e. 𝑈1 = 1.0), while other machines are under-
oaded (i.e. 𝑈2 = 0.416 < 1.0, 𝑈3 = 0.300 < 1.0, and 𝑈4 = 0.279 <
.0). Adding new qualifications to machine 1 is probably irrelevant
n terms of utilization balance, because machine 1 would be even
ore loaded. Therefore, in this example, the search of the optimal

ualifications can potentially be restricted to machines 2, 3, and 4.
ll possible qualifications could be tested for the example presented

n Fig. 1 as the number of products and the number of machines are

mall. However, because many products could be qualified on many
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𝛾

machines in industrial data, evaluating all the possible qualifications
is most often too time-consuming when short computational times are
required.

To identify the most promising products and machines, and there-
fore to reduce the number of qualifications from one iteration to
another, the dual prices of the relevant constraints of the following
reformulation (when 𝑘 = 0) of the optimization model (1)–(8) can be
sed, where 𝑋𝑟,𝑚 is the ratio of the total quantity of product 𝑟 assigned
o machine 𝑚:

2(𝒒,𝒂, 𝒄,𝒅, 𝛾) = min
∑

𝑚
(𝑈𝑚)𝛾 (12)

s. t. 𝑈𝑚 = 1
𝑐𝑚

∑

𝑟∣(𝑟,𝑚)∈1

𝑋𝑟,𝑚𝑑𝑟
𝑎𝑟,𝑚

∀𝑚 (13)

∑

𝑚∣(𝑟,𝑚)∈1

𝑋𝑟,𝑚 = 1 ∀𝑟 (14)

𝑋𝑟,𝑚 ≤ 1 ∀(𝑟, 𝑚) ∈ 1 (15)

𝑋𝑟,𝑚 ≤ 0 ∀(𝑟, 𝑚) ∈ 2 (16)
𝑋𝑟,𝑚 ≥ 0 ∀(𝑟, 𝑚) ∈ 1 ∨2

(17)

The objective function (12) aims at balancing the utilization rates
f the machines. Constraints (13) compute the utilization rate of each
achine in the work center. Constraints (14) ensure that the demand

f each product is fully assigned to the machines. Constraints (15) and
16) ensure that machine 𝑚 can only process product 𝑟 if it is qualified
n 𝑚. Finally, Constraints (7) are the non-negativity constraints for
ariables 𝑋𝑟,𝑚.

The optimization model is close to the initial model (1)–(8), but has
ome significant differences. First, allocation variables 𝑋𝑟,𝑚 are defined
s the ratio of the quantity of product 𝑟 that is assigned to machine
. Second, the constraints imposing that the current qualifications are

atisfied are differentiated. With these modifications, before any qual-
fication decision, this optimization model can be solved and the dual
ariable of each constraint (16) can be analyzed. The dual variable can
hen be interpreted as an approximation of the gain on the nonlinear
bjective function 𝑓2 if product 𝑟 is qualified on machine 𝑚, as dual
ariables can be interpreted as ‘‘the marginal rate of change in the
bjective function with respect to perturbations in the right-hand side
f a constraint’’ (Bazaraa et al., 2013). 𝑓2 would become ∑

𝑚(𝑈𝑚)𝛾+𝜆𝑟,𝑚,
here 𝜆𝑟,𝑚 is the dual variable for the pair (𝑟, 𝑚) of Constraint (16).
nalyzing the value of 𝜆𝑟,𝑚 for each pair (𝑟, 𝑚), when 𝑞𝑟,𝑚 = 2, allows

he most promising qualification decisions to be ranked. The values of
he dual variables associated to Constraints (16) provided by the solver
e used (Lougee-Heimer, 2003, Löhndorf (2016)) were all negative or
qual to 0. This makes sense as adding qualifications cannot increase
he objective function. The smallest negative value indicates the most
romising qualification. Note that 𝑓2(𝒒,𝒂, 𝒄,𝒅, 𝛾) = 𝑓1(𝒒, 0,𝒂, 𝒄,𝒅, 𝛾).

By embedding the use of the dual variables in the greedy heuristic,
nstead of testing every possible qualification at each iteration, the
earch space can be greatly reduced to the 𝑁 most promising qualifica-
ions. For instance, at each iteration of the greedy heuristic, instead of
esting 800 qualifications, only 𝑁 = 10 are tested. If the qualifications
re tested in parallel, 𝑁 can be limited to the number of cores of the
PU. If, at a given iteration of the greedy heuristic, more than 𝑁 dual
ariables have the same value, the first ones in the list are arbitrarily
elected. The pseudo code of the greedy heuristic with dual variables
s provided in Algorithm 4. The same principle can be applied to the
ocal search.

Algorithm 4 is very close to Algorithm 2. The main difference is
hat selecting the single best qualification (𝑟∗, 𝑚∗) at each iteration is
o longer performed by iterating through all possible qualifications in
he qualification matrix, but by iterating through the most promising
ualifications. The set  of most promising qualifications in Algorithm
7

is identified by running Algorithm 5. The first step consists in solving
(12)–(17) and creating a set  that includes all subsets of possible qual-
ifications with the values of the dual variables associated to Constraints
(16).  is then sorted by ascending order of 𝜆𝑟,𝑚, and  then consists
of the first min(|𝐿|, 𝑁) from .
Algorithm 4 Greedy heuristic with dual variables (𝒒, 𝑘, 𝒂, 𝒄, 𝒅, 𝛾, 𝑁)

Input data: 𝒒, 𝑘, 𝒂, 𝒄, 𝒅, 𝛾, 𝑁
Output data: , 𝑓 ∗

1: procedure Greedy heuristic with dual variables
2:  ← ∞
3: 𝑓 ∗ ← ∞
4: for 𝑖 = 1 to 𝑘 do
5: (𝑟∗,𝑚∗) ← ∞
6:  ← Identification of most promising qualifications (𝒒, 𝒂, 𝒄,

𝒅, 𝛾, 𝑁)
7: for 𝑗 = 1 to || do
8: (𝑟, 𝑚) ← 𝑗 .(𝑟, 𝑚)
9: 𝒒′ ← 𝒒

10: 𝑞′𝑟,𝑚 ← 1
11: 𝑓 ′ ← 𝑓1(𝒒′, 0,𝒂, 𝒄,𝒅, 𝛾)
12: if 𝑓 ′ < 𝑓 ∗ then
13: (𝑟∗, 𝑚∗) ← (𝑟, 𝑚)
14: 𝑓 ∗ ← 𝑓 ′

15: end if
16: end for
17: if (𝑟 ∗, 𝑚 ∗) ≠ ∞ then
18: 𝑞𝑟∗ ,𝑚∗ ← 1
19:  ←  ∪ (𝑟∗, 𝑚∗)
20: else
21: return , 𝑓 ∗

22: end if
23: end for
24: return , 𝑓 ∗

25: end procedure

Algorithm 5 Identification of most promising qualifications (𝒒, 𝒂, 𝒄, 𝒅,
, 𝑁)
Input data: 𝒒, 𝒂, 𝒄, 𝒅, 𝛾
Output data: 

1: procedure Identification of most promising qualifications
2:  ← ∞
3:  ← {{(𝑟, 𝑚), 𝜆𝑟,𝑚} ∈ Constraint (16) ∣ 𝑞𝑟,𝑚 = 2} after solving

(12)–(17).
4: Sort  by ascending order of dual variables 𝜆𝑟,𝑚
5:  ← first min(|𝐿|, 𝑁) elements from 
6: return 
7: end procedure

The local search heuristic that relies on the dual variables is very
similar to the local search heuristic of Section 4.2. Instead of running
the greedy heuristic (Algorithm 2) at each iteration for 𝑘 = 1, the greedy
heuristic with dual variables (Algorithm 4 is executed. The pseudo code
is given in Algorithm 6.

Another ‘‘Instantaneous’’ Greedy Heuristic (IGH) can be designed
by using dual variables in a more straightforward way. IGH builds a
feasible qualification plan  with the 𝑘 new qualifications associated
to the 𝑘 smallest dual variables identified after running Algorithm
5. Contrary to the greedy heuristic in Algorithm 4, IGH is not an
iterative procedure since the 𝑘 qualifications are taken just after the
dual variables are computed. The pseudo code of the instantaneous
greedy heuristic can be found in Algorithm 7.

4.4. Greedy randomized adaptive search procedure (GRASP)

A greedy randomized adaptive search procedure (GRASP) (Feo and
Resende, 1989) is proposed that also relies on the dual variables. This
is motivated by three remarks: (1) The greedy heuristic with dual
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Algorithm 6 Local search with dual variables (𝒒, 𝑘, 𝒂, 𝒄, 𝒅, 𝛾, 𝑁)
Input data: 𝒒, 𝑘, 𝒂, 𝒄, 𝒅, 𝛾
Output data: , 𝑓*

1: procedure Local search
2: ′, 𝑓 ∗ ← Greedy heuristic with dual variables (𝒒, 𝑘, 𝒂, 𝒄, 𝒅, 𝛾,

𝑁)
3: 𝑗 ← 0
4: 𝑖 ← 0
5: 𝑛 ← min(|′

|, 𝑘)
6: while 𝑗 ≠ 𝑛 do
7: ′′ ← ′ ⧵ ′

𝑖
8: 𝒒′ ← 𝒒
9: 𝑞′𝑟′ ,𝑚′ = 1 ∀(𝑟′, 𝑚′) ∈ ′′

10: 𝑖 ← 𝑖 + 1
11: ′′′, 𝑓 ∗∗ ← Greedy heuristic with dual variables (𝒒′, 1, 𝒂, 𝒄,

𝒅, 𝛾, 𝑁)
12: if 𝑓 ∗∗ < 𝑓 ∗ then
13: ′ ← ′′ ∪ ′′′

14: 𝑓 ∗ ← 𝑓 ∗∗

15: 𝑗 ← 0
16: else
17: 𝑗 ← 𝑗 + 1
18: end if
19: if 𝑖 = 𝑛 then
20: 𝑖 ← 0
21: end if
22: end while
23: return ′, 𝑓 ∗

24: end procedure

Algorithm 7 Instantaneous Greedy Heuristic(𝒒, 𝑘, 𝒂, 𝒄, 𝒅, 𝛾)
Input data: 𝒒, 𝑘, 𝒂, 𝒄, 𝒅, 𝛾
Output data: , 𝑓 ∗

1: procedure Instantaneous Greedy Heuristic(𝒒, 𝑘, 𝒂, 𝒄, 𝒅, 𝛾)
2:  ← ∞
3: 𝑓 ∗ ← ∞
4: 𝒒′ ← 𝒒
5:  ← Identification of most promising qualifications (𝒒, 𝒂, 𝒄, 𝒅,

𝛾, ∞)
6: for 𝑗 = 1 to min(𝑘, ||) do
7: (𝑟, 𝑚) ← 𝑗 .(𝑟, 𝑚)
8: 𝑞′𝑟,𝑚 ← 1
9: end for

10: 𝑓 ∗ ← 𝑓1(𝒒′, 0,𝒂, 𝒄,𝒅, 𝛾)
11: return , 𝑓 ∗

12: end procedure

prices (Algorithm 4) is relatively fast in the computational experiments,
(2) The associated local search heuristic (Algorithm 6) does not al-
ways reach the maximum allowed computational time, and (3) The
GRASP has also been successfully applied to difficult problems such as
scheduling problems (e.g. Knopp et al. (2017) and Yepes-Borrero et al.
(2021))

A GRASP is a metaheuristic where the construction of an initial
solution, typically in a greedy manner, at each iteration is randomized.
Initial solutions are then improved with a local search. The proposed
GRASP is presented in Algorithm 8. The construction of an initial so-
lution with at most 𝑘 qualifications is performed by running Algorithm
9: The initial set of qualifications is built iteratively. At each iteration,
Algorithm 5 is executed to identify a set  with at most the 𝑁 most
promising qualifications based on the value of the dual variables of
Constraint (16).  can sometimes be empty if 𝑘 is larger than the
8

number of possible qualifications and if all possible qualifications are
already made. If  is empty, Algorithm 9 immediately returns the
best solution found so far as no new qualification can be made. If
 is not empty, one element 𝑗 among min(𝑁, ||) is then randomly
elected from  and added to the initial set of qualifications ′. ′ is
hen improved by running the local search heuristic that uses the dual
ariables (Algorithm 6). The GRASP is stopped, in our case, when the
llowed computational time is reached.

Algorithm 8 GRASP (𝒒, 𝑘, 𝒂, 𝒄, 𝒅, 𝛾, 𝑁)
Input data: 𝒒, 𝑘, 𝒂, 𝒄, 𝒅, 𝛾, 𝑁
Output data: , 𝑓 ∗

1: procedure GRASP
2:  ← ∞
3: 𝑓 ∗ ← ∞
4: 𝑠 ← 0
5: while 𝑠 = 0 do
6: ′, 𝑓 ′ ← Greedy randomized heuristic (𝒒, 𝑘, 𝒂, 𝒄, 𝒅, 𝛾, 𝑁)
7: 𝒒′ ← 𝒒
8: 𝑞′𝑟′ ,𝑚′ = 1 ∀(𝑟′, 𝑚′) ∈ ′

9: ′, 𝑓 ′ ← Local search with dual variables (𝒒′, 𝑘, 𝒂, 𝒄, 𝒅, 𝛾,
𝑁)

0: if 𝑓 ′ < 𝑓 ∗ then
1:  ← ′

2: 𝑓 ∗ ← 𝑓 ′

3: end if
4: 𝑠 = 1 if allowed computational time is reached
5: end while
6: return , 𝑓 ∗

7: end procedure

Algorithm 9 Greedy randomized heuristic (𝒒, 𝑘, 𝒂, 𝒄, 𝒅, 𝛾, 𝑁)
Input data: 𝒒, 𝑘, 𝒂, 𝒄, 𝒅, 𝛾, 𝑁
Output data: , 𝑓 ∗

1: procedure Greedy randomized heuristic
2:  ← ∞
3: 𝑓 ∗ ← ∞
4: 𝒒′ ← 𝒒
5: for 𝑖 = 1 to 𝑘 do
6: (𝑟∗,𝑚∗) ← ∞
7:  ← Identification of most promising qualifications (𝒒, 𝒂, 𝒄,

𝒅, 𝛾, 𝑁)
8: Randomly select one element 𝑗 from 
9: (𝑟∗, 𝑚∗) ← 𝐶𝑗 .(𝑟, 𝑚)

10: if (𝑟∗, 𝑚∗) ≠ ∞ then
11: 𝑞𝑟∗ ,𝑚∗ ← 1
12:  ←  ∪ (𝑟∗, 𝑚∗)
13: else
14: return , 𝑓 ∗

15: end if
16: end for
17: 𝑓* ← 𝑓1(𝒒′, 0,𝒂, 𝒄,𝒅, 𝛾)
18: return , 𝑓 ∗

19: end procedure

4.5. Branch and bound

A branch and bound solution approach, in particular a best first
approach, is also investigated to compare the solutions of the heuris-
tic approaches to optimal solutions that can be obtained on some
instances.

Branching is performed on the qualification decision variable 𝑌𝑟,𝑚
that is the closest to one but not binary. Bounding is performed by

solving the continuous relaxation of the optimization model (1)–(8). A
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priority queue  on the smallest lower bound is implemented to explore
the tree. Finally, as explained in the hypothesis, a feasible solution can
be quickly generated by running Algorithm 7. The pseudo code of the
branch and bound algorithm is provided in Algorithm 10. Note that the
lower bound is also updated by computing the smallest lower bound
among all active nodes in , as it can be used to further closing gaps
(Bixby et al., 1999).

Algorithm 10 Branch and bound algorithm (𝒒, 𝑘, 𝒂, 𝒄, 𝒅, 𝛾)
1: procedure Branch and bound algorithm (𝒒, 𝑘, 𝒂, 𝒄, 𝒅, 𝛾)
2: , 𝑓 ∗ ← Instantaneous Greedy Heuristic(𝒒, 𝑘, 𝒂, 𝒄, 𝒅, 𝛾)
3: 𝑈𝐵 ← 𝑓 ∗

4:  ← ∞
5: 𝒀 ← argmin (1)–(8) when relaxing binary constraints
6: 𝐿𝐵 ← 𝑓1(𝒀 , 0,𝒂, 𝒄,𝒅, 𝛾)
7:  ←  ∪ (𝒀 , 𝐿𝐵)
8: while  ≠ ∞ or 𝑈𝐵−𝐿𝐵

𝐿𝐵 > 𝜖 do
9: Take a node A (𝒀 ′, 𝑓 ′) off 

10: if 𝒀 ′ binary and 𝑓 ′ ≤ 𝑈𝐵 then
11:  ← Qualifications from 𝒀 ′

12: 𝑈𝐵 ← 𝑓 ′

13: end if
14: if 𝒀 ′ non binary then
15: Let (𝑟′, 𝑚′) be the largest non binary variable in 𝒀 ′

6: 𝒀 0 ← argmin (1)–(8) when relaxing binary constraints
and 𝑌𝑟′ ,𝑚′ = 0

7: 𝒀 1 ← argmin (1)–(8) when relaxing binary constraints
and 𝑌𝑟′ ,𝑚′ = 1

8: if 𝑓1(𝒀 0, 0,𝒂, 𝒄,𝒅, 𝛾) ≥ 𝑈𝐵 then
9: Prune node A
0: else
1:  ←  ∪ {𝒀 0, 𝑓1(𝒀 0, 0,𝒂, 𝒄,𝒅, 𝛾)}

22: end if
23: if 𝑓1(𝒀 1, 0,𝒂, 𝒄,𝒅, 𝛾) ≥ 𝑈𝐵 then
24: Prune node A
25: else
26:  ←  ∪ {𝒀 1, 𝑓1(𝒀 1, 0,𝒂, 𝒄,𝒅, 𝛾)}
27: end if
28: 𝐿𝐵 ← Smallest 𝑓 ′ among all nodes A (𝒀 ′, 𝑓 ′) in 
29: end if
30: end while
31: return , 𝑈𝐵
32: end procedure

5. Computational study: Industrial instances

In this section, the solution approaches presented in Section 4 are
compared on industrial instances. The objective is to determine the
most suited solution approaches by work center given the required
small computational time (a few minutes at most). Instances used in the
computational study are characterized in Section 5.1, and the design of
experiments is presented in Section 5.2. The main findings are discussed
in Section 5.3, while the detailed numerical results can be found in
Section 5.4.

5.1. Instance characterization

The computational study is performed by using historical data
extracted from the most advanced production facility of STMicro-
electronics located in Crolles, France. The facility is characterized by
shifting bottleneck work centers, a large number of products, frequent
product mix changes, high production variability, frequent disqualifi-
cations and large machine utilization rates. Four different work centers
are studied (see Table 1). Work center A is an ion implantation work
9
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Table 1
Work centers, process types and instances.
Work center Process type Appendix

A Ion implantation Appendix A
B Dry etching Appendix B
C Dielectric Appendix C
D Metallization Appendix D

center where the fabrication process consists in doping products with
ions. Work center B is a dry etching work center where the fabrication
process consists in removing matter from the products. Work center
C is a dielectric work center where the fabrication process consists
in making deposits of isolation films. Finally, work center D is a
metallization work center where the fabrication process consists in
deposits of conductive layers on the surface of the products.

The four work centers are of different nature and account for nearly
40% of machines in the considered production facility (more than 600
machines in total). Moreover, many of the work centers not considered
in the numerical experiments are not interesting because of their high
flexibility and thus no qualification is proposed. Consequently, we
believe the selected set of work centers is relevant to assess the per-
formance of the solution approaches in a semiconductor manufacturing
facility.

In total, 24 instances are used by work center to compare the
solution approaches, and the production quantities and capacities for
one day in each work center are used. Instances were retrieved in 2019.
The instances used for the computational study are described in the
appendix. For confidentiality reasons, industrial instances cannot be
fully detailed as they may contain critical information. The following
indicators are reported in Appendix:

• The coefficient of variation 𝜎(𝒅)
𝒅

, where 𝒅 is the mean demand of
products, 𝜎(𝒅) the standard deviation of the demand of products,
the ratio 𝒅−

𝒅
, where 𝒅− is the minimum demand over all products,

and the ratio 𝒅+

𝒅
, where 𝒅+ is the maximum demand over all

products,
• The coefficient of variation 𝜎(𝒄)

𝒄 , where 𝒄 is the mean production
capacity of machines, and 𝜎(𝒄) the standard deviation of the
production capacity of machines, the ratio 𝒄−

𝒄 , where 𝒄− is the
minimum capacity over all machines, and the ratio 𝒄+

𝒄 , where 𝒄+
is the maximum capacity over all machines,

• The coefficient of variation 𝜎(𝒂)
𝒂 , where 𝒂 is the mean throughput

of products on machines of initial and possible qualifications,
and 𝜎(𝒂) the standard deviation of the throughput of products on
machines of initial and possible qualifications, the ratio 𝒂−

𝒄 , where
𝒂− is the minimum throughput of products on machines, and the
ratio 𝒂+

𝒄 , where 𝒂+ is the maximum throughput of products on
machines,

• The number of initial qualification rates, and the possible quali-
fication rates.

These indicators could be further used to generate new instances.
A procedure is presented and numerical experiments are performed on
randomly generated instances in Section 6. Note that it is reasonable
that, given a work center, the number of products and machines do not
vary much from one instance to another. This is because machines are
very expensive and thus products, even if new ones are introduced, will
go through the same work centers with approximately the same degree
of reentrancy as previous products of the same technology node.

Two metrics are presented by instance to compare the solution
approaches: The relative gain (%) on the utilization balance of the
machines with respect to the initial qualification configuration and the
computational time (in seconds). Numerical results are not detailed
instance by instance to limit the length of the paper. More precisely,
the relative gain (%) is equal to 𝑓1(𝒒,0,𝒂,𝒄,𝒅,𝛾)−𝑓1(𝒒,𝑘,𝒂,𝒄,𝒅,𝛾)

𝑓1(𝒒,0,𝒂,𝒄,𝒅,𝛾)
× 100 when 𝑘

ualifications are proposed.
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Table 2
Solution approaches tested in the computational study.
Algorithm Dual prices Short name Reference section

Greedy heuristic Off GH 4.1
Local search Off LS 4.2
Greedy heuristic On GHDP 4.3
Local search On LSDP 4.3
Instantaneous Greedy heuristic (branch and bound) On IGH 4.3
Branch and Bound – B&B 4.5
Greedy Randomized Adaptive Search Procedure On GRASP 4.4
5.2. Design of experiments

In the computational study, the horizon is 24 h. Following the
discussion in Section 3.2, 𝛾 is set to 4. The outer linearization algorithm
is stopped when a relative gap lower than 0.0001 is reached. Each
iteration of the outer linearization algorithm is solved by CLP, which is
an open source solver (Lougee-Heimer, 2003; Löhndorf, 2016). Dual
variables are then computed with CLP when the outer linearization
algorithm is stopped. All solution approaches are implemented in Java
8 on a computer with an Intel(R) Xeon(R) CPU E3-1240 v5 @3.50 GHz
with 4 cores and 32 GB of RAM. Note that all solution approaches are
parallelized, including the Branch and Bound algorithm. As discussed
in Section 4.3, the maximum number of qualification plans that are
simultaneously evaluated is equal to the number of logical threads, e.g.
8 on the computer we used. Hence, 𝑁 is set to 8 in all our approaches.
For instance, 8 qualification plans are tested in parallel in the greedy
heuristic of Section 4.1. In B&B, we set an optimality gap, i.e. 𝑈𝐵−𝐿𝐵

𝐿𝐵 , of
.0001. If B&B is running but the gap is lower than 0.0001, then B&B is
topped and the best solution found so far is considered as numerically
ptimal.

Solution approaches are compared for a number of qualifications
∈ {1, 2, 3, 4, 5, 6, 7, 8, 40, 100}. We study all values between 1 and 8

because, in most cases, it is unnecessary to make a larger number
of qualifications to significantly improve the utilization balance of
the machines. In other words, the three best qualifications lead to
better increase on the utilization balance of the machines than the
following three best qualifications, even if the utilization balance of
the machines still improves. In addition, in practice, only a limited
number of qualifications is usually allowed on 24 h. Larger values of
𝑘, i.e. 40 and 100, are studied to evaluate the performances of solution
approaches in a limited computational time.

Solution approaches are executed for the four work centers pre-
sented in Table 1. Two maximum computational times are consid-
ered: 30 s and 180 s (3 min). In addition, two initial qualification
configurations are studied:

First qualification configuration. It consists in taking the industrial
qualification matrix as is to test our approaches for real-life qual-
ification configurations.

Second qualification configuration. We are also interested in testing
our approaches for more extreme cases. This configuration con-
sists in making qualifiable the qualifications that are currently not
qualifiable (i.e. when 𝑞𝑟,𝑚 = 0). For each machine, the associated
throughput for these cases is set to the mean throughput over
other initially qualified and qualifiable machines. The density of
the qualification matrix is then close to 100%. Considering this
configuration is interesting for at least two reasons. The first one
is to study the limit of the solutions approaches when the problem
sizes increase. The second reason is practical and related to medium-
term or long-term qualification management. Although 𝑞𝑟,𝑚 = 0
means that product 𝑟 cannot be currently qualified on machine 𝑚,
investigating if conducting a non-existing time-costly qualification
is still relevant, in particular when new products or new machines
are introduced.
10
The solution approaches are presented in Table 2. They are sum-
marized by their name and whether dual prices are used. In total, six
different solution approaches are compared to generate a qualification
plan for short-term qualification management. For the sake of presen-
tation, short names are given to the solution approaches (see Table 2)
to present the numerical results in Section 5.4.

5.3. Main findings

Numerical results in Section 5.4 show that all algorithms do not
perform equally. Generally, GH and LS are irrelevant because GHDP
and LSDP determine qualification plans of similar or better quality in
smaller computational times. However, depending on the work center,
the qualification configuration and the computational budget, the other
solution approaches are valuable to a certain extent:

• There is no solution approach that systematically outperforms all
other solution approaches in all experiments,

• Restricting the search space by using the dual prices is in most
cases relevant both in terms of solution quality and computational
time,

• For work center B and both qualification configurations, GHDP,
LSDP and GRASP provide qualification plans that are of similar
quality in terms of gain.

• For a very small computational budget, instantaneous or of a
few seconds, allowed in the Decision Support System, IGH is the
most suitable approach, in particular for 𝑘 > 1, because the
computational time is independent of 𝑘, no matter the work cen-
ter and the qualification configuration. However, a qualification
plan determined by IGH may be of poor quality compared to
GHDP, because one machine could inappropriately be overquali-
fied at the expense of other machines. Therefore, a qualification
plan may need manual rework by work center managers in the
Decision Support System.

• For the first qualification configuration and small work centers or
work centers with a small number of possible qualifications, B&B
is particularly suitable as it can determine optimal solutions in
less than 180 s. B&B is also suitable for the second qualification
configuration when 𝑘 ≤ 3.

• For the first qualification configuration and large work centers
or work centers with a large number of possible qualifications,
using GHDP seems the best policy. GHDP determines solutions
that are close to the optimal solutions determined by B&B. LSDP
and GRASP are only slightly better than GHDP but could be
considered if work center managers accept larger computational
times, which can be the case for large work centers such as work
centers B and C.

• For the second qualification configuration, GRASP seems to be the
best approach as it always outperforms GHDP and in most cases
also outperforms LSDP. GRASP determines solutions that are close
to the optimal solutions.

• This study shows that, although an optimization problem can be
NP-Hard, studying the nature of the data is essential to design
efficient solution approaches. For manufacturing facilities with a
large product variety, using dual variables to guide the solution
approach is shown to be effective and efficient for different types
of work centers and qualification configurations.
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• The gains between the first and second qualification configura-
tions are very different. This shows that machines that cannot be
qualified for some products, i.e. such that 𝑞𝑟,𝑚 = 0 in the first con-
figuration, could potentially lead to substantial improvements for
the work center in terms of utilization balance of the machines.
This may be worth to investigate, and to check if these forbidden
qualifications could actually be made, i.e. whether the associated
𝑞𝑟,𝑚 = 0 in the first configuration could be changed to 𝑞𝑟,𝑚 = 2.

.4. Detailed numerical results

Solution approaches were actually only executed for 180 s, but all
valuated sets of qualifications were kept while the approaches were
unning. Computational times are reported as follows:

• If the total computational time is larger than or equal to 180 s,
then the solution approach, both for a computational time limit
of 30 and 180 s, does not terminate on time. In this case, 180 s,
respectively 30 s, is reported for a computational time limit of
180 s, respectively 30 s.

• If the computational is smaller than 180 s but larger than 30 s,
then the total computational time is reported for a computational
time limit of 180 s, but 30 s are reported for a computational time
limit of 30 s.

• If the computational time is smaller than or equal to 30 s, then
the total computational time is reported for both computational
time limits.

A computational time is associated to each reported solution. For
computational time limit of 180 s, respectively 30 s, only solutions

hat could be reached before 180 s, respectively 30 s, are kept in the
umerical results. Finally, the gain associated to the best set of qualifi-
ations is reported in the numerical experiments for each computation
ime limit and each 𝑘.

.4.1. First qualification configuration
For each 𝑘 and each work center, Table 3, respectively Table 4,

hows the numerical results for a computational time limit of 30 s,
espectively 180 s. Table 5 provides details on the Branch and Bound
lgorithm for the first qualification configuration such as the initial
elaxation gap at the root node, the final relaxation gap when the
lgorithm stops, the total number of explored nodes and the number
f instances where the optimal solution is found. Note that, when an
ptimal solution is found, a gap of 0% is reported.

Depending on the work center, all solution approaches may not
etermine satisfactory qualification plans, in particular GH and LS
ompared to GHDP and LSP. For instance, for a computational time
imit of 30 s, GHDP performs better on average than GH from 𝑘 = 6.
he mean gain with GH is equal to 6.9% whereas the mean gain with
HDP is equal to 7.0%. The larger 𝑘, the larger the difference between
HDP and GH. This is due to the fact that, although the mean run time
f GH is equal to 24.8 s, on several instances GH cannot find a complete
ualification plan because it reaches the computational time limit. This
s confirmed by experiments for 𝑘 = 7 and 𝑘 = 8. This shows that, for a
mall computational time limit, using dual variables is valuable. For a
omputational time limit of 180 s, GH actually performs slightly better
n average than GHDP for 𝑘 = 6 and 𝑘 = 7. This is because the dual
ariables are only indicative of the marginal increase in the objective
unction. However, when 𝑘 = 40 or 𝑘 = 100, GHDP determines better
ualification plans than GH because GH reaches the computational time
imit.

Generally, GHDP determines solutions that are close to the optimal
olutions, and can even outperform B&B for work centers B and C. On
verage, the benefit of LSDP is very limited for a substantial increase
f the computational time. On average, LSDP only slightly improves
at most by 0.1%) the mean gain of GHDP. GRASP determines slightly
11

etter solutions than GHDP and LSDP. For instance, for 𝑘 ∈ {40, 100}
and work center C, the mean gain determined by GRASP is equal to
18.2% whereas the mean gain determined by LSDP is equal to 17.4%.
Similar observations can be made for work center B. However, in
general, the difference between LSDP and GRASP do not exceed 0.1%.

Note that, GHDP, LSDP and GRASP do not necessarily determine
optimal solutions for 𝑘 = 1, although close to optimal solutions are
obtained. This is because dual variables are only indicative, and do not
necessarily guarantee that the marginal rate can be fully reached. Also,
it is possible that several dual variables have the same value but, in
practice, does not lead to the same gain on the utilization balance of
the machines. In addition, there could be more than 𝑁 dual variables
with the same value but only 𝑁 are considered.

For work centers A and D, where the number of possible qualifica-
tions is the smallest among the studied work centers, B&B determine
optimal solutions for all instances in less than 30 s when 𝑘 ≤ 8, and for
23 out of the 24 instances when 𝑘 = 40 or 100. All optimal solutions
are determined for a computational time limit of 180 s (see Table 5).
The mean computational time to reach optimal solutions do not exceed
a few seconds. For work centers B and D, B&B is better than any other
approach for 𝑘 ∈ {1, 2, 3}, but is outperformed by either LSDP or GRASP
for larger values of 𝑘. In most cases, when B&B is not the best solution
approach, GRASP determines better solutions, which are always close
to the optimal solutions.

It is interesting to observe that, for 𝑘 = 100, fewer nodes are
explored by B&B than when 𝑘 = 40, which can be counter intuitive
because more combinations should be tested. However, as the number
of qualifications increases, almost all relevant qualification decisions
are already binary in the continuous relaxation at the root node (due
to the nature of data), and thus considered in the initial feasible
qualification plan determined by IGH. Hence, the required branching
effort is reduced because the resulting number of ‘‘choices’’ is smaller.
Similarly, almost all relevant qualifications are determined by using
the 𝑘 largest dual variables. Therefore, on industrial data, as soon as
𝑘 exceeds a few qualifications, even if the optimization problem is
NP-Hard, the theoretical combinatorial aspect of the problem fades.

Numerical results show that, for small work centers or work centers
with a limited number of possible qualifications, B&B performs better
than other solution approaches both in terms of solution quality and
computational times. For instance, in practice, B&B should be used for
work centers A and D. This also shows that using empirical observations
and dual variables, which are part of the B&B solution approach, is
relevant for these work centers. For larger work centers, numerical
results show that B&B is outperformed by LSDP and GRASP which
should be preferred. In particular, as work centers get larger, larger
computational time limits seem acceptable. In this case, GRASP is
probably the best solution approach.

5.4.2. Second qualification configuration
For each value of 𝑘 and each work center, Table 6, respectively

Table 7, shows the numerical results for a computational time limit
of 30 s, respectively for a computational time limit of 180 s. Table 8
provides details on the Branch and Bound algorithm for the second
qualification configuration such as the initial relaxation gap at the
root node, the final relaxation gap when the algorithm stops, the total
number of explored nodes and the number of instances where the
optimal solution is found.

GH and LS always propose unsatisfactory qualification plans, whethe
the computational time limit is 30 or 180 s, even for 𝑘 = 1, and are
always outperformed by GHDP, LSDP and GRASP. When 𝑘 = 1, GH
may determine qualification plans close in terms of quality to the qual-
ification plans of GHDP. However, such a quality in the qualification
plans is almost obtained ‘‘by chance’’ because the computational time
limit of 30 or 180 s is always reached and good solutions are among
the first ones evaluated. Such differences are due to the significant
combinatorial explosion. For instance, consider instance 1 of work

center B. There are 768 products and 162 machines (see B). The initial



Computers and Operations Research 144 (2022) 105813A. Perraudat et al.
Table 3
Numerical results for a computational time limit of 30 s and the first qualification configuration. Cells in italic, respectively bold, indicate the smallest, respectively the largest,
gain value by 𝑘 and work center.

Work
center

𝑘 GH LS GHDP LSDP GRASP IGH B&B

Gain (%) CPU (s) Gain (%) CPU (s) Gain (%) CPU (s) Gain (%) CPU (s) Gain (%) CPU (s) Gain (%) CPU (s) Gain (%) CPU (s)

A

1 2.7 7.5 2.7 7.5 2.7 0.8 2.7 0.8 2.7 30.0 2.1 0.2 2.7 0.2
2 4.1 7.5 4.1 16.6 4.1 0.8 4.1 2.0 4.1 30.0 3.4 0.2 4.2 0.3
3 5.1 11.7 5.1 25.1 5.1 1.4 5.1 4.6 5.1 30.0 4.5 0.2 5.1 0.4
4 5.9 16.2 5.9 28.5 5.9 2.1 5.9 6.1 5.9 30.0 5.1 0.2 5.9 0.4
5 6.5 21.1 6.5 29.7 6.5 4.1 6.6 7.6 6.6 30.0 5.7 0.2 6.6 0.5
6 6.9 24.8 6.9 30.0 7.0 4.6 7.1 9.0 7.1 30.0 6.0 0.2 7.1 0.5
7 7.0 27.0 7.0 30.0 7.4 5.0 7.5 9.8 7.5 30.0 6.3 0.2 7.5 0.6
8 7.1 28.3 7.1 30.0 7.8 6.1 7.8 12.0 7.8 30.0 6.7 0.2 7.8 0.8
40 7.2 30.0 7.2 30.0 10.4 24.5 10.4 30.0 10.4 30.0 9.6 0.2 10.4 4.1
100 7.2 30.0 7.2 30.0 10.5 29.9 10.5 30.0 10.7 30.0 10.6 0.2 10.8 2.2

B

1 15.4 30.0 15.4 30.0 15.8 4.4 15.8 4.4 15.8 30.0 15.1 2.3 15.9 10.1
2 15.4 30.0 15.4 30.0 20.8 4.5 20.8 9.1 20.8 30.0 17.6 2.3 20.9 17.5
3 15.4 30.0 15.4 30.0 23.0 6.8 23.1 14.2 23.2 30.0 18.9 2.3 23.2 24.9
4 15.4 30.0 15.4 30.0 24.6 9.0 24.7 18.7 24.7 30.0 19.9 2.4 24.1 28.8
5 15.4 30.0 15.4 30.0 25.6 11.2 25.8 24.2 25.8 30.0 20.4 2.3 22.9 29.6
6 15.4 30.0 15.4 30.0 26.5 13.4 26.7 27.3 26.6 30.0 20.9 2.3 22.3 29.6
7 15.4 30.0 15.4 30.0 27.2 15.4 27.3 29.9 27.2 30.0 21.6 2.3 21.6 30.0
8 15.4 30.0 15.4 30.0 27.7 17.8 27.7 30.0 27.7 30.0 21.9 2.5 21.9 30.0
40 15.4 30.0 15.4 30.0 28.7 30.0 28.7 30.0 29.1 30.0 25.9 2.4 25.9 30.0
100 15.4 30.0 15.4 30.0 28.7 30.0 28.7 30.0 29.1 30.0 28.3 2.6 28.3 30.0

C

1 7.4 30.0 7.4 30.0 7.4 1.5 7.4 1.5 7.4 30.0 6.7 0.6 7.4 3.1
2 8.9 30.0 8.9 30.0 10.4 1.5 10.4 5.2 10.5 30.0 8.1 0.6 10.5 7.8
3 8.8 30.0 8.8 30.0 12.1 2.4 12.1 6.9 12.1 30.0 8.9 0.6 12.1 15.3
4 8.9 30.0 8.9 30.0 13.2 4.8 13.3 8.5 13.3 30.0 9.3 0.6 13.0 21.2
5 9.0 30.0 9.0 30.0 14.1 5.9 14.1 11.6 14.1 30.0 9.8 0.6 13.3 25.4
6 8.9 30.0 8.9 30.0 14.7 6.8 14.7 15.2 14.7 30.0 10.0 0.6 12.8 25.7
7 8.8 30.0 8.8 30.0 15.2 7.8 15.2 18.7 15.2 30.0 10.8 0.6 12.9 27.5
8 8.8 30.0 8.8 30.0 15.6 8.3 15.6 27.5 15.7 30.0 11.8 0.6 13.7 28.0
40 9.0 30.0 9.0 30.0 17.4 30.0 17.4 30.0 18.2 30.0 16.2 0.6 16.2 30.0
100 8.9 30.0 8.9 30.0 17.4 30.0 17.4 30.0 18.3 30.0 17.7 0.7 17.8 27.5

D

1 3.7 0.9 3.7 0.9 3.7 0.7 3.7 0.7 3.7 30.0 3.7 0.1 3.7 0.2
2 5.1 0.9 5.1 2.2 5.1 0.7 5.1 1.9 5.1 30.0 4.5 0.1 5.1 0.4
3 5.8 1.5 5.8 4.6 5.8 1.3 5.8 4.3 5.8 30.0 5.0 0.1 5.8 0.5
4 6.3 2.1 6.3 5.6 6.3 1.9 6.3 5.5 6.3 30.0 5.4 0.1 6.3 0.9
5 6.6 3.1 6.6 7.6 6.6 2.8 6.6 7.3 6.6 30.0 5.8 0.1 6.6 1.2
6 6.8 4.8 6.8 9.3 6.8 4.4 6.8 8.3 6.8 30.0 6.1 0.1 6.8 1.3
7 6.9 5.2 6.9 11.0 6.9 5.1 6.9 10.7 6.9 30.0 6.3 0.1 6.9 1.3
8 7.0 6.2 7.0 20.1 7.0 5.6 7.0 18.2 7.0 30.0 6.5 0.1 7.0 1.4
40 7.5 30.0 7.5 30.0 7.5 21.3 7.5 27.3 7.5 30.0 7.5 0.1 7.5 0.3
100 7.5 30.0 7.5 30.0 7.5 21.7 7.5 27.6 7.5 30.0 7.5 0.1 7.5 0.1
number of qualifications is equal to 3,975. For the second qualification
configuration, this means that the total number of qualifiable pairs
(product, machine) is equal to 768 × 162 − 3, 975 = 120, 441. 120,441
qualifications cannot be evaluated in 30 or 180 s. The use of dual
variables is therefore particularly relevant to restrict the search space to
the 𝑁 most promising qualifications. Doing so immunizes GHDP, LSDP
and GRASP against the increase in the number of qualifiable products
on each machine.

Contrary to the first qualification configuration, B&B performs
poorly on a large number of experiments. For work center A, B&B
is relevant until approximately 𝑘 = 5 where it is outperformed by
GHDP, LSDP or GRASP. For work center B, B&B is relevant until
approximately 𝑘 = 7 where it is outperformed by GHDP, LSDP or
GRASP. For work centers B and C, B&B is outperformed by GHDP,
LSDP or GRASP as soon as 𝑘 = 3. Contrary to the first qualification
configuration, the poor performance of B&B can be explained by the
fact that empirical observations that motivate B&B do not longer hold
and cause a combinatorial explosion. For instance, many qualification
decisions are relevant and the continuous relaxation may no longer be
strong. Many qualifications can be relevant to improve the utilization
balance of the machines and the qualification matrix is now dense.
Another reason that explains why B&B performs worst on the second
qualification configuration than in the first qualification configuration
is the fact that the linear relaxation is more computationally expensive.
For instance, consider work center B and a computational time limit
of 180 s. Several hundreds nodes could be explored for the first
12
qualification configuration (see Table 5) whereas no more than 30
nodes can be explored for the second qualification configuration (see
Table 8).

Although the mean run time is still very small, less than 1 s for
work centers A, C, and D and less than 3 s for work center B, IGH is
less relevant to determine qualification plans in the second qualification
configuration than in the first qualification configuration. IGH is far
from the best solution found by other solution approaches because
many dual variables that rank among the best ones when assessing
the initial situation often correspond to the same product, or the
same machine. In practice, qualifying the same product, or the same
machine, many times is irrelevant to efficiently improve the utilization
balance of the machines.

LSDP improves the initial qualification plan determined by GHDP
more in the second qualification configuration than in the first quali-
fication configuration. The improvement can reach more than 1%, as
shown in Table 7 for work center A and 𝑘 = 8.

From a general perspective, GRASP is the best solution approach be-
cause it always outperforms GHDP and in most cases also outperforms
LSDP. GRASP also determines the best solutions for most values of 𝑘
for work centers B and C. And when GRASP is not the best solution ap-
proach, it is still close to the best found solution, even for experiments
for work centers A and D where B&B could determine optimal solutions.
LSDP also determines satisfactory qualifications plans, but which in
general are of lower quality than the qualifications plans determined by
GRASP. Thus, GRASP seems to be most relevant approach to tackle the
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Table 4
Numerical results for a computational time limit of 180 s and the first qualification configuration. Cells in italic, respectively bold, indicate the smallest, respectively the largest,
gain value by 𝑘 and work center.

Work
center

𝑘 GH LS GHDP LSDP GRASP IGH B&B

Gain (%) CPU (s) Gain (%) CPU (s) Gain (%) CPU (s) Gain (%) CPU (s) Gain (%) CPU (s) Gain (%) CPU (s) Gain (%) CPU (s)

A

1 2.7 7.5 2.7 7.5 2.7 0.8 2.7 0.8 2.7 180.0 2.1 0.2 2.7 0.2
2 4.1 7.5 4.1 16.7 4.1 0.8 4.1 2.0 4.1 180.0 3.4 0.2 4.2 0.3
3 5.1 11.7 5.1 30.2 5.1 1.4 5.1 4.6 5.1 180.0 4.5 0.2 5.1 0.4
4 5.9 16.5 5.9 50.6 5.9 2.1 5.9 6.1 5.9 180.0 5.1 0.2 5.9 0.4
5 6.5 22.0 6.6 63.7 6.5 4.1 6.6 7.6 6.6 180.0 5.7 0.2 6.6 0.5
6 7.1 29.2 7.1 83.6 7.0 4.6 7.1 9.0 7.1 180.0 6.0 0.2 7.1 0.5
7 7.5 37.4 7.5 103.5 7.4 5.0 7.5 9.8 7.5 180.0 6.3 0.2 7.5 0.6
8 7.8 44.3 7.8 116.0 7.8 6.1 7.8 12.0 7.8 180.0 6.7 0.2 7.8 0.8
40 9.7 174.0 9.7 180.0 10.4 24.5 10.4 65.0 10.4 180.0 9.6 0.2 10.4 5.8
100 9.6 180.0 9.6 180.0 10.8 54.2 10.8 148.1 10.8 180.0 10.6 0.2 10.8 2.2

B

1 15.9 180.0 15.9 180.0 15.8 4.4 15.8 4.4 15.8 180.0 15.1 2.3 15.9 11.9
2 15.9 180.0 15.9 180.0 20.8 4.5 20.8 9.1 20.9 180.0 17.6 2.3 20.9 32.1
3 15.9 180.0 15.9 180.0 23.0 6.8 23.1 14.2 23.2 180.0 18.9 2.3 23.2 77.9
4 15.9 180.0 15.9 180.0 24.6 9.0 24.7 18.7 24.8 180.0 19.9 2.4 24.8 121.7
5 15.9 180.0 15.9 180.0 25.6 11.2 25.8 24.5 25.9 180.0 20.4 2.3 25.2 160.6
6 15.9 180.0 15.9 180.0 26.5 13.4 26.7 29.3 26.7 180.0 20.9 2.3 25.5 166.7
7 15.9 180.0 15.9 180.0 27.2 15.4 27.3 35.6 27.3 180.0 21.6 2.3 25.7 175.3
8 15.9 180.0 15.9 180.0 27.7 17.8 27.8 42.8 27.8 180.0 21.9 2.5 24.5 177.0
40 15.9 180.0 15.9 180.0 29.5 89.5 29.5 180.0 29.5 180.0 25.9 2.4 25.9 180.0
100 15.9 180.0 15.9 180.0 29.6 180.0 29.6 180.0 29.6 180.0 28.3 2.6 28.3 180.0

C

1 7.4 87.1 7.4 87.1 7.4 1.5 7.4 1.5 7.4 180.0 6.7 0.6 7.4 3.1
2 10.4 86.8 10.5 173.9 10.4 1.5 10.4 5.2 10.5 180.0 8.1 0.6 10.5 10.4
3 12.1 144.7 12.1 180.0 12.1 2.4 12.1 6.9 12.1 180.0 8.9 0.6 12.1 34.8
4 12.7 177.0 12.7 180.0 13.2 4.8 13.3 8.5 13.3 180.0 9.3 0.6 13.2 71.8
5 12.9 178.4 12.9 180.0 14.1 5.9 14.1 12.0 14.1 180.0 9.8 0.6 13.5 91.5
6 12.9 180.0 12.9 180.0 14.7 6.8 14.7 15.2 14.8 180.0 10.0 0.6 14.0 114.9
7 12.9 180.0 12.9 180.0 15.2 7.8 15.2 20.9 15.2 180.0 10.8 0.6 14.2 135.5
8 12.9 180.0 12.9 180.0 15.6 8.3 15.6 35.2 15.7 180.0 11.8 0.6 14.8 138.7
40 12.9 180.0 12.9 180.0 18.2 114.3 18.2 180.0 18.2 180.0 16.2 0.6 16.2 180.0
100 12.9 180.0 12.9 180.0 18.3 180.0 18.3 180.0 18.3 180.0 17.7 0.7 18.3 44.4

D

1 3.7 0.9 3.7 0.9 3.7 0.7 3.7 0.7 3.7 180.0 3.7 0.1 3.7 0.2
2 5.1 0.9 5.1 2.2 5.1 0.7 5.1 1.9 5.1 180.0 4.5 0.1 5.1 0.4
3 5.8 1.5 5.8 4.6 5.8 1.3 5.8 4.3 5.8 180.0 5.0 0.1 5.8 0.5
4 6.3 2.1 6.3 5.6 6.3 1.9 6.3 5.5 6.3 180.0 5.4 0.1 6.3 0.9
5 6.6 3.1 6.6 7.6 6.6 2.8 6.6 7.3 6.6 180.0 5.8 0.1 6.6 1.2
6 6.8 4.8 6.8 9.3 6.8 4.4 6.8 8.3 6.8 180.0 6.1 0.1 6.8 1.3
7 6.9 5.2 6.9 11.0 6.9 5.1 6.9 10.7 6.9 180.0 6.3 0.1 6.9 1.3
8 7.0 6.2 7.0 20.9 7.0 5.6 7.0 18.5 7.0 180.0 6.5 0.1 7.0 1.4
40 7.5 115.5 7.5 168.3 7.5 33.8 7.5 68.1 7.5 180.0 7.5 0.1 7.5 0.3
100 7.5 146.1 7.5 164.9 7.5 36.0 7.5 68.8 7.5 180.0 7.5 0.1 7.5 0.1
studied optimization problem on very large scale industrial instances,
even for a small computational budget.

Another interesting conclusion that can be drawn from these nu-
merical experiments is that the gain between the first and second
qualification configurations are very different. Consider 𝑘 = 1 where
the optimal solution is found for all instances by B&B. For the first
qualification configuration, the mean gain is equal to 2.7% whereas it
is equal to 15.4% for the second qualification configuration. The differ-
ence is significant. This shows that machines that cannot be qualified
for some products, i.e. such that 𝑞𝑟,𝑚 = 0 in the first configuration,
could potentially lead to substantial improvements for the work center
in terms of utilization balance of the machines. This may be worth to
investigate, and to check if these forbidden qualifications could actually
be made, i.e. whether the associated 𝑞𝑟,𝑚 = 0 in the first configuration
could be changed to 𝑞𝑟,𝑚 = 2.

Note that if many dual variables have the same value, the solution
pproaches that are based on dual variables lose quality if a restricted
umber of qualifications is tested at each iteration. However, numerical
esults show that this loss is not substantial and does not seem to
epend on the number of products 𝑅 and machines 𝑀 . If the loss

was significant, the number of qualifications tested at each iteration
in GHDP, LSDP or GRASP could be increased to overcome the loss of
13

quality.
6. Computational study: Random instances

In this section, additional numerical experiments are performed on
96 randomly generated instances to further compare and validate the
proposed solution approaches. The design of experiments is similar to
the one in Section 5.2. The procedure to generate the random instances
is detailed in Section 6.1 while, in Section 6.2, the main findings are
discussed. Finally, Section 6.3 analyzes the numerical results in more
details.

6.1. Instance generation

To generate random instances, the industrial data are used as a
baseline. We proceed as follows: First, the demand and throughput are
randomly generated. Then, initial and possible qualifications are ran-
domly generated. Finally, the capacity is computed from the demand
and throughput and but also randomly generated.

For each of the 96 randomly generated instances, each of the
following ‘‘hyperparameters’’ are randomly selected from one the 96
industrial instances: The number of products and machines, 𝒅−

𝒅
, 𝒅+

𝒅
,

𝜎(𝒅)
𝒅

, 𝒂−
𝒂 , 𝒂+

𝒂 , 𝜎(𝒂)
𝒂 , 𝒄−

𝒄 , 𝒄+
𝒄 , 𝜎(𝒄)

𝒄 , the initial qualification rate, and the
possible qualification rate. Selecting these parameters is critical as they

are used to randomly generate 𝒄, 𝒅, 𝒒, and 𝒂. Each hyperparameter, for
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Table 5
Details of the branch and bound solution approach for the first qualification configuration.
Work
center

𝑘 30 seconds 180 seconds

Initial Final Number of Initial Final Number of
Gap (%) Gap (%) Nodes optimal

solutions
Gap (%) Gap (%) Nodes optimal

solutions

A

1 0.59 0.00 0.3 24 0.59 0.00 0.3 24
2 0.89 0.00 0.8 24 0.89 0.00 0.8 24
3 0.75 0.00 2.1 24 0.75 0.00 2.1 24
4 0.92 0.00 2.3 24 0.92 0.00 2.3 24
5 0.99 0.00 4.5 24 0.99 0.00 4.5 24
6 1.22 0.00 6.6 24 1.22 0.00 6.6 24
7 1.30 0.00 6.9 24 1.30 0.00 6.9 24
8 1.26 0.00 10.5 24 1.26 0.00 10.5 24
40 0.96 0.08 201.3 23 0.96 0.00 303.8 24
100 0.20 0.00 81.9 23 0.20 0.00 84.4 24

B

1 5.75 2.31 6.8 23 5.75 2.28 8.8 24
2 8.89 0.67 21.2 15 8.89 0.27 43.6 22
3 10.33 0.91 38.3 9 10.33 0.23 124.6 18
4 11.30 2.20 54.7 3 11.30 0.46 235.5 13
5 12.01 5.91 65.8 1 12.01 1.62 359.1 7
6 12.16 9.03 67.0 1 12.16 2.46 415.7 3
7 11.75 11.28 70.2 0 11.75 3.34 459.5 1
8 11.85 11.54 70.2 0 11.85 5.55 483.3 1
40 7.05 7.05 70.0 0 7.05 7.05 503.5 0
100 2.59 2.59 70.5 0 2.59 2.59 499.9 0

C

1 2.98 0.02 7.1 24 2.98 0.02 7.1 24
2 4.47 0.05 48.9 22 4.47 0.02 71.9 24
3 5.29 0.15 125.6 19 5.29 0.03 332.2 22
4 6.24 0.69 222.4 11 6.24 0.21 808.0 17
5 6.54 1.29 326.2 9 6.54 0.97 1187.2 16
6 7.07 2.69 344.3 6 7.07 1.04 1615.5 12
7 6.68 3.46 383.0 4 6.68 1.51 2022.7 8
8 5.90 2.90 410.5 4 5.90 1.32 2120.8 7
40 2.67 2.67 453.6 0 2.67 2.67 3018.2 0
100 0.77 0.66 402.9 7 0.77 0.00 669.9 24

D

1 0.26 0.00 1.1 24 0.26 0.00 1.1 24
2 0.84 0.00 3.2 24 0.84 0.00 3.2 24
3 1.08 0.00 10.3 24 1.08 0.00 10.3 24
4 1.08 0.00 27.1 24 1.08 0.00 27.1 24
5 1.01 0.00 63.7 24 1.01 0.00 63.7 24
6 0.86 0.00 71.9 24 0.86 0.00 71.9 24
7 0.79 0.00 74.2 24 0.79 0.00 74.2 24
8 0.67 0.00 75.2 24 0.67 0.00 75.2 24
40 0.03 0.00 11.5 24 0.03 0.00 11.5 24
100 0.03 0.00 0.0 24 0.03 0.00 0.0 24
,
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instance 𝒄−
𝒄 and 𝒄+

𝒄 , is randomly selected from one the 96 industrial
nstances. Note that, even in the case where all the ‘‘hyperparameters’’
ould be drawn from the same industrial instance, the resulting in-

tance would still be different from the industrial instance as 𝒄, 𝒅, 𝒒,
nd 𝒂 are randomly generated.
Generate the demand and the throughput. It is assumed that the

emand follows a normal distribution of mean 𝒅, standard deviation
𝜎(𝒅). A value is then generated with min(𝒅+,max(𝒅+𝜎(𝒅) (0.0, 1.0),𝒅−))
where (0.0, 1.0) is a random value drawn from the normal law that has
a mean 0.0 and standard deviation 1.0. It is assumed that 𝒅 = 100 so
that 𝜎(𝒅), 𝒅−, and 𝒅+ can be generated from the industrial data as only
atios are provided in Appendix A. Similarly, it is assumed the through-
ut follows a normal distribution of mean 𝒂 and standard deviation

𝜎(𝒂). A value is then generated with min(𝒂+,max(𝒂+𝜎(𝒂)(0.0, 1.0),𝒂−)).
It is also assumed that 𝒂 = 100 so that 𝜎(𝒂), 𝒂−, and 𝒂+ can be generated
from the industrial data.

Generate the initial and possible qualifications. First, for each
recipe, a machine is randomly selected to be initially qualified for the
recipe. Similarly, for each machine, a recipe is randomly selected to be
initially qualified on the machine. Then, additional initial and possible
qualifications are added based on the initial qualification and possible
qualification rates of the random instances. Let us define 𝑣1 as the
initial qualification rate and 𝑣2 as the possible qualification rate of the
ndustrial instance. A list of all couples (product, machine) is created
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hen shuffled. The first 𝑣1 couples (product, machine) of the list are
selected and will be initially qualified, and the following 𝑣2 couples
(product, machine) are selected as possible qualifications.

Generate the capacity. The capacity is also assumed to follow a
normal distribution of mean 𝒄 and standard deviation 𝜎(𝒄). A value
s then generated with min(𝒄+,max(𝒄 + 𝜎(𝒄)(0.0, 1.0), 𝒄−)). 𝒄 is first
etermined from the demand and throughput: 𝒄 =

∑

𝑟(𝑑𝑟×min𝑚(𝑎𝑟,𝑚))
90%×𝑀

assuming that the initial mean capacity utilization rate is equal to 90%.
In general, generating the capacity this way does not ensure that the
initial mean utilization rate is equal to 90% due to the randomness of
the instance generation procedure. Let us define 𝒄0 as the value of the
capacities generated so far. To ensure that the mean utilization rate is
equal to 90%, Algorithm 1 is run on the generated instance where the
capacity is 𝒄0. The real utilization rate of machine 𝑚 is then equal to
1
𝑚, where 𝑐1𝑚 is the optimized utilization rate of machine 𝑚 computed
ith Algorithm 1. The final capacity value of each machine 𝑚 is then
efined as 𝑐0𝑚

90%×𝑀
∑

𝑚 (𝑐1𝑚 )

.

6.2. Main findings

Similarities between the industrial and randomly generated in-
stances can be observed, in particular the fact that restricting the search
space by using the dual prices is relevant both in terms of solution
quality and computational time. However, small differences with the
main findings of the results for the industrial instances can be also

observed:
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Table 6
Numerical results for a computational time limit of 30 s and the second qualification configuration. Cells in italic, respectively bold, indicate the smallest, respectively the largest,
gain value by 𝑘 and work center.

Work
center

𝑘 GH LS GHDP LSDP GRASP IGH B&B

Gain (%) CPU (s) Gain (%) CPU (s) Gain (%) CPU (s) Gain (%) CPU (s) Gain (%) CPU (s) Gain (%) CPU (s) Gain (%) CPU (s)

A

1 11.6 30.0 11.6 30.0 15.4 0.9 15.4 0.9 15.4 30.0 13.7 0.2 15.4 1.0
2 11.6 30.0 11.6 30.0 23.5 0.9 24.7 2.5 25.1 30.0 15.3 0.2 25.1 2.0
3 11.6 30.0 11.6 30.0 30.7 1.5 31.7 5.0 32.1 30.0 16.1 0.2 32.1 3.8
4 11.6 30.0 11.6 30.0 35.3 2.1 36.3 7.0 37.3 30.0 16.4 0.2 37.3 10.4
5 11.6 30.0 11.6 30.0 38.9 4.4 40.2 8.9 41.2 30.0 17.4 0.2 40.4 19.1
6 11.6 30.0 11.6 30.0 42.2 4.5 43.2 10.4 44.1 30.0 18.8 0.2 44.2 22.9
7 11.6 30.0 11.6 30.0 44.5 5.5 46.1 12.2 47.0 30.0 19.9 0.2 43.6 27.2
8 11.6 30.0 11.6 30.0 46.7 6.5 48.6 14.9 49.1 30.0 20.2 0.2 40.3 30.0
40 11.6 30.0 11.6 30.0 60.4 24.8 60.6 30.0 60.8 30.0 43.1 0.3 43.1 30.0
100 11.6 30.0 11.6 30.0 61.0 30.0 61.0 30.0 62.4 30.0 53.0 0.3 54.6 28.0

B

1 0.8 30.0 0.8 30.0 35.3 7.2 35.3 7.2 35.3 30.0 32.3 2.9 35.2 29.4
2 0.8 30.0 0.8 30.0 44.5 7.1 44.8 12.7 45.4 30.0 34.6 2.7 36.2 30.0
3 0.8 30.0 0.8 30.0 50.8 9.9 51.8 20.2 51.8 30.0 35.2 2.7 35.2 30.0
4 0.8 30.0 0.8 30.0 55.7 12.4 56.5 25.7 56.7 30.0 35.3 2.8 35.3 30.0
5 0.8 30.0 0.8 30.0 59.5 15.3 61.3 29.7 61.0 30.0 35.3 2.8 35.3 30.0
6 0.8 30.0 0.8 30.0 63.4 17.8 64.3 30.0 64.2 30.0 35.3 2.9 35.3 30.0
7 0.8 30.0 0.8 30.0 65.8 20.7 66.7 30.0 66.4 30.0 35.3 2.8 35.3 30.0
8 0.8 30.0 0.8 30.0 68.3 23.1 69.0 30.0 68.4 30.0 35.3 2.9 35.3 30.0
40 0.8 30.0 0.8 30.0 72.2 30.0 72.2 30.0 77.4 30.0 35.9 2.8 35.9 30.0
100 0.8 30.0 0.8 30.0 72.0 30.0 72.0 30.0 77.3 30.0 37.1 3.0 37.1 30.0

C

1 7.2 30.0 7.2 30.0 34.5 1.8 34.5 1.8 34.5 30.0 33.6 0.8 34.5 25.2
2 7.2 30.0 7.2 30.0 46.5 2.1 46.5 6.1 46.5 30.0 34.6 0.8 47.7 27.5
3 7.2 30.0 7.2 30.0 53.6 3.0 54.0 7.9 54.0 30.0 34.8 0.8 54.5 30.0
4 7.2 30.0 7.2 30.0 59.2 5.6 59.4 10.2 59.6 30.0 35.0 0.8 49.7 30.0
5 7.2 30.0 7.2 30.0 62.8 6.7 62.9 13.7 62.9 30.0 35.1 0.8 38.8 30.0
6 7.2 30.0 7.2 30.0 65.6 7.9 65.7 19.2 65.8 30.0 35.1 0.8 35.1 30.0
7 7.2 30.0 7.2 30.0 67.9 8.8 68.1 21.5 68.1 30.0 35.1 0.8 35.1 30.0
8 7.2 30.0 7.2 30.0 69.6 9.5 70.0 28.4 69.8 30.0 35.1 0.8 35.1 30.0
40 7.2 30.0 7.2 30.0 77.5 30.0 77.5 30.0 82.2 30.0 37.8 0.8 37.8 30.0
100 7.2 30.0 7.2 30.0 77.5 30.0 77.5 30.0 83.6 30.0 53.0 0.9 53.0 30.0

D

1 32.6 22.7 32.6 22.7 32.4 0.8 32.4 0.8 32.4 30.0 24.3 0.1 32.6 0.7
2 44.0 23.0 44.0 29.7 42.9 0.8 43.0 2.1 43.6 30.0 33.7 0.1 44.2 1.0
3 48.0 29.1 48.0 30.0 49.5 1.6 50.0 5.2 50.1 30.0 34.5 0.1 50.2 1.5
4 48.5 29.9 48.5 30.0 52.4 2.1 53.3 7.2 53.6 30.0 35.1 0.1 53.9 4.1
5 49.0 30.0 49.0 30.0 54.8 2.8 55.3 9.9 56.1 30.0 35.2 0.1 56.4 11.4
6 49.0 30.0 49.0 30.0 56.6 4.5 57.7 17.0 57.9 30.0 35.8 0.1 58.3 17.9
7 49.0 30.0 49.0 30.0 58.2 5.2 59.2 22.4 59.4 30.0 38.7 0.1 59.8 21.5
8 49.0 30.0 49.0 30.0 59.2 6.2 60.3 25.5 60.5 30.0 39.3 0.1 58.7 25.3
40 49.0 30.0 49.0 30.0 64.2 30.0 64.2 30.0 66.7 30.0 55.3 0.2 55.3 30.0
100 49.0 30.0 49.0 30.0 64.3 30.0 64.3 30.0 67.6 30.0 62.2 0.2 67.2 12.0
t
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1. For the first qualification configuration, using GHDP does not
seem to be the best policy. LSDP and GRASP largely outperform
GHDP even for 𝑘 = 1,

2. For the first qualification configuration, LSDP, GRASP and B&B
outperform other solution approaches for both computational
time limits,

3. LSDP is more successful to improve solutions determined by
GHDP than in industrial instances,

4. For the first qualification configuration, in particular small val-
ues of 𝑘, LSDP and GRASP provide near optimal solutions and
perform slightly better than B&B for large values of 𝑘,

5. For the second qualification configuration, when 𝑘 < 4, B&B is
the best solution approach,

6. For the second qualification configuration, LSDP and GRASP pro-
vide fewer near optimal solutions but remain the best solution
approaches when 𝑘 > 4, Increasing 𝑁 could help determine
better solutions but at the cost of an increased computational
time.

6.3. Detailed numerical results

6.3.1. First qualification configuration
For each value of 𝑘, Table 9, respectively Table 10, shows the

numerical results for a computational time limit of 30 s, respectively
15

for a computational time limit of 180 s. Table 11 provides details on p
he Branch and Bound algorithm for the first qualification configuration
uch as the initial relaxation gap at the root node, the final relaxation
ap when the algorithm stops, the total number of explored nodes and
he number of instances where the optimal solution is found.

Results on random instances are similar to the results obtained for
he industrial instances but small differences can be observed.

For a computational time limit of 30 s, GH and GHDP perform
imilarly when 𝑘 is not too large, typically when 𝑘 ≤ 8. However,
HDP is often much faster to reach the same quality of solutions as
H. When 𝑘 ≤ 8, GHDP is between 2 and 5 times faster than GH.
or a computational time limit of 180 s, GHDP performs slightly better
han GH and is between 1.5 and 20 times faster than GH. LS is always
utperformed by LSDP for all values of 𝑘 and LSDP always finished
efore LS. IGH is also outperformed by GHDP, LSDP and GRASP.

For a computational time limit of 30 s, B&B determines all optimal
olutions when 𝑘 = 1. For a computational time limit of 180 s, B&B
etermines all optimal solutions when 𝑘 ≤ 4 and, when 𝑘 > 4,
etermines an optimal solution for more than 89% of the instances.

It is interesting to note that LSDP and GRASP provide near optimal
olutions when 𝑘 < 4 as the differences between LSDP, GRASP and B&B
re almost unnoticeable in terms of gain, less than 0.1%. B&B finds
olutions faster than LSDP and GRASP. When B&B does not provide
ptimal solutions, GRASP and LSDP often perform a bit better than
&B. GRASP performs better than B&B when 𝑘 ∈ {5, 6, 40}, and LSDP

erforms better than B&B when 𝑘 ∈ {5, 6}.
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Table 7
Numerical results for a computational time limit of 180 s and the second qualification configuration. Cells in italic, respectively bold, indicate the smallest, respectively the largest,
gain value by 𝑘 and work center.

Work
center

𝑘 GH LS GHDP LSDP GRASP IGH B&B

Gain (%) CPU (s) Gain (%) CPU (s) Gain (%) CPU (s) Gain (%) CPU (s) Gain (%) CPU (s) Gain (%) CPU (s) Gain (%) CPU (s)

A

1 15.0 180.0 15.0 180.0 15.4 0.9 15.4 0.9 15.4 180.0 13.7 0.2 15.4 1.0
2 15.0 180.0 15.0 180.0 23.5 0.9 24.7 2.5 25.1 180.0 15.3 0.2 25.1 2.0
3 15.0 180.0 15.0 180.0 30.7 1.5 31.7 5.0 32.1 180.0 16.1 0.2 32.1 3.8
4 15.0 180.0 15.0 180.0 35.3 2.1 36.3 7.0 37.3 180.0 16.4 0.2 37.3 18.6
5 15.0 180.0 15.0 180.0 38.9 4.4 40.2 8.9 41.4 180.0 17.4 0.2 41.4 38.5
6 15.0 180.0 15.0 180.0 42.2 4.5 43.2 10.4 44.6 180.0 18.8 0.2 44.7 54.6
7 15.0 180.0 15.0 180.0 44.5 5.5 46.1 12.2 47.2 180.0 19.9 0.2 47.3 91.2
8 15.0 180.0 15.0 180.0 46.7 6.5 48.6 14.9 49.3 180.0 20.2 0.2 48.9 153.4
40 15.0 180.0 15.0 180.0 60.4 24.8 61.0 93.4 61.0 180.0 43.1 0.3 43.1 180.0
100 15.0 180.0 15.0 180.0 62.4 59.9 62.5 164.9 62.5 180.0 53.0 0.3 54.6 146.8

B

1 3.1 180.0 3.1 180.0 35.3 7.2 35.3 7.2 35.3 180.0 32.3 2.9 36.0 166.1
2 3.1 180.0 3.1 180.0 44.5 7.1 44.8 12.7 45.6 180.0 34.6 2.7 46.5 180.0
3 3.1 180.0 3.1 180.0 50.8 9.9 51.8 20.2 52.6 180.0 35.2 2.7 53.4 180.0
4 3.1 180.0 3.1 180.0 55.7 12.4 56.5 26.7 57.6 180.0 35.3 2.8 52.4 180.0
5 3.1 180.0 3.1 180.0 59.5 15.3 61.5 37.4 61.9 180.0 35.3 2.8 35.3 180.0
6 3.1 180.0 3.1 180.0 63.4 17.8 64.5 45.0 64.8 180.0 35.3 2.9 35.3 180.0
7 3.1 180.0 3.1 180.0 65.8 20.7 67.0 57.9 67.5 180.0 35.3 2.8 35.3 180.0
8 3.1 180.0 3.1 180.0 68.3 23.1 69.3 60.5 70.1 180.0 35.3 2.9 35.3 180.0
40 3.1 180.0 3.1 180.0 88.1 117.4 88.7 180.0 88.8 180.0 35.9 2.8 35.9 180.0
100 3.1 180.0 3.1 180.0 90.3 180.0 90.3 180.0 91.4 180.0 37.1 3.0 37.1 180.0

C

1 8.8 180.0 8.8 180.0 34.5 1.8 34.5 1.8 34.5 180.0 33.6 0.8 34.6 76.0
2 8.8 180.0 8.8 180.0 46.5 2.1 46.5 6.1 46.5 180.0 34.6 0.8 47.8 148.7
3 8.8 180.0 8.8 180.0 53.6 3.0 54.0 7.9 54.0 180.0 34.8 0.8 54.7 180.0
4 8.8 180.0 8.8 180.0 59.2 5.6 59.4 10.2 59.6 180.0 35.0 0.8 56.8 180.0
5 8.8 180.0 8.8 180.0 62.8 6.7 62.9 14.0 63.1 180.0 35.1 0.8 45.4 180.0
6 8.8 180.0 8.8 180.0 65.6 7.9 65.7 21.6 66.1 180.0 35.1 0.8 37.5 180.0
7 8.8 180.0 8.8 180.0 67.9 8.8 68.1 30.4 68.4 180.0 35.1 0.8 36.5 180.0
8 8.8 180.0 8.8 180.0 69.6 9.5 70.0 39.8 70.3 180.0 35.1 0.8 35.1 180.0
40 8.8 180.0 8.8 180.0 82.3 117.5 82.6 180.0 82.6 180.0 37.8 0.8 37.8 180.0
100 8.8 180.0 8.8 180.0 83.4 180.0 83.4 180.0 84.7 180.0 53.0 0.9 53.0 180.0

D

1 32.6 23.6 32.6 23.6 32.4 0.8 32.4 0.8 32.4 180.0 24.3 0.1 32.6 0.7
2 44.2 24.3 44.2 58.2 42.9 0.8 43.0 2.1 43.6 180.0 33.7 0.1 44.2 1.0
3 50.1 39.1 50.2 92.5 49.5 1.6 50.0 5.2 50.1 180.0 34.5 0.1 50.2 1.5
4 53.7 58.0 53.7 119.6 52.4 2.1 53.3 7.2 53.7 180.0 35.1 0.1 53.9 4.1
5 56.2 64.9 56.3 142.5 54.8 2.8 55.3 9.9 56.2 180.0 35.2 0.1 56.4 20.4
6 58.0 83.8 58.1 161.3 56.6 4.5 57.7 19.1 58.1 180.0 35.8 0.1 58.3 56.5
7 59.5 98.8 59.6 176.0 58.2 5.2 59.2 27.5 59.6 180.0 38.7 0.1 59.8 101.9
8 60.5 115.5 60.6 177.5 59.2 6.2 60.3 37.7 60.7 180.0 39.3 0.1 60.9 117.9
40 63.5 180.0 63.5 180.0 66.6 95.4 66.8 180.0 66.8 180.0 55.3 0.2 55.9 176.0
100 63.5 180.0 63.5 180.0 67.3 180.0 67.3 180.0 67.6 180.0 62.2 0.2 67.6 18.2
Note also that, contrary to the industrial instances, LSDP (and
RASP) can significantly improve GHDP. When the differences between
HDP and LSDP is of about 0.1% in most cases, LSDP can improve

olutions determined by GHDP by more than 3%.

.3.2. Second qualification configuration
For each value of 𝑘, Table 12, respectively Table 13, shows the

umerical results for a computational time limit of 30 s, respectively
or a computational time limit of 180 s. Table 14 provides details on the
ranch and Bound algorithm for the second qualification configuration
uch as the initial relaxation gap at the root node, the final relaxation
ap when the algorithm stops, the total number of explored nodes and
he number of instances where the optimal solution is found.

Similarly to what can be observed for the industrial instances, GH
nd LS always propose unsatisfactory qualification plans, whether the
omputational time limit is 30 or 180 s, even for 𝑘 = 1, and are
lways outperformed by GHDP, LSDP, GRASP and B&B. Similarly to the
ndustrial instances, for the second qualification configuration, there
re tens of thousands of qualifications to evaluate for a single iteration
f GH. This cannot be done in a few seconds. The use of dual variables
s therefore particularly relevant to restrict the search space.

B&B is the best solution approaches as long as 𝑘 < 4, although
not all solutions are optimal. For instance, consider 𝑘 = 1. For the
first qualification configuration, B&B determines an optimal solution
16

for all the instances. For the second qualification configuration, only
83 optimal solutions are determined for 96 instances. The number of
optimal solutions quickly drops as 𝑘 increases.

Contrary to the first qualification configuration, LSDP and GRASP
do not always provide near optimal solutions when 𝑘 < 4. The dif-
ference in gains between GRASP and B&B varies between 1% and 2%.
The fact that LSDP and GRASP no longer provide as many near optimal
solutions can be explained by 𝑁 , which is the parameter driving
the number of qualifications to evaluate at each iteration. A similar
explanation can be given for the first qualification matrix when 𝑘 = 1,
as LSDP improves solutions found by GHDP. In this case, increasing
𝑁 may lead to better solutions. When 𝑘 > 4, LSDP and GRASP both
outperform B&B.

LSDP and GRASP still provide much better solutions than GH,
LS, GHDP and IGH. First, let us compare GHDP with GH and LS.
The solutions of GHDP are between 1.5 and 5 times better and are
determined much faster than the solutions determined by GH and LS.
Contrary to the first qualification configuration, LSDP only slightly
improves the quality of the qualification plans. For all values of 𝑘
and both computational time limits, GRASP provides better results on
average in terms of gain than LSDP.

7. Conclusions and perspectives

In this paper, we propose new solution approaches to determine
optimized qualification plans in work centers with non-identical par-
allel machines to maximize the capacitated time flexibility measure
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Table 8
Details of the branch and bound solution approach for the second qualification configuration.
Work
center

𝑘 30 seconds 180 seconds

Initial Final Number of Initial Final Number of
Gap (%) Gap (%) Nodes optimal

solutions
Gap (%) Gap (%) Nodes optimal

solutions

A

1 2.04 0.09 1.8 24 2.04 0.09 1.8 24
2 13.78 0.03 8.1 24 13.78 0.03 8.1 24
3 25.15 0.01 21.5 24 25.15 0.01 21.5 24
4 35.62 0.04 82.8 21 35.62 0.03 158.4 23
5 44.27 1.76 182.5 16 44.27 0.01 368.0 22
6 51.13 0.69 257.3 11 51.13 0.01 537.6 22
7 57.49 7.15 343.9 5 57.49 0.02 925.0 20
8 64.39 19.21 406.9 0 64.39 0.67 1827.6 10
40 60.79 60.79 423.8 0 60.79 60.79 2762.5 0
100 32.32 28.31 396.1 5 32.32 28.31 2205.3 5

B

1 10.95 4.72 1.6 1 10.95 3.38 12.5 3
2 30.71 27.42 1.5 0 30.71 5.36 23.4 0
3 51.04 51.04 1.3 0 51.04 6.25 21.1 0
4 71.36 71.36 1.2 0 71.36 23.19 19.8 0
5 91.01 91.01 1.1 0 91.01 91.00 17.5 0
6 111.19 111.19 1.0 0 111.19 111.19 16.5 0
7 131.72 131.72 1.0 0 131.72 131.72 16.0 0
8 152.43 152.43 1.0 0 152.43 152.43 15.2 0
40 696.11 696.11 1.0 0 696.11 696.11 11.5 0
100 890.51 890.51 1.0 0 890.51 890.50 16.6 0

C

1 7.42 5.13 13.9 6 7.42 0.75 45.0 21
2 40.85 5.00 33.7 3 40.85 3.18 230.8 6
3 71.12 7.38 38.4 0 71.12 5.65 284.5 0
4 98.69 52.48 38.5 0 98.69 27.31 284.1 0
5 124.84 116.86 37.5 0 124.84 90.17 287.0 0
6 149.89 149.77 35.8 0 149.89 143.86 279.8 0
7 172.98 172.90 34.0 0 172.98 169.77 272.7 0
8 194.12 194.08 32.8 0 194.12 193.94 263.1 0
40 406.03 406.02 33.5 0 406.03 406.02 259.0 0
100 297.11 297.11 38.0 0 297.11 297.11 289.7 0

D

1 23.90 0.30 3.0 24 23.90 0.30 3.0 24
2 30.69 0.23 6.5 24 30.69 0.23 6.5 24
3 47.25 0.03 15.8 24 47.25 0.03 15.8 24
4 60.59 0.03 78.6 24 60.59 0.03 78.6 24
5 72.96 0.15 272.8 20 72.96 0.00 433.1 24
6 83.21 0.45 508.2 14 83.21 0.07 1285.8 19
7 78.77 0.73 691.6 9 78.77 0.24 2338.3 13
8 85.50 5.18 873.3 7 85.50 0.40 3071.7 10
40 49.10 49.10 1262.4 0 49.10 48.07 7329.0 1
100 20.38 0.97 462.8 23 20.38 0.00 739.2 23
Table 9
Numerical results for a computational time limit of 30 s and the first qualification configuration. Cells in italic, respectively bold, indicate the smallest, respectively the largest,
gain value by 𝑘.
𝑘 GH LS GHDP LSDP GRASP IGH B&B

Gain (%) CPU (s) Gain (%) CPU (s) Gain (%) CPU (s) Gain (%) CPU (s) Gain (%) CPU (s) Gain (%) CPU (s) Gain (%) CPU (s)

1 14.9 15.5 14.9 15.5 14.9 3.5 16.4 3.5 16.4 30.0 15.9 1.1 16.4 2.0
2 18.6 15.5 18.6 18.3 18.6 3.5 21.6 6.9 21.6 30.0 18.3 1.1 21.6 3.0
3 20.7 16.9 20.7 20.3 20.7 5.6 24.0 10.1 24.1 30.0 20.4 1.1 24.1 4.7
4 21.7 18.5 21.7 21.7 21.7 6.7 25.6 12.0 25.6 30.0 21.9 1.1 25.6 5.5
5 22.5 19.7 22.5 23.1 22.5 8.6 26.5 13.9 26.6 30.0 23.1 1.1 26.1 6.7
6 22.8 20.2 22.9 24.1 22.8 10.0 27.3 15.8 27.3 30.0 24.1 1.1 26.9 6.9
7 23.2 21.1 23.2 25.4 23.2 10.9 27.8 17.5 27.8 30.0 24.7 1.1 27.8 7.6
8 23.5 21.7 23.5 26.6 23.5 11.9 28.3 20.0 28.3 30.0 25.3 1.1 28.3 7.7
40 24.5 29.5 24.5 30.0 24.5 27.2 30.9 29.7 31.6 30.0 30.8 1.1 31.4 11.3
100 24.7 29.9 24.7 30.0 24.7 28.2 31.0 29.7 32.1 30.0 32.1 1.2 32.2 10.4
proposed in Rowshannahad et al. (2015). In particular, dual prices are
used to derive heuristics that are quickly guided towards good solu-
tions. The proposed approaches are compared on industrial data on four
different work centers, covering a significant number of machines in
the considered semiconductor manufacturing facility, and two different
qualification configurations. The proposed approaches are also com-
pared on instances randomly generated using parameters taken from
the industrial data. The approaches relying on dual variable provide
17

very good solutions. Because the four work centers are of different
nature, we expect the approaches to be effective on the remaining
work centers in the production facility. Recommendations are finally
provided. The approaches are now embedded in a decision support
system that determines and proposes effective qualification plans to
work center managers twenty minutes before every shift (every 8 h).
The decision support is used to enhance their decision process and
better manage work centers.

We believe the following perspectives are worth investigating in the

future:
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Table 10
Numerical results for a computational time limit of 180 s and the first qualification configuration. Cells in italic, respectively bold, indicate the smallest, respectively the largest,
gain value by 𝑘.
𝑘 GH LS GHDP LSDP GRASP IGH B&B

Gain (%) CPU (s) Gain (%) CPU (s) Gain (%) CPU (s) Gain (%) CPU (s) Gain (%) CPU (s) Gain (%) CPU (s) Gain (%) CPU (s)

1 16.2 71.7 16.2 71.7 16.4 3.5 16.4 3.5 16.4 180.0 15.9 1.1 16.4 2.0
2 20.7 72.9 20.7 83.6 21.6 3.5 21.6 7.5 21.6 180.0 18.3 1.1 21.6 3.2
3 22.7 77.5 22.7 89.0 24.0 5.7 24.1 12.0 24.1 180.0 20.4 1.1 24.1 5.6
4 24.0 83.8 24.0 96.6 25.5 7.4 25.6 15.5 25.6 180.0 21.9 1.1 25.6 8.5
5 24.7 86.5 24.8 99.1 26.5 9.8 26.6 19.4 26.6 180.0 23.1 1.1 26.6 12.3
6 25.3 88.8 25.4 102.0 27.3 11.9 27.3 24.3 27.3 180.0 24.1 1.1 27.4 13.8
7 25.8 91.9 25.8 106.1 27.8 13.5 27.9 29.3 27.9 180.0 24.7 1.1 27.9 16.9
8 26.2 95.2 26.2 109.2 28.3 15.3 28.3 36.2 28.4 180.0 25.3 1.1 28.4 20.4
40 28.5 136.3 28.5 158.0 31.8 80.2 31.8 124.8 31.9 180.0 30.8 1.1 31.4 59.9
100 28.5 158.1 28.5 167.8 32.4 109.0 32.4 133.1 32.7 180.0 32.1 1.2 32.3 49.1
Table 11
Details of the branch and bound solution approach for the first qualification configuration.
𝑘 30 seconds 180 seconds

Initial Final Number of Initial Final Number of
Gap (%) Gap (%) Nodes optimal

solutions
Gap (%) Gap (%) Nodes of optimal

solutions

1 3.06 0.67 1.0 96 3.06 0.67 1.0 96
2 12.75 0.04 2.7 95 12.75 0.04 2.8 96
3 19.75 0.04 6.7 91 19.75 0.01 7.4 96
4 25.65 0.07 10.2 89 25.65 0.01 13.0 96
5 38.33 9.44 18.1 86 38.33 0.06 36.5 95
6 48.56 10.07 18.8 82 48.56 0.00 27.8 94
7 58.39 0.25 24.4 82 58.39 0.01 46.1 93
8 41.63 0.23 29.6 78 41.63 0.10 59.1 92
40 6.80 5.20 129.2 64 6.80 5.06 598.8 67
100 3.44 2.76 117.3 69 3.44 2.62 399.3 73
Table 12
Numerical results for a computational time limit of 30 s and the second qualification configuration. Cells in italic, respectively bold, indicate the smallest, respectively the largest,
gain value by 𝑘.
𝑘 GH LS GHDP LSDP GRASP IGH B&B

Gain (%) CPU (s) Gain (%) CPU (s) Gain (%) CPU (s) Gain (%) CPU (s) Gain (%) CPU (s) Gain (%) CPU (s) Gain (%) CPU (s)

1 12.9 30.0 12.9 30.0 20.2 4.3 20.2 4.3 20.2 30.0 20.0 1.2 21.3 9.8
2 12.9 30.0 12.9 30.0 28.1 4.3 28.2 7.7 28.3 30.0 20.2 1.2 30.5 13.5
3 12.9 30.0 12.9 30.0 33.1 6.0 33.5 11.3 33.6 30.0 20.2 1.2 35.3 15.1
4 12.9 30.0 12.9 30.0 35.9 7.6 36.4 13.6 36.8 30.0 20.3 1.2 36.6 17.0
5 12.9 30.0 12.9 30.0 38.3 9.1 38.7 15.1 39.1 30.0 20.6 1.2 35.8 18.0
6 12.9 30.0 12.9 30.0 40.0 10.6 40.7 17.9 41.0 30.0 20.8 1.2 35.3 18.4
7 12.9 30.0 12.9 30.0 41.3 11.6 42.3 20.9 42.7 30.0 21.0 1.2 34.2 19.0
8 12.9 30.0 12.9 30.0 42.7 12.6 43.5 22.9 43.9 30.0 21.4 1.2 33.4 19.6
40 12.9 30.0 12.9 30.0 53.1 28.4 53.2 30.0 56.2 30.0 31.1 1.3 39.5 23.8
100 12.9 30.0 12.9 30.0 53.5 30.0 53.5 30.0 60.3 30.0 42.0 1.3 44.1 27.0
Table 13
Numerical results for a computational time limit of 180 s and the second qualification configuration. Cells in italic, respectively bold, indicate the smallest, respectively the largest,
gain value by 𝑘.
𝑘 GH LS GHDP LSDP GRASP IGH B&B

Gain (%) CPU (s) Gain (%) CPU (s) Gain (%) CPU (s) Gain (%) CPU (s) Gain (%) CPU (s) Gain (%) CPU (s) Gain (%) CPU (s)

1 14.2 161.5 14.2 161.5 20.2 4.3 20.2 4.3 20.2 180.0 20.0 1.2 21.4 35.6
2 17.0 162.1 17.0 174.4 28.1 4.3 28.2 8.3 28.3 180.0 20.2 1.2 30.6 50.1
3 18.0 170.3 18.0 180.0 33.1 6.2 33.5 13.4 33.7 180.0 20.2 1.2 35.6 61.9
4 18.4 175.6 18.4 180.0 36.0 8.2 36.4 17.4 36.9 180.0 20.3 1.2 38.0 76.4
5 18.1 178.7 18.1 180.0 38.3 10.4 38.8 21.9 39.3 180.0 20.6 1.2 37.1 81.5
6 18.5 179.7 18.5 180.0 40.1 12.6 40.8 29.3 41.3 180.0 20.8 1.2 37.0 88.2
7 18.9 180.0 18.9 180.0 41.4 14.3 42.3 37.4 42.9 180.0 21.0 1.2 36.3 93.2
8 18.9 180.0 18.9 180.0 42.8 16.2 43.7 46.0 44.3 180.0 21.4 1.2 37.0 97.6
40 18.9 180.0 18.9 180.0 56.6 87.4 57.0 152.7 57.4 180.0 31.1 1.3 43.5 120.8
100 18.9 180.0 18.9 180.0 60.8 138.5 61.0 179.5 62.6 180.0 42.0 1.3 46.5 145.7
18
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Table 14
Details of the branch and bound solution approach for the second qualification configuration.
𝑘 30 seconds 180 seconds

Initial Final Number of Initial Final Number of
Gap (%) Gap (%) Nodes optimal

solutions
Gap (%) Gap (%) Nodes optimal

solutions

1 8.74% 5.16% 7.8 74 8.74% 5.00% 14.7 83
2 46.71% 5.47% 41.6 63 46.71% 4.98% 85.0 76
3 93.52% 5.14% 53.5 57 93.52% 4.18% 184.5 70
4 144.62% 44.07% 81.6 52 144.62% 31.43% 273.5 63
5 205.70% 102.45% 85.3 49 205.70% 90.50% 345.0 58
6 288.74% 175.31% 90.5 42 288.74% 157.57% 403.1 56
7 401.80% 283.44% 97.0 41 401.80% 264.68% 443.2 51
8 549.76% 443.59% 102.7 39 549.76% 403.78% 481.3 49
40 29727.94% 29343.32% 142.1 28 29727.94% 28920.18% 598.2 37
100 130259.70% 129512.62% 151.4 14 130259.70% 128722.32% 781.3 23
Table A.15
Instances for work center A: 𝒅 is the mean demand of products, 𝜎(𝒅) the standard deviation of the demand of products, 𝒅+ the maximum demand of products, 𝒅− the minimum
emand over all products, 𝒄 the mean production capacity of machines, 𝜎(𝒄) the standard deviation of the production capacity of machines, 𝒄+ the maximum capacity over all
achines, 𝒄− the minimum capacity over all machines, 𝒂 the mean throughput of products on machines of initial and possible qualifications, 𝒂+ the maximum throughput of

products on machines of initial and possible qualifications, and 𝒂− the minimum throughput of products on machines of initial and possible qualifications, and 𝜎(𝒂) the standard
deviation of the throughput of products on machines of initial and possible qualifications. The initial qualification rate (%) is the number of entries equal to 1 in the matrix 𝒒
divided by 𝑅 ×𝑀 , and the qualifiable rate (%) is the number of entries equal to 2 in the matrix 𝒒 divided by 𝑅 ×𝑀 .

Instance 𝑅 𝑀 𝒅−

𝒅
𝒅+

𝒅
𝜎(𝒅)
𝒅

𝒂−

𝒂
𝒂+

𝒂
𝜎(𝒂)
𝒂

𝒄−

𝒄
𝒄+

𝒄
𝜎(𝒄)
𝒄

Initial
qualification
rate (%)

Possible
qualification
rate (%)

1 660 14 0.016 8.049 1.015 0.055 8.042 0.574 0.838 1.167 0.109 25.130% 5.400%
2 650 14 0.015 8.039 1.062 0.055 5.308 0.561 0.836 1.208 0.106 25.000% 5.396%
3 667 15 0.015 7.493 1.033 0.045 5.547 0.576 0.808 1.167 0.121 24.048% 4.018%
4 642 14 0.014 7.457 1.092 0.045 5.528 0.570 0.815 1.156 0.097 25.567% 4.105%
5 548 15 0.015 6.328 0.999 0.046 5.157 0.562 0.803 1.160 0.120 24.684% 5.876%
6 538 15 0.014 6.016 1.008 0.045 5.076 0.575 0.828 1.196 0.107 24.845% 5.799%
7 532 14 0.014 6.330 1.029 0.090 5.035 0.553 0.803 1.160 0.118 26.705% 6.002%
8 542 14 0.016 6.243 1.005 0.093 2.493 0.549 0.792 1.145 0.113 28.268% 4.942%
9 569 14 0.016 6.231 1.006 0.059 2.466 0.556 0.824 1.190 0.117 26.048% 5.938%
10 565 14 0.016 6.612 0.999 0.059 2.456 0.558 0.797 1.151 0.113 27.155% 5.815%
11 563 14 0.032 8.416 1.041 0.077 2.423 0.558 0.803 1.160 0.123 27.138% 6.141%
12 585 14 0.033 7.357 1.019 0.057 2.419 0.555 0.824 1.190 0.120 26.984% 6.105%
13 578 14 0.015 7.365 0.950 0.058 2.461 0.569 0.817 1.181 0.120 27.533% 5.252%
14 602 14 0.015 7.631 1.002 0.045 2.411 0.564 0.806 1.164 0.119 28.049% 4.461%
15 590 15 0.016 10.089 1.071 0.044 2.402 0.549 0.805 1.163 0.119 25.763% 4.226%
16 578 14 0.016 10.113 1.085 0.069 6.426 0.563 0.818 1.182 0.119 27.558% 5.042%
17 632 14 0.016 8.525 1.113 0.044 6.384 0.548 0.807 1.165 0.102 27.238% 5.120%
18 631 14 0.015 8.107 1.161 0.070 6.455 0.552 0.821 1.186 0.120 27.383% 5.173%
19 604 14 0.014 7.984 1.175 0.079 2.484 0.557 0.808 1.146 0.109 26.703% 6.055%
20 582 14 0.013 7.074 1.192 0.077 2.446 0.558 0.796 1.149 0.113 26.338% 6.112%
21 558 15 0.015 7.634 1.133 0.079 2.501 0.566 0.792 1.144 0.107 24.886% 5.783%
22 564 14 0.015 8.133 1.052 0.079 2.503 0.561 0.794 1.147 0.111 26.722% 5.990%
23 588 14 0.013 6.242 1.096 0.071 2.458 0.552 0.826 1.172 0.108 25.948% 6.353%
24 601 15 0.013 7.395 1.203 0.071 2.447 0.555 0.820 1.143 0.099 24.326% 5.768%
D
v

• Some parameters might be subject to uncertainty, such as prod-
uct quantities and machines capacities, and designing robust
qualification plans should be an interesting research avenue,

• Workload variables are continuous but, in practice, some ma-
chines run product quantities by batches. Hence, the considera-
tion of batching constraints could be explored as in Rowshanna-
had and Dauzère-Pérès (2013),

• An outer linearization algorithm is used to solve nonlinear pro-
grams. Other algorithms, such as active-set methods or sequen-
tial quadratic methods (Rowshannahad et al., 2015) could be
compared to the outer linearization algorithm to further reduce
computational times,

• Solution approaches could be compared on data from other facto-
ries to further validate the relevance of the dual variable solution
approaches,

• We assumed in this work that each qualification has the same
cost, which makes sense at the operational level. However, con-
sidering different qualification costs when decisions are taken for
the next weeks or months could be relevant,
19
• Studying the effect of disqualifications on the compromise be-
tween qualification costs and utilization balance can also be
relevant,

• Considering time-varying demand and production capacity on
a longer planning horizon is interesting, but makes sense at a
different decision level than the one considered in this paper,

• It would be relevant to study the robustness of solution ap-
proaches, e.g. under what conditions using dual prices does not
provide good solutions.
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Table B.16
Instances for work center A: 𝒅 is the mean demand of products, 𝜎(𝒅) the standard deviation of the demand of products, 𝒅+ the maximum demand over all products, 𝒅− the
minimum demand over all products, 𝒄 the mean production capacity of machines, 𝜎(𝒄) the standard deviation of the production capacity of machines, 𝒄+ the maximum capacity
ver all machines, 𝒄− the minimum capacity over all machines, 𝒂 the mean throughput of products on machines of initial and possible qualifications, 𝒂+ the maximum throughput

of products on machines of initial and possible qualifications, and 𝒂− the minimum throughput of products on machines of initial and possible qualifications, and 𝜎(𝒂) the standard
deviation of the throughput of products on machines of initial and possible qualifications. The initial qualification rate (%) is the number of entries equal to 1 in the matrix 𝒒
ivided by 𝑅 ×𝑀 , and the qualifiable rate (%) is the number of entries equal to 2 in the matrix 𝒒 divided by 𝑅 ×𝑀 .

Instance 𝑅 𝑀 𝒅−

𝒅
𝒅+

𝒅
𝜎(𝒅)
𝒅

𝒂−

𝒂
𝒂+

𝒂
𝜎(𝒂)
𝒂

𝒄−

𝒄
𝒄+

𝒄
𝜎(𝒄)
𝒄

Initial
qualification
rate (%)

Possible
qualification
rate (%)

1 786 168 0.015 10.051 1.300 0.076 45.635 1.423 0.890 1.049 0.037 3.010% 0.924%
2 760 168 0.014 9.937 1.264 0.078 46.882 1.452 0.840 1.053 0.039 3.022% 0.931%
3 806 168 0.014 13.364 1.263 0.072 43.423 1.809 0.891 1.050 0.037 3.052% 0.969%
4 785 168 0.014 12.204 1.282 0.073 43.802 1.715 0.839 1.052 0.039 3.044% 0.961%
5 767 168 0.014 9.993 1.233 0.078 91.173 1.993 0.841 1.054 0.040 2.894% 0.979%
6 767 168 0.014 10.024 1.185 0.079 91.885 2.000 0.841 1.054 0.040 2.930% 0.944%
7 780 168 0.014 9.622 1.128 0.079 92.418 2.001 0.840 1.053 0.040 2.898% 0.982%
8 809 168 0.015 10.299 1.159 0.079 47.644 1.661 0.840 1.053 0.040 2.860% 1.023%
9 821 168 0.015 7.667 1.102 0.078 46.954 1.643 0.892 1.051 0.038 2.888% 0.977%
10 814 169 0.015 8.696 1.120 0.078 46.622 1.639 0.838 1.050 0.038 2.758% 1.092%
11 781 168 0.015 7.303 1.173 0.081 48.617 1.692 0.838 1.050 0.039 2.895% 1.023%
12 793 168 0.016 6.987 1.168 0.081 48.671 1.696 0.839 1.051 0.040 2.866% 1.028%
13 793 168 0.015 9.071 1.180 0.079 47.235 1.574 0.839 1.051 0.038 2.797% 1.099%
14 783 168 0.015 10.039 1.197 0.074 44.531 1.760 0.839 1.051 0.039 2.842% 1.022%
15 798 168 0.015 8.690 1.211 0.079 47.491 1.588 0.839 1.052 0.039 2.846% 1.018%
16 790 168 0.015 7.908 1.198 0.078 46.642 1.582 0.837 1.049 0.038 2.884% 0.995%
17 795 168 0.015 9.697 1.167 0.077 46.349 1.564 0.839 1.052 0.038 2.880% 1.013%
18 794 169 0.015 12.039 1.213 0.077 46.596 1.569 0.889 1.048 0.036 2.820% 1.023%
19 791 168 0.016 19.706 1.395 0.075 45.164 1.533 0.839 1.051 0.040 2.823% 1.026%
20 767 168 0.014 14.196 1.425 0.075 45.252 1.540 0.838 1.051 0.040 2.875% 1.004%
21 752 169 0.015 15.569 1.459 0.083 50.205 1.500 0.839 1.051 0.040 2.882% 1.028%
22 753 168 0.015 11.377 1.249 0.078 90.358 1.916 0.839 1.052 0.038 2.892% 1.022%
23 779 168 0.016 12.244 1.297 0.080 48.302 1.604 0.891 1.050 0.037 2.854% 1.104%
24 762 168 0.015 14.442 1.327 0.077 46.596 1.577 0.838 1.050 0.039 2.843% 1.051%
Table C.17
Instances for work center A: 𝒅 is the mean demand of products, 𝜎(𝒅) the standard deviation of the demand of products, 𝒅+ the maximum demand over all products, 𝒅− the
minimum demand over all products, 𝒄 the mean production capacity of machines, 𝜎(𝒄) the standard deviation of the production capacity of machines, 𝒄+ the maximum capacity
ver all machines, 𝒄− the minimum capacity over all machines, 𝒂 the mean throughput of products on machines of initial and possible qualifications, 𝒂+ the maximum throughput

of products on machines of initial and possible qualifications, and 𝒂− the minimum throughput of products on machines of initial and possible qualifications, and 𝜎(𝒂) the standard
deviation of the throughput of products on machines of initial and possible qualifications. The initial qualification rate (%) is the number of entries equal to 1 in the matrix 𝒒
ivided by 𝑅 ×𝑀 , and the qualifiable rate (%) is the number of entries equal to 2 in the matrix 𝒒 divided by 𝑅 ×𝑀 .

Instance 𝑅 𝑀 𝒅−

𝒅
𝒅+

𝒅
𝜎(𝒅)
𝒅

𝒂−

𝒂
𝒂+

𝒂
𝜎(𝒂)
𝒂

𝒄−

𝒄
𝒄+

𝒄
𝜎(𝒄)
𝒄

Initial
qualification
rate (%)

Possible
qualification
rate (%)

1 589 69 0.014 11.901 1.367 0.051 46.437 2.336 0.630 1.273 0.166 5.472% 1.821%
2 579 69 0.014 13.678 1.498 0.052 31.064 2.239 0.631 1.274 0.159 5.384% 1.867%
3 565 69 0.014 12.955 1.509 0.053 24.722 2.125 0.624 1.260 0.151 5.502% 1.857%
4 556 70 0.014 13.073 1.473 0.055 20.587 2.000 0.633 1.279 0.154 5.447% 1.775%
5 540 70 0.016 8.046 1.172 0.075 23.157 2.287 0.638 1.290 0.156 5.172% 1.849%
6 550 69 0.016 13.858 1.219 0.080 24.640 2.238 0.628 1.269 0.159 5.270% 1.900%
7 537 69 0.016 14.502 1.241 0.078 24.208 2.303 0.636 1.286 0.165 5.090% 1.924%
8 554 69 0.016 14.869 1.214 0.080 24.852 2.211 0.629 1.271 0.165 5.148% 1.870%
9 513 69 0.016 14.488 1.238 0.076 19.033 2.244 0.628 1.269 0.160 5.150% 1.865%
10 516 69 0.016 14.774 1.325 0.076 19.114 2.237 0.638 1.288 0.159 5.081% 2.005%
11 579 69 0.017 15.549 1.265 0.052 24.292 2.193 0.639 1.291 0.161 5.136% 1.997%
12 568 70 0.017 13.335 1.230 0.053 24.832 2.149 0.633 1.279 0.165 5.179% 1.901%
13 487 69 0.017 14.478 1.312 0.052 24.224 2.272 0.632 1.277 0.161 5.074% 1.976%
14 501 69 0.018 8.896 1.124 0.051 23.811 2.225 0.677 1.239 0.153 5.091% 1.970%
15 506 69 0.018 6.760 1.052 0.050 23.346 2.312 0.627 1.266 0.154 5.058% 1.988%
16 494 69 0.017 5.983 1.087 0.050 23.350 2.307 0.642 1.296 0.163 5.090% 2.004%
17 543 70 0.018 10.123 1.220 0.047 21.915 2.366 0.629 1.270 0.158 5.017% 1.978%
18 516 69 0.017 11.783 1.294 0.050 23.148 2.272 0.636 1.286 0.163 5.123% 1.938%
19 540 69 0.016 9.877 1.166 0.052 19.719 2.147 0.632 1.276 0.164 5.360% 1.688%
20 497 70 0.015 8.935 1.189 0.053 24.293 2.180 0.634 1.281 0.163 5.185% 1.771%
21 523 69 0.016 10.767 1.253 0.048 22.443 2.233 0.634 1.280 0.159 5.495% 1.649%
22 496 69 0.015 12.566 1.322 0.044 53.408 2.740 0.634 1.281 0.157 5.508% 1.622%
23 531 69 0.015 11.915 1.295 0.041 49.669 2.774 0.630 1.273 0.166 5.273% 1.850%
24 530 70 0.015 10.193 1.318 0.046 54.768 2.769 0.623 1.258 0.153 5.261% 1.771%
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Table D.18
Instances for work center A: 𝒅 is the mean demand of products, 𝜎(𝒅) the standard deviation of the demand of products, 𝒅+ the maximum demand over all products, 𝒅− the
minimum demand over all products, 𝒄 the mean production capacity of machines, 𝜎(𝒄) the standard deviation of the production capacity of machines, 𝒄+ the maximum capacity
ver all machines, 𝒄− the minimum capacity over all machines, 𝒂 the mean throughput of products on machines of initial and possible qualifications, 𝒂+ the maximum throughput

of products on machines of initial and possible qualifications, and 𝒂− the minimum throughput of products on machines of initial and possible qualifications, and 𝜎(𝒂) the standard
deviation of the throughput of products on machines of initial and possible qualifications. The initial qualification rate (%) is the number of entries equal to 1 in the matrix 𝒒
ivided by 𝑅 ×𝑀 , and the qualifiable rate (%) is the number of entries equal to 2 in the matrix 𝒒 divided by 𝑅 ×𝑀 .

Instance 𝑅 𝑀 𝒅−

𝒅
𝒅+

𝒅
𝜎(𝒅)
𝒅

𝒂−

𝒂
𝒂+

𝒂
𝜎(𝒂)
𝒂

𝒄−

𝒄
𝒄+

𝒄
𝜎(𝒄)
𝒄

Initial
qualification
rate (%)

Possible
qualification
rate (%)

1 228 21 0.016 12.971 1.687 0.050 1.590 0.310 0.467 1.204 0.150 15.539% 1.838%
2 219 21 0.016 13.621 1.636 0.049 1.581 0.313 0.845 1.167 0.082 15.482% 1.957%
3 229 21 0.016 12.096 1.375 0.101 1.614 0.317 0.851 1.174 0.088 15.325% 1.539%
4 235 21 0.017 11.186 1.398 0.102 1.626 0.319 0.835 1.153 0.078 15.299% 1.479%
5 226 21 0.019 7.692 1.210 0.103 1.718 0.336 0.464 1.197 0.142 14.834% 1.622%
6 226 21 0.018 8.326 1.190 0.050 1.608 0.320 0.844 1.165 0.088 15.381% 1.686%
7 222 21 0.018 6.394 1.117 0.050 1.607 0.330 0.854 1.162 0.068 14.972% 1.780%
8 228 21 0.018 5.438 1.093 0.050 1.599 0.321 0.469 1.209 0.144 14.724% 2.109%
9 221 22 0.019 5.574 1.063 0.050 1.609 0.332 0.467 1.204 0.139 14.500% 1.666%
10 223 22 0.019 6.494 1.083 0.050 1.608 0.332 0.465 1.200 0.141 13.596% 2.059%
11 240 22 0.020 8.341 1.223 0.051 1.618 0.338 0.854 1.178 0.084 12.784% 2.917%
12 237 21 0.020 8.342 1.219 0.051 1.624 0.337 0.846 1.167 0.075 14.627% 1.869%
13 218 21 0.018 6.959 1.204 0.051 1.642 0.326 0.459 1.183 0.143 15.138% 1.573%
14 213 21 0.018 7.271 1.132 0.050 1.631 0.323 0.465 1.200 0.147 15.336% 1.543%
15 215 21 0.018 6.585 1.163 0.050 1.641 0.329 0.848 1.171 0.089 15.150% 1.550%
16 215 21 0.018 6.360 1.129 0.050 1.616 0.319 0.835 1.152 0.077 15.216% 1.639%
17 223 21 0.018 7.625 1.166 0.101 1.635 0.329 0.467 1.205 0.142 14.820% 1.708%
18 219 21 0.019 6.590 1.171 0.101 1.645 0.338 0.464 1.196 0.146 14.808% 1.805%
19 214 21 0.017 7.056 1.115 0.101 1.687 0.329 0.466 1.202 0.145 15.198% 1.602%
20 207 21 0.019 6.958 1.127 0.100 1.677 0.325 0.465 1.199 0.149 15.183% 1.610%
21 223 21 0.020 8.120 1.162 0.051 1.708 0.335 0.462 1.190 0.142 14.606% 1.815%
22 241 21 0.020 10.274 1.206 0.050 1.683 0.329 0.462 1.190 0.142 15.076% 1.680%
23 215 21 0.018 8.144 1.195 0.050 1.685 0.339 0.467 1.204 0.150 14.862% 1.949%
24 224 21 0.019 9.036 1.166 0.051 1.692 0.340 0.461 1.189 0.147 14.881% 1.786%
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Appendix A. Instances for work center A

See Table A.15.

Appendix B. Instances for work center B

See Table B.16.

Appendix C. Instances for work center C

See Table C.17.

Appendix D. Instances for work center D

See Table D.18.
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