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Abstract

For western economies a long-forgotten phenomenon is on the horizon:
rising inflation rates. We propose a novel approach christened D2ML to
identify drivers of national inflation. D2ML combines machine learning
for model selection with time dependent data and graphical models to es-
timate the inverse of the covariance matrix, which is then used to identify
dominant drivers. Using a dataset of 33 countries, we find that the US in-
flation rate and oil prices are dominant drivers of national inflation rates.
For a more general framework, we carry out Monte Carlo simulations to
show that our estimator correctly identifies dominant drivers.
JEL Codes: E31, C22, C23, C55.
Keywords: Inflation; Time Series; Machine Learning; LASSO; High di-
mensional data; Dominant Units;

1 Introduction

The late 1990s marked the start of a period with low inflation rates across the
world (Rogoff, 2003) with the exception of the years around the Great Finan-
cial crisis. The emergence of the COVID19 pandemic and related supply chain
issues brought inflation back to the headlines. The Russian invasion of Ukraine
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and the resulting increases in energy prices further fuelled inflation, especially in
western countries. While it is well understood that national inflation is driven
by national factors (Auer et al., 2019), the effects of spillovers across countries
are less researched. Auer et al. (2019) find that international input linkages syn-
chronize inflation rates between countries. Bataa et al. (2013) present evidence
that the Euro Area leads inflation in North America and that inflation rates
are more synchronized since the 1980s. The effect of global factors or common
factors on national inflation is well understood. Ciccarelli and Mojon (2010)
establish that 2/3 of national inflation is due to global inflation. However global
inflation is not a stand in for common shocks such as changes in commodity
prices and they find that no country is leading global inflation.

To fill this gap in the literature, we use a novel approach to identify dom-
inant drivers influencing national inflation using the GVAR database (Mehdi
Raissi and Mohaddes, 2020). Drivers can be other countries’ inflation rate or
macroeconomic variables of the same or other countries.1 We find that the in-
flation rates in the United States and oil prices changes have a dominant effect
on national inflation rates in a set of 33 countries. Our results are robust to
different estimation methods and specifications. An advantage of our approach
is that it allows to identify dominant drivers even if the number of variables is
larger than the number of observations over time. Inflation can be influenced
by foreign inflation and domestic and foreign factors, such as asset prices or
interest rates. Thus the number of potential variables can be larger than the
number of observations over time when estimating a specific national inflation
series.

Our approach relies on the inverse of the covariance matrix of the data and
consists of two steps. The first step is based on Meinshausen and Bühlmann
(2006) and Sulaimanov and Koeppl (2016) and uses a graphical model to esti-
mate the inverse of the covariance matrix, the precision or concentration matrix.
In a graphical model nodes (variables) are connected by edges (connections). No
connection between two nodes translates to a zero element in the concentration
matrix and indicates independence between the variables. A non-zero in the
concentration matrix implies dependence or a common edge between two nodes
in the graphical model. Hence estimating the linkages between units using a
graphical model is informative about the structure or sparseness of the con-
centration matrix. The entries of the concentration matrix can be represented
by partial correlations and are therefore related to estimated regression coeffi-
cients (Sulaimanov and Koeppl, 2016). Meinshausen and Bühlmann (2006) and
Sulaimanov and Koeppl (2016) propose to use the least absolute shrinkage and
selection operator (LASSO) estimator to estimate the graphical model and then
use post LASSO OLS to estimate the elements of the concentration matrix. We
extend the approach by Meinshausen and Bühlmann (2006) and Sulaimanov
and Koeppl (2016) to time dependent data by combining it with either the
rigorous LASSO (Bickel et al., 2009; Belloni et al., 2016; Chernozhukov et al.,

1Dominant drivers are often labelled as dominant series or units. Brownlees and Mesters
(2021) call them granular series and Kapetanios et al. (2021) call them units with pervasive
effects. Throughout the paper we will refer to them as dominant drivers.
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2019; Ahrens, Aitken, Ditzen, Ersoy, Kohns and Schaffer, 2020) or the adaptive
LASSO estimator (Zou, 2006; Medeiros and Mendes, 2016). The advantage is
of LASSO is its applicability to data where the time dimension is smaller than
the number of series or units.

The second step is the selection of the dominant drivers. We use the proce-
dure in Brownlees and Mesters (2021), henceforth BM, to select the dominant
drivers from the estimated concentration matrix. In the BM procedure, the
column norms of the concentration matrix are ordered by their size and the
dominant drivers identified using a criterion similar to the eigenvalue ratio cri-
terion in Ahn and Horenstein (2013). We propose to use the heteroskedastic
and autocorrelation robust rigorous LASSO and the adaptive LASSO to esti-
mate the graphical model. Based on the linkages, post-LASSO OLS estimates
the entries of the concentration matrix. Monte Carlo simulation results show
that our proposed extension correctly identifies the dominant drivers. Since our
approach relies on machine learning methods to identify the dominant drivers,
we call it Dominant Drivers by Machine Learning, D2ML .

The contributions of D2ML are threefold: First, it can be applied to data
which has more variables than observations, a disadvantage of the method by
Brownlees and Mesters (2021). Secondly it is computationally more simple than
the method in Kapetanios et al. (2021) and requires less assumptions. Finally, it
can be applied to various types of data as shown in our Monte Carlo Simulations.

Dominant drivers have a strong influence on other units or series and their
identification received growing attention in recent years. In an infinite VAR
Chudik and Pesaran (2013) suggest to model the dominant driver as a common
factor. Kapetanios et al. (2021) propose a sequential multiple testing approach
to identify drivers with pervasive effects in a large panel model. The underlying
idea is to identify the drivers using their error variance, on which the multi-
ple testing approach (Bailey et al., 2020) is applied to. Parker and Sul (2016)
identify dominant drivers by analysing the residual variances of regressions of
principal components on the time series and other principal components. Pe-
saran and Yang (2020) identify dominant drivers in production networks using
a criterion similar to the exponent of cross-section dependence. Brownlees and
Mesters (2021) define a dominant driver by the means of the column norms
of the inverse of the covariance matrix and a selection criteria. Their crite-
ria requires to invert the covariance matrix and is therefore only applicable to
datasets with N < T .

Our work extends the literature on inflation and on the identification of
dominant drivers. The results from the empirical application show that the
inflation in the US and oil prices act as a dominating series. We do not find
evidence that real GDP, equity prices, exchange rates and interest rates have a
dominating effect on national inflation.

The remaining part of this paper is structured as follows: the next section
describes the theoretical background, followed by a discussion our D2ML . We
provide evidence for our approach using Monte Carlo Simulations and discuss
our findings of US and oil prices dominating national inflation rates.

The notation throughout this paper is as follows: matrices are in capital and
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bold, such as X, vectors are in lower-case letters and bold, x and scalars are
lower-case x. Time indices are denoted by t =, 1..., T , unit indices by i = 1, ..., N
and the number of variables are defined as k = 1, ...,K. ||Xi|| refers to the i-th
column norm of matrix X.

2 The D2ML approach

This section defines the Dominant Drivers by Machine Learning (D2ML ) two
step approach to identify dominant drivers in large panel models. In the first
step we identify the links between the units and in the second step we select the
dominant drivers.

In the first step, called the network selection step, henceforth NSS, we recover
the network structure using a graphical model and then estimate the concen-
tration matrix. A graphical model links the estimation of a network in the form
of nodes connected by edges and the structure of the concentration matrix, for
a summary see Meinshausen and Bühlmann (2006); Sulaimanov and Koeppl
(2016); Friedman et al. (2008). The link between the graphical model and the
inverse of the covariance matrix is that if two series are independent they have
a a zero partial correlation and are not in the same edge set.

We want to identify the set Γ(Nd) of Nd dominant drivers in the T × N
variable X. We define the entries of the dominant drivers as:

xi,t,d = ui,t, i ∈ Γ(Nd) (1)

and of the non dominant units:

xi,t,nd =
∑

j∈Γ(Nd)

βi,jxj,t + ui,t, i 6∈ Γ(Nd) (2)

where βi,j measure how much dominant driver j influences the non-dominant
unit i. A unit cannot influence itself, hence βi,i = 0. xi,t and the iid er-
ror component ui,t can be serially correlated but stationary over time and can
include common factors. The error component ui,t can also be potentially het-
eroskedastic. We define the covariance matrix of X = (x1, ...,xN )′ by Σ and
the concentration matrix is κ = Σ−1.

Following Meinshausen and Bühlmann (2006) and Sulaimanov and Koeppl
(2016) the graphical model is recovered based on the optimisation problem:

β̂(λ)i = arg min
β

T∑
t=1

xi,t − N∑
j=1,i6=j

xj,tβj

2

+ λi

N∑
j=1

ψj |βj | (3)

where λ > 0 is penalty level (or tuning parameter) and ψj is the penalty load-
ing. To estimate Equation (3) and select the penalty level and loading, we
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propose two estimator: the rigorous or plug-in LASSO (Bickel et al., 2009;
Belloni et al., 2016; Chernozhukov et al., 2019; Ahrens, Aitken, Ditzen, Ersoy,
Kohns and Schaffer, 2020) and the adaptive LASSO (Zou, 2006; Medeiros and
Mendes, 2016). The rigorous LASSO is a data driven method to select λ. The
penalty loading ψj is estimated and adjusted to the assumptions of the error
variances and can account for clustered error variances (Belloni et al., 2016),
heteroskedasticity and autocorrelated errors (Ahrens, Aitken, Ditzen, Ersoy,
Kohns and Schaffer, 2020). The adaptive LASSO is a two step method which
allows simultaneous estimation and consistent variable selection by weighting
the `1 penalty term,

∑N
j=1 ψj |βj . The penalty loading is obtained from an ini-

tial regression and the tuning parameter is obtained by cross-validation (CV)
or information criteria such as the AIC, BIC, AICC.

Meinshausen and Bühlmann (2006) show that the inverse of the covariance
matrix can be estimated for each node or variable individually. This implies that
the problem in Equation (3) is repeated for each unit or variable. Depending on
the data, the dominant driver can be a specific cross-sectional unit or a variable.

The solution to Equation (3) yields the non-zero elements in each row of
the concentration matrix, or in different words it informs which units influence
the unit in question, unit i. To construct the concentration matrix, the post-
LASSO estimates β̂i,j for each cross-section are collected and the N ×N matrix
β constructed:

β̂ =
(
β̂1, ..., β̂N

)′
(4)

β̂i =
(
β̂i,1, ..., β̂i,i−1, 0, β̂i,i+1, ..., β̂i,N

)
(5)

Following Sulaimanov and Koeppl (2016) we construct the concentration
matrix as:

κ̂ = D̂
(
I− β̂

)
(6)

D̂ = diag(σ̂1, ..., σ̂N ) (7)

where β̂ is a N ×N matrix of the estimated post-LASSO coefficients from (3)
and D̂ is a diagonal matrix with the inverse of the estimated error variances of
the i-th regression. The matrix β̂ will be sparse and the sparseness will carry
over to the concentration matrix (Sulaimanov and Koeppl, 2016).

The second step, the dominant driver selection, henceforth DDS, is based on
Brownlees and Mesters (2021). The authors show that the entries and therefore
the column norm of the concentration matrix will be larger for dominant than
non-dominant units.2

The problem can be divided into two problems: the estimation of the number
of dominant drivers and the identification of which units are dominant drivers.

2The same applies to the row norm, for the remainder of this work we will use the column
norm.
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Brownlees and Mesters (2021) propose to use the eigenvalue ratio criterion from
Ahn and Horenstein (2013) to select the number of dominant drivers applied to
ordered column norms of the concentration matrix. The number of dominant
drivers is defined as:

N̂d = arg max
s=1,...,N−1

||κ̂(s)||/||κ̂(s+1)|| (8)

where κ̂(s) is the s-largest column norm of matrix κ̂. All units with a larger
column norm than column Nd are considered dominant drivers. The number of
dominant drivers is a subset of all units and no ratio is assumed.

The NSS step requires the assumptions from Meinshausen and Bühlmann
(2006) to ensure oracle properties of the estimator. The oracle properties im-
ply that model selection and estimation of β are unbiased and consistent. The
properties are important because otherwise the second step, the DDS, will select
falsely non dominant units as dominant drivers. In summary the assumptions for
the oracle properties in Meinshausen and Bühlmann (2006) are that the graph
is sparse, independence in the error components, correlations are bounded from
below and neighbourhood stability. The aim of D2ML is to identify dominant
drivers in high dimensional datasets where the number of cross-sections or vari-
ables is larger than the number of time periods. The dominant units are ordered
in a block structure as in Brownlees and Mesters (2021), however we explicitly
allow for N > T . The column norms of the dominant drivers are larger than
a threshold and larger than those of non-dominant units. This is equivalent
to a sparse concentration matrix, in which elements of non-dominant units are
close to or exactly zero. The graphical model acts a thresholding method to
select only the influential connections between units, which then imply a larger
column norm in the concentration matrix.3 The second assumption is that the
sole source of dependence between units is via the dominant drivers and the
residuals are cross-sectionally independent. While this assumption is restric-
tive, our simulations show that it can be relaxed to a certain degree. The last
two assumptions are technical and ensure that the entries of the concentration
matrix are not going to infinity and that there are no circle connections between
two units via a third one.

There are two notable challenges when applying the BM procedure to an
estimated sparse concentration matrix. First the procedure can falsely select
non-dominant units if the diagonal elements are very large in comparison to
the off diagonal elements in a given column. The diagonal elements are the
inverse of the residual variance. In combination with the LASSO estimator
which minimizes the RSS, the residual variance can become relatively small
making the diagonal element in the concentration matrix large in relation to
the off diagonal elements. A second challenge is that the BM procedure does
not take the number of non-zero elements, or connections, into account. In the

3Alternative methods for the estimation of the concentration matrix including thresholding
the sample covariance matrix are discussed in Sulaimanov and Koeppl (2016).
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extreme, the BM procedure can therefore select a unit with none or a small
number connections to other units. To avoid this issue, we restrict the selection
in the Monte Carlo Simulation and the empirical exercise.4 We also assume at
least one dominant driver. The advantages of the BM procedure are besides the
simple implementation the robustness to common factors, something which is
confirmed in our Monte Carlo Simulations.

Finally it should be noted that the the sample covariance matrix can be
degenerated if N > T . Bien and Tibshirani (2011) discuss this case assuming
that the selected data is only a subset of the underlying data and missing units
are not connected to the sample. We can ignore those units in our approach
since non-connected units will have no influence on the selection of the dominant
drivers. Secondly we note that the matrices β̂ and κ̂ are not symmetric. Mein-
shausen and Bühlmann (2006) ensures symmetry by using the AND criterion.
Nodes i and j are connected if βi,j 6= 0 and βj,i 6= 0. Since we are interested

in directed networks, β̂ and κ̂ are non-symmetric. Therefore the DDS step is
restricted to the column norm.5

3 Monte Carlo Simulation

To show the Oracle properties of the proposed estimator, we employ a Monte
Carlo Simulation. The simulations aim to shed light on three criteria: 1) model
selection; that is if the individual LASSO estimators select the correct units; 2)
if the number of dominant drivers is correctly estimated and 3) if the correct
dominant drivers are selected. In total we are comparing 5 different specifica-
tions. Our data generating process follows Kapetanios et al. (2021):

yt,d = µd + γdgt + ud,t , i = 1, ..., Nd (9)

yt,nd = µnd + βyt,d + γndgt + und,t , i = Nd + 1, ..., N (10)

where yt,d denotes a Nd × 1 vector of the Nd dominant drivers and yt,nd a
Nnd × 1 vector of the Nnd non dominant units. The fixed effects µd and µnd
are drawn from a uniform distribution with IIDU(0, 1).
β is a Nd × Nnd matrix and measures the impact of the dominant drivers

on the non-dominant units and the individual elements are generated as:

βij =

{
IIDU(0, 1), if i ≤ b(N −Nd)αc
0, otherwise

In the case of α = 1 the dominant drivers affect all non dominant units.
In the case of α < 1, only a subset is affected by the dominant drivers, for a
discussion see Kapetanios et al. (2021). The common factors ft are uncorrelated

4Kapetanios et al. (2021) discuss this issue and call it the modified BM procedure.
5In a footnote BM state that the row norm can be used instead because of the symmetry

of the concentration matrix.
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across time and the loadings γd and γnd are drawn for each unit separately from
a IIDU(0, 1) distribution.6 The random noise ud,t and und,t are allowed to be
correlated over time, measured by ρi and generated as a Gaussian process. The
weak cross-sectional dependence in ud,t and und,t is measured by ρd and ρnd.
The dependence structure over time and space is varied between the different
specifications.

Specification ρd ρnd ρi α Nd
(1) 0 0 0 1 5
(2) 0 0 0 0.5 5
(3) 0 0 IIDU(0.2,0.5) 1 5
(4) IIDU(0.2,0.5) 0.5 0 1 5
(5) 0 0 0 1 f(N)

Table 1: Monte Carlo Specifications. N and T are varied between 50, 100 and 150.
ρd and ρnd control the degree of cross-section dependence in the random noise ud,t

and und,t. Autocorrelation in the noise in present if ρi 6= 0. α controls the strength of
the dominant units, with α = 1 affecting all units and α = 0.5 affecting only a share.
The number of dominant drivers Nd in Specification (5) are Nd = 0.1N , Nd = 0.5N
and Nd = 0.9N .

Specification 1 is the simplest, with neither autocorrelation or dependence
in the normally distributed (Gaussian) errors. The dominant driver affects all
units. Specification 2 allows for weakly dependent dominant drivers by changing
α to 0.5. Specification 3 is an alternation of specification 1 and allows for auto-
correlation in the errors. Specification 4 relaxes the cross-section independence
assumption of the errors. Finally, Specification 5 is the same as specification 1
but the number of dominant drivers increases with the number of cross-sections.

The number of time periods and cross-sections varies between N and T =
50, 100, 150. The number of dominant drivers is fixed to 5 and the factors varies
between 0, 1 and 5.7 We present results for the HAC robust rigorous LASSO and
the adaptive LASSO.8 To select the hyperparamter λ of the adaptive LASSO we
use the AIC, AICC or BIC criterion. The first stage loadings ŵ are calculated
ŵj = 1/abs(β̂j) where β̂j are from an univariate OLS regression of yi,t on
yj,t (Zou, 2006; Huang et al., 2008). In the first step we employ the LASSO
estimators to select the non zero elements for each cross-section unit (row), then
use post-LASSO OLS to estimate the coefficients of the N × N matrix β and
finally construct the concentration matrix κ̂ following Equation (7). We then
calculate the column norms, order them by size and use the BM procedure based
on Equation (8).

6For more details see Section A in the Appendix.
7Additional simulations with 0 and 1 dominant drivers, specifications with χ2 distributed

errors and different dependence structures are available in the online appendix.
8We also considered the elastic net LASSO in some preliminary simulations. Results were

qualitatively worse than the adaptive or rigorous LASSO. We also acknowledge that other
LASSO estimation methods such as the graphical LASSO (Friedman et al., 2008) can be
employed to select the model.
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To assess if the LASSO estimators select the correct dominant drivers in the
individual estimations we calculate the average number of non-zero elements
in each column of κ. Additionally we present the True Positive Rate (TPR),
the False Positive Rate (FPR) and the False Discovery Rate (FPR) which are
calculated as:

TPRN =

∑∑
i 6=j

I(κ̂ij 6= 0, and κij 6= 0)∑∑
i 6=j

I(κij 6= 0)
(11)

FPRN =

∑∑
i 6=j

I(κ̂ij 6= 0, and κij = 0)∑∑
i 6=j

I(κij = 0)
, (12)

FDRN =

∑∑
i 6=j

I(κ̂ij 6= 0, and κij = 0)∑∑
i 6=j

I(κij 6= 0)
. (13)

For the dominant drivers we perform the same analysis. We present the
average number of estimated dominant drivers and assess if the correct ones are
selected by comparing the TPR, FPR and FDR.

The simulations are done in R for the adaptive LASSO using glmnet (Fried-
man et al., 2010) and repeated 1000 times. For the rigorous LASSO the Stata
command rlasso (Ahrens, Hansen and Schaffer, 2020) is used with 100 repeti-
tions.9

3.1 Results

We start with analysing the NSS step of Specification 1 with 5 dominant
drivers. Table 3 shows the results for the cases with no, one and five com-
mon factors. ŝ is the average of non zero column norms and should be equal
to (Nd(Nd − 1) + (N −Nd)Nd) /N = [4.9, 4.95, 4.97], as shown in the last block
called “Oracle OLS”. The rigorous and adaptive LASSO both overselect the
number of non-zero elements in the β matrix. While the adaptive LASSO tends
to improve with an increase in N and T , the rigorous LASSO tends to select
more non zero elements. Still the true positive rate is relatively small, indicating
that the rigorous LASSO misses out many non-zero elements. However this is
not necessarily a disadvantage because the identification of the dominant driver
relies on the column norms of the concentration matrix and thus on the size of
the estimated coefficients. As long as the falsely selected non dominant drivers
obtain a smaller entry in κ̂i,j than the dominant drivers, the column norms of
the dominant drivers will be larger than those of the non-dominant units. An
advantage of the rigorous LASSO is that it falsely selects an element in the

9We use a correction for the Brownlees and Mesters (2021) criterion. If the criterion selects
as the largest growth the last possible growth rate, we use the 2nd largest growth rate. This
in particular happens if the column norm for specific units turns to zero.
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concentration matrix less often than the adaptive LASSO (FPR). If the number
of common factors is increased, the adaptive LASSO tends to select better than
the rigorous LASSO. This can be seen by the general increase in the TPR.

Next we turn to the estimation of the dominant drivers. While the number of
non-zero elements in a given column of κ gives an indication if a unit is dominant
or not, the size of the post LASSO coefficient matters more. Table 4 shows the
estimated number of dominant drivers and if the correct units were select for
specification 1 with 5 dominant drivers. In the case of no common factors, the
approach using the rigorous LASSO and adaptive LASSO, independent of the
selection criterion, estimate the number of dominant drivers precisely. This is
especially the case for T = 150. The TPR is exactly or close to 100% implying
that all dominant drivers are correctly identified. A special case for the adaptive
LASSO is if N = T , in which the number of dominant drivers is underestimated.
A reason for this might be the estimation of the initial loadings, which is done by
OLS for each unit separately and relies on 50, respectively 100 observations.10

Noteworthy is that for small T , the rigorous LASSO underestimates the number
of dominant drivers. Both, the FPR and the FDR are small and converge to
zero for both LASSO estimators. For the remainder of the paper we will focus
on the results from the estimation of the dominant drivers.

Next we allow the dominant drivers to be weakly dominant, meaning a
dominant driver affects only a subset of the non-dominant units. We set α = 0.5,
implying that only the first 6 (N = 50), 9 (N = 100) and 12 (N = 150)
non dominant units are affected. The results are displayed in Table 5. Again
the adaptive LASSO underestimates the number of dominant drivers if N =
T . The estimated number of dominant drivers using the rigorous LASSO is
slightly downward biased as well, however the bias decreases with N and T
increasing. Interestingly the rigorous LASSO improves with an increase in the
number of factors, while the adaptive LASSO does much worse in comparison
to Specification 1. It selects a smaller number of dominant drivers and falsely
identifies non dominant drivers as such. A reason for this is that the adaptive
LASSO tends to select less non-zero elements in the β matrix and therefore
raises the chance to miss out dominant drivers respectively gives more weight to
incorrectly selected non-dominant units. Both LASSO approaches outperform
the BM criterion, even for the case of N < T .

Specification 3 allows for autocorrelated errors. Results are similar to Spec-
ification 1, however distortions when using the adaptive LASSO in the case of
N = T are less pronounced. As expected, both methods control well for auto-
correlation in the errors. Noteworthy is that the BM procedure performs well
for the case N < T , but is affected when the number of dominant drivers is
smaller than the number of common factors.

So far we assumed strong cross-section independence in the random noise.
The sole source of dependence were the dominant drivers or the common factors.
To relax this assumption, Specification 4, Table 7, allows for weak dependence
in the random noise components. The D2ML approach is still robust to weak

10We tested a specification with N = 50, 100, 150 and T = N − 5 and results behave better.
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dependence. However the TPR for the cases with more than one dominant driver
shrinks, especially for the rigorous LASSO as it underestimates the number of
dominant drivers. An increase in T mitigates the problem, but the bias remains.

As a final exercise we return to specification 1 but increase the number of
dominant drivers as Nd = hN with h = [0.1, 0.5, 0.9]. Table 8 shows the results
for Nd = 0.1N , implying that 10% of the cross-sections are dominant drivers.
In the case of h = 0.1, all methods identify the number of dominant drivers
well, but as before the adaptive LASSO underselects if the number of common
factors is 5. Similarly, the rigorous LASSO does better if the number of common
factors increases. Both estimator improve with an increase in T . If the share
increases, it is getting harder for the estimator to identify the correct units. A
reason for this is that the cut-off point in the BM criterion is less defined. This
is in particular the case if h = 0.9, implying that 90% of the units are dominant
ones.

In general the results show that the our proposed method reliably estimates
the correct number of dominant drivers and identifies the correct drivers. In
comparison to the criterion from Brownlees and Mesters (2021) our method can
be applied to datasets with N > T . Both LASSO estimator have their strength
and weaknesses. While the rigorous LASSO is less affected by common factors,
the adaptive LASSO tends to do better in the presence of weakly correlated er-
rors. The case of 5 common factors is interesting with respect that the method
based on the rigorous LASSO identifies the correct dominant drivers and the
correct number, while the adaptive LASSO performs poorly. A possible reason
might again be the first stage of the adaptive LASSO and difficulties differenti-
ating the common factors and dominant drivers.

4 Dominant Drivers in National Inflation Rates

In this section we turn back to the question if national inflation rates are exposed
to dominant drivers. We use the GVAR database (Mehdi Raissi and Mohaddes,
2020) with quarterly observations from 1979Q2 to 2019Q4 (T = 163) for Ng =
33 countries. The data is in first differences, standardized and demeaned on
a country level. Taking first differences is necessary to remove potential non
stationary, which ensures that the covariances are not time dependent and that
the post-LASSO estimates are unbiased. Standardisation is required to ensure
that the coefficients from the sequential regressions of D2ML are estimated in
the same units.

There are some notable differences between our work and the literature.
The years covered in the GVAR dataset are different to Ciccarelli and Mojon
(2010) and more in line with Levin and Piger (2004); Rogoff (2003) who cover
the years from 1980 onwards. A key difference to Ciccarelli and Mojon (2010)
is that we investigate the effect of global inflation on national inflation. If a
variable country combination is selected as a dominant driver, it implies that it
is an important driver for the inflation rate in many countries.

We will start by applying the BM procedure to the inflation series of the
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GVAR dataset. However the procedure can only be applied to a single series and
dominant drivers of national inflation might be influenced by further covariates.
We therefore apply the D2ML approach afterwards which overcomes the two
limitations of the BM procedure.

4.1 Number of Common Factors and BM Procedure

In a first step we estimate the number of common factors using the criteria
from Bai and Ng (2002) and Ahn and Horenstein (2013). The panel criteria
from Bai and Ng (2002) identifies between 4 and 5 common factors and the
panel information criteria 1. Both estimator from Ahn and Horenstein (2013)
point to 1 common factor. The latter results are in line with the finding in
Ciccarelli and Mojon (2010) who find one common factor. In addition testing
for strong cross-section dependence (Pesaran, 2015) confirms the occurrence of
strong cross-section dependence.

(a) All Units (b) Largest 20

Figure 1: Column norms of the inverse of the sample covariance matrix of national
inflation. Number of dominant drivers estimated by the BM procedure. See Table 11
for country name definitionsand section 4 for a detailed description.

The results imply an underlying common factor structure. To shed more
light if the dependence structure is driven by common factors or dominant
drivers, we apply the BM procedure next. Therefore we invert the sample co-
variance matrix to obtain the concentration matrix. Figure 1 shows the column
norms of the concentration matrix. The dotted line indicates the dominant
driver identified by the BM procedure. We find that the US and Belgium are
dominant drivers in the national inflation series for the 33 countries. The two
dominant drivers are connected to each other and all other drivers because the
concentration matrix is non-sparse. While the US is somewhat expected to be
a dominant driver, the finding that Belgium is a dominant drivers is surprising.
However this is in line with Ciccarelli and Mojon (2010, Table 3) who find that
a large share of the detrended inflation variance of Belgium is explained by al-
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ternative measures of global inflation, pointing that Belgium’s inflation rate is
highly connected.

A disadvantage of this approach is that the resulting concentration matrix
picks up noise which can drive the determination of the dominant drivers. Sec-
ondly it is not possible to add any further covariates which might have an
influence on national inflation and limiting the effects of the dominant drivers
only on inflation. We therefore apply the D2ML approach next.

4.2 Using the D2ML approach

To allow other variables to have an effect on national inflation, we employ the
D2ML approach as described in Section 2. We model inflation as a function
of inflation in foreign countries (dp−i) and real GDP (yi), real equity prices
(epi) and exchange rates (eri) and the nominal short run (ri) and long run
interest rate (lri) of the domestic and foreign countries. All variables are in
first differences to remove potential non stationary and standardized for each
country. Standardisation is necessary to ensure that all estimated coefficients
are measured in the same units. An advantage of our approach is that if a
variable has no influence on the inflation rate, the LASSO estimator will set
the respective coefficient and thus influence to zero. In detail, we estimate the
following model:

Yi,k =X−(i,k)βi,k + ei,k, k = 1, ..,K (14)

X = (dp,y, ep, eq, lr, r) (15)

β̃k =
(
β1,k, ...,βN,k

)′
(16)

β =
(
β̃1, ..., β̃K

)′
(17)

where Yi,k is the i-th element of the k-th variable of X. dp,y,dp, ep, eq, lr, r
are T ×N matrices and βk,i, k = 1, .., 6 are 1×N . The subscript −(i, k) denotes
that the i-th element in the k-th variable of X is zero. ei is a T × 1 vector of
random noise. β is a NK ×NK matrix which is used to calculate the concen-
tration matrix. β̃k is a N ×NK matrix with the coefficients which measure the
influence on the k-th variable.

To estimate β, the following equation is estimated using the rigorous and
adaptive LASSO:

β̂
λi

i = arg min
βi

(
Yi,k − βiX−(i,k)

)2
+ λi

N∑
j=1

ψi|β−(i,k)| (18)

The concentration matrix κ is calculated following Equation (7). Since we
are only interested in the dominant drivers for inflation, that is in the first N
off diagonal elements of β, we place further constraints on κ for the application
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of the BM procedure. Let’s denote
ˆ̃
βc the constraint version of

ˆ̃
β and define it

as:

ˆ̃βc =

(
ˆ̃
β1

0 IN(K−1)

)
(19)

Then the estimate of the concentration matrix κ̂ becomes:

κ̂ = D̂
(
I − ˆ̃

βc
)

(20)

D̂ = diag(1/σ̂2
i,k) (21)

The lower (N − 1)K rows of ˆ̃βc represent the effects of the covariates on
all variables but inflation. Since we are only interested in inflation, this part is
set to zero with the only exception of the diagonal. Non-zeros on the diagonal
are required to ensure that the columns receive the equal weight for the BM
procedure. The diagonal elements are the inverse of the residual variance of the
regression representing the respective row. For example σ̂1,1 is the variance of
the residuals of inflation of Argentina on the variables selected in the NSS stage
by the LASSO estimators.

For the selection of the dominant drivers, we use the modified version of
the BM procedure. The selection is restricted to the N/2 most connected units
(Kapetanios et al., 2021). This has the advantage that we filter out units with
very large values on the diagonal, but without any connection to other units.

4.2.1 No Common Factors

Rigorous LASSO First we employ the rigorous LASSO on Equation (18)
which allows for heteroskedasticity and autocorrelation of order 2.11 Column
(1) in Table (2) displays the results. We identify the inflation series of the US
as the strongest and of Belgium as the second dominant drivers. Together the
dominant drivers account for 57.58% of the column norms and they influence in
total 15 other units.12 D2ML identifies 26 connections between units of which
13 are related to the two dominant drivers. Important to note is that the infla-
tion rate in the US influences the inflation rate of 8 other countries, while the
Belgium inflation rate influences 5 others.

An alternative method to display the results is to look at the column norms
directly. Panel (a) of Figure 2 shows the column norms across all country and
variable combinations, Panel (b) only the largest 20. Each bar represents a
country and a variable. For example the largest bar in Figure 2 is the column
norm of the US inflation. All country-variable combinations to the left of the

11We varied the bandwidth between 0, 1, 2, 4, and 8, to cover autocorrelation over several
quarters. The results remain unchanged and are presented in the Online Appendix.

12Diagonal elements are not counted in the column norm shares or the number of non-zero
entries.
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dashed red line are dominant drivers.

Panel (a) shows the distribution of all column norms. We note that inflation
has six non-zero column norms, real GDP and real equity prices have one non-
zero column norm each. In Panel (b) it becomes evident that the growth rate
from the US to the German interest rate is largest and therefore marks the
border between dominant and non dominant units.

The lower panel of the figure displays a network graph of the dominant
drivers. It is noteworthy that the US influences Belgium but not the other way
around. Belgium is a dominant driver for only European countries, while the
US influences most of western Europe and Japan and Canada. The effect of Bel-
gium is somewhat surprising. Besides the explanation discussed in the previous
section, it is possible that the influence of Eurozone inflation on the national in-
flation rates not only within the Eurozone but outside of it are picked up by the
Belgium inflation. Our finding is in line with argument in Bataa et al. (2013)
that national inflation in Eurozone countries moves together and Belgium is a
proxy for it. Further it extends the finding in Billio et al. (2016) that US leads
the Eurozone cycle to inflation.

Adaptive LASSO Next we employ the adaptive LASSO as the selection
method of the NSS stage.13 The adaptive weights origin from a univariate re-
gression, similar to the Monte Carlo simulation. The penalty loading is selected
using the BIC criterion.

The third column in Table 2 shows the results for this approach. Two domi-
nant drivers are identified, the short run interest rate in Chile and as in the case
of the rigorous LASSO the inflation rate in the US. While the US influences a
larger number of drivers, the influence of the Chilean short run interest rate is
stronger. The number of identified connections is much larger than in the case
of the rigorous LASSO. Figure 3 shows that the inflation series are again picked
up most often influencing other inflation series. Panel (b) shows that inflation
in Belgium is again influencing strongly other inflation rates, but it is not picked
as a dominant driver.

Turning to the network graph in Figure 3 it becomes evident that the short
run rate in Chile not only influences the inflation rate in Chile but other coun-
tries as well. Among the main drivers for the column norm of the short run rate
of Chile is however the affect on the inflation in Chile. The US has a similar
widespread influence on inflation rates again. Together with the short run rate
of Chile, the two dominant drivers influence 15 out of the 38 national inflation
series.

Our results are in contrast to Ciccarelli and Mojon (2010) who find that no
country is leading global inflation. Our results strongly suggest that the United

13We further restrict the selection of the dominant drivers such that the diagonal is less
than 50% of the absolute sum.
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States are a dominant factor for national inflation. Depending on the model
selection method, Belgium respectively the short run interest rate in Chile are
selected as dominant drivers.

4.2.2 Observed Common Factors

It is likely that inflation is not only driven by specific countries, but by other
global factors. Examples would be commodity prices, see Aastveit et al. (2015).
To investigate the effect of such observed common factors, we add the prices of
oil (poil), metals (pmet) and materials (pmat) to the set of variables in matrix X
in Equation (15):

X = (dp,y, ep, eq, lr, r,p) (22)

p = (poil,pmat,pmet) (23)

The commodity prices are the same across the 33 countries and they are al-
lowed to be selected as a dominant driver. Results are presented in column (2)
and (4) of Table 2 and in Figure 4. A comparison between Column (3) and (4)
reveals that the adaptive LASSO is not influenced by the additional observed
common factors and the results remain similar. We therefore turn directly to the
rigorous LASSO. Again the US and Belgium are selected as dominant drivers,
however oil prices are selected as a third a dominant driver. In fact, they account
for 20.3% of the column norms. The network structure of the two other drivers
remains almost unchanged. The US is not directly connected to Switzerland
any longer but the shares of the column norm remain stable. As shown in the
Monte Carlo simulation, not accounting for common factors does not worsen
the identification of dominant drivers using the rigorous LASSO as a selection
method.

The network graph in Figure 4 reveals that inflation in Austria, Finland,
France, Italy, Switzerland and Thailand is influenced by the global oil prices.
Oil prices are also influencing the two other dominant drivers, Belgium and the
US, emphasising further their importance.

Our results so far show that the US and oil prices play a crucial role for
national inflation rates. In line with the results in Ciccarelli and Mojon (2010)
is that some countries are sheltered from the dominant drivers. Our analysis
shows that the inflation hardly spills over into countries such as China, India or
Norway. Implying that for those countries other factors than the ones covered
in our empirical application play an important role in determining national
inflation.
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(a) All Column Norms (b) Largest 20 Column Norms

(c) Network Graph rigorous LASSO

Figure 2: Column Norms and Network Graph for dominant drivers using rigorous
LASSO in the NSS step. Norms to the left of the red dotted line are dominant drivers
in Panel (a) and (b). See Table 11 for country name definitions and section 4 for a
detailed description.
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(a) All Column Norms (b) Largest 20 Column Norms

(c) Network Graph adaptive LASSO

Figure 3: Column Norms and Network Graph for dominant drivers using adap-
tive LASSO in the NSS step. Then penalty factor is selected by the BIC crite-
rion. Univariate OLS is used in the calculation of the weights. Norms to the
left of the red dotted line are dominant drivers in Panel (a) and (b). See Table
11 for country name definitions and section 4 for a detailed description.

19



(a) Column Norms from Rigorous LASSO(b) Column Norms from Adaptive LASSO
(BIC)

(c) Network Graph Rigorous LASSO

Figure 4: Commodity prices added as covariates.
Column Norms for the rigorous and adaptive LASSO. Norms to the left of the
red dotted line are dominant drivers in Panel (a) and (b). See Table 11 for
country name definitions, section 4 for a detailed description and note from
Figures 2 and 3. 20



4.3 Unobserved Common Factors

We further account for unobserved common factors.14 We approximate poten-
tial unobserved common factors using principal components (PCA) or cross-
section averages. Both methods are well established in the literature to account
for unobserved common factors (Pesaran, 2006; Bai, 2009). In the previous
section we found up to 4 common factors. Assuming that some of those are
dominant drivers, we add the first 3 principal components (PCA). Separately
the cross-section averages (CSA) of all variables are added to the model. The
PCA and CSA are added in the same way as the observed common factors in
the previous section.

The findings are similar to the case of adding observed common factors.
Using thee adaptive LASSO we identify Chile as the sole dominant drivers.
The rigorous LASSO only identifies the first principal component respectively
the cross-section average of inflation as a dominant driver. This implies that
the approximation of the unobserved common factors accounts for too much
of the variation and overlays the network structure. The result hints that the
strong dependence of the common factor overlays weaker dependence structure,
a similar finding as in Juodis (2022). Furthermore the long run interest rate in
Germany is selected as a dominant driver and it influences the inflation rate in
Switzerland and the United Kingdom.

5 Conclusion

This paper combines the approach by Meinshausen and Bühlmann (2006); Su-
laimanov and Koeppl (2016) to estimate the inverse of a covariance matrix using
time dependent data. It then identifies dominant drivers using the procedure
from Brownlees and Mesters (2021). Monte Carlo simulations show that D2ML
identifies the correct units as dominant drivers in a panel. We then apply the
method to the GVAR dataset and find evidence that inflation in the US and oil
prices are dominant factors for national inflation rates. Our results are infor-
mative about potential spillovers into national inflation. It can also be used to
improve forecasts using an approach as in Bjørnland et al. (2017).

While D2ML is simple, it has several limitations. First of all it is computa-
tionally expensive, in particular for a large number of cross-sections, respectively
variables. Secondly as criticized by Yuan and Lin (2007); Banerjee et al. (2008);
Friedman et al. (2008) the approach by Meinshausen and Bühlmann (2006) is
only an approximation to the problem. An extension in the spirit of this paper
would be to use graphical LASSO (Friedman et al., 2008) for time dependent
data. The selection of an oracle estimator for the NSS step is crucial. If the
selected estimator fails, the sequential estimator will fail as well. In our current
setting higher order spatial effects and time varying dominant drivers are also
not be considered and left for future research.

14Detailed results are available in the Online Appendix.
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A Detailed Monte Carlo Settings

The loadings of the common factors ft are generated as:

γd = (γ1, .., γNd)

γnd = (γNd+1, .., γN )

γi ∼ IIDU(0, 1), i = 1, ..., N

The unobserved common factors are generated as

gt = R1/2
g (gt − 2τk) /2

gt ∼ IIDχ2(2)

Rg = (1− ρg) Imk + ρgτkτ
′
k

ρg = IIDU(0.2, 0.8)

with τk = (1, ..., 1)′.
The random noise ud,t and und,t are allowed to be correlated over time and gener-

ated as a Gaussian process:

ud,t = (1− ρi)R1/2
d (u ∗d,t −2τNd) /2 + ρiud,t−1

Rd = (1− ρd) INd + ρdτNdτ
′
Nd

u∗d,t ∼ IIDN(0, 1)

and for the non dominant drivers:

und,it = ρiund,it−1 +
(
1− ρ2i

)1/2
εit

εt = (εNndt, ..., εNt) = Σ1/2R
1/2
nd ξt

Σ = diag (σ11, .., σNN )

σii = IIDχ2(2)/4 + 0.5

ξt = IIDN(0, 1)

R =


1 ρnd ρ2nd . . . ρ

nnd−1
nd

ρnd 1 ρnd . . . ρ
nnd−2
nd

...
...

ρ
nnd−1
nd ρ

nnd−2
nd ρ

nnd−3
nd . . . 1



B Monte Carlo Results
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ŝ TPR FPR FDR
N/T 50 100 150 50 100 150 50 100 150 50 100 150

Number of Factors: 0

rigorous LASSO (HAC robust)
50 46.08 51.73 55.29 15.37 25.59 30.81 8.25 11.57 13.35 35.05 31.10 30.24
100 88.66 97.51 104.38 9.25 17.20 22.83 4.80 6.91 8.27 34.31 28.62 26.62
150 138.84 145.65 155.11 7.50 13.52 18.61 3.93 5.16 6.54 34.39 27.47 26.03
Adaptive LASSO (AIC)
50 47.50 18.82 15.87 97.47 73.57 76.26 94.75 34.08 27.33 49.29 31.61 26.35
100 39.95 96.88 48.42 57.66 97.02 79.89 39.12 96.88 46.85 40.46 49.96 36.94
150 42.79 68.41 146.27 49.03 58.35 96.56 27.93 45.18 97.55 36.36 43.65 50.25
Adaptive LASSO (AICC)
50 26.15 11.29 12.04 69.39 66.23 73.02 50.62 18.26 19.24 41.82 21.63 20.85
100 7.63 36.35 16.64 35.19 61.93 69.12 6.25 35.07 14.03 15.17 35.69 16.90
150 10.44 10.29 41.89 32.54 41.31 59.00 6.13 5.71 26.90 15.91 12.20 30.93
Adaptive LASSO (BIC)
50 37.89 5.97 6.26 82.13 50.64 59.51 75.15 8.12 7.87 47.72 13.86 11.70
100 15.98 45.92 6.48 39.02 63.81 55.45 14.85 45.02 4.04 27.51 40.99 6.82
150 29.00 5.19 30.76 42.05 37.06 52.93 18.88 2.34 19.43 30.99 6.00 26.38
Oracle OLS
50 4.90 4.90 4.90 100.00 100.00 100.00 0.00 0.00 0.00 0.00 0.00 0.00
100 4.95 4.95 4.95 100.00 100.00 100.00 0.00 0.00 0.00 0.00 0.00 0.00
150 4.97 4.97 4.97 100.00 100.00 100.00 0.00 0.00 0.00 0.00 0.00 0.00
Number of Factors: 1

rigorous Lasso (HAC robust)
50 56.47 59.64 62.30 13.90 21.08 25.80 15.02 19.72 23.01 52.44 48.64 47.36
100 111.73 116.91 120.90 9.04 14.13 18.32 8.97 12.05 14.29 50.17 46.36 44.06
150 167.74 174.48 178.21 7.02 11.29 14.55 6.47 9.00 10.55 48.30 44.66 42.20
Adaptive LASSO (AIC)
50 47.28 18.81 16.12 98.25 72.03 73.34 94.20 34.21 28.17 48.95 32.16 27.74
100 24.42 96.12 48.11 63.02 98.48 78.07 22.54 96.00 46.61 26.06 49.36 37.36
150 28.28 29.57 144.64 56.98 65.58 98.33 17.97 18.18 96.36 24.07 21.50 49.49
Adaptive LASSO (AICC)
50 31.70 11.57 12.51 88.35 65.54 70.56 60.93 18.94 20.52 40.04 22.47 22.55
100 7.48 32.58 17.34 63.69 80.47 66.82 4.68 30.19 14.87 7.27 26.00 18.23
150 7.99 10.87 27.38 60.75 69.39 76.41 3.49 5.18 16.32 5.86 7.26 16.91
Adaptive LASSO (BIC)
50 33.99 7.38 7.56 89.10 59.43 64.52 65.89 10.33 10.24 42.04 14.91 13.77
100 7.90 20.62 8.38 64.87 80.84 61.95 5.06 17.62 5.71 7.79 17.24 8.52
150 9.77 6.38 9.58 62.29 75.84 80.37 4.85 1.87 3.92 7.88 2.59 4.90
Oracle OLS
50 4.90 4.90 4.90 100.00 100.00 100.00 0.00 0.00 0.00 0.00 0.00 0.00
100 4.95 4.95 4.95 100.00 100.00 100.00 0.00 0.00 0.00 0.00 0.00 0.00
150 4.97 4.97 4.97 100.00 100.00 100.00 0.00 0.00 0.00 0.00 0.00 0.00
Number of Factors: 5

rigorous Lasso (HAC robust)
50 68.33 71.25 72.83 30.42 38.10 42.27 19.56 24.92 28.34 39.28 39.62 40.18
100 134.52 139.41 142.65 23.29 30.23 34.33 11.78 15.30 17.64 33.70 33.68 33.99
150 198.68 206.49 211.56 19.89 26.69 31.06 8.62 11.32 13.18 30.32 29.85 29.85
Adaptive LASSO (AIC)
50 7.58 6.88 6.32 92.77 65.51 67.93 7.48 8.64 7.17 7.23 11.26 9.26
100 4.03 7.71 8.60 80.84 96.02 68.01 0.20 3.30 5.63 0.24 3.27 7.34
150 4.02 4.14 7.67 80.43 82.76 97.02 0.09 0.10 2.05 0.12 0.12 2.06
Adaptive LASSO (AICC)
50 5.62 6.28 6.08 92.44 64.50 67.54 3.22 7.42 6.69 3.36 10.11 8.80
100 4.01 6.32 7.54 80.51 96.06 67.09 0.19 1.84 4.57 0.24 1.88 6.25
150 4.00 4.14 6.58 80.08 82.66 97.10 0.09 0.10 1.30 0.11 0.12 1.32
Adaptive LASSO (BIC)
50 5.52 5.33 5.27 91.73 62.42 65.90 3.07 5.54 5.06 3.23 8.10 7.04
100 3.96 5.62 6.04 79.58 95.93 65.36 0.19 1.12 3.08 0.23 1.15 4.47
150 3.95 4.09 5.69 79.11 81.74 97.22 0.09 0.09 0.68 0.11 0.12 0.69
Oracle OLS
50 4.90 4.90 4.90 100.00 100.00 100.00 0.00 0.00 0.00 0.00 0.00 0.00
100 4.95 4.95 4.95 100.00 100.00 100.00 0.00 0.00 0.00 0.00 0.00 0.00
150 4.97 4.97 4.97 100.00 100.00 100.00 0.00 0.00 0.00 0.00 0.00 0.00

Table 3: Monte Carlo Results for NSS and Specification 1. The number of
dominant Units is set to 5. The parametrisation is summarised in Table 1. The
estimated equations are (9) and (10). The initial stage for the adaptive LASSO
is a univariate OLS regression if N > T and multivariate if N < T .

26



N̂d TPR FPR FDR
N/T 50 100 150 50 100 150 50 100 150 50 100 150

Number of Factors: 0

rigorous Lasso (HAC robust)
50 3.28 4.58 4.93 63.80 91.40 98.18 0.20 0.02 0.04 0.21 0.03 0.04
100 3.32 4.65 4.99 62.80 92.80 99.80 0.19 0.01 0.00 0.35 0.01 0.00
150 3.38 4.73 4.95 66.60 94.40 99.00 0.03 0.01 0.00 0.04 0.01 0.00
Adaptive Lasso (AIC)
50 2.50 4.99 5.00 42.24 99.68 100.00 0.87 0.01 0.00 1.59 0.01 0.00
100 4.88 2.51 5.00 96.40 47.80 99.96 0.06 0.13 0.00 0.07 0.96 0.00
150 4.60 5.00 2.76 89.40 99.92 54.20 0.09 0.00 0.04 0.16 0.00 0.24
Adaptive Lasso (AICC)
50 2.67 5.00 5.00 40.88 100.00 100.00 1.39 0.00 0.00 2.43 0.00 0.00
100 4.98 2.39 5.00 98.64 43.76 100.00 0.05 0.21 0.00 0.05 1.32 0.00
150 4.75 5.00 2.54 94.80 100.00 48.88 0.01 0.00 0.07 0.01 0.00 0.54
Adaptive Lasso (BIC)
50 2.58 5.00 5.00 42.68 100.00 100.00 0.98 0.00 0.00 1.66 0.00 0.00
100 4.96 2.78 5.00 99.00 53.16 100.00 0.01 0.13 0.00 0.01 0.18 0.00
150 4.74 5.00 4.24 92.68 100.00 84.52 0.07 0.00 0.01 0.15 0.00 0.01
Brownlees and Mesters
50 4.96 5.00 5.00 99.04 100.00 100.00 0.02 0.00 0.00 0.02 0.00 0.00
100 . 5.00 5.00 . 100.00 100.00 . 0.00 0.00 . 0.00 0.00
150 . . 5.00 . . 100.00 . . 0.00 . . 0.00
Number of Factors: 1

rigorous Lasso (HAC robust)
50 2.78 4.06 4.33 54.63 80.80 86.60 0.11 0.04 0.00 0.16 0.04 0.00
100 3.16 4.21 4.74 62.40 84.20 94.80 0.04 0.00 0.00 0.05 0.00 0.00
150 3.24 4.49 4.71 64.20 89.60 94.20 0.02 0.01 0.00 0.02 0.01 0.00
Adaptive Lasso (AIC)
50 2.53 4.96 5.00 41.12 99.20 100.00 1.06 0.01 0.00 2.58 0.01 0.00
100 4.71 2.65 4.99 94.12 49.44 99.80 0.00 0.19 0.00 0.00 0.27 0.00
150 4.72 4.91 3.17 94.32 98.12 62.80 0.01 0.00 0.02 0.01 0.00 0.02
Adaptive Lasso (AICC)
50 2.64 4.99 5.00 41.20 99.76 100.00 1.30 0.00 0.00 3.04 0.00 0.00
100 4.83 3.26 5.00 96.52 59.04 100.00 0.01 0.32 0.00 0.01 1.02 0.00
150 4.80 4.95 3.77 96.04 99.00 74.88 0.00 0.00 0.02 0.00 0.00 0.04
Adaptive Lasso (BIC)
50 2.69 5.00 5.00 47.24 99.92 100.00 0.73 0.00 0.00 1.69 0.00 0.00
100 4.76 4.40 5.00 95.12 87.80 100.00 0.01 0.01 0.00 0.01 0.01 0.00
150 4.73 4.89 4.88 94.52 97.84 97.60 0.00 0.00 0.00 0.00 0.00 0.00
BM procedure
50 4.54 4.73 4.81 90.44 94.56 96.08 0.04 0.01 0.01 0.04 0.01 0.01
100 . 4.40 4.51 . 87.48 89.84 . 0.02 0.01 . 0.02 0.01
150 . . 4.27 . . 85.24 . . 0.01 . . 0.01
Number of Factors: 5

rigorous Lasso (HAC robust)
50 4.77 4.97 5.00 94.80 99.40 100.00 0.07 0.00 0.00 0.07 0.00 0.00
100 4.90 4.98 5.00 97.00 99.60 100.00 0.05 0.00 0.00 0.05 0.00 0.00
150 4.77 4.98 5.00 94.80 99.60 100.00 0.02 0.00 0.00 0.02 0.00 0.00
Adaptive Lasso (AIC)
50 5.05 5.00 5.00 99.92 99.92 100.00 0.11 0.00 0.00 0.11 0.00 0.00
100 3.96 5.15 5.00 78.92 100.00 100.00 0.01 0.16 0.00 0.01 0.15 0.00
150 4.10 4.08 5.22 81.24 81.12 100.00 0.03 0.02 0.15 0.03 0.02 0.15
Adaptive Lasso (AICC)
50 5.05 5.00 5.00 99.92 99.96 100.00 0.12 0.00 0.00 0.12 0.00 0.00
100 3.92 5.17 5.00 78.24 100.00 100.00 0.01 0.17 0.00 0.01 0.17 0.00
150 4.05 4.08 5.21 80.44 81.00 100.00 0.02 0.02 0.15 0.02 0.02 0.15
Adaptive Lasso (BIC)
50 5.04 5.00 5.00 99.92 99.92 100.00 0.10 0.00 0.00 0.10 0.00 0.00
100 3.81 5.11 5.00 76.04 100.00 100.00 0.01 0.11 0.00 0.01 0.11 0.00
150 3.97 3.97 5.20 78.84 78.96 100.00 0.02 0.01 0.14 0.02 0.01 0.14
BM procedure
50 4.75 4.83 4.70 95.00 96.20 93.88 0.00 0.04 0.02 0.00 0.03 0.02
100 . 4.85 4.85 . 96.48 96.60 . 0.03 0.03 . 0.03 0.03
150 . . 4.78 . . 94.80 . . 0.03 . . 0.03

Table 4: Monte Carlo Results for estimation of Dominant Drivers, Specification
1. The number of dominant Units is 5. See notes of Table 3. BM procedure is
the procedure in Brownlees and Mesters (2021) directly applied to the inverse
of the simulated sample covariance matrix.
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N̂d TPR FPR FDR
N/T 50 100 150 50 100 150 50 100 150 50 100 150

Number of Factors: 0

rigorous LASSO (HAC robust)
50 3.14 2.90 3.48 48.40 55.60 66.80 1.60 0.27 0.31 2.51 0.50 0.29
100 2.20 3.06 2.82 41.20 57.20 55.60 0.15 0.21 0.04 0.29 0.22 0.07
150 2.88 2.90 3.18 54.00 57.20 63.60 0.12 0.03 0.00 0.15 0.05 0.00
Adaptive LASSO (AIC)
50 2.95 4.04 4.58 33.76 79.84 91.08 2.81 0.11 0.05 9.19 0.11 0.05
100 4.44 2.55 4.32 88.00 34.80 85.20 0.04 0.85 0.06 0.06 5.65 0.06
150 4.46 4.95 2.39 76.24 99.00 36.92 0.44 0.00 0.37 2.00 0.00 2.46
Adaptive LASSO (AICC)
50 3.01 4.20 4.63 33.20 82.88 91.56 3.00 0.12 0.11 10.56 0.12 0.10
100 4.24 2.91 4.76 83.60 34.04 94.68 0.07 1.28 0.03 0.28 8.30 0.03
150 4.40 4.97 2.46 80.80 99.36 38.80 0.25 0.00 0.36 1.11 0.00 3.87
Adaptive LASSO (BIC)
50 3.03 4.36 4.66 33.72 83.28 89.44 2.98 0.43 0.43 9.08 0.40 0.40
100 4.35 2.48 4.83 86.16 35.44 95.76 0.05 0.74 0.05 0.09 5.35 0.05
150 4.47 4.83 2.39 79.72 96.20 43.12 0.33 0.01 0.16 1.82 0.01 1.46
BM procedure
50 4.83 4.99 5.00 95.72 99.84 100.00 0.09 0.00 0.00 0.09 0.00 0.00
100 . 4.97 5.00 . 99.40 100.00 . 0.00 0.00 . 0.00 0.00
150 . . 5.00 . . 99.96 . . 0.00 . . 0.00
Number of Factors: 1

rigorous LASSO (HAC robust)
50 4.56 2.82 4.76 45.20 42.00 53.20 5.11 1.60 4.67 9.96 2.13 5.79
100 3.94 2.90 2.60 36.00 46.00 51.20 2.25 0.63 0.04 6.41 2.92 0.05
150 2.14 2.78 3.36 32.80 46.40 64.00 0.34 0.32 0.11 2.71 0.50 0.13
Adaptive LASSO (AIC)
50 2.63 3.88 4.54 31.80 75.64 89.76 2.32 0.22 0.12 8.38 0.23 0.11
100 3.95 2.53 3.97 78.04 33.00 78.36 0.05 0.93 0.05 0.05 6.76 0.05
150 4.24 4.64 2.35 72.48 92.64 36.12 0.42 0.01 0.37 2.34 0.01 3.49
Adaptive LASSO (AICC)
50 3.15 4.15 4.49 32.96 80.96 88.96 3.33 0.23 0.09 11.06 0.24 0.09
100 4.51 2.56 4.62 87.96 32.64 91.96 0.12 0.98 0.03 0.12 7.07 0.03
150 4.48 4.96 2.60 85.36 99.20 39.80 0.15 0.00 0.42 0.58 0.00 4.91
Adaptive LASSO (BIC)
50 2.76 3.67 4.00 32.80 71.36 78.52 2.48 0.23 0.16 8.63 0.22 0.16
100 4.19 2.29 4.27 82.88 36.68 83.60 0.05 0.48 0.09 0.05 3.23 0.09
150 4.35 4.09 3.17 79.44 81.28 61.12 0.26 0.02 0.08 1.62 0.02 0.29
BM procedure
50 2.69 2.89 3.08 50.68 57.24 61.60 0.36 0.07 0.01 1.07 0.28 0.01
100 . 2.49 2.56 . 49.24 50.68 . 0.03 0.03 . 0.86 0.47
150 . . 2.46 . . 48.00 . . 0.04 . . 0.84
Number of Factors: 5

rigorous LASSO (HAC robust)
50 3.38 4.28 4.54 66.00 85.20 90.40 0.18 0.04 0.04 0.20 0.04 0.04
100 3.02 4.62 4.82 59.60 91.60 96.00 0.04 0.04 0.02 0.05 0.04 0.02
150 3.60 4.38 4.88 70.00 87.20 97.60 0.07 0.01 0.00 0.07 0.01 0.00
Adaptive LASSO (AIC)
50 2.92 3.44 3.82 40.56 67.44 75.64 1.98 0.14 0.08 5.02 0.15 0.08
100 3.22 2.35 3.58 26.76 40.44 70.76 1.98 0.34 0.04 10.46 1.99 0.04
150 4.52 3.04 2.47 22.48 30.68 46.00 2.34 1.04 0.12 16.97 5.43 0.16
Adaptive LASSO (AICC)
50 2.44 3.54 3.82 36.48 68.44 75.92 1.38 0.27 0.06 1.91 0.27 0.06
100 3.87 1.96 4.21 26.80 34.52 83.12 2.66 0.25 0.06 13.65 1.18 0.06
150 4.46 3.05 2.12 22.12 28.92 33.12 2.31 1.11 0.32 18.93 6.88 1.20
Adaptive LASSO (BIC)
50 2.47 3.90 3.99 35.72 76.04 78.80 1.52 0.21 0.11 2.40 0.21 0.10
100 3.64 2.82 4.48 26.12 31.96 88.44 2.46 1.28 0.06 12.48 2.82 0.06
150 4.61 3.91 2.94 22.20 26.40 30.72 2.42 1.78 0.97 17.68 9.14 3.59
BM procedure
50 2.63 2.49 2.53 8.08 6.96 6.48 4.95 4.75 4.91 76.20 76.80 79.51
100 . 2.32 2.26 . 2.52 3.12 . 2.31 2.22 . 90.61 87.57
150 . . 2.42 . . 1.76 . . 1.61 . . 92.50

Table 5: Monte Carlo Results for estimation of Dominant Drivers, Specification
2. The number of dominant Units is 5. See notes of Table 3 and Table 4.28



N̂d TPR FPR FDR
N/T 50 100 150 50 100 150 50 100 150 50 100 150

Number of Factors: 0

rigorous LASSO (HAC robust)
50 3.54 4.52 5.00 60.40 90.00 99.60 1.16 0.04 0.04 1.36 0.04 0.04
100 2.94 4.36 4.96 57.20 87.20 99.20 0.08 0.00 0.00 0.12 0.00 0.00
150 3.54 4.84 4.98 64.40 96.80 99.60 0.22 0.00 0.00 0.23 0.00 0.00
Adaptive LASSO (AIC)
50 2.72 4.99 5.00 50.40 99.76 100.00 0.45 0.01 0.00 0.48 0.01 0.00
100 4.99 3.26 5.00 99.88 64.68 99.96 0.00 0.03 0.00 0.00 0.04 0.00
150 4.96 5.00 4.09 99.16 100.00 81.44 0.00 0.00 0.01 0.01 0.00 0.01
Adaptive LASSO (AICC)
50 2.81 5.00 5.00 51.60 99.96 100.00 0.51 0.00 0.00 1.08 0.00 0.00
100 5.00 3.89 5.00 99.84 77.36 100.00 0.00 0.02 0.00 0.00 0.03 0.00
150 4.94 5.00 4.85 98.80 100.00 96.80 0.00 0.00 0.01 0.00 0.00 0.01
Adaptive LASSO (BIC)
50 2.79 5.00 5.00 51.88 99.88 100.00 0.44 0.00 0.00 0.44 0.00 0.00
100 5.00 4.16 5.00 99.96 82.04 100.00 0.00 0.06 0.00 0.00 0.06 0.00
150 5.03 5.00 4.99 99.44 100.00 99.80 0.04 0.00 0.00 0.03 0.00 0.00
BM procedure
50 4.98 5.00 5.00 99.60 100.00 100.00 0.00 0.00 0.00 0.00 0.00 0.00
100 . 5.00 5.00 . 100.00 100.00 . 0.00 0.00 . 0.00 0.00
150 . . 5.00 . . 100.00 . . 0.00 . . 0.00
Number of Factors: 1

rigorous LASSO (HAC robust)
50 2.96 3.98 4.38 54.80 79.60 87.60 0.49 0.00 0.00 0.61 0.00 0.00
100 3.26 4.38 4.54 65.20 87.20 90.80 0.00 0.02 0.00 0.00 0.03 0.00
150 3.52 4.30 4.78 68.80 86.00 95.60 0.06 0.00 0.00 0.07 0.00 0.00
Adaptive LASSO (AIC)
50 2.44 4.93 5.00 46.24 98.56 99.96 0.29 0.01 0.00 0.43 0.01 0.00
100 4.93 3.25 4.99 98.40 64.64 99.80 0.01 0.02 0.00 0.01 0.03 0.00
150 4.85 4.98 4.18 97.00 99.68 83.28 0.00 0.00 0.01 0.00 0.00 0.01
Adaptive LASSO (AICC)
50 2.70 5.01 5.00 49.64 100.00 99.96 0.48 0.02 0.00 0.88 0.02 0.00
100 4.94 3.90 5.00 98.84 77.56 99.96 0.00 0.02 0.00 0.00 0.04 0.00
150 4.92 4.98 4.69 98.44 99.64 93.72 0.00 0.00 0.00 0.00 0.00 0.20
Adaptive LASSO (BIC)
50 3.00 4.97 5.00 57.36 99.40 100.00 0.28 0.00 0.00 0.37 0.00 0.00
100 4.90 4.71 5.00 97.96 94.20 100.00 0.00 0.00 0.00 0.00 0.00 0.00
150 4.88 4.95 4.97 97.56 99.08 99.40 0.00 0.00 0.00 0.00 0.00 0.00
BM procedure
50 4.39 4.46 4.63 87.68 89.24 92.60 0.02 0.00 0.00 0.02 0.00 0.00
100 . 4.13 4.36 . 82.28 87.12 . 0.01 0.00 . 0.01 0.00
150 . . 4.08 . . 81.48 . . 0.00 . . 0.00
Number of Factors: 5

rigorous LASSO (HAC robust)
50 5.04 4.98 5.00 98.40 99.60 100.00 0.27 0.00 0.00 0.27 0.00 0.00
100 4.72 5.00 5.00 94.00 100.00 100.00 0.02 0.00 0.00 0.02 0.00 0.00
150 4.70 4.96 5.00 93.60 99.20 100.00 0.01 0.00 0.00 0.01 0.00 0.00
Adaptive LASSO (AIC)
50 4.97 4.98 4.99 98.80 99.56 99.88 0.07 0.00 0.00 0.07 0.00 0.00
100 3.25 5.03 5.00 64.88 99.24 100.00 0.01 0.08 0.00 0.01 0.07 0.00
150 3.33 3.28 5.09 66.16 65.36 99.96 0.01 0.01 0.06 0.01 0.01 0.06
Adaptive LASSO (AICC)
50 4.99 4.98 4.99 98.96 99.64 99.88 0.09 0.00 0.00 0.09 0.00 0.00
100 3.24 5.05 5.00 64.60 99.24 100.00 0.01 0.09 0.00 0.01 0.09 0.00
150 3.32 3.27 5.09 66.08 65.12 99.96 0.01 0.01 0.06 0.01 0.01 0.06
Adaptive LASSO (BIC)
50 5.00 4.98 4.99 99.12 99.64 99.80 0.09 0.00 0.00 0.09 0.00 0.00
100 3.12 5.04 5.00 62.36 99.28 100.00 0.01 0.08 0.00 0.01 0.07 0.00
150 3.22 3.18 5.10 64.04 63.44 99.96 0.01 0.01 0.07 0.01 0.01 0.07
BM procedure
50 4.81 4.78 4.83 96.04 95.52 96.36 0.02 0.01 0.03 0.02 0.01 0.03
100 . 4.78 4.86 . 95.36 96.56 . 0.02 0.04 . 0.02 0.04
150 . . 4.78 . . 94.80 . . 0.03 . . 0.03

Table 6: Monte Carlo Results for estimation of Dominant Drivers, Specification
3. The number of dominant Units is 5. See notes of Table 3 and Table 4.29



N̂d TPR FPR FDR
N/T 50 100 150 50 100 150 50 100 150 50 100 150

Number of Factors: 0

rigorous Lasso (HAC robust)
50 2.18 4.06 4.58 36.80 81.20 91.60 0.76 0.00 0.00 4.00 0.00 0.00
100 2.66 2.58 2.18 11.20 21.20 38.00 2.21 1.60 0.29 60.57 35.22 6.49
150 5.36 2.94 1.94 3.20 8.80 16.00 3.59 1.72 0.79 91.24 67.20 43.10
Adaptive Lasso (AIC)
50 3.56 4.99 5.00 70.40 99.88 100.00 0.10 0.00 0.00 0.10 0.00 0.00
100 5.00 4.27 5.00 99.96 85.32 100.00 0.00 0.00 0.00 0.00 0.00 0.00
150 4.99 5.00 4.84 99.88 100.00 96.68 0.00 0.00 0.00 0.00 0.00 0.00
Adaptive Lasso (AICC)
50 3.29 5.00 5.00 65.24 99.92 100.00 0.06 0.00 0.00 0.07 0.00 0.00
100 5.00 4.55 5.00 100.00 90.76 100.00 0.00 0.01 0.00 0.00 0.01 0.00
150 5.00 5.00 4.96 100.00 100.00 99.28 0.00 0.00 0.00 0.00 0.00 0.00
Adaptive Lasso (BIC)
50 4.17 5.00 4.99 82.84 99.96 99.72 0.06 0.00 0.00 0.06 0.00 0.00
100 5.00 5.00 5.00 100.00 100.00 100.00 0.00 0.00 0.00 0.00 0.00 0.00
150 5.00 5.00 5.00 100.00 100.00 100.00 0.00 0.00 0.00 0.00 0.00 0.00
Brownlees and Meesters
50 5.05 5.02 5.03 100.00 100.00 100.00 0.11 0.04 0.06 0.10 0.04 0.06
100 . 5.04 5.05 . 100.00 100.00 . 0.04 0.05 . 0.04 0.05
150 . . 5.09 . . 100.00 . . 0.06 . . 0.06
Number of Factors: 1

rigorous Lasso (HAC robust)
50 2.48 3.90 4.04 49.60 78.00 80.80 0.00 0.00 0.00 0.00 0.00 0.00
100 1.68 2.52 2.84 33.60 50.40 56.80 0.00 0.00 0.00 0.00 0.00 0.00
150 1.50 1.70 2.22 29.60 34.00 44.40 0.01 0.00 0.00 0.03 0.00 0.00
Adaptive Lasso (AIC)
50 3.71 4.99 5.00 73.44 99.80 100.00 0.09 0.00 0.00 0.12 0.00 0.00
100 4.92 4.54 5.00 98.24 90.80 99.96 0.00 0.00 0.00 0.00 0.00 0.00
150 4.94 4.97 4.95 98.68 99.40 98.92 0.01 0.00 0.00 0.01 0.00 0.00
Adaptive Lasso (AICC)
50 3.68 4.99 5.00 72.40 99.80 99.96 0.14 0.00 0.00 0.17 0.00 0.00
100 4.81 4.79 5.00 96.04 95.72 99.96 0.01 0.00 0.00 0.01 0.00 0.00
150 4.85 4.93 4.98 96.60 98.56 99.64 0.01 0.00 0.00 0.01 0.00 0.00
Adaptive Lasso (BIC)
50 4.33 4.98 4.99 86.52 99.68 99.88 0.01 0.00 0.00 0.01 0.00 0.00
100 4.73 4.83 5.00 94.48 96.48 100.00 0.01 0.01 0.00 0.01 0.01 0.00
150 4.77 4.84 4.87 95.16 96.40 96.92 0.01 0.01 0.01 0.01 0.01 0.01
Brownlees and Meesters
50 5.01 4.99 5.01 98.84 99.12 99.20 0.15 0.08 0.11 0.15 0.08 0.11
100 . 4.94 4.96 . 97.40 97.96 . 0.07 0.07 . 0.07 0.07
150 . . 4.90 . . 96.36 . . 0.05 . . 0.05
Number of Factors: 5

rigorous Lasso (HAC robust)
50 2.84 3.70 3.90 54.80 72.00 78.00 0.22 0.22 0.00 0.22 0.22 0.00
100 3.02 3.60 3.98 60.40 72.00 79.20 0.00 0.00 0.02 0.00 0.00 0.02
150 3.02 3.90 4.06 60.00 77.20 81.20 0.01 0.03 0.00 0.01 0.04 0.00
Adaptive Lasso (AIC)
50 4.68 4.49 4.66 89.48 89.72 93.20 0.47 0.00 0.00 0.45 0.00 0.00
100 3.62 4.71 4.78 70.20 86.52 95.56 0.12 0.41 0.00 0.14 0.40 0.00
150 3.91 3.83 4.42 73.16 73.20 81.20 0.17 0.12 0.25 0.19 0.13 0.25
Adaptive Lasso (AICC)
50 4.53 4.48 4.65 83.88 89.52 93.08 0.74 0.00 0.00 0.71 0.00 0.00
100 3.59 4.69 4.78 69.68 84.16 95.56 0.11 0.50 0.00 0.13 0.49 0.00
150 3.87 3.83 4.44 72.60 73.08 80.56 0.17 0.12 0.28 0.18 0.14 0.28
Adaptive Lasso (BIC)
50 4.53 4.34 4.59 83.88 86.80 91.76 0.75 0.00 0.00 0.72 0.00 0.00
100 3.48 4.77 4.71 67.76 81.04 94.28 0.09 0.76 0.00 0.11 0.74 0.00
150 3.75 3.75 4.61 70.80 71.88 74.72 0.14 0.11 0.61 0.16 0.13 0.60
Brownlees and Meesters
50 4.84 4.88 4.86 96.56 97.48 97.08 0.02 0.01 0.01 0.02 0.01 0.01
100 . 4.87 4.85 . 96.84 96.56 . 0.03 0.02 . 0.02 0.02
150 . . 4.78 . . 95.16 . . 0.01 . . 0.01

Table 7: Monte Carlo Results for estimation of Dominant Drivers, Specification
4. The number of dominant Units is 5. See notes of Table 3 and Table 4.30



N̂d TPR FPR FDR
N/T Nd 50 100 150 50 100 150 50 100 150 50 100 150

Number of Factors: 0

rigorous LASSO (HAC robust)
50 5 3.28 4.58 4.93 63.80 91.40 98.18 0.20 0.02 0.04 0.21 0.03 0.04
100 10 4.95 7.70 8.22 49.26 77.00 82.20 0.02 0.00 0.00 0.04 0.00 0.00
150 15 7.48 10.05 11.66 49.80 66.93 77.73 0.01 0.01 0.00 0.01 0.01 0.00
Adaptive LASSO (AIC)
50 5 2.49 4.98 5.00 42.48 99.68 100.00 0.82 0.00 0.00 2.17 0.00 0.00
100 10 9.58 4.06 10.00 95.60 39.18 100.00 0.02 0.16 0.00 0.02 0.23 0.00
150 15 13.36 14.96 6.28 88.33 99.75 41.56 0.08 0.00 0.04 0.08 0.00 0.04
Adaptive LASSO (AICC)
50 5 2.48 5.00 5.00 40.72 100.00 100.00 0.98 0.00 0.00 2.82 0.00 0.00
100 10 9.81 4.01 10.00 97.88 39.10 100.00 0.03 0.11 0.00 0.03 0.21 0.00
150 15 14.32 15.00 6.02 94.61 100.00 39.96 0.09 0.00 0.02 0.15 0.00 0.03
Adaptive LASSO (BIC)
50 5 2.44 5.00 5.00 42.48 100.00 100.00 0.69 0.00 0.00 2.17 0.00 0.00
100 10 9.70 4.31 10.00 96.66 42.02 100.00 0.03 0.12 0.00 0.03 0.17 0.00
150 15 13.80 14.96 9.55 91.64 99.65 63.39 0.04 0.01 0.03 0.05 0.01 0.03
BM procedure
50 5 4.99 5.00 5.00 99.60 100.00 100.00 0.02 0.00 0.00 0.02 0.00 0.00
100 10 . 10.00 10.00 . 100.00 100.00 . 0.00 0.00 . 0.00 0.00
150 15 . . 15.00 . . 100.00 . . 0.00 . . 0.00
Number of Factors: 1

rigorous LASSO (HAC robust)
50 5 2.89 4.13 4.46 56.60 82.20 89.20 0.13 0.04 0.00 0.19 0.04 0.00
100 10 6.61 8.50 9.22 65.90 84.80 92.10 0.02 0.02 0.01 0.02 0.02 0.01
150 15 10.54 13.36 13.55 70.27 88.87 90.27 0.00 0.02 0.01 0.00 0.02 0.01
Adaptive LASSO (AIC)
50 5 2.50 4.94 5.00 41.24 98.76 100.00 0.98 0.01 0.00 2.01 0.01 0.00
100 10 9.77 7.58 10.00 97.66 75.32 99.98 0.00 0.05 0.00 0.00 0.05 0.00
150 15 14.79 14.88 14.97 98.52 99.13 99.80 0.01 0.01 0.00 0.01 0.01 0.00
Adaptive LASSO (AICC)
50 5 2.60 5.00 5.00 41.08 99.92 100.00 1.20 0.00 0.00 2.73 0.00 0.00
100 10 9.76 9.54 10.00 97.34 95.26 100.00 0.03 0.01 0.00 0.03 0.01 0.00
150 15 14.74 14.87 14.96 98.13 99.07 99.72 0.02 0.01 0.00 0.02 0.01 0.00
Adaptive LASSO (BIC)
50 5 2.88 4.98 5.00 49.92 99.68 100.00 0.84 0.00 0.00 1.30 0.00 0.00
100 10 9.72 9.89 10.00 96.88 98.80 100.00 0.03 0.01 0.00 0.03 0.01 0.00
150 15 14.71 14.83 14.94 97.97 98.76 99.59 0.01 0.01 0.00 0.01 0.01 0.00
BM procedure
50 5 4.46 4.77 4.75 88.92 95.16 94.84 0.04 0.02 0.02 0.03 0.02 0.02
100 10 . 9.99 10.00 . 99.92 99.96 . 0.00 0.00 . 0.00 0.00
150 15 . . 15.00 . . 99.99 . . 0.00 . . 0.00
Number of Factors: 5

rigorous LASSO (HAC robust)
50 5 4.88 4.97 5.00 97.00 99.40 100.00 0.07 0.00 0.00 0.07 0.00 0.00
100 10 10.00 10.01 10.00 99.90 100.00 100.00 0.01 0.01 0.00 0.01 0.01 0.00
150 15 15.00 15.00 14.98 100.00 35.07 33.99 0.00 6.06 5.84 0.00 38.78 33.93
Adaptive LASSO (AIC)
50 5 5.09 5.00 5.00 99.96 99.88 100.00 0.20 0.01 0.00 0.20 0.01 0.00
100 10 6.64 9.56 10.00 66.36 95.62 100.00 0.00 0.00 0.00 0.00 0.00 0.00
150 15 8.64 9.05 14.70 57.61 60.31 98.01 0.00 0.00 0.00 0.00 0.00 0.00
Adaptive LASSO (AICC)
50 5 5.10 5.00 5.00 100.00 99.88 100.00 0.21 0.01 0.00 0.21 0.01 0.00
100 10 6.56 9.58 10.00 65.58 95.78 100.00 0.00 0.00 0.00 0.00 0.00 0.00
150 15 8.44 9.03 14.70 56.29 60.21 98.03 0.00 0.00 0.00 0.00 0.00 0.00
Adaptive LASSO (BIC)
50 5 5.06 4.99 5.00 100.00 99.80 100.00 0.14 0.01 0.00 0.14 0.01 0.00
100 10 6.43 9.56 10.00 64.28 95.58 100.00 0.00 0.00 0.00 0.00 0.00 0.00
150 15 8.27 8.67 14.51 55.16 57.79 96.76 0.00 0.00 0.00 0.00 0.00 0.00
BM procedure
50 5 4.81 4.84 4.83 95.92 96.60 96.24 0.02 0.02 0.04 0.02 0.02 0.04
100 10 . 9.58 9.25 . 95.78 92.54 . 0.00 0.00 . 0.00 0.00
150 15 . . 13.93 . . 92.89 . . 0.00 . . 0.00

Table 8: Monte Carlo Results for estimation of Dominant Units: Number of
dominant Units is d0.1Ne, Specification 5. See notes of Table 3 and Table 4.31



N̂d TPR FPR FDR
N/T Nd 50 100 150 50 100 150 50 100 150 50 100 150

Number of Factors: 0

rigorous LASSO (HAC robust)
50 25 7.26 10.73 14.35 28.52 42.48 57.28 0.52 0.44 0.12 0.71 0.61 0.16
100 50 16.92 24.63 28.60 33.72 49.22 57.18 0.12 0.04 0.02 0.18 0.06 0.03
150 75 26.88 36.89 39.14 35.84 49.17 52.17 0.00 0.01 0.01 0.00 0.02 0.02
Adaptive LASSO (AIC)
50 25 6.47 24.82 24.96 25.68 99.28 99.82 0.22 0.00 0.00 0.35 0.00 0.00
100 50 40.11 10.39 49.97 80.21 20.73 99.94 0.00 0.04 0.00 0.00 0.06 0.00
150 75 60.00 73.29 19.76 80.01 97.72 26.33 0.00 0.00 0.01 0.00 0.00 0.01
Adaptive LASSO (AICC)
50 25 7.25 24.89 24.96 28.50 99.57 99.86 0.50 0.00 0.00 0.81 0.00 0.00
100 50 12.29 15.93 50.00 24.53 31.77 100.00 0.04 0.10 0.00 0.05 0.16 0.00
150 75 6.95 32.29 54.46 9.23 43.05 72.61 0.04 0.00 0.00 0.05 0.00 0.00
Adaptive LASSO (BIC)
50 25 6.63 24.85 24.96 26.31 99.39 99.83 0.21 0.00 0.00 0.33 0.00 0.00
100 50 21.30 13.56 49.99 42.59 27.06 99.98 0.01 0.05 0.00 0.01 0.07 0.00
150 75 33.50 13.64 36.51 44.67 18.19 48.69 0.00 0.00 0.00 0.00 0.00 0.00
BM procedure
50 25 23.12 24.93 24.98 92.49 99.71 99.93 0.00 0.00 0.00 0.00 0.00 0.00
100 50 . 49.86 50.00 . 99.71 100.00 . 0.00 0.00 . 0.00 0.00
150 75 . . 75.00 . . 100.00 . . 0.00 . . 0.00
Number of Factors: 1

rigorous LASSO (HAC robust)
50 25 8.64 12.85 16.98 34.32 51.36 67.92 0.24 0.04 0.00 0.34 0.05 0.00
100 50 16.05 23.35 29.23 32.08 46.70 58.46 0.02 0.00 0.00 0.03 0.00 0.00
150 75 19.07 28.28 33.41 25.43 37.71 44.55 0.00 0.00 0.00 0.00 0.00 0.00
Adaptive LASSO (AIC)
50 25 17.64 24.28 24.55 70.51 97.12 98.20 0.05 0.00 0.00 0.05 0.00 0.00
100 50 28.05 49.79 49.89 56.10 99.58 99.78 0.00 0.00 0.00 0.00 0.00 0.00
150 75 17.73 37.87 74.68 23.64 50.49 99.57 0.00 0.00 0.00 0.00 0.00 0.00
Adaptive LASSO (AICC)
50 25 20.26 24.30 24.57 81.02 97.18 98.28 0.00 0.00 0.00 0.00 0.00 0.00
100 50 15.78 46.82 49.99 31.56 93.63 99.98 0.00 0.00 0.00 0.00 0.00 0.00
150 75 15.78 30.30 71.64 21.04 40.41 95.52 0.00 0.00 0.00 0.00 0.00 0.00
Adaptive LASSO (BIC)
50 25 20.67 24.12 24.38 82.67 96.48 97.52 0.02 0.00 0.00 0.02 0.00 0.00
100 50 23.95 48.77 49.99 47.90 97.54 99.98 0.00 0.00 0.00 0.00 0.00 0.00
150 75 19.07 34.23 71.14 25.42 45.64 94.85 0.00 0.00 0.00 0.00 0.00 0.00
BM procedure
50 25 8.84 10.15 11.39 35.36 40.58 45.56 0.00 0.00 0.00 0.00 0.00 0.00
100 50 . 13.81 16.52 . 27.62 33.04 . 0.00 0.00 . 0.00 0.00
150 75 . . 19.53 . . 26.04 . . 0.00 . . 0.00
Number of Factors: 5

rigorous LASSO (HAC robust)
50 25 24.94 25.00 25.00 69.98 67.87 66.95 41.21 41.17 41.13 96.90 83.80 78.89
100 50 24.94 50.00 50.00 34.19 69.17 69.99 21.55 40.73 40.05 59.90 84.81 80.92
150 75 22.46 74.98 75.00 16.97 64.89 67.07 13.87 43.05 41.64 25.06 93.04 85.45
Adaptive LASSO (AIC)
50 25 13.94 18.41 20.72 55.77 73.63 82.89 0.00 0.00 0.00 0.00 0.00 0.00
100 50 11.81 22.00 23.69 23.62 44.00 47.37 0.00 0.00 0.00 0.00 0.00 0.00
150 75 13.41 14.61 28.11 17.88 19.48 37.49 0.00 0.00 0.00 0.00 0.00 0.00
Adaptive LASSO (AICC)
50 25 12.84 17.87 20.53 51.38 71.50 82.10 0.00 0.00 0.00 0.00 0.00 0.00
100 50 11.32 22.05 22.93 22.63 44.11 45.87 0.00 0.00 0.00 0.00 0.00 0.00
150 75 12.64 14.58 27.78 16.85 19.44 37.04 0.00 0.00 0.00 0.00 0.00 0.00
Adaptive LASSO (BIC)
50 25 13.05 16.22 19.20 52.19 64.87 76.80 0.00 0.00 0.00 0.00 0.00 0.00
100 50 11.25 21.12 19.69 22.51 42.24 39.39 0.00 0.00 0.00 0.00 0.00 0.00
150 75 12.83 14.28 27.72 17.10 19.05 36.96 0.00 0.00 0.00 0.00 0.00 0.00
BM procedure
50 25 3.64 3.58 3.74 14.55 14.34 14.97 0.00 0.00 0.00 0.00 0.00 0.00
100 50 . 2.64 3.07 . 5.28 6.13 . 0.00 0.00 . 0.00 0.00
150 75 . . 2.83 . . 3.78 . . 0.00 . . 0.00

Table 9: Monte Carlo Results for estimation of Dominant Units: Number of
dominant Units is d0.5Ne, Specification 5. See notes of Table 3 and Table 4.32



N̂d TPR FPR FDR
N/T Nd 50 100 150 50 100 150 50 100 150 50 100 150

Number of Factors: 0

rigorous LASSO (HAC robust)
50 45 6.35 7.69 7.66 13.53 16.16 16.33 5.20 8.40 6.20 5.38 8.11 5.26
100 90 8.94 9.71 11.67 9.91 10.73 12.88 0.20 0.50 0.80 0.36 0.81 1.34
150 135 8.50 8.78 14.50 6.29 6.50 10.74 0.07 0.00 0.00 0.14 0.00 0.00
Adaptive LASSO (AIC)
50 45 5.12 5.13 6.07 11.38 11.40 13.48 0.08 0.00 0.00 0.12 0.00 0.00
100 90 3.72 3.94 4.49 4.13 4.38 4.99 0.00 0.00 0.00 0.00 0.00 0.00
150 135 4.00 3.31 3.08 2.96 2.45 2.28 0.00 0.00 0.00 0.00 0.00 0.00
Adaptive LASSO (AICC)
50 45 5.35 5.23 6.23 11.85 11.62 13.84 0.32 0.00 0.00 0.46 0.00 0.00
100 90 3.97 3.99 3.86 4.40 4.44 4.29 0.06 0.00 0.00 0.15 0.00 0.00
150 135 3.26 3.36 4.02 2.41 2.49 2.98 0.00 0.00 0.00 0.00 0.00 0.00
Adaptive LASSO (BIC)
50 45 4.78 6.16 6.36 10.60 13.68 14.13 0.20 0.00 0.00 0.29 0.00 0.00
100 90 3.84 4.39 4.08 4.27 4.88 4.54 0.00 0.00 0.00 0.00 0.00 0.00
150 135 3.75 4.75 2.99 2.78 3.51 2.21 0.00 0.09 0.00 0.00 0.18 0.00
BM procedure
50 45 3.29 3.65 4.49 7.32 8.11 9.97 0.00 0.00 0.00 0.00 0.00 0.00
100 90 . 3.01 3.12 . 3.34 3.47 . 0.00 0.00 . 0.00 0.00
150 135 . . 2.74 . . 2.03 . . 0.00 . . 0.00
Number of Factors: 1

rigorous LASSO (HAC robust)
50 45 5.50 6.91 5.29 12.16 15.33 11.73 0.60 0.20 0.20 0.85 0.27 0.28
100 90 6.04 5.44 3.96 6.71 6.04 4.40 0.00 0.00 0.00 0.00 0.00 0.00
150 135 4.55 3.22 4.22 3.37 2.39 3.13 0.00 0.00 0.00 0.00 0.00 0.00
Adaptive LASSO (AIC)
50 45 4.25 5.53 6.25 9.45 12.28 13.88 0.00 0.00 0.00 0.00 0.00 0.00
100 90 4.35 3.68 4.81 4.83 4.08 5.34 0.00 0.00 0.00 0.00 0.00 0.00
150 135 5.27 4.46 3.21 3.91 3.31 2.38 0.00 0.00 0.00 0.00 0.00 0.00
Adaptive LASSO (AICC)
50 45 5.84 5.79 5.81 12.97 12.86 12.92 0.00 0.00 0.00 0.00 0.00 0.00
100 90 8.78 6.29 4.46 9.75 6.98 4.96 0.00 0.00 0.00 0.00 0.00 0.00
150 135 11.50 10.30 8.10 8.52 7.63 6.00 0.00 0.00 0.00 0.00 0.00 0.00
Adaptive LASSO (BIC)
50 45 4.49 3.95 3.89 9.97 8.78 8.64 0.00 0.00 0.00 0.00 0.00 0.00
100 90 5.57 6.30 3.13 6.19 7.00 3.47 0.00 0.00 0.00 0.00 0.00 0.00
150 135 5.48 8.47 4.96 4.06 6.28 3.68 0.00 0.00 0.00 0.00 0.00 0.00
BM procedure
50 45 5.11 8.11 9.69 11.36 18.01 21.52 0.00 0.00 0.00 0.00 0.00 0.00
100 90 . 9.52 10.15 . 10.58 11.27 . 0.00 0.00 . 0.00 0.00
150 135 . . 11.23 . . 8.32 . . 0.00 . . 0.00
Number of Factors: 5

rigorous LASSO (HAC robust)
50 45 34.42 43.20 44.98 74.51 92.76 95.81 67.07 83.81 87.41 216.96 207.49 201.28
100 90 19.36 86.44 88.18 20.96 92.65 94.87 19.01 84.80 86.13 89.32 322.03 281.95
150 135 4.70 39.76 126.94 3.72 28.15 90.03 3.02 26.15 83.30 16.86 119.87 340.04
Adaptive LASSO (AIC)
50 45 7.88 5.64 5.85 17.50 12.54 13.00 0.00 0.00 0.00 0.00 0.00 0.00
100 90 13.33 16.44 5.18 14.81 18.26 5.76 0.00 0.00 0.00 0.00 0.00 0.00
150 135 15.07 16.89 22.62 11.16 12.51 16.76 0.00 0.00 0.00 0.00 0.00 0.00
Adaptive LASSO (AICC)
50 45 11.67 5.92 6.42 25.92 13.16 14.27 0.00 0.00 0.00 0.00 0.00 0.00
100 90 12.45 20.06 6.13 13.83 22.28 6.81 0.00 0.00 0.00 0.00 0.00 0.00
150 135 14.17 16.81 25.56 10.49 12.45 18.93 0.00 0.00 0.00 0.00 0.00 0.00
Adaptive LASSO (BIC)
50 45 11.40 5.99 5.65 25.32 13.31 12.56 0.00 0.00 0.00 0.00 0.00 0.00
100 90 12.67 19.86 5.36 14.08 22.06 5.95 0.00 0.00 0.00 0.00 0.00 0.00
150 135 14.50 16.58 26.51 10.74 12.28 19.64 0.00 0.00 0.00 0.00 0.00 0.00
BM procedure
50 45 2.58 2.67 2.61 5.72 5.94 5.79 0.00 0.00 0.00 0.00 0.00 0.00
100 90 . 2.19 2.32 . 2.43 2.58 . 0.00 0.00 . 0.00 0.00
150 135 . . 2.17 . . 1.61 . . 0.00 . . 0.00

Table 10: Monte Carlo Results for estimation of Dominant Units: Number of
dominant Units is d0.9Ne, Specification 5. See notes of Table 3 and Table 4.33



C Empirical Application

Abbreviation Countryname
arg Argentina mex mexico
austlia Australia neth Netherlands
austria Austria nor Norway
bel Belgium nzld New zealand
bra Brazil per Peru
can Canada phlp Philippines
china China safrc South Africa
chl Chile sarbia Saudi Arabia
fin Finland sing Singapore
france France spain Spain
germ Germany swe Sweden
india India switz Switzerland
indns Indonesia thai Thailand
italy Italy turk Turkey
japan Japan uk United Kingdom
kor Korea usa United States
mal Malaysia

Table 11: Countries in the GVAR dataset.
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