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A B S T R A C T   

I investigate how the Covid-19 epidemic affected consumption and prices in a part of the Nordic electricity 
market that has a high penetration of intermittent renewable energy: Denmark and the southernmost part of 
Sweden. In sharp contrast to studies of other regions, I find no overall drop in consumption in this region. 
However, the distribution of consumption shifted away from peak hours. Nonetheless, prices dropped signifi
cantly, with a decline that started well before the imposition of societal restrictions in Denmark. Periods where 
wind power covered all of local load saw prices collapse towards zero with little variance under the Covid-19 
epidemic. The results have important policy implications. Energy-only markets may fail to provide sufficient 
investment incentives for renewable energy when penetrations of such generation are already high. Policies and 
technologies that shift load from peak to non-peak times may further erode market incentives.   

1. Introduction 

The Covid-19 epidemic has led to a fundamental realigning of society 
in most economies and has had a substantial impact on most industries. 
The power industry and electricity markets are no exception. Electricity 
is an input into virtually all other industries as well as a major end-use 
commodity for households. The effects of the Covid-19 epidemic 
(which I will henceforth refer to as simply “the Epidemic”) were bound 
to be felt particularly quickly and strongly in electricity systems and 
markets. 

Looking beyond the immediate challenges that Covid-19 has 
imposed on power markets, the most important challenge facing elec
tricity systems and markets is the transition to low-carbon and renew
able generation. With the current state of technology, much of this 
generation is forecast to come from intermittent generation sources–
primarily wind and photovoltaic solar power (IEA, 2020). 

In this study I focus on the Nordic electricity market. The Nordic 
market is known for being generally efficient, well-run, and competitive. 
In particular, I consider the two Danish price areas and the southern- 
most Swedish price area that, taken as a whole, have some of the 
highest penetrations of intermittent generation – primarily wind power 
– in the world. More so, these price areas have little hydro power, with 
most of the non-intermittent generation consisting of thermal plants. In 
other words, the electricity system in this region looks like what the 
electricity systems in much of the rest of the world will look like in the 
next few decades under a successful energy transition: A high share of 

intermittent generation with residual thermal plants. 
From the perspective of analyzing the effects of epidemic policy, this 

regions is also a useful case. Denmark imposed an early and stringent set 
of societal restrictions while Sweden did not. 

This article seeks to explore both the immediate effects the Epidemic 
had on the Nordic electricity market, and also to use that shock to give 
insights into the future electricity grids that are expected to have lower 
supply elasticity in the form of high penetrations of intermittent energy, 
and higher demand elasticity in the form of more demand response. 

The findings in this paper paint a nuanced picture. In stark contrast 
to findings from other parts of the world, I find no decrease in electricity 
consumption in the Danish price areas, and some weak evidence for a 
slight increase in consumption in the southern Swedish area when tak
ing into account normal seasonal patterns. Though overall consumption 
did not decline, I document a notable shift in the distribution of con
sumption over the course of the day. Consumption tended to shift away 
from peak hours in the middle of the day and in the afternoon towards 
the other, traditionally non-peak hours. This shift is of interest in the 
long term development of the electricity system as it, in effect, simulates 
the shift of consumption from peak to non-peak that is the ultimate goal 
of various demand-response and “smart-grid” policies. 

Despite little change in overall consumption, prices fell notably in 
the period, and prices began to fall well before societal restrictions were 
put in place in Denmark. Prices fell relatively more in the typically peak 
hours in the middle of the day and late afternoon. During the Epidemic, 
periods where renewable generation covered all or most of the local load 
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were associated with prices collapsing close to zero and with little price- 
variability. 

The frequency of negative prices also increased during the Epidemic, 
though this was not primarily associated with extremely high penetra
tions of wind power. Instead, this likely comes from the interaction with 
thermal plants, which face high ramping costs. 

In section 2 I present theory as well as a review of the literature on 
electricity consumption under the Epidemic as well as other relevant 
literature. In section 3 I present the data used and give a short overview 
of the Nordic electricity market. In section 4 I provide an overview of the 
methodologies used in the article. In section 5 I present descriptive and 
model-based evidence for the effects of the Epidemic on consumption 
and prices. Section 5 concludes with a discussion of the results and 
suggestions for further research. 

2. Theory and review of literature 

Already a literature has grown around documenting the effects of the 
Epidemic on power markets. The most consistent finding across geog
raphies is that the Covid-19 pandemic was associated with a dramatic 
fall in consumption. Beyer (2020) estimate a drop of 25% in energy 
consumption in India through an analysis of satellite imagery of night
time brightness. Fezzi and Fanghella (2020) find a short-run decline in 
electricity consumption of approximately 30% in Italy following 
lock-downs, and uses this to estimate the effect of lock-downs on a 
corresponding fall in Gross Domestic Product (GDP). In another study of 
Italy, Graf et al. (2020) estimate a fall in consumption of 20%. Multiple 
other studies from other regions also report significant falls in con
sumption, including from Canada (Leach et al., 2020), Spain (Santiago 
et al., 2021) and Brazil (Carvalho et al., 2020). 

At the outset, the hypothesized steep fall in consumption served as a 
primary motivation for this research. With lower overall consumption, 
intermittent generation will tend to make up a higher proportion of the 
total electricity generated, since marginal costs of wind and solar power 
are close to zero and production from intermittent generators is gener
ally highly price inelastic. In theory, periods of unusually low con
sumption and in turn a high total share of intermittent generation could 
be observed to learn about the functioning of electricity markets at such 
high penetrations. 

Graf et al. (2020) explores a similar question of the interaction be
tween the shock the Epidemic had on consumption and resulting high 
intermittent penetration. The authors take advantage of the drastic fall 
in electricity consumption in Italy to see how the market copes with a 
large share of intermittent energy. They find that though market prices 
fell, re-dispatch costs increased significantly. 

The implications from this article build partly on the literature 
around the proper valuation of intermittent assets. Because intermittent 
generation is by definition non-dispatchable, then generation cannot 
actively respond to price signals and the intermittent generation assets 
will tend to receive on average lower prices for the electricity they 
produce compared to dispatchable generation assets (Joskow, 2011). 

However, Hirth (2013) argues that intermittent generation will tend 
to receive a revenue flow at a rate that consistently diverges from the 
average electricity price as well. Hirth devises a “value factor” statistic in 
order to represent this divergence, where a value factor of one indicates 
that a technology is able to sell its electricity at the average electricity 
price in the market. Schmalensee (2016) finds that in a sample of gen
erators across the United States, solar power had a value quotient of 
slightly more than one while wind power tended to have a value quo
tient of slightly less than one. 

The finding that prices were pressed towards zero during periods of 
high wind power generation under the Epidemic suggests that both the 
average electricity price and the value factors of intermittent generation 
could be pressed down under high-penetration scenarios. This has some 
important implications for market incentives to invest in intermittent 
generation. In order for intermittent generation to consistently cover a 

significant amount of demand in the system, there will likely need to be 
a substantial amount of overbuilding of capacity–something that comes 
out of modeling scenarios almost as an obvious side-effect of intermit
tency (Clack et al., 2017).1 Yet, after a certain level of penetration, it is 
not clear that energy-only markets provide the necessary incentives for 
further renewable investment. Thus policies such as capacity markets, 
green certificates and feed-in tariffs may need to be considered, even in 
the face of a continued fall in renewable generation costs. 

3. Data, The Nordic electricity market and Covid-19 policy 

3.1. The Nordic electricity market 

The Nordic electricity market is one of the oldest deregulated elec
tricity markets. The market has its origins in the deregulation of the 
Norwegian electricity system in the early 90’s, and gradually expanded 
to include the entire Nordic region. The Nordic market is becoming 
increasingly integrated into the wider European electricity system. The 
market is widely considered to be well-run, competitive, and efficient. 

The Nordic market is a zonal system, where the market is split up into 
fixed zones, where prices are geographically uniform within each zone. 
The main market mechanism is the day-ahead market, where upwards of 
80% of total load is traded.2 This market is organized around an auction 
mechanism. Suppliers submit a schedule for each hour of the following 
day indicating the amount of electricity they are willing to supply 
dependent on price. These schedules are aggregated to form a system- 
wide supply-curve. 

In a similar manner, wholesale consumers submit a schedule of their 
bids from which an aggregated demand curve is created. From the 
intersection of these system-wide demand and supply curves, a system 
price is established that theoretically clears the market assuming the 
absence of any binding transmission constraints between areas. 

Given the existence of congestion on the transmission network be
tween price areas, the price in the area with a shortfall of electricity is 
increased and the price in the area with a surplus of electricity is 
decreased until all markets clear. Importantly, the flow of electricity 
between areas will always move from low price to high price areas. 

In addition to the main day-ahead market, several short-term and 
balancing markets operate. Nord Pool runs a continuously traded intra- 
day market where producers and wholesale consumers can trade up to 
an hour ahead of delivery. In addition, the national transmission system 
operators cooperate in running both manual and automatic reserve 
markets in order to maintain system balance at all times. 

Fig. 1 shows a snapshot of the southern portion of the Nordic elec
tricity market. In this article, I focus on the three southernmost price 
areas seen in the figure. The area DK1 comprises the western part of 
Denmark–mainly the peninsula of Jutland and the island of Funen. This 
price area contains the large majority of the wind power in Denmark. 
DK2 is composed of the eastern part of Denmark, primarily the island of 
Zealand and includes the Copenhagen metropolitan area and in turn the 
majority of electricity consumption in Denmark. 

SE4 comprises the southernmost part of Sweden. Malmö is the largest 
metropolitan area in the region, and Malmö has close economic links to 
the Copenhagen metropolitan area by way of the Øresund bridge, which 
allows for travel between the cities by train, bus and car–often in under 
an hour. 

Importantly, there is no significant amount of hydro power with 
reservoirs in the Danish or southern Swedish area; this is in contrast to 
the Norwegian and northern Swedish price areas that have substantial 
hydro power generation. Such hydro power generation provides a high 
degree of flexibility to a system both because generation can be ramped 

1 I thank Eric Hittinger for an enlightening discussion on this point.  
2 https://ec.europa.eu/energy/sites/ener/files/documents/overview_of_eur 

opean_electricity_markets.pdf. 
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up and down very quickly and without significant ramping costs,3 and 
because the hydro power plants can store energy in the form of water in 
reservoirs. The Danish and southern-Swedish area do have access to 
these resources to the extent that transmission capacity is available, and 
thus the state of transmission congestion becomes an important variable 
to consider. 

Fig. 2 shows the shares of total yearly electricity generation by 
source from 2015 through 2020. As can be seen, in DK1 the combination 
of intermittent generation–primarily offshore and onshore wind pow
er–made up more than 60 percent of total generation in the area in both 
2019 and 2020. The share of generation coming from intermittent 
generation in the DK2 area has also been rising, and reached approxi
mately 50 percent of total generation in 2020. The remaining generation 
consists primarily of thermal plants–mostly natural gas–and Combined 
Heat and Power (CHP) plants. CHP plants both generate electricity–
through burning gas, biomass and municipal waste; as well as heat for 
district heating systems, which are common in Danish cities. 

The Swedish Transmission System Operator only provides a detailed 
break-down of generation per price area for the year 2020. In SE4, wind 
made up approximately 64% of total generation in the area, and solar 
provided a marginal 2%. The remainder of local production comes from 
small-scale hydro (20%) and thermal plants (14%). It should be noted 
that all of Sweden’s remaining nuclear power plants are located in the 

bordering SE3 price area, and that the SE4 area imports a large amount 
of electricity from this area. 

3.2. Covid-19 policy in scandinavia 

On March 12th Denmark’s prime minister announced sweeping 
closures and restrictions in order to limit the spread of Covid-19. This 
included the closure of all pre-schools, primary- and secondary schools 
as well as higher educational institutions. Workplaces deemed to be non- 
essential were also closed, and workers instructed to work from home. 
International travel restrictions were put in place and border controls 
established (Conyon et al., 2020; Juranek and Zoutman, 2020). 
Denmark was the first of the Nordic countries to implement such pol
icies, but Norway followed with similar policies the following day. 
Finland waited until March 28th before implementing full restrictions. 
None of the Nordic countries implemented full stay-at-home orders. 

In contrast to Denmark, Norway and Finland; Sweden resisted 
implementing widespread and severe closures and restrictions. Instead, 
the government put in place social distancing guidelines and on March 
28th implemented restrictions on gatherings of more than 50 people as 
well as restrictions on visiting nursing homes. Otherwise, schools 
remained largely open, and it was left to individual workplaces to decide 
on whether to close and have workers work from home. 

Of interest for understanding some of the results presented in this 
article, the international travel restrictions Denmark put in place also 
included controls on the Øresund bridge connecting the metropolitan 
areas of Malmö in southern Sweden with the Copenhagen metropolitan 
region. Travelers had to provide a valid reason for entering Den
mark–though working in Denmark was considered to be such a valid 

Fig. 1. A snapshot of the southern portion of the Nordic electricity market with prices shown in each price area. This study analyzes pricing and consumption in the 
two Danish areas, DK1 and DK2 as well as the southern-most Swedish area, SE4. 
Source: Nord Pool Group 

3 It should be noted, that while there are few engineering-related ramping 
costs, hydro power producers often need to meet some minimum requirements 
for production in order to assure adequate down-stream flow for environmental 
reasons. 
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reason. Danish citizens were also allowed to cross the border. 
As of the end of the year in 2020, Denmark, with a population of 

approximately 5.8 million people, had recorded a total of 1024 deaths 
directly attributed to Covid-19. Sweden, with a population of approxi
mately 10 million people, had recorded a total of 7824 deaths directly 
attributed to Covid-19.4 

3.3. Data 

In this article I make use of hourly data on prices, consumption, and 
wind power production between the 1st of January 2018 through the 1st 
of December 2020. Data is openly available from the website of the 
market operator, Nord Pool Group.5 The cleaned and formatted data 
used in this analysis is available upon request. 

In the article, I create a series called Net Consumption, which is 
defined as the difference between consumption in an area and wind 
power produced in that area (Eq. (1)). It can be interpreted as the total 
amount of local load that must be met by non-wind generation. A net 
consumption of 0 or below indicates that all load is met by local wind 
power production. 

NCt = Ct − windt (1)  

4. Methodology 

4.1. Modeling consumption 

Given the all-encompassing and–at the time of this writing–ongoing 

economic and societal shock caused by the Epidemic, my approach in 
this article is explicitly exploratory and descriptive. In contrast to an 
approach that attempts to estimate or identify a particular marginal or 
conditional effect, my approach will necessarily lead to more questions 
than answers. 

Given the large falls in consumption documented in other countries, I 
rely to a certain extent on visualizations to show the lack of such large 
movements in the Danish and southern Swedish price areas. In addition, 
I confirm the findings by using some relatively simple ARIMA-type time 
series models. 

Consumption and price data at an hourly and daily frequency are 
subject to high amounts of variance, thus in the visualizations I use 
smoothing techniques to more clearly show the underlying trend in the 
series. Depending on the frequency of the data, I use two such smoothing 
techniques. For daily data, Local Polynomial Regression Fitting (Loess) 
takes a weighted regression of the data at any given point in order to 
create a continuous smoothed curve (James et al., 2013). Loess often 
provides a good fit to most data, but is computationally expensive, thus 
for the hourly data I use cubic regression splines to create smoothed 
curves. With cubic regression splines, the series is divided into an 
optimal number of sections where a cubic regression is fitted. The sec
tions, called basis functions, are then tied together at “knots” in order to 
create a single smoothed function over the range of data (James et al., 
2013). 

A major potential source of bias and incorrect interpretation is the 
considerable seasonal variation in the consumption data. For hourly 
data, there is daily, weekly and yearly seasonality. In order to formally 
estimate the effect of the lockdown, seasonality needs to be controlled 
for. A straight-forward way of doing this is to first sum up the hourly 
consumption data to daily-values and then difference the data with a 
comparable day in the previous year. For 2020 data, this will involve 
differencing by 364 days so that Mondays are compared with Mondays, 
Tuesdays with Tuesdays, and so forth. Thus the differenced consumption 

Fig. 2. The share of electricity generation in the two Danish price areas: DK1 and DK2 by technology. CHP stands for Combined Heat and Power plants.  

4 Data is obtained from the University of Washington Institute for Heath 
Metrics and Evaluation https://covid19.healthdata.org/.  

5 https://www.nordpoolgroup.com/historical-market-data/. 
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can be written as in equation (2). Here Ci
t represents consumption in 

period t and area i and dCi
t represents the difference in consumption for 

day t and area i compared to the same day the previous year (364 days 
prior). 

dCi
t = Ci

t − Ci
t− 364 (2) 

The following three regression models (Eqs. (3), (4) and (5)) are run, 
one for each of the areas DK1, DK2 and SE4 to estimate the effect of the 
Epidemic-related restrictions. 

dCDK1
t = α + coronat + ηDK1

t (3)  

dCDK2
t = α + coronat + ηDK1

t (4)  

dCSE4
t = α + coronat + ηSE4

t (5) 

In these equations, the variables {dCDK1
t , dCDK2

t , dCSE4
t } represent the 

yearly difference in consumption in the respective price area. The α 
terms represent intercepts, the ηt terms are error terms and coronat 
represents an indicator variable that is equal to 1 starting with and 
including the start of the period of restrictions in Denmark on March 
12th and up to but not including the 1st of June, after which restrictions 
were gradually lifted. 

The dynamics in the error terms are modeled explicitly in order to 
take into account serial correlation (Hyndman and Athanasopoulos, 
2019). In particular the error terms, {ηDK1

t , ηDK2
t , ηSE4

t } from the three 
equations above are modeled as shown in equation 6 through 8. These 
specifications were chosen in order to maximize the fit of the model, as 
measured by minimizing Akaike Information Criteria (AIC). The {ηt− 1, 
ηt− 2, …} represent autoregressive terms (AR) with corresponding co
efficients {β1, β2, ….} while the {εt− 1, εt− 2, …} represent moving average 
terms with corresponding coefficients {σ1, σ2, …}. 

ηDK1
t = βDK1

1 ηDK1
t− 1 + βDK1

2 ηDK1
t− 2 + βDK1

3 ηDK1
t− 3 + βDK4

4 ηDK1
t− 4 + βDK4

5 ηDK1
t− 5 + βDK1

7 ηDK1
t− 7

+ εDK1
t

(6)  

ηDK2
t = βDK2

1 ηDK2
t− 1 + βDK2

2 ηDK2
t− 2 + βDK2

3 ηDK2
t− 3

+βDK2
4 ηDK2

t− 4 + εDK2
t + σDK2

1 εDK2
t− 1 + σDK2

2 εDK2
t− 2 + σDK2

7 εDK2
t− 7

(7)  

ηSE4
t = βSE4

1 ηSE4
t− 1 + βSE4

2 ηSE4
t− 2 + εSE4

t + σSE4
14 εSE4

t− 14 (8) 

Even if the Epidemic was not associated with any decline in total 
daily electricity consumption in the Danish and southern Swedish price 
areas, it could still lead to a significant change in the distribution of 
consumption over the course of the day, as the normal daily routines 
among the populace likely changed. To estimate this potential re- 
distribution of consumption between hours, data with hourly fre
quency is needed. However, year-over-year differencing on hourly data 
becomes cumbersome, and subject to even larger amounts of variance in 
the resulting series. 

Instead, STL (Seasonal and Trend Decomposition using Loess) is used 
in order to remove the deterministic (yearly and weekly seasonality) 
components of the series (Cleveland et al., 1990). The core idea behind 
STL is to decompose a given series into three components: trend, seasons 
and error term. The seasonally adjusted series consists of the trend plus 
error term. This decomposition is done through the application of Loess 
smoothed curves. STL decomposition has several advantages over other 
common seasonal adjustment algorithms, including being able to model 
any frequency of seasonality and allowing the seasonality to change over 
time (Hyndman and Athanasopoulos, 2019). Fig. 3 shows the compo
nent parts of the DK1 consumption series after the application of the STL 
decomposition for the year 2020. 

The seasonally adjusted series for the three areas are shown in Fig. 4. 
Augmented Dickey-Fuller tests are run and reject the null hypothesis of a 
unit root for all three series. 

Using the seasonal adjusted consumption data, regressions are run 
that can be represented by equation (9). The seasonally adjusted con
sumption in a given hour, t, in an area i (i ∈{DK1, DK2, andSE4}), is 
represented by Ci,SA

t coronat again represents the indicator variable for 
the period of time associated with the most stringent restrictions. IH 
represents a vector of 24 h-dummies. The term coronat × IH represents 
the vector of interaction variables, and the coefficients on these vari
ables are the coefficients of interest. They represent the average effect on 
consumption per hour in the Corona period relative to the overall effect 
on consumption in the period. 

Ci,SA
t = coronat + IH + coronat × IH + ηi

t (9) 

The error terms are modeled dynamically as shown in equation (10). 

ηi
t = βi

1ηi
t− 1 + βi

2ηi
t− 24 + εi

t (10)  

4.2. Modeling prices 

Clearly, consumption and prices are closely related, but there are 
reasons to believe that the behavior of prices and consumption could 
diverge under the Epidemic. The Nordic day-ahead market is a purely 
physical market, but it can nonetheless be more forward looking than 
other similar markets due to the large amounts of hydro power with 
reservoirs located in Norway and northern Sweden. The largest of the 
reservoirs have storage capacities that allow them to arbitrage produc
tion over seasons and even years. 

Looking at how the distribution of prices changed may be more 
informative than mean statistics. Therefore, I will initially look at the 
empirical distribution of prices. Because of the strong seasonal patterns 
in the consumption of electricity, simply looking at the distribution of 
prices before and after the imposition of restrictions will not accurately 
represent the effects of the Epidemic. 

Time series models are used to formally confirm the impressions 
from the figures. The three price areas are treated as a single unit in this 
analysis, and thus the data is aggregated to a single observation per time 
period, where the net consumption variable is summed across areas and 
the price variable is expressed as the mean across the areas. 

The regression can be expressed as in equations (11) and (12). Here 
netConsumptiont refers to net consumption (consumption less wind 
power). The variable is scaled to be in GWh in order to make interpreting 
coefficients simpler. To get a sense of scale, the mean hourly con
sumption level for the three areas in total is about 6.5 GWh. 

pt = δ1netConsumptiont + δ2coronat + δ3fullWindt + δ4coronat × fullWindt

+ θIH + ζIdow + ηt

(11)  

ηt = β1ηt− 1 + ⋯ + β10ηt− 10 + β24ηt− 24 + εt (12) 

The variable coronat is as defined previously, with a corresponding 
coefficient δ2. The variable fullWindt represents an indicator variable for 
whether wind power covered all of the total load in a certain hour for the 
entire 3-area region. The coefficient,δ1, on this variable will then 
represent a shift in price relative to the linear relationship captured by 
the net Consumption variable for periods where wind power covers all of 
the load. In addition, an interaction variable, coronat × fullWindt, is 
included, which represents any extra shift for periods where wind power 
covers all of the load during the Epidemic. δ4 is the coefficient on the 
interaction term. 

IH and Idow represent vectors of variables indicating hours of the day 
and days of the week. Notice that there is no separate intercept term in 
the regression so that each of the hourly dummies can be interpreted as a 
unique hourly intercept. As in the time series regressions for consump
tion, the dynamics are modeled in the error term, ηt. Through a process 
of maximizing the goodness of fit of the model (minimizing AIC), a 
specification with an AR order of 10 (ηt− 1 through ηt− 10) terms and one 
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seasonal (hourly) AR term (ηt− 24) is chosen. εt represents the remaining, 
serial correlation adjusted error term. 

I also investigate how the distribution of prices over the hours of the 
day changed during the Epidemic. Time series regressions are run as 
shown in equations (13) and (14). These equations are nearly identical 
to that presented in equations (11) and (12), but where a set of terms 
θH

2 coronat × IH are added. These represents an interaction effect of the 
hour-of-the-day indicator variables (with the first hour of the day left out 
as a comparison) with the indicator variable, coronat.   

ηt = β1ηt− 1 + ⋯ + β10ηt− 10 + β24ηt− 24 + εt (14)  

4.3. Software and replication 

The open source statistical programming language R was used for all 
analyses in this article (R Core Team, 2019). The figures were created 
using the R package ggplot2 (Wickham, 2016). The time series 

regressions were run using the ARIMA command found in the fable 
package (Hyndman and Athanasopoulos, 2019). The data used in this 
analysis as well as the code are available upon request. 

5. The effects of the epidemic on consumption and prices 

5.1. Consumption 

Fig. 5 shows the time series of local consumption in the three price 

areas DK1, DK2 and SE4. The vertical red line represents the start of the 
societal restrictions in Denmark on the 12th of March. The colored 
curves represent smoothed regression splines of the underlying con
sumption data, providing a clearer picture of the strong seasonal pat
terns in the data. While consumption is shown to decline following the 
imposition of societal restrictions, this decline is consistent with the 
overall seasonal pattern, thus the overall trend of consumption does not 
provide a reliable indicator of the effects of the Covid-19 restrictions on 
consumption. 

Table 1 shows the results of the time series regressions of 

Fig. 3. Components of the STL seasonal adjustment model for consumption in the DK1 area for the year 2020.  

pt = δ1netConsumptiont + δ2coronat + δ3fullWindt + δ4coronat × fullWindt + θIH + ζIdow + θH
2 coronat × IH + ηt (13)   
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consumption with yearly differenced data. The label corona indicates the 
estimated coefficients on the indicator variable for the period with the 
most stringent societal restrictions. The labels for the coefficients on the 
autoregressive terms are ar1,ar2, and so on. The seasonal (weekly) 
autoregressive terms (autoregressive of order 7, 14, and so on) are 

labeled sar1 and sar2. 
As we can see from Table 1, the coefficients on the coronat variable 

are all estimated to be slightly positive. However for the Danish price 
areas these are not estimated to be significantly different from zero. The 
coefficient for the Swedish price area is somewhat larger, but still not 

Fig. 4. Seasonally adjusted consumption for the three price areas DK1, DK2 and SE4. The blue line represents a Loess smoothed curve. (For interpretation of the 
references to color in this figure legend, the reader is referred to the Web version of this article.) 

Fig. 5. The time series for local consumption in the DK1, DK2 and SE4 price areas. The red line is placed at March 12th, the date that Denmark announced its 
restrictions. The colored line represents a smoothed regression spline curve of consumption for each of the years 2018, 2019 and 2020. (For interpretation of the 
references to color in this figure legend, the reader is referred to the Web version of this article.) 
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statistically significant at the 5% level. The overall interpretation is 
clear: Unlike results reported from other countries and regions, elec
tricity consumption did not appear to make a sustained and substantial 
drop in these areas. 

The results are robust to alternative methods for estimating a change 
in consumption. For example, instead of differencing, I can seasonally 
adjust the data using STL decomposition (as I do below with the hourly 
data) and then do a regression on the level data. Results are qualitatively 
the same: No significant change in consumption in Denmark and weak 
evidence for a slight increase in consumption in the southern Swedish 
area. 

When the estimation is so simple and the starting hypothesis so stark 
(a steep drop in consumption), even a visual presentation of the data, as 

in Fig. 6 provides substantial evidence for the result of no significant fall 
in electricity consumption. The figure shows the percentage change in 
consumption compared to the year earlier, with the post-restriction 
period colored in green. The overlayed line represents a Loess 
smoothed curve. No clear trend of lower electricity consumption is 
apparent following the imposition of societal restrictions in Denmark. 
Fig. 7 shows year-over-year temperature changes in Copenhagen in the 
form of heating degree days (HDD). Heating degree days measure the 
number of degrees Celsius under a certain base temperature–in this case 
15.5 degrees–in days. Thus if a day has 2 HDD, then it had an average 
temperature of 13.5◦ over that day. The change in HDD in the period 
around the imposition of restrictions was close to zero, thus temperature 
changes are unlikely to be hiding any underlying change in overall 
consumption. Temperature does appear to explain the notable fall in 
consumption apparent in the first half of April. 

It can appear as if electricity consumption had a modest jump in 
Sweden. However, the year-over-year change in the consumption series 
for Sweden exhibits a high degree of variance and sharp jumps. In other 
words, the jump in consumption compared to the year earlier could very 
well have been a coincidence. 

However, given the geography and differing Covid-19 policies be
tween Denmark and Sweden, a plausible story does emerge for higher 
consumption in the SE4 area. As noted, the major urban center in the 
SE4 area is the city of Malmö, which in turn lies directly on the other side 
of the Øresund Straight from Copenhagen. The two cities are connected 
by a bridge serving car-traffic and commuter trains and buses. 

The two cities are often considered to have a common job market, 
with many workers commuting across the bridge on a daily basis.6 The 
Copenhagen metropolitan area is by far the larger and more dynamic of 
the two economies, and among other things, home prices tend to be 
more expensive on the Danish side of the bridge, thus there tends to be 
far more people that commute from Sweden to Denmark compared to 
the opposite. 

When restrictions came into place in Denmark, commuters to 
Copenhagen who live in Sweden had to stay at home, potentially leading 
to a net-increase in Swedish electricity consumption. The opposite 
effect–a disturbance of commuting from Denmark to Sweden–would be 
expected to be smaller in magnitude both because there are substantially 
fewer such commuters, and because Swedish businesses, to a much 

Table 1 
Estimated coefficients of the dynamic regression of consumption in the three 
price areas DK1, DK2 and SE4.  

term DK1 DK2 SE4 

intercept  − 1.98 − 1.69   
(0.93) (1.04)   
[0.03] [0.10] 

corona 1.82 1.64 2.83  
(3.22) (2.16) (2.61)  
[0.57] [0.45] [0.28] 

ar1 − 0.41 0.68 0.73  
(0.05) (0.05) (0.03)  
[0.00] [0.00] [0.00] 

ar2 − 0.43 − 0.02   
(0.05) (0.06)   
[0.00] [0.72]  

ar3 − 0.29 0.06   
(0.05) (0.06)   
[0.00] [0.36]  

ar4 − 0.22 0.11   
(0.05) (0.05)   
[0.00] [0.04]  

ar5 − 0.17    
(0.05)    
[0.00]   

sar1 − 0.25 − 0.11 0.07  
(0.05) (0.05) (0.04)  
[0.00] [0.03] [0.11] 

sar2   0    
(0.04)    
[0.98] 

White Standard errors in parenthesis. 
P-values in square brackets. 
Values of 0.00 indicates p-values of less than 0.005. 

Fig. 6. Percentage change in electricity consumption, year-over-year with a 
Loess smoothed curve overlapped. 

Fig. 7. Year-over-year change in Heating Degree Days, Copenhagen, DK.  

6 Readers interested in a popular culture depiction of the social and economic 
connections between these two metropolitan areas, as well as a portrayal of 
common Danish and Swedish stereotypes, are encouraged to see the excellent 
Nordic-Noir TV series “The Bridge”. 
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larger extent, stayed open. 
Finally, the result of little change in consumption seems to hold in 

other parts of the Nordics. Preliminary analysis of Norwegian data also 
indicates little to no fall in consumption taking into account seasonal 
patterns (See appendix). 

Even though there was little overall change in total daily consump
tion, the time series regressions using hourly data suggests that there 
was a substantial shift in the distribution of consumption over the course 
of the data. The results for the interaction terms between the hourly and 
corona indicator variables are shown in Fig. 8. 

The individual coefficients on each hour are likely to be less infor
mative than the overall relative position of the coefficients. The general 
impression is of a shift of consumption away from typically peak periods 
in the middle of the day. In particular, a notable drop in consumption 
appears to happen in the afternoon in the hours 15–17. In normal times, 
this is the period where many workers arrive home from work, turn on 
lights, ovens and other appliances and perhaps turn up the heat. The 
exact patterns appear somewhat different between the three price areas, 
though this is to be expected given the uncertainty in the models as 
indicated by the confidence bans. 

While overall consumption at a daily level did not drop in this region, 
there was nonetheless a change of consumption from peak to non-peak. 
Interestingly, this is the type of shift in consumption that is foreseen with 
the integration of greater amounts of “smart grid” and demand-response 
technologies and the proper policies to encourage their adoption. 

The shift in the distribution of consumption may have an effect on 
pricing in the market. More so, this shift in consumption patterns will 
also likely have interacting effects with the daily pattern of intermittent 
generation. I explore these implications in the following subsection. 

5.2. Electricity prices, the distribution of prices and intermittent 
generation under Covid-19 

Fig. 9 shows electricity prices on the day-ahead market averaged 
over the three price areas by year. The underlying hourly series is shown 
in the background, with a smoothed curve–calculated by a cubic 
regression spline–superimposed to more clearly see shifts in the mean 
price. The first purple vertical line represents March 12th, when strict 
regulations were put into place in Denmark. The second purple line 
represents June 1st, which is an approximate starting point for the 
gradual easing of societal restrictions. 

Following the imposition of restrictions, prices are visibly lower in 
2020 compared to previous years. Though prices started dropping well 
ahead of the imposition of restrictions. This is consistent with the market 
foreseeing lower future prices due to the Epidemic. The outbreak of the 
virus in China became widely reported in January and the first 
confirmed case in Italy were reported in mid-February. 

Fig. 10 shows the empirical density functions of prices in the three 
price areas during the period with the highest restrictions (12th of 
March to 1st of June), compared to the pre-lockdown densities. The 
figure clearly shows a shift of the median of the distribution towards the 
right. More so, it appears the density post-lockdown has a more pro
nounced left-skew–that is, prices near and even below zero make up a 
proportionally larger part of the distribution, and the distribution has a 
clear bi-modal shape. A substantial proportion of the prices also appear 
to be negative in the Corona period. 

Plausibly, the shift in the distribution of prices could be explained by 
the strong seasonal patterns of electricity consumption. However, in the 
bottom two facets of Fig. 10 I show the distribution of prices in the 
period March 13th through June 1st in 2018 and 2019. If anything both 
the modal shift to the left and the increased left-skew become more 

Fig. 8. Relative change in the distribution of consumption over the day by hour. The black dots represent the point estimates of the estimation while the lines 
represent 95% confidence intervals. 
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prominent when comparing to the distributions of prices in similar pe
riods in the prior years. 

In order to get a sense of the relationship between consumption, 
wind power and prices, in Fig. 11 I show a scatter plot of net con
sumption–consumption less wind power–for the aggregated price area 
composed of DK1, DK2 and SE4 and the mean price in these three price 
areas. The left-panel shows data pre-Epidemic. There is a clear negative 
relationship between net consumption and prices, however the price 
level remains positive in periods where wind power covers most or all of 
local consumption–that is, where net consumption is close to or below 
zero. However, during the Epidemic, prices at times where wind power 
covers most of consumption collapses to near zero. 

As noted, the most direct explanation for why prices drop close to 
zero when wind power covers most of consumption is that the marginal 
cost of wind is close to zero, and that in a competitive electricity market, 
producers will have an incentive to bid in their marginal costs. Yet, 
Fig. 10 indicates that this explanation is incomplete, as prices appear to 
be significantly above zero pre-Epidemic, while only collapsing to the 
marginal cost of wind power post-pandemic. 

The more complete explanation includes the extra dynamics intro
duced by the large amounts of hydro power in the neighboring Nordic 
price areas–primarily in Norway and norther Sweden. Even when wind 
power covers all of the local consumption, if there is available trans
mission capacity, then prices will converge to the marginal cost estab
lished by the hydro power-dominated price area, which should be equal 
to the shadow price of storage in the reservoir (Forsund, 2015). Intui
tively, the marginal cost of a hydro power plant with a storage magazine 
is the opportunity cost of producing at a later time with potentially 
higher prices. 

The effect of the Epidemic was potentially to lower demand across 

time periods so that the marginal cost of hydro power (the shadow price 
of storage) also collapsed to zero during periods with heavy amounts of 
wind power. 

The first column of Table 2, labeled Price Model I, shows estimated 
coefficients from the time series regressions as described by equations 
(11) and (12). The coefficient on net consumption, labeled netCon
sumption, is estimated to be approximately 3.1. That can be interpreted 
to mean that all else equal, a 1 GW increase in net consumption leads to a 
3.1 EUR/MWh increase in the electricity price. Neither the coefficient on 
the Epidemic indicator variable, labeled corona, nor the coefficient on 
the fullWindt indicator was significantly different from zero. This can be 
interpreted as neither variable contributing to explaining price beyond 
what information is already included in the variable for net consump
tion. These results should perhaps be interpreted with care. As we saw 
earlier, prices began to decline well before the imposition of restrictions 
on March the 12th. 

Importantly, however, the interaction effect between the fullWindt 
and coronat variables, labeled corona: fullWind is estimated to be both 
statistically and economically significant with a coefficient of approxi
mately − 2.39. That is to say, that during the period of societal re
strictions, prices were about − 2.4 EUR/MWh lower during periods 
where wind power covered all of the load, compared to what would be 
expected based on the linear net consumption relationship. This result is 
in line with what we observe from Fig. 11, where it appears prices 
collapse during the Corona period when wind power covers all of load. 

The second column of Table 2, labeled Price Model II, shows results 
with the inclusion of the interaction variables between the Epidemic 
indicator variable and the hour indicators as described by equations (13) 

and (14). The coefficients on these interaction terms, θ̂H
2 , which can be 

Fig. 9. Prices for electricity averaged over the three price areas. The underlying hourly data is in the background. A smoothed curve, calculated by a cubic regression 
spline, is overlayed in order to show the overall trend. The red line represents 2018, the green 2019 and the blue 2020. The first vertical purple line represents March 
12th. The second represents June 1st. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.) 
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interpreted as the change in the distribution of prices over the day under 
the imposition of societal restrictions are shown in Fig. 12. The bands 
represent 95% confidence intervals. As we can see, the distributive ef
fects mirror those we saw earlier for the consumption pattern: Relative 
prices fell in the middle of the day, and especially in the late after
noon–around 17–18. 

5.3. Negative prices 

Referring back to Fig. 11, we can see that in both pre- and post- 
Epidemic periods, the incidence of negative prices is generally not at 
times where wind power covers all local consumption. Instead, negative 
prices tend to happen in periods where there is significant residual 
(thermal) power generation. This observation is in line with our un
derstanding of how negative prices are formed in electricity markets. 

Fig. 10. The distribution of prices in the DK1, DK2 and SE4 price areas during the period with the tightest restrictions (March 13th to June 1st) compared to the pre- 
Corona distribution (January 2018 through March 12th). The bottom two facets show the distribution of prices in the period March 13th through June 1st in 2019 
and 2018. The vertical black lines represent median values for each category. 

Fig. 11. The left-panel shows a plot of the hourly electricity price before the imposition of Epidemic-related societal restrictions, averaged over the three price areas 
against net consumption (consumption less wind power) summed over the three price areas. The right panel shows average hourly prices after the imposition of 
societal restrictions. Prices in periods with close-to or below zero net consumption appear to collapse towards zero. 
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There are significant ramping constraints associated with production 
from thermal plants–starting and stopping such plants or even just 
reducing or increasing power output can take a significant amount of 
time and has significant costs. Operators of thermal plants are then 
typically constrained to submit block-bids for production–bidding in a 
certain amount of production over a block of hours. In periods with an 
overbalance of electricity, these operators may find it optimal to pay (a 
negative price) in order to continue to produce as long as the payments 
are lower than the cost that is imposed by the ramping constraint. 

Fig. 13 shows another pattern associated with negative prices. In this 
figure, prices are plotted against net consumption conditional on 
whether there was congestion (1) or not (0) between the DK1 and the 
southernmost Norwegian area, NO2. The DK1 and NO2 price areas were 
chosen because major transmission cables connect these two areas. In 
the DK1 and DK2 price areas, negative prices happen exclusively during 

periods where there is congestion between the DK1 and the NO2 areas. 
Access to the flexible hydro power in Norway creates a price floor of zero 
for the Danish market. 

This is not to say that wind power production has no bearing on the 
incidence of negative prices. At the margin, increased penetration of 
intermittent generation is likely to lead to more frequent negative prices. 
The reason is that a larger share of intermittent generation will tend to 
lead to more variation in generation. This may lead to increased inci
dence of periods of over-supply and negative prices. This is a research 
question that deserves further research. 

6. Conclusion and policy implications 

In this article I show that electricity consumption in aggregate did 
not fall during the period of peak Covid-19 related societal restrictions in 
the southern section of the Nordic region consisting of Denmark and 
southern Sweden. In fact, there is some evidence of a slight rise in 
consumption in the southern Swedish price area. 

Though I do not formally study other parts of the Nordic region in the 
main text, preliminary data analysis suggests that the findings likely also 
extend to the Nordic region as a whole (see appendix). These findings 
are in sharp contrast to studies of other regions of the world, which show 
sharp drops in electricity consumption, with initial magnitudes as high 
as 30%. 

With the available data, it is difficult to come to any definitive 
conclusions about why results in this part of the Nordic region are in 
such sharp contrast with other parts of the world. One potential miti
gating factor was that none of the Nordic countries imposed strict stay- 
at-home orders as were imposed in parts of continental Europe as well as 
other hard-hit regions. But Denmark did nonetheless impose strong re
strictions, including the closing of offices, restaurants, schools, day-care 
centers, and otherwise restricted public gatherings. 

But while aggregated electricity consumption did not fall in the re
gion, I show that the distribution of consumption over the day did 
change, with a relative fall in the middle of the day and especially the 
afternoon hours of between 14 and 17. 

Despite the absence of any fall in consumption, prices in the region 
fell significantly, even before the imposition of restrictions in Denmark. 
Mirroring the shift in the distribution of consumption, prices in the 
middle of the day and late afternoon tended to see a proportionally 
higher fall. 

Perhaps the results that are of the most interest in the long-term is 
how the shock of the Epidemic interacted with the high share of inter
mittent generation in this area. I present descriptive evidence showing 
how under the Epidemic prices appear to collapse towards zero when 
wind power covers all or most of the load. Relatively simple time series 
regressions indicate that there was a over-proportional drop in prices 
under the Epidemic (relative to net consumption), but only when wind 
power covered all of local load. 

A plausible explanation of this result is that it comes from an inter
action of the shift in the distribution of consumption over the day and 
the zero-marginal-cost nature of wind power technology. Even though 
consumption on the whole remained steady in the area, the shift of 
consumption away from peak hours increased the number of hours 
where wind power was able to cover most or all of the local load. In turn, 
this pressed down both average prices and the variance in prices. In 
addition, the fall in prices across the Nordic region and especially during 
peak times lead to a fall in the implicit alternative cost of production in 
the region’s large hydro power plants. This lead to a general reduction in 
prices and overall variance in the Danish and southern Swedish areas. 

These results have implications well beyond the Epidemic. Many 
leading studies of high renewable penetration scenarios foresee an 
overbuilding of capacity as a necessary way of dealing with the tech
nologies’ inherent intermittency (Clack et al., 2017). This in practice 
will mean that many if not most hours of load will be covered completely 
by intermittent energy. 

Table 2 
Estimated coefficients for dynamic time series regressions of price. The first 
column from the left shows results from a model where hourly and day-of-week 
indicator variables are included to control for seasonality, though the co
efficients on these variables are not of interest and are thus not included for 
brevity. The second column includes interaction terms between the coronat 
variable and the hourly indicator variables. The estimated coefficients and 
confidence intervals for these interaction variables are displayed visually in 
Fig. 12.  

term Price Model I Price Model II 

corona 2.23 3.92  
(1.67) (1.83)  
[0.18] [0.03] 

fullWind 0.58 0.56  
(0.85) (0.85)  
[0.49] [0.51] 

netConsumption 3.12 3.1  
(0.09) (0.09)  
[0.00] [0.00] 

corona:fullWind − 2.39 − 2.43  
(1.91) (1.91)  
[0.21] [0.2] 

ar1 1.1 1.1  
(0.01) (0.01)  
[0.00] [0.00] 

ar2 − 0.22 − 0.22  
(0.01) (0.01)  
[0.00] [0.00] 

ar3 0 0  
(0.01) (0.01)  
[0.62] [0.65] 

ar4 − 0.01 − 0.01  
(0.01) (0.01)  
[0.23] [0.24] 

ar5 0.04 0.04  
(0.01) (0.01)  
[0.00] [0.00] 

ar6 − 0.03 − 0.03  
(0.01) (0.01)  
[0.01] [0.01] 

ar7 0.03 0.03  
(0.01) (0.01)  
[0.00] [0.01] 

ar8 0.02 0.02  
(0.01) (0.01)  
[0.09] [0.09] 

ar9 − 0.01 − 0.01  
(0.01) (0.01)  
[0.53] [0.56] 

ar10 0.05 0.05  
(0.01) (0.01)  
[0.00] [0.00] 

sar1 0.24 0.23  
(0.01) (0.01)  
[0.00] [0.00] 

White standard errors in parenthesis. 
P-values in square brackets. 
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Fig. 12. The points represent the estimated coefficients on the interaction term between coronat and the hourly indicator variables. The vertical lines represent 95% 
confidence intervals. 

Fig. 13. Prices in the DK1, DK2 and SE4 areas plotted against net consumption (consumption less wind power), and conditional on the existence of congestion (1) or 
not (0) between the DK1 area and the southern-most Norwegian area, NO2. 
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The effect that the Epidemic had of shifting consumption away from 
peak-periods can potentially give us a preview of what happens to price 
formation when intermittent energy covers large portions of load over 
the course of the day and load shifting technologies move consumption 
away from peak periods: Prices and variation tend to collapse towards 
zero. 

This scenario presents some difficult policy implications. Beyond a 
certain point of intermittent penetration in a given market, deregulated 
energy-only markets such as the Nordic electricity market, may not be 
able to provide the incentives for further investment in renewable en
ergy, no matter how cost competitive such technologies are. Instead, 
policymakers may need to rely on other mechanisms to ensure 
continued investment in carbon-free generation, like capacity markets 
and green subsidies, that carry with them their own particular economic 
inefficiencies and potential for regulatory overreach. 

In this article, I have taken a descriptive and exploratory approach, 
which I argue is well suited to an initial analysis of the effects on elec
tricity markets of the wide-ranging economic and societal shock of the 
Epidemic. The exploratory approach I take necessarily leads to more 
questions than answers, many of which could be fruitful avenues of 
future research. For example, I can only speculate on why electricity 
consumption as a whole did not decline under the Epidemic in Denmark 
and southern Sweden. An analysis of the underlying economic and 
policy reasons for why some regions saw dramatic declines in 

consumption while others did not would be of great interest. I also 
briefly touch on the issue of negative prices in the market. This is a topic 
that has received too little attention in the literature, and deserves more 
attention, especially as more countries adopt ambitious targets for 
renewable energy generation. 
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A Appendix. Analysis of Norwegian Consumption 

The pattern shown for the Danish and southern Swedish price areas appears to hold in other parts of the Nordic region as well. Norway imposed 
societal restrictions a day after Denmark, with restrictions that were similar in scope. 

Fig. 14 and Fig. 15 show daily consumption data from the five Norwegian price areas. The red vertical line represents the imposition of societal 
restrictions in Norway. Relative to the normal seasonal consumption patterns, no significant divergence of daily consumption patterns are apparent for 
any of the five Norwegian price areas.

Fig. 14. Daily consumption in MWH in the years 2019 through 2020. The blue line is a Loess smoothed curve. The vertical red line represents the beginning of 
societal restrictions on March 13th, 2020 in Norway.  
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Fig. 15. Daily consumption in MWh for the years 2018–2020. The red, green and blue lines represent Loess smoothed curves for the three years respectively. The red 
vertical line represents the imposition of societal restrictions on March 13th. 
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