
Compiling Universal Probabilistic Programming
Languages with Efficient Parallel Sequential

Monte Carlo Inference�

Daniel Lundén1(�) , Joey Öhman2 , Jan Kudlicka3 , Viktor Senderov4 ,
Fredrik Ronquist4,5 , and David Broman1

1 EECS and Digital Futures, KTH Royal Institute of Technology, Stockholm,
Sweden, {dlunde,dbro}@kth.se

2 AI Sweden, Stockholm, Sweden, joey.ohman@ai.se
3 Department of Data Science and Analytics, BI Norwegian Business School, Oslo,

Norway, jan.kudlicka@bi.no
4 Department of Bioinformatics and Genetics, Swedish Museum of Natural History,

Stockholm, Sweden, {viktor.senderov,fredrik.ronquist}@nrm.se
5 Department of Zoology, Stockholm University

Abstract. Probabilistic programming languages (PPLs) allow users to
encode arbitrary inference problems, and PPL implementations provide
general-purpose automatic inference for these problems. However, con-
structing inference implementations that are efficient enough is challeng-
ing for many real-world problems. Often, this is due to PPLs not fully ex-
ploiting available parallelization and optimization opportunities. For ex-
ample, handling probabilistic checkpoints in PPLs through continuation-
passing style transformations or non-preemptive multitasking—as is done
in many popular PPLs—often disallows compilation to low-level lan-
guages required for high-performance platforms such as GPUs. To solve
the checkpoint problem, we introduce the concept of PPL control-flow
graphs (PCFGs)—a simple and efficient approach to checkpoints in low-
level languages. We use this approach to implement RootPPL: a low-level
PPL built on CUDA and C++ with OpenMP, providing highly effi-
cient and massively parallel SMC inference. We also introduce a general
method of compiling universal high-level PPLs to PCFGs and illustrate
its application when compiling Miking CorePPL—a high-level universal
PPL—to RootPPL. The approach is the first to compile a universal PPL
to GPUs with SMC inference. We evaluate RootPPL and the CorePPL
compiler through a set of real-world experiments in the domains of phylo-
genetics and epidemiology, demonstrating up to 6× speedups over state-
of-the-art PPLs implementing SMC inference.

Keywords: Probabilistic Programming Languages · Compilers · Se-
quential Monte Carlo · GPU Compilation

� This project is financially supported by the Swedish Foundation for Strategic Re-
search (FFL15-0032 and RIT15-0012), the European Union’s Horizon 2020 re-
search and innovation program under the Marie Skłodowska-Curie grant agreement
PhyPPL (No 898120), and the Swedish Research Council (grant number 2018-04620).

c© The Author(s) 2022
I. Sergey (Ed.): ESOP 2022, LNCS 13240, pp. 29–56, 2022.
https://doi.org/10.1007/978-3-030-99336-8_2

D. Lundén et al.

1 Introduction

Probabilistic programming languages (PPLs) allow for encoding a wide range of
statistical inference problems and provide inference algorithms as part of their
implementations. Specifically, PPLs allow language users to focus solely on en-
coding their statistical problems, which the language implementation then solves
automatically. Many such languages exist and are applied in, e.g., statistics, ma-
chine learning, and artificial intelligence. Some example PPLs are WebPPL [20],
Birch [32], Anglican [40], and Pyro [10].

However, implementing efficient PPL inference algorithms is challenging for
many real-world problems. Most often, universal6 PPLs implement general-
purpose inference algorithms—most commonly sequential Monte Carlo (SMC)
methods [14], Markov chain Monte Carlo (MCMC) methods [18], Hamiltonian
Monte Carlo (HMC) methods [12], variational inference (VI) [39], or a combina-
tion of these. In some cases, poor efficiency may be due to an inference algorithm
not well suited to the particular PPL program. However, in other cases, the PPL
implementations do not fully exploit opportunities for parallelization and opti-
mization on the available hardware. Unfortunately, doing this is often tricky
without introducing complexity for end-users of PPLs.

A critical performance consideration is handling probabilistic checkpoints [37]
in PPLs. Checkpoints are locations in probabilistic programs where inference al-
gorithms must interject, for example, to resample in SMC inference or record
random draw locations where MCMC inference can explore alternative execution
paths. The most common approach to checkpoints—used in universal PPLs such
as WebPPL [20], Anglican [40], and Birch [32]—is to associate them with PPL-
specific language constructs. In general, PPL users can place these constructs
without restriction, and inference algorithms interject through continuation-
passing style (CPS) transformations [9,20,40] or non-preemptive multitasking
[32] (e.g., coroutines) that enable pausing and resuming executions. These so-
lutions are often not available in languages such as C and CUDA [1] used for
high-performance platforms such as graphics processing units (GPUs), making
compiling PPLs to these languages and platforms challenging. Some approaches
for running PPLs on GPUs do exist, however. LibBi [29] runs on GPUs with
SMC inference but is not universal. Stan [12] and AugurV2 [22] partially run
MCMC inference on GPUs but have limited expressive power. Pyro [10] runs on
GPUs, but currently not in combination with SMC. In this paper, we compile a
universal PPL and run it with SMC on GPUs for the first time.

A more straightforward approach to checkpoints, used for SMC in Birch [32]
and Pyro [10], is to encode models with a step function called iteratively. Check-
points then occur each time step returns. This paper presents a new approach to
checkpoint handling, generalizing the step function approach. We write prob-
abilistic programs as a set of code blocks connected in what we term a PPL

6 A term due to Goodman et al. [19]. No precise definition exists, but in principle, a
universal PPL program can perform probabilistic operations at any point. In partic-
ular, it is not always possible to statically determine the number of random variables.

30

Compiling Universal PPLs with Efficient Parallel SMC Inference 31

Fig. 1: The CorePPL and RootPPL toolchain. Solid rectangular components
(gray) represent programs and rounded components (blue) translations. The
dashed rectangles indicate paper sections.

control-flow graph (PCFG). PPL checkpoints are restricted to only occur at
tail position in these blocks, and communication between blocks is only allowed
through an explicit PCFG state. As a result, pausing and resuming executions
is straightforward: it is simply a matter of stopping after executing a block and
then resuming by running the next block. A variable in the PCFG state, set from
within the blocks, determines the next block. This variable allows for loops and
branching and gives the same expressive power as other universal PPLs. We im-
plement the above approach in RootPPL: a low-level universal PPL framework
built using C++ and CUDA with highly efficient and parallel SMC inference.
RootPPL consists of both an inference engine and a simple macro-based PPL.

A problem with RootPPL is that it is low-level and, therefore, challenging
to write programs in. In particular, sending data between blocks through the
PCFG state can quickly get difficult for more complex models. To solve this, we
develop a general technique for compiling high-level universal PPLs to PCFGs.
The key idea is to decompose functions in the high-level language to a set of
PCFG blocks, such that checkpoints in the original function always occur at
tail position in blocks. As a result of the decomposition, the PCFG state must
store a part of the call stack. The compiler adds code for handling this call
stack explicitly in the PCFG blocks. We illustrate the compilation technique by
introducing a high-level source language, Miking CorePPL, and compiling it to
RootPPL. Fig. 1 illustrates the overall toolchain.

In summary, we make the following contributions.

– We introduce PCFGs, a framework for checkpoint handling in PPLs, and use
it to implement RootPPL: a low-level universal PPL with highly efficient and
parallel SMC inference (Section 3).

– We develop an approach for compiling high-level universal PPLs to PCFGs
and use it to compile Miking CorePPL to RootPPL. In particular, we give an
algorithm for decomposing high-level functions to PCFG blocks (Section 4).

Furthermore, we introduce Miking CorePPL in Section 2 and evaluate the
performance of RootPPL and the CorePPL compiler in Section 5 on real-world
models from phylogenetics and epidemiology, achieving up to 6× speedups over
the state-of-the-art. An artifact accompanying this paper supports the evalua-
tion [26]. An extended version of this article is also available [27]. A † symbol in
the text indicates more information is available in the extended version.

2 Miking CorePPL

This section introduces the Miking CorePPL language, used as a source language
for the compiler in Section 4. We discuss design considerations (Section 2.1) and
present the syntax and semantics (Section 2.2).

2.1 Design Considerations

Miking CorePPL (or CorePPL for short) is an intermediate representation (IR)
PPL, similar to IRs used by LLVM [6] and GCC [2]. This allows the reuse
of CorePPL as a target for domain-specific high-level PPLs and PPL compiler
back-ends. Consequently, CorePPL needs to be expressive enough to allow easy
translation from various domain-specific PPLs and simple enough for practical
use as a shared IR for compilers. Therefore, we base CorePPL on the lambda
calculus, extended with standard data types and constructs.

We must also consider which PPL-specific constructs to include. Critically,
most PPLs include constructs for defining random variables and likelihood up-
dating [21]. CorePPL includes such constructs, including first-class probability
distributions, to match the expressive power of existing PPLs.

2.2 Syntax and Semantics

We build CorePPL on top of the Miking framework [11]: a meta-language system
for creating domain-specific and general-purpose languages. This allows reusing
many existing Miking language components and transformations when building
the CorePPL language. More precisely, CorePPL extends Miking Core—a core
functional programming language in Miking—with PPL constructs.

A CorePPL program t is inductively defined by

t ::= x | lam x. t | t1 t2 | let x = t1 in t2 | C t | c

| recursive [let x = t] in

| match t1 with p then t2 else t3 | [t1, t2, . . ., tn]
| {l1 = t1, l2 = t2, . . ., l3 = t3}
| assume t | weight t | observe t1 t2 | D t1 t2 . . . t|D|

(1)

where the metavariable x ranges over a set of variable names; C over a set of data
constructor names; p over a set of patterns; l over a set of record labels; and c over
various literals, such as integers, floating-point numbers, booleans, and strings, as
well as over various built-in functions in prefix form such as addi (adds integers).
The notation [let x = t] indicates a sequence of mutually recursive let bindings.
The metavariable D ranges over a set of probability distribution names, with |D|
indicating the number of parameters for a distribution D. For example, for the
normal distribution, |N | = 2. In addition to (1), we will also use the standard
syntactic sugar ; to indicate sequencing, as well as if t1 then t2 else t3 for
match t1 with true then t2 else t3.

D. Lundén et al.31

1 recursive let geometric = lam p.
2 let x = assume (Bernoulli p) in
3 if x then
4 weight (log 1.5);
5 addi 1 (geometric p)
6 else 1
7 in geometric 0.5

(a)

0

0.2

0.4 Standard geometric

1 20 3 4 5 6 7 8 9
0

0.2

0.4

· · ·
Outcome

P
ro

ba
bi

lit
y

Weighted geometric

(b)

Fig. 2: A toy example encoding a skewed geometric distribution, illustrating
CorePPL. Part (a) gives the CorePPL program, and part (b) the corresponding
distribution. The upper part of (b) shows the distribution for (a) with line 4
omitted, and the lower part of (b) shows it with line 4 included.

Consider the simple but illustrative CorePPL program in Fig. 2a. The pro-
gram encodes a variation of the geometric distribution, for which the result is the
number of times a coin is flipped until the result is tails. The program’s core is
the recursive function geometric, defined using a function over the probability
of heads for the coin, p. We initially call this function at line 7 with the argument
0.5, indicating a fair coin. On line 2, we define the random variable x to have a
Bernoulli distribution (i.e., a single coin flip) using the assume construct (often
known as sample in PPLs with sampling-based inference). If the random variable
is false (tails), we stop and return the result 1. If the random variable is true

(heads), we keep flipping the coin by a recursive call to geometric and add 1 to
this result. To illustrate likelihood updating, we make a contrived modification
to the standard geometric distribution by adding weight (log 1.5) on line 4.
This construct weights the execution by a factor of 1.5 each time the result is
heads. Note that CorePPL weight computations are in log-space for numerical
stability (hence the log 1.5 to factor by 1.5). Thus, the unnormalized probabil-
ity of seeing n coin flips, including the final tails, is 0.5n ·1.5n−1—where 1.5n−1 is
the factor introduced by the n−1 calls to weight. The difference compared to the
standard geometric distribution is illustrated in Fig. 2b. The weight construct
is also commonly named factor or score in other PPLs.

What separates PPLs from ordinary programming languages is the ability to
modify the likelihood of execution paths, akin to the use of weight in Fig. 2a. We
often use likelihood modification to condition a probabilistic model on observed
data. For this purpose, CorePPL includes an explicit observe construct, which
allows for modifying the likelihood based on observed data assumed to originate
from a given probability distribution. For instance, observe 0.3 (Normal 0 1)

updates the likelihood with fN (0,1)(0.3) (note that this can equivalently be ex-
pressed through weight), where fN (0,1) is the probability density function of
the standard normal distribution. This conditioning can be related to Bayes’
theorem: the random variables defined in a program define a prior distribution
(e.g., the upper part of Fig. 2b), the use of the weight and observe primitives a

Compiling Universal PPLs with Efficient Parallel SMC Inference 33

likelihood function, and the inference algorithm of the PPL infers the posterior
distribution (e.g., the lower part of Fig. 2b)

CorePPL includes sequences, recursive variants, records, and pattern match-
ing, standard in functional languages. For example, [1, 2, 3] defines a se-
quence of length 3, {a = false, b = 1.2} a record with labels a and b, and
Leaf {age = 1.0} a variant with the constructor name Leaf, containing a
record with the label age. The match construct allows pattern matching. For ex-
ample, match a with Leaf {age = f} then f else 0.0 checks if a is a Leaf

and returns its age if so, or 0.0 otherwise. Here, f is a pattern variable that is
bound to the value of the age element of a in the then branch of the match.

The data types and pattern matching features in Miking, and consequently
CorePPL, are not directly related to the paper’s key contributions. Therefore,
we do not discuss them further. However, the CorePPL compiler in Section 4.3
supports the features, and the CorePPL models in Section 5 make frequent use
of them. We consider CorePPL again in Section 4 when compiling to PCFGs.

3 PPL control-flow graphs and RootPPL

This section introduces the new PCFG concept (Section 3.1) and shows how to
apply SMC over these (Section 3.2). Finally, we present the PCFG and SMC-
based RootPPL framework (Section 3.3).

3.1 PPL Control-Flow Graphs

In order to handle checkpoints efficiently without CPS or non-preemptive mul-
titasking, we introduce PPL control-flow graphs (PCFGs). In contrast to tra-
ditional PPLs, where checkpoints are most often implicit, we make them ex-
plicit and central in the PCFG framework. The main benefit of this approach
is that the handling of checkpoints in inference algorithms is greatly simplified,
which allows for implementing the framework in low-level languages. However,
the explicit checkpoint approach makes PCFGs relatively low-level, and they are
mainly intended as a target when compiling from high-level PPLs. We introduce
such a compiler in Section 4.

Formally, we define a PCFG as a 6-tuple (B,S, sim, b0, bstop,L). The first
component B is a set of basic blocks inspired by basic blocks used as a part
of the control-flow analysis in traditional compilers [8]. In practice, the blocks
in B are pieces of code that together make up a complete probabilistic pro-
gram. Unlike basic blocks used in traditional compilers, we allow these pieces of
code to contain branches internally. The second component S is a set of states,
representing collections of information that flow between basic blocks. In prac-
tice, this state often contains local variables that live between blocks and an
accumulated likelihood. The blocks and states form the domain of the function
sim : B×S → B×S×{false, true}. This function performs computation specific
for the given block over the given state and outputs a successor block indicating

D. Lundén et al.34

b0 b1

b2

b3

b4 bstop

(a)

sim(b0, s0) �→ (b1, s1, false)
sim(b1, s1) �→ (b2, s2, true)
sim(b2, s2) �→ (b4, s3, true)
sim(b4, s3) �→ (bstop, s4, false)

(b)

Fig. 3: A PCFG illustration. Part (a) shows an example PCFG. The arrows de-
note the possible flows of control between the blocks, with regular arrows denot-
ing checkpoint transitions and arrows with open tips non-checkpoint transitions.
Part (b) shows a possible execution sequence with sim for (a).

Algorithm 1 A standard SMC algorithm applied to PCFGs.
Input: A PCFG (B,S, sim, b0, bstop,L). A set of initial states {sn}Nn=1.
Output: An updated set of states {sn}Nn=1.

1. Initialization: For each 1 ≤ n ≤ N , let an := b0 and cn := false.
2. Propagation: If all an = bstop, terminate and output {sn}Nn=1. If not, for each

1 ≤ n ≤ N where cn = false, let (an, sn, cn) := sim(an, sn). If all cn = true, go
to 3. If not, repeat 2.

3. Resampling: For each 1 ≤ n ≤ N , let pn := L(sn)/∑N
i=1 L(si). For each 1 ≤

n ≤ N , draw a new index i from {i}Ni=1 with probabilities {pi}Ni=1. Let (s′n, b
′
n) :=

(si, bi). Finally, for each 1 ≤ n ≤ N , let (sn, bn, cn) := (s′n, b
′
n, false). Go to 2.

what to execute next, an updated state, and a boolean indicating whether or
not there is a checkpoint at the end of the executed block.

To illustrate this formalization, consider the PCFG in Fig. 3a for which
B = {b0, b1, . . . , b4, bstop}. The block b0 is present in every PCFG and represents
its entry point. Similarly, the block bstop is a unique block indicating termination,
which must be reachable from all other blocks. For some initial state s0 ∈ S,
Fig. 3b illustrates a possible execution sequence starting at b0 in Fig. 3a before
terminating at bstop. The structure of a PCFG restricts checkpoints to only occur
at the end of basic blocks and confines communication between blocks to the
state. These restrictions greatly simplify inference algorithm implementations.
More precisely, rather than relying on CPS or non-preemptive multitasking, the
inference algorithm can simply run a block b with sim, handle the checkpoint,
and then run the successor block indicated by the output of sim.

3.2 SMC and PCFGs

To prepare for introducing RootPPL in Section 3.3, we present how to apply
SMC inference to PCFGs. The work by Naesseth et al. [33] contains a more
general and pedagogical introduction to SMC. At a high level, SMC inference
works by simulating many instances—known as particles in SMC literature—of

Compiling Universal PPLs with Efficient Parallel SMC Inference 35

a PCFG program concurrently, occasionally resampling the different particles
based on their current likelihoods. In CorePPL, for example, such likelihoods
are determined by weight and observe. Resampling allows the downstream
simulation to focus on particles with a higher likelihood.

In order to apply SMC inference over PCFGs, we need some way of deter-
mining the likelihood of the SMC particles. For this, we use the final component
of the PCFG definition, L : S → R≥0, which is a function mapping states to a
likelihood (a non-negative real number). Concretely, this likelihood is most often
stored directly in the state as a real number, and L simply extracts it.

Algorithm 1 defines an SMC algorithm over PCFGs. It takes a PCFG as
input, together with a set of N states {sn}Nn=1, which represent the SMC par-
ticles. Step 1 in the algorithm sets up variables an and cn, indicating for each
particle its current block and whether or not a checkpoint has occurred in it.
Step 2 simulates all particles that have not yet reached a checkpoint using sim.
This step repeats until all particles have reached a checkpoint (this is a synchro-
nization point for parallel implementations). Step 3 uses the likelihood function
L to compute the relative likelihoods of all particles and then resamples them
based on this. That is, we sample N particles from the existing N particles (with
replacement) based on the relative likelihoods. After resampling, we return to
step 2. If all particles have reached the termination block bstop, the algorithm
terminates and returns the current states.

Note in Algorithm 1 that the input states are not required to be identical. For
example, each state should have a unique seed used to generate random num-
bers (e.g., with assume in CorePPL). Non-identical initial states in Algorithm 1
imply that different particles may traverse the blocks in B differently and reach
checkpoints at different times. Although this means that different particles can
be at different blocks concurrently, the SMC algorithm is still correct [24]. This
PCFG property is essential as it allows for the encoding of universal probabilis-
tic programs in PCFG-based PPLs. Furthermore, it implies that some particles
may reach bstop earlier than others. To solve this, we require in Algorithm 1 that
sim(bstop, s) = (bstop, s, true) holds for all states s. That is, particles that have
finished also participate in resampling and cannot cause step 2 to loop infinitely.

Next, we describe our implementation of PCFGs with SMC: RootPPL.

3.3 RootPPL

We make use of the PCFG framework when implementing RootPPL: a new
low-level PPL framework built on top of CUDA C++ and C++, intended
for highly optimized and massively parallel SMC inference on general-purpose
GPUs. RootPPL consists of two major components: a macro-based C++ PPL
for encoding probabilistic models and an SMC inference engine.

The macro-based language has two purposes: to support compiling the same
program to either CPU or GPU and to simplify the encoding of models for
programmers. As a result, the macros hide all hardware details from the pro-
grammer. To illustrate this macro-based PPL, consider the example RootPPL

D. Lundén et al.36

1 BBLOCK(init, progState_t, {

2 PSTATE.x = SAMPLE(normal, 0.0, 100);

3 PSTATE.t = 0;

4 NEXT=iter;

5 BBLOCK_JUMP(iter);

6 })

7
8 BBLOCK(iter, progState_t, {

9 PSTATE.x = SAMPLE(normal, PSTATE.x + 2.0, 1);

10 OBSERVE(normal, PSTATE.x, 5.0, data[PSTATE.t]);

11 if (++PSTATE.t == T) NEXT=NULL;

12 })

(a) RootPPL program

struct progState_t {
double x;
int t;

};

(b) Program state

Fig. 4: Part (a) illustrates a RootPPL program encoding the state-space model
in (2). The text provides details. We set NEXT at line 4 rather than in iter as an
optimization. Part (b) defines the RootPPL program state type progState_t.

program in Fig. 4a. This program encodes a simple state-space model for an
object moving along an axis in R, given by

X0 ∼ N (0, 100), Xt ∼ N (xt−1 + 2, 1), Yt ∼ N (xt, 5), 1 ≤ t ≤ T. (2)

Here, X0 is the initial position, Xt the following positions, and Yt a set of noisy
observations of the object position. The inference goal is to determine the dis-
tribution of XT (the final position of the object) conditioned on all Yt.

Fig. 4a implements (2) with two basic blocks, introduced with the BBLOCK

macro in RootPPL. The first block init draws X0 using the SAMPLE macro
(equivalent to assume in CorePPL) on line 2 and stores the drawn value in the
program state variable x through the PSTATE macro. This program state is the
RootPPL instantiation of the PCFG state introduced in Section 3.1. Another
program state variable, t (corresponding to the index t in the model), is ini-
tialized on line 3. As preparation for iterating over the iter block, we set the
NEXT construct to iter at line 4. Finally, the block exits by making a direct
non-checkpoint transition to iter using the BBLOCK_JUMP macro at line 5.

In iter, we sample X1 at line 9 and write the result to x (overwriting the
previous X0, which is no longer needed). Line 10 updates the likelihood using
the OBSERVE macro (equivalent to observe in CorePPL), corresponding to ob-
serving Y1 in the model. We access all Yt through the data array, a shared global
constant, avoiding memory duplication in the program state. Finally, at line 11,
we check if we are at time T (a shared global constant for T). If this is the case,
NEXT is set to NULL, indicating termination. This is equivalent to moving to bstop
in the PCFG formalization. Otherwise, NEXT keeps its value set at line 4 and
jumps to the beginning of the iter block. Not using BBLOCK_JUMP allows iter

to return to the inference engine between iterations, indicating checkpoint tran-
sitions. In RootPPL, this means that SMC inference will resample the instances
before returning to iter for the next iteration.

The programmer defines the RootPPL program state for each RootPPL pro-
gram as an arbitrary C++ struct type and passes this type (e.g., progState_t

Compiling Universal PPLs with Efficient Parallel SMC Inference 37

in Fig. 4a) to each basic block. The PSTATE macro accesses the variables in the
struct. Fig. 4b illustrates the program state for the example program in Fig. 4a.
As described in Section 3.1, this program state is the only possible means to
pass data from one basic block to another in RootPPL.

This minimal example does not illustrate all RootPPL language features (e.g.,
WEIGHT). Further details on the RootPPL language are available at GitHub [4].

The second part of the RootPPL framework is the SMC inference engine.
It is crucial to take advantage of the highly parallel nature of SMC and avail-
able hardware for parallelization to achieve high performance. For this purpose,
RootPPL supports compilation to either C++ on single-core, C++ on multicore
through OpenMP [3], and CUDA C++ [1] with massive parallelism on the GPU.

We present the main inference loop in RootPPL below (cf. Algorithm 1).

1. Initialize random seeds.
2. Execute the basic block indicated by NEXT for all particles. This execution

may include a chain of blocks with non-checkpoint transitions between them
(using the BBLOCK_JUMP macro) before returning to the inference engine.

3. If all particles have terminated (i.e., NEXT = NULL), stop.
4. Resample all particles and go to 2.

The random seeds in step 1 are initialized differently depending on the compile
target. For plain C++ on a single core, one seed is shared between all particles
because they are executed sequentially. However, for OpenMP and CUDA, the
parallel execution requires that we assign each thread a unique seed shared
between all particles running on it. For CUDA, these seeds are placed in thread-
local CUDA memory for each particle to minimize memory overhead when using
SAMPLE (which is performance-critical). In addition, when compiling to CUDA,
we initialize the seeds in parallel using a CUDA compute kernel.

Step 2 executes the particles sequentially, in parallel using OpenMP threads,
or in parallel using a CUDA compute kernel. Step 3 then performs a termi-
nation check. First, we check if the first particle has terminated. If it has not
terminated, we directly move to the resampling step. If it has terminated, we it-
eratively check other particles to either find a particle that has not terminated or
conclude that all particles have terminated and stop the inference. This approach
both allows for particles terminating at different times and introduces minimal
overhead for the case when all particles terminate simultaneously (which is quite
common). When all particles terminate simultaneously, it is enough to check the
first particle in all iterations of step 3 except the last.

The resampling step is the most difficult one to parallelize efficiently. The
reason is the normalizing sum (e.g.,

∑N
i=1 L(si) in Algorithm 1) that we must

compute in order to determine resampling probabilities. We use systematic re-
sampling for single-core and OpenMP and parallel systematic resampling for
CUDA, as described in Murray et al. [31] (we do not use in-place propagation).
We compute the normalizing sum in parallel via the Thrust library [7] for CUDA.

Another important consideration for the inference engine is memory allo-
cation. In particular, the memory allocated for NEXT, the likelihood, and the
PSTATE for each particle, is laid out as separate arrays in memory, rather than

D. Lundén et al.38

one big array of structs. This approach, known as memory coalescing, avoids
strided memory accesses in global memory and is preferred for parallel opera-
tions, particularly for CUDA. Another memory consideration is particle dupli-
cation during resampling. For this, we use a custom aligned memory transfer
in CUDA because the standard memcpy implementation in CUDA proved to be
a bottleneck. With a single core and OpenMP, memcpy runs without issue. Ad-
ditionally, we perform a specific optimization when copying the program state
used in the CorePPL compiler. This program state consists of a possibly large
stack (with user-definable size) together with a stack pointer, and we ensure not
to copy the unused part of the stack located beyond the stack pointer. This is a
critical optimization for the CorePPL compiler.

Other things supported in RootPPL are the estimation of normalizing con-
stants for encoded models and adaptive resampling based on the current effective
sample size (ESS). These are standard concepts in SMC inference. For more de-
tails, see, e.g., Naesseth et al. [33].

Next, we use RootPPL as the target language for the CorePPL compiler.

4 Compiling to PCFGs

This section introduces the ideas for compiling high-level universal PPLs to
PCFGs. We present the key transformation—function decomposition into basic
blocks—using a toy example (Section 4.1), a formal algorithm (Section 4.2), a
high-level overview of the CorePPL-to-RootPPL compiler (Section 4.3), and the
compilers strengths and limitations (Section 4.4).

4.1 Function Decomposition Example

The major challenge when compiling high-level PPLs is implementing pausing
and resuming at checkpoints to yield control to an inference algorithm temporar-
ily. Pausing and resuming in low-level languages is especially difficult due to run-
time limitations. We solve this problem by compiling to the PCFGs introduced in
Section 3, specifically designed for implementation in low-level target languages.
A challenge with this approach is that checkpoints can occur at arbitrary loca-
tions in high-level probabilistic programs, whereas in PCFGs, checkpoints must
always occur at tail position in basic blocks. We solve this by decomposing func-
tions in the source language into a set of basic blocks. Our approach is similar
to how functions are decomposed into basic blocks in standard compilers such
as GCC [2] and LLVM [6] (see, e.g., Aho et al. [8]). The difference is that we
only decompose as needed, based on where checkpoints occur. In particular, we
do not decompose functions, and parts of functions, in which checkpoints are
guaranteed not to occur. This allows for more optimizations by the underlying
compiler (e.g., NVCC or GCC for RootPPL).

Consider the toy CorePPL function in Fig. 5a and the resulting compila-
tion to a RootPPL PCFG in Fig. 5c. For this example, we introduce an explicit
SMC checkpoint resample in CorePPL, indicating where SMC should pause

Compiling Universal PPLs with Efficient Parallel SMC Inference 39

1 recursive let f: Float -> Float =

2 lam p.

3 let s1 = assume (Gamma p p) in

4 resample;

5 let s2 =

6 if geqf s1 1. then 2.

7 else 3. in

8 let s3 =

9 if leqf s2 4. then

10 let s4 =

11 if eqf s2 5. then 6.

12 else f 7. in

13 addf s4 s4

14 else 8. in

15 mulf s3 s3

16 in

(a) Source CorePPL program.

1 recursive let f: Float -> Float =

2 lam p.

3 let s1 = assume (Gamma p p) in

4 resample;

5 let t1 = geqf s1 1. in

6 let s2 = if t1 then 2. else 3. in

7 let t2 = leqf s2 4. in

8 let s3 =

9 if t2 then

10 let t3 = eqf s2 5. in

11 let s4 =

12 if t3 then 6. else f 7. in

13 addf s4 s4

14 else 8. in

15 mulf s3 s3

16 in

1

2

3

4

(b) Intermediate ANF representation.

1 struct STACK_f *sf =

2 PSTATE.stack

3 + PSTATE.stackPtr

4 - sizeof(struct STACK_f);

5 sf->s1 =

6 SAMPLE(gamma, sf->p, sf->p);

7 NEXT = 2;

1 1 struct STACK_f *sf = . . .;
2 char t1 = sf->s1 >= 1.;

3 double s2;

4 if (t1 == 1) { s2 = 2.; }

5 else { s2 = 3.; }

6 char t2 = s2 <= 4.;

7 if (t2 == 1) {

8 char t3 = s2 == 5.;

9 if (t3 == 1) {

10 sf->s4 = 6.;

11 BBLOCK_JUMP(3);

12 } else {

13 struct STACK_f *callsf =

14 PSTATE.stack

15 + PSTATE.stackPtr;

16 callsf->ra = 3;

17 callsf->p = 7.;

18 callsf->retValLoc =

19 &(sf->s4)

20 - PSTATE.stack;

21 PSTATE.stackPtr =

22 PSTATE.stackPtr

23 + sizeof(struct STACK_f);

24 BBLOCK_JUMP(1);

25 }

26 } else {

27 sf->s3 = 8.;

28 BBLOCK_JUMP(4);

29 }

2

1 struct STACK_f *sf = . . .;
2 sf->s3 = sf->s4 + sf->s4;

3 BBLOCK_JUMP(4);

3

1 struct STACK_f *sf = . . .;
2 double t = sf->s3 * sf->s3;

3 *(PSTATE.stack + sf->retValLoc) = t;

4 PSTATE.stackPtr =

5 PSTATE.stackPtr

6 - sizeof(struct STACK_f);

7 BBLOCK_JUMP(sf->ra);

4

(c) Compiled RootPPL PCFG illustration. Some RootPPL constructs are omitted or
slightly modified for readability. In particular, we omit the BBLOCK construct used in
Fig. 4a. Instead, we illustrate the blocks as nodes in a graph, numbered by indices. The
arrows indicate control flow between the blocks, with the incoming arrow to block 1
representing the call to f and the outgoing arrow from block 4 representing the return
from f.

Fig. 5: Compilation of a CorePPL program (a) to a RootPPL PCFG (c). Part
(b) illustrates an intermediate ANF representation of (a) and also indicates the
parts of the program corresponding to the blocks in (c). We provide further
details in the text.

D. Lundén et al.40

executions in order to resample. The resample construct is the sole checkpoint
considered in this example (and the CorePPL compiler), but the method gener-
ally applies for arbitrary checkpoints. Optimally, the resample construct should
be automatically inserted by the compiler [25]. However, we do not consider this
problem in this paper and assume resamples are inserted prior to compilation.
The first step in the decomposition is to translate the program into A-normal
form (ANF) [15], illustrated in Fig. 5b. ANF is commonly used in compilers and
ensures that non-trivial expressions (e.g., function applications and checkpoints)
are always name-bound. For CorePPL, ANF guarantees that the body of each
let expression, or expression in tail position, is trivial, contains at most one
function application, or is an if expression with a trivial condition, resulting
in simplified decomposition. We will use the program in Fig. 5b as the target
for decomposition in the following. Note that variables introduced by ANF start
with a t in Fig. 5b, while the original variables from Fig. 5a start with an s.

The goal with the decomposition is to ensure that we immediately return
control to the inference engine at checkpoints. In the PCFG framework, the only
way to fulfill this is to ensure that checkpoints occur at tail position in basic
blocks. First, consider the resample checkpoint at line 4 in Fig. 5b, causing a
split into blocks 1 and 2 in the compiled RootPPL PCFG in Fig. 5c. Note that in
block 1, NEXT is set to 2 at line 7 before returning, indicating that the inference
engine should resume execution at block 2 after handling the checkpoint, also
illustrated by a closed arrow. Note the stack frame pointer sf in block 1 for
this invocation of f, which points to a location in an explicit call stack in the
RootPPL program state PSTATE. We require such a call stack due to compiling
to PCFGs—any data that lives between basic blocks (e.g., a call stack), such
as s1, must be put in the program state. We define the stack frame pointer sf

equivalently at the top of all blocks for the decomposed function f in Fig. 5c but
replace the definition with . . . in blocks other than the first for brevity.

It is not sufficient to split into blocks at explicit checkpoints. Consider, for
example, the recursive call to f in the else branch on line 12 in Fig. 5b. During
this function call, we encounter at least one resample, resulting in at least one
block split within the function, meaning that all data required by f must be put
in an explicit stack frame and stored in the program state. If not, we lose the
data between the basic blocks of f. In particular, the block return address ra is
stored in the stack frame, indicating which block to return to at the end of the
function call. In the case of the call to f at line 12 in Fig. 5b, we must return
to line 13. Therefore, we must place line 13 at the beginning of a basic block in
Fig. 5c (block 3). In general, we must place all calls to decomposed functions (i.e.,
functions that may, directly or indirectly, encounter a checkpoint) at tail position
in basic blocks. Besides line 13 in Fig. 5b, this also means that line 15 in Fig. 5b
cannot be part of block 2. It cannot be part of block 3 either because it may be
executed independently of line 13 in Fig. 5b if we take the else branch of the
if at line 9 in Fig. 5b. Consequently, we must put it in a separate block (block
4 in Fig. 5c). The decomposition of function applications and if expressions is
similar to how standard compilers decompose machine instructions into basic

Compiling Universal PPLs with Efficient Parallel SMC Inference 41

blocks (sequences of instructions without any internal jumps or branches) [8].
The difference, however, is that we do not split into blocks at all if expressions
and function calls. For example, the if at line 6 in Fig. 5b is guaranteed not to
include a checkpoint and can be left untouched (lines 4–5 in Fig. 5c). Similarly,
the call to geqf at line 5 in Fig 5b is guaranteed not to encounter any checkpoints.
Conservatively determining which functions are guaranteed not to encounter any
checkpoints can be done through static analysis. Such a static analysis phase is
part of the CorePPL compiler, described in Section 4.3.

We now take a closer look at the call stack handling in Fig. 5c. The following
description is specific for RootPPL, but similar solutions must be applied if
compiling to other target languages utilizing PCFGs. First, the program state
PSTATE consists of a byte array stack and a pointer to the top of this stack named
stackPtr. We increment and decrement this stack pointer when stack frames
are added and removed, respectively, at function calls and returns. The type
STACK_f represents the stack frame for the function f (such a stack frame type
must be determined and set up for each function we decompose) and contains
its block return address ra, its parameter p (functions with multiple parameters
have one entry for each parameter), and an address retValLoc at which we write
its return value. Additionally, it contains the local variables s1, s3, and s4 that
travel across the blocks in f. Note, however, that local variables used only within
a single block do not need to go in the stack frame (e.g., t1 and s2), and the
underlying target language (e.g., CUDA for RootPPL) can instead handle them
directly. Lines 13–24 in block 2 in Fig. 5c illustrate the recursive call to f at line
12 in Fig. 5b. Here, we allocate a new complete stack frame callsf and initialize
ra, p, and retValLoc. Allocating the complete stack frame prior to the function
call is different from most standard compilers, which most often allocate the part
of the stack frame containing local variables at the start of the called function.
This strategy allows for making the allocation size dependent on, e.g., function
arguments. Here, we instead know all stack frame sizes at compile time. After
setting up the stack frame, we increment the stack pointer at lines 21–23 and
pass control to the recursive invocation of f by using BBLOCK_JUMP at line 24.
Inversely, we illustrate function return in block 4 on lines 3–7. First, we set the
return value, and second, we decrement the stack pointer. Finally, we retrieve
the return block from the stack frame and pass control to this block at line 7.

4.2 Function Decomposition Algorithm

We now turn to a formal description of the decomposition algorithm. To avoid
going into specifics of the underlying target language, and in particular the call
stack handling, we take an abstract view of function bodies and regard them as
lists of statements of the form

stmt ::= checkpoint | call | if [stmt] [stmt] | other. (3)

Here, the [stmt] syntax indicates a list of stmts. Thus, the if construct induc-
tively contains two lists of stmts—one for each branch.

D. Lundén et al.42

1 [
2 other,
3 checkpoint,
4 other,
5 if [other] [other],
6 other,
7 if [
8 other,
9 if

10 [other]
11 [call],
12 other,
13] [other],
14 other
15]

(a) The program from Fig. 5b
translated to type [stmt].

1 [
2 other,
3 checkpoint 2
4]

1
1 [
2 other
3 if
4 [other]
5 [other]
6 other
7 if [
8 other
9 if [

10 other,
11 jump 3
12] [
13 call 3
14]
15] [
16 other,
17 jump 4
18]
19]

2

1 [
2 other,
3 jump 4
4]

3

1 [
2 other,
3 jump return
4]

4

(b) Decomposition of (a) into [tstmt] basic blocks.

Fig. 6: Illustrating Algorithm 2 on the example from Fig. 5.

We illustrate the representation stmt through an example. Consider the pro-
gram in Fig. 5b and its mapping to stmts in Fig. 6a. Due to ANF, we can view
the body of f as a sequence of let bindings and operations separated by ;,
each performing a single operation of some kind (e.g., a checkpoint or a function
application). We map each such operation to a stmt in Fig. 6a. The resample

checkpoint at line 4 in Fig. 5b maps to a checkpoint at line 3 in Fig. 6a, and
the application of f at line 12 maps to a call at line 11. However, other applica-
tions, such as geqf and leqf, are guaranteed not to encounter any checkpoints.
Therefore, they map to others, and not calls. The three ifs at lines 6, 9, and
12 map to ifs. Note that we always lift the if conditions in Fig. 5b to a separate
let as a result of ANF, and they are therefore not part of the if representation
in stmt. We map all remaining operations to others.

While the illustration above only shows how to map a CorePPL function body
to stmts, the representation is general. For example, in the CorePPL compiler
(Section 4.3), the decomposition is performed after translation to C, and not at
the CorePPL stage. The reason is that there are no basic blocks in CorePPL. It
is, therefore, more natural to perform this translation closer to RootPPL.

We now turn to the full decomposition algorithm over lists of stmts, given
in Algorithm 2. The target language representation is a small extension of stmt,

Compiling Universal PPLs with Efficient Parallel SMC Inference 43

Algorithm 2 A functional-style algorithm for function decomposition into basic
blocks. We denote tuples with comma-separated expressions within parentheses
and sequences with comma-separated items within square brackets. We denote
type annotation with the : character, the cons operator with :: characters, and se-
quence concatenation with ++. The non-pure function newIndex returns a unique
number from N at every call.

1 function decompose srcs: [stmt] → (N → [tstmt]) =
2 let (block, blocks, _) = rec ([], ∅, return) srcs in
3 blocks ∪ (newIndex (), block)
4
5 function initNext next: next+ → next =
6 match next with none → newIndex () | _ → next
7
8 function rec (block, blocks, next) srcs: acc → [stmt] → acc =
9 match srcs with

10 | [] → match next with
11 | none → (block, blocks, next)
12 | n | return → (block ++ [jump next], blocks, next)
13 | src :: srcs → match src with
14 | checkpoint | call → match srcs with
15 | [] →
16 let next = initNext next in
17 (block ++ [src next], blocks, next)
18 | _ −>
19 let index = newIndex () in
20 let block = block ++ [src index] in
21 let (nextBlock, blocks, next) = rec ([], blocks, initNext next) srcs in
22 (block, blocks ∪ (index, nextBlock), next)
23 | other → rec (block ++ [other], blocks, next) srcs
24 | if thn els → match srcs with
25 | [] →
26 let (thn, thnBlocks, thnNext) = rec ([], blocks, next) thn in
27 let (els, elsBlocks, elsNext) = rec ([], thnBlocks, thnNext) els in
28 let thn = if next �= elsNext ∧ thnNext = none
29 then thn ++ [jump elsNext] else thn in
30 (block ++ [if thn els], elsBlocks, elsNext)
31 | _ →
32 let (thn, thnBlocks, thnNext) = rec ([], blocks, none) thn in
33 let (els, elsBlocks, elsNext) = rec ([], thnBlocks, thnNext) els in
34 if elsNext = none then rec (block ++ [if thn els], elsBlocks, next) srcs
35 else
36 let thn = if thnNext = none then thn ++ [jump elsNext] else thn in
37 let (nextBlock, blocks, next) =
38 rec ([], elsBlocks, initNext next) srcs in
39 (block ++ [if thn els], blocks ∪ (elsNext, nextBlock), next)

D. Lundén et al.44

adding transitions between N-indexed basic blocks. It is given by

tstmt ::= checkpoint next | call next
| if [tstmt] [tstmt] | jump next | other. (4)

In particular, we annotate checkpoints and calls with the type next, given by
next ::= return | n, where n ∈ N. For checkpoints, the next indicates which
block to jump to after handling the checkpoint, and for calls, it indicates the
block to return to (e.g., the value set for ra in Fig 5c) at the end of the function
invocation. We also include a jump in tstmt for directly jumping to another block
(corresponding to BBLOCK_JUMP in Fig. 5c). The return case of next indicates
that the return address gives the next block for the current function call. For
example, BBLOCK_JUMP(sf->ra) is equivalent to jump return.

Fig. 6b shows the result of applying Algorithm 2 on the [stmt] in Fig. 6a.
Note that the block structure in Fig. 6b mirrors that of Fig. 5c. The entry point
in Algorithm 2 is the function decompose, which accepts a [stmt] as input,
and produces a map from indices to [tstmt] as output (e.g., Fig 6b). The core of
Algorithm 2 is the function rec, which recursively constructs the basic blocks.
It is called from decompose, and makes use of the function initNext. The
accumulator is the triple (block, blocks, next) of type acc ::= [stmt] × (N →
[stmt]) × next+, where block is the current block being constructed, blocks are
all blocks constructed so far, and next indicates the action to take at tail position
in the current block. The type next+ is defined as next+ ::= next | none. When
reaching the end of a block, a value none for next means do nothing, a value
return indicates that the next block is the return block for the current function
invocation, and a natural number n means that the next block has index n.

We now walk through the translation of Fig. 6a to Fig. 6b. We set the ac-
cumulator to ([], ∅, return) at line 2 in Algorithm 2 just before the initial call
to rec, indicating that the current block is empty, that we have accumulated
no complete blocks so far, and that we must use the return block address when
reaching the end of the current block. In the first call to rec, the other at
line 2 in Fig. 6a triggers the case at line 23 in Algorithm 2, which accumulates
the other in the current block. Next, the checkpoint triggers the case at line
14, followed by line 18, since the checkpoint is not at tail position. At line
19, we create a new index for the following block. We then close the current
block by tagging the checkpoint with the new index, resulting in block 1 in
Fig. 6b. Next, we recursively create the block following the checkpoint at line
21. Finally, we add the recursively created block with the new index to the map
of complete blocks (now also populated by the recursive call) and return the
updated accumulator triple at line 22.

The complex part of Algorithm 2 involves handling of ifs. In particular, we
must handle cases where there are block splits within the branches with care.
In our example, the first if at line 5 in Fig. 6a triggers the case at line 31 since
it is not in tail position. To determine whether or not there is at least one split
within the branches, we set next to none for the call on line 32. If a block is split
during this call, initNext will be applied on next, and thnNext at line 32 will

Compiling Universal PPLs with Efficient Parallel SMC Inference 45

Fig. 7: The main components of the CorePPL-to-RootPPL compiler. Grey blocks
are programs, and blue blocks are transformations or analyzes.

be a natural number, indicating where the branch jumped to (either through a
jump, checkpoint, or call) at tail position. However, if there is no split in the
branch, the resulting thnNext remains none. There is no split in the first branch
of the if at line 5 in Fig. 6a, and none is passed to the recursive call at line 33
as well. Again, there is no split in the second branch, triggering the then case at
line 34, and we accumulate the if in the same way as an other.

The ifs at lines 7 and 9 in Fig. 6a do contain a split due to the call at line
11, resulting in blocks 2, 3, and 4, shown in Fig. 6b. The elsNext is a natural
number for these ifs, and the else case at line 35 is triggered. Here, we must
take particular care if there is only a split in the second branch of the if and not
the first. In that case, thnNext is none, and unlike the second branch, we do not
add a block jump to the end of this branch in the call at line 32. Therefore, we
must instead add it at line 36. We add the jump at line 11 in block 2 in Fig. 6b
in this way. Note that we do not require an equivalent step to the above for the
second branch if the split is only in the first branch, since we pass the next from
the first branch to the recursive call for the second branch. After handling the if

itself, we recursively create the new block following the if at lines 37–38 (note
that we pass the next given as argument to rec here, and use initNext on it
to indicate a split has occurred), and give it the index elsNext at line 39.

The case where if is at tail position, at line 25, is handled similarly to the
case at line 31. The difference is that we do not pass none to the first branch
since there is nothing following the if which we can jump to. Instead, we directly
pass the current next to the first call at line 26.

In the blocks resulting from Algorithm 2, call and checkpoint only occurs
in tail-position by construction. As discussed in Section 4.1, this is precisely the
required property when compiling to PCFGs.

4.3 CorePPL-to-RootPPL Compiler

Fig. 7 gives an overview of the CorePPL-to-RootPPL compiler components. Be-
sides the techniques described previously, an integral part of the compiler is the C
translation step, which translates many of the CorePPL language features to C,
including data type definitions and pattern matching. More precisely, CorePPL
records and variants are translated to C structs and tagged unions, respectively,
while pattern matching is compiled to C if statements.

A simple static analysis phase discovering functions that are guaranteed not
to encounter any resamples is also part of the compiler. It iterates through all

D. Lundén et al.46

functions and marks a function as containing a resample if it either directly
contains a resample or calls another function containing a resample. We do
not need to decompose resample-free functions, and invocations can be handled
directly by the C++ or CUDA compiler (and we do not need to set up an explicit
stack frame). An example of such a function invocation is the geqf s1 1. at line
5 in Fig. 5b. We disallow passing functions as arguments to other functions as
it complicates the analysis. A solution to allow passing functions as arguments
is to use static analysis techniques such as 0-CFA [35] instead.

The code generation stage in Fig. 7 adds RootPPL boilerplate code and emits
a complete RootPPL program that is provided as input to a C++ or CUDA
compiler together with the RootPPL inference engine (see Fig. 1). The CorePPL
compiler implementation is hosted at GitHub [4] and consists of approximately
3000 lines of code (a contribution of this paper). Note that the ANF, static
analysis, and C translation steps are quite standard, with no new contributions.

An important detail concerning memory allocation in the compiler is the
translation between relative and absolute addresses. Fig. 5c illustrates this trans-
lation. On line 3 in block 4, we convert the retValLoc relative pointer to an
absolute pointer prior to dereferencing, and at lines 18–20 in block 2, the ad-
dress of s4 is translated to a relative address with respect to the start of the
stack before being assigned to retValLoc. This translation is needed because,
at checkpoints in RootPPL, resampling copies and moves SMC executions in
memory. Therefore, we cannot use absolute addresses to refer to data on the
PSTATE stack and must instead use addresses relative to the start of the stack.

4.4 Compiler Strengths and Limitations

The main strength of the CorePPL compiler, compared to using other PPL com-
pilers and tools, is the execution time of the compiled programs. In particular,
the compilation from a universal PPL to CUDA is the first of its kind and allows
for utilizing GPUs for massively parallel SMC inference.

The compiler does, however, have some limitations. Most importantly, the
lack of standard garbage collectors in C++ and CUDA leads to restrictions for
automatic data allocation. Currently, we support only stack-based allocation,
which means that CorePPL programs that allocate and return dynamically sized
data structures (e.g., trees or linked lists) from functions are not supported. Con-
sequently, the current compiler cannot handle probabilistic programs encoding
distributions over such data structures (e.g., phylogenetic trees)—the distribu-
tion must be over fixed-size data types. However, as the evaluation in Section 5
suggests, practically significant universal probabilistic programs over fixed-sized
data types are plentiful. In general, the compiler supports universal CorePPL
programs including both stochastic branching and an unbound number of (stack-
allocated) random variables. Automatic heap-based data allocation is a general
challenge when compiling to GPUs and not specific to our approach. Exploring
the use of garbage collectors or other means for automatic memory management
on GPUs is an interesting direction for future research.

Compiling Universal PPLs with Efficient Parallel SMC Inference 47

The compiler also lacks support for some features, which we foresee no sub-
stantial technical challenges in implementing in the near future. In particu-
lar, the compiler does not support first-class distributions—we restrict distri-
butions to occur immediately at assumes (e.g., the Bernoulli distribution in
assume (Bernoulli p) in Fig. 2a). Another possible feature is to add limited
support for nested and higher-order functions.

5 Evaluation

This section evaluates RootPPL and the CorePPL-to-RootPPL compiler. The
source code for all experiments is publicly available [26]. We compare RootPPL
and CorePPL to state-of-the-art SMC PPL implementations on two models: a
constant rate birth-death (CRBD) model from evolutionary biology (Sections 5.1
and 5.3) and a vector-borne disease model from epidemiology (Section 5.2).
Previous work shows that SMC handles these models particularly well [36,28],
and they are therefore good candidates for this evaluation. Comparison with
other types of inference algorithms is a challenging problem and beyond the
scope of this paper. For example, comparing SMC with variational inference
(VI) is challenging as VI is approximate and SMC is asymptotically exact.

In addition to CorePPL (compiled to RootPPL) and RootPPL (hand-tuned),
we implement the models above in a set of state-of-the-art PPLs with SMC
inference: Birch [32], WebPPL [20], and Pyro [10]. For each PPL, we implement
the two models as efficiently as possible, given the available language features. We
compile RootPPL with GCC 7.5.0 for single-core and multicore and with CUDA
11.4 for GPU. We compile Birch 1.634 with GCC 7.5.0. We use WebPPL 0.9.15
with Node.js 14.17.6. We use Pyro 1.7.0 with PyTorch 1.9.0 and CUDA 10.2.
Additionally, we use Numba 0.54.0—a just-in-time (JIT) compiler for Python—
to improve the Pyro performance for the Section 5.1 experiment.

To aid the comparison between languages both in the text and in the figures,
we use the (S), (M), and (G) symbols suffixed to PPL names to indicate if
they run on single-core, multicore, or GPU, respectively. Despite the CUDA
dependency for Pyro, we did not observe any GPU usage during Pyro SMC
runs. In Pyro, SMC is a minor inference algorithm, with variational inference
instead being the main focus. This may explain this lack of GPU support for
SMC. Consequently, we classify SMC in Pyro as (M) and not (G).

We ran all experiments on a machine with a 12-core (24 threads) Intel Xeon
Gold 6136 CPU, 64 GB of memory, and an NVIDIA TITAN RTX GPU with 24
GB of memory and 4608 CUDA cores.

5.1 Experiment: Constant-Rate Birth Death

In this experiment, we consider the non-trivial CRBD model described in Ron-
quist et al. [36]. This model encodes the posterior distributions of the rates with
which new evolutionary lineages arise (birth rate) and die out (death rate), con-
ditioned on the input of a fixed evolutionary tree (phylogeny). We use the dated

D. Lundén et al.48

C
or

eP
P
L

(S
)

R
oo

tP
P
L

(S
)

P
yr

o/
N

um
ba

(M
)

B
irc

h
(M

)

C
or

eP
P
L

(M
)

R
oo

tP
P
L

(M
)

C
or

eP
P
L

(G
)

R
oo

tP
P
L

(G
)

0.0

0.5

1.0

1.5

2.0

T
im

e
[s

ec
]

0.
43

0.
36

2.
25

0.
77

0.
17

0.
15

0.
57

0.
57

N = 10 000

C
or

eP
P
L

(S
)

R
oo

tP
P
L

(S
)

P
yr

o/
N

um
ba

(M
)

B
irc

h
(M

)

C
or

eP
P
L

(M
)

R
oo

tP
P
L

(M
)

C
or

eP
P
L

(G
)

R
oo

tP
P
L

(G
)

0

2

4

6

5.
05

3.
38

6.
72 7.

03

1.
49

1.
17

1.
13

0.
75

N = 100 000

C
or

eP
P
L

(S
)

R
oo

tP
P
L

(S
)

P
yr

o/
N

um
ba

(M
)

B
irc

h
(M

)

C
or

eP
P
L

(M
)

R
oo

tP
P
L

(M
)

C
or

eP
P
L

(G
)

R
oo

tP
P
L

(G
)

0

20

40

60

52
.4

2

34
.7

8

13
.7

6

68
.7

9

14
.4

8

11
.1

4

6.
20

1.
99

N = 1000 000

Fig. 8: Execution times for the CRBD experiment, for different numbers of parti-
cles N . The vertical line at the top of each bar indicates one standard deviation.
PPLs with an (S) runs on a single core, (M) on multicore, and (G) on the GPU.

Alcedinidae phylogeny (Kingfisher birds) referenced in Ronquist et al. [36], and
introduced in Jetz et al. [23]. A notable feature of this model is that it contains
recursive tree constructions, which are only expressible in universal PPLs. The
CorePPL implementation of this model consists of 118 lines of code†.

We measure execution time. To ensure fairness, we disabled variance-reducing
techniques such as delayed sampling [28] and ESS-triggered resampling in all
PPLs where available. Consequently, all implementations use precisely the same
SMC inference algorithm. We checked this and the implementations’ correct-
ness by considering the output normalizing constant estimates in all runs†. The
variance and mean of these estimates were comparable for all PPLs.

The results of the experiment are shown in Fig. 8 for three different numbers
of SMC particles: 10 000, 100 000, and 1 000 000. We ran the PPL implementa-
tions for 100 iterations (a number determined by available time and hardware)
for each number of SMC particles. The exception to this is WebPPL (S) and
Pyro (M), which we ran only for 10 000 particles due to excessive execution
times. For 10 000 particles, WebPPL (S) ran for 55 seconds (standard deviation
0.63 seconds), and Pyro (M) for 250 seconds (standard deviation 28 seconds).
We omit WebPPL (S) and Pyro (M) from Fig. 8. Pyro relies heavily upon vec-
torization through PyTorch, and the expensive operations in the CRBD model
are recursive and stochastic tree constructions, which are difficult to vectorize.
This explains the particularly abnormal execution times for Pyro (M).

RootPPL is the best alternative in all categories. We conjecture that the
difference compared to CorePPL is due to hand-tuned details in the RootPPL
model. The RootPPL model uses efficient array encodings of the observed tree,
precomputes the recursion order over this tree, and encodes it as an iterative pro-
cedure. CorePPL instead compiles the tree as a tagged union type with pointers

Compiling Universal PPLs with Efficient Parallel SMC Inference 49

C
or

eP
P
L

(S
)

R
oo

tP
P
L

(S
)

P
yr

o
(M

)

B
irc

h
(M

)

C
or

eP
P
L

(M
)

R
oo

tP
P
L

(M
)

C
or

eP
P
L

(G
)

R
oo

tP
P
L

(G
)

0

2

4

6

8

10

12

T
im

e
[s

ec
]

11
.2

4

11
.9

5

11
.0

8 9.
36

2.
59 2.
79

2.
19

2.
23

N = 10 000

C
or

eP
P
L

(S
)

R
oo

tP
P
L

(S
)

P
yr

o
(M

)

B
irc

h
(M

)

C
or

eP
P
L

(M
)

R
oo

tP
P
L

(M
)

C
or

eP
P
L

(G
)

R
oo

tP
P
L

(G
)

0

10

20

30

40

50

60

56
.0

9

59
.8

6

25
.6

6

46
.2

7

12
.6

3

13
.6

3

10
.2

8

12
.6

2

N = 50 000

C
or

eP
P
L

(S
)

R
oo

tP
P
L

(S
)

P
yr

o
(M

)

B
irc

h
(M

)

C
or

eP
P
L

(M
)

R
oo

tP
P
L

(M
)

C
or

eP
P
L

(G
)

R
oo

tP
P
L

(G
)

0

20

40

60

80

100

120

11
1.

52 11
9.

55

49
.3

2

92
.1

8

25
.0

3

27
.0

1

18
.7

9

23
.9

9

N = 100 000

Fig. 9: Execution times for the Vector-Borne Disease experiment, for different
numbers of particles N . The vertical line at the top of each bar indicates one
standard deviation. PPLs with an (S) runs on a single core, (M) on multicore,
and (G) on the GPU.

to subtrees in each node and traverses it via recursion. Automatically discovering
this transformation from trees to arrays and recursion to iteration is non-trivial
and not considered here but could have potential for future work.

To improve the performance of Pyro, we also applied Numba to parallelize
the recursive tree construction in the model manually. The parallelization we ap-
ply is more fine-grained than the natural SMC particle parallelism and resulted
in an order-of-magnitude performance boost over Pyro (M). Unlike CorePPL,
RootPPL, and Birch, the execution times for Pyro/Numba (M) seems to grow
sub-linearly when going from 100 000 to 1 000 000 particles, as this only increases
mean execution time from 6.72 seconds to 13.76. We conjecture that this is re-
lated to the different type of parallelism introduced with Numba, in combina-
tion with its JIT compilation. Therefore, looking at adding such parallelism to
RootPPL and CorePPL is an interesting direction for future work.

5.2 Experiment: Vector-Borne Disease

Next, we consider the vector-borne disease model from Funk et al. [16], which
is also studied further in Murray et al. [28]. This epidemiological model encodes
a dengue outbreak in Micronesia and includes the spread of disease between
mosquito and human populations. The inference is over the number of suscep-
tible, exposed, infectious, and recovered (SEIR) individuals in the populations
at discrete time steps (days), and the observations are daily numbers of re-
ported new cases at health centers (the data is available in Funk et al. [16]). The
CorePPL implementation of this model consists of 140 lines of code†.

The experiment setup is identical to Section 5.1 but with fewer SMC particles
due to more demanding computations in the model. Fig. 9 shows the results. We

D. Lundén et al.50

R
oo

tP
P
L

(S
)

P
yr

o/
N

um
ba

(M
)

B
irc

h
(M

)

R
oo

tP
P
L

(M
)

R
oo

tP
P
L

(G
)

0

2

4

6

8

10

T
im

e
[s

ec
]

2.
69

10
.6

3

4.
63

0.
84 1.
21

N = 10 000

R
oo

tP
P
L

(S
)

P
yr

o/
N

um
ba

(M
)

B
irc

h
(M

)

R
oo

tP
P
L

(M
)

R
oo

tP
P
L

(G
)

0

10

20

30

40

50

60

26
.6

6

64
.4

9

45
.9

8

7.
73

3.
36

N = 100 000

R
oo

tP
P
L

(S
)

P
yr

o/
N

um
ba

(M
)

B
irc

h
(M

)

R
oo

tP
P
L

(M
)

R
oo

tP
P
L

(G
)

0

100

200

300

400

27
5.

96

11
8.

55

45
1.

62

75
.9

6

18
.4

6

N = 1000 000

Fig. 10: Execution times for the CRBD experiment with variance-reducing tech-
niques for different numbers of particles N . The vertical line at the top of each
bar indicates one standard deviation. PPLs with an (S) runs on a single core,
(M) on multicore, and (G) on the GPU. Note the 6× speedup of RootPPL (M)
over Birch (M) for N = 100 000.

omit WebPPL (S) entirely due to high execution times. However, we include Pyro
(M) because the simple non-stochastic control-flow in this model allows much
better vectorization than the CRBD model. The Numba optimization in Sec-
tion 5.1 relied on the recursive structure of the model. We exclude Pyro/Numba
(M) here, as such an optimization is not possible in this model.

This time, CorePPL is the best option, by a small margin, over RootPPL.
We conjecture that this is due to how RootPPL preallocates memory, which is
instead dynamically allocated in CorePPL. This results in copying slightly more
memory during resampling for this model in RootPPL.

The difference between GPU and CPU for CorePPL and RootPPL is not as
significant as in Fig. 8. We conjecture that this is due to the lower numbers of
SMC particles used and RootPPL using different implementations for binomial
distribution sampling on the CPU and GPU. The GPU uses a custom, and less
efficient version, because the C++ standard library binomial sampling imple-
mentation is not available in CUDA. Because binomial sampling is the most
expensive operation in this model, this can improve GPU performance further.

5.3 Experiment: CRBD with Variance-Reducing Techniques

In this experiment, we again consider the CRBD model from Section 5.1, but
with delayed sampling and ESS-triggered resampling allowed. Also, we now con-
sider a different, more challenging phylogeny of Tyrant flycatchers [36,23].

Fig. 10 shows the results. Other than the changes above, the setup is identical
to Section 5.1. We added static delayed sampling manually to all models to

Compiling Universal PPLs with Efficient Parallel SMC Inference 51

ensure fairness. Note, however, that automatic and dynamic delayed sampling,
as introduced in Murray et al. [28], is also natively supported in Birch (but
introduces some unfair overhead). CorePPL is omitted here, as adding efficient
delayed sampling to the model is rendered more difficult by the current lack of
support for mutable data structures. Based on the experiment in Section 5.1,
WebPPL (S) and Pyro (M) are also not considered here.

The results offer no surprise over Fig 8, and RootPPL is again the best
alternative. Note the increased execution times here compared to Fig 8 due to
the more challenging phylogeny and delayed sampling overhead (which is greatly
compensated by increased inference accuracy).

6 Related Work

There are quite a few PPL implementations making use of SMC inference. Most
closely related to the contributions in this paper is Birch [32]. Similarly to
RootPPL, Birch implements SMC inference, and the target language for com-
pilation is C++. However, while performance is one of the main goals with
Birch, some overhead is inevitably introduced by supporting various quality-of-
life C++ features—including automatic heap allocation [30] and object-oriented
features. RootPPL does not support such features in favor of performance. Simi-
larly to RootPPL, Birch supports CPU parallelism through the use of OpenMP.
Compilation to GPUs is, however, currently not supported in Birch.

The PCFG concept can also be related to Birch. In Birch, users write models
for SMC inference as a method simulate which the inference algorithm calls
iteratively. Resampling only occurs between calls to this method. Furthermore,
data is passed between calls to simulate through particle variables stored in an
object defined as part of the model (similar to the PCFG state). We can view
PCFG basic blocks as a natural generalization of the Birch simulate method,
conceptually allowing for many simulate methods with arbitrary control-flow
in between them. In particular, SMC particles can take different paths through
the PCFG. As with PCFG blocks, the explicit simulate function used in Birch
can potentially make it more challenging to express models for programmers.
This is not a problem when using our approach of compiling into PCFGs, as we
then do the block decomposition automatically.

Besides Birch, parallelism for SMC inference in PPLs is surprisingly absent
in previous work. The predecessor of Birch, LibBi [29], is an exception to this
and implements highly performant SMC inference through SIMD instructions,
OpenMP, and CUDA. However, in contrast with RootPPL and CorePPL, the
LibBi modeling language is not universal. In other words, LibBi can not express
many probabilistic models.

Pyro [10] is a PPL mainly focused on stochastic variational inference, sup-
porting MCMC and SMC in addition. SMC in Pyro is similar to Birch in that
models are constructed using an explicit step function (equivalent to simulate

in Birch). In general, Pyro supports parallelism through vectorization using Py-

D. Lundén et al.52

Compiling Universal PPLs with Efficient Parallel SMC Inference 53

Torch [5] tensors, which is powerful but also restrictive. We saw this in Sec-
tion 5.1, where we could not use Pyro tensors to parallelize the tree recursion.

Other universal PPLs implementing SMC inference include WebPPL [20]
and Anglican [40]. These languages are embedded in JavaScript, and Clojure, re-
spectively, and implement several inference algorithms (including SMC) through
CPS transformations. The focus is on ease of modeling through functional-style
constructs supported by complex runtimes (V8 for JavaScript and the JVM
for Clojure) and supporting many different inference algorithms. Parallelism for
SMC is not directly supported, which is different from CorePPL and RootPPL,
where the focus is parallelism and performance.

Stan [12] and AugurV2 [22] support GPU parallelization of MCMC. Their
modeling languages are, however, more restricted than CorePPL. Stan supports
explicit parallelization of specific functions, and the AugurV2 compiler can com-
pile to MCMC algorithms running partially in parallel on CUDA. This is quite
different from the natural SMC parallelism in CorePPL and RootPPL.

There are also many other probabilistic programming tools, libraries, and
languages available, for instance, Gen [13], Turing [17], Hakaru [34], and Ed-
ward [38]. Generally, these either focus on assisting users in manually construct-
ing inference algorithms tailored for their specific models or on providing efficient
inference for a restricted set of models.

7 Conclusion

This paper introduced the concept of PCFGs and a general method for compil-
ing universal PPLs to PCFGs. We illustrated these contributions further through
the RootPPL implementation and the CorePPL compiler. This is the first work
compiling a universal PPL to GPU with SMC inference. Furthermore, the evalua-
tion showed that CorePPL and RootPPL can deal with real-world SMC inference
problems and outperform the current state-of-the-art with up to 6× speedups
for challenging models (and even more when compared across CPU and GPU).
This gives strong empirical support for the usefulness of the contributions.

Possible improvements upon this work include the exploration of more com-
plex CUDA and C++ runtimes for RootPPL, e.g., runtimes with automatic
memory management through garbage collection. Additionally, high-performance
implementations similar to RootPPL for other inference methods (e.g., MCMC)
are highly relevant for many probabilistic models—for instance, various models
from phylogenetics [36]. We leave these topics for future work.

Acknowledgments

We thank Lawrence Murray for his assistance with Birch; the anonymous re-
viewers at ESOP for their valuable comments; Gizem Çaylak for her valuable
comments and contributions to CorePPL and Miking; Lars Hummelgren, Viktor
Palmkvist, and Oscar Eriksson for their valuable comments and contributions to
Miking; and finally all other Miking developers for their contributions to Miking.

References

1. CUDA Toolkit | NVIDIA Developer. https://developer.nvidia.com/cuda-toolkit
(2021), accessed: 2021-09-20

2. GCC, the GNU Compiler Collection - GNU Project. https://gcc.gnu.org/ (2021),
accessed: 2021-09-20

3. Home - OpenMP. https://www.openmp.org/ (2021), accessed: 2021-09-20
4. Miking DPPL. https://github.com/miking-lang/miking-dppl (2021), accessed:

2021-12-01
5. PyTorch. https://pytorch.org/ (2021), accessed: 2021-10-11
6. The LLVM Compiler Infrastructure Project. https://llvm.org/ (2021), accessed:

2021-09-20
7. Thrust - Parallel Algorithms Library. https://thrust.github.io/ (2021), accessed:

2021-09-24
8. Aho, A.V., Lam, M.S., Sethi, R., Ullman, J.D.: Compilers: principles, techniques

and tools. Addison-Wesley (2006)
9. Appel, A.W.: Compiling with Continuations. Cambridge University Press (1991)

10. Bingham, E., Chen, J.P., Jankowiak, M., Obermeyer, F., Pradhan, N., Karalet-
sos, T., Singh, R., Szerlip, P., Horsfall, P., Goodman, N.D.: Pyro: Deep universal
probabilistic programming. Journal of Machine Learning Research 20(28), 1–6
(2019)

11. Broman, D.: A vision of miking: Interactive programmatic modeling, sound lan-
guage composition, and self-learning compilation. In: Proceedings of the 12th ACM
SIGPLAN International Conference on Software Language Engineering. p. 55–60.
SLE 2019, ACM, New York, NY, USA (2019)

12. Carpenter, B., Gelman, A., Hoffman, M., Lee, D., Goodrich, B., Betancourt, M.,
Brubaker, M., Guo, J., Li, P., Riddell, A.: Stan: A probabilistic programming
language. Journal of Statistical Software, Articles 76(1), 1–32 (2017)

13. Cusumano-Towner, M.F., Saad, F.A., Lew, A.K., Mansinghka, V.K.: Gen: A
general-purpose probabilistic programming system with programmable inference.
In: Proceedings of the 40th ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation. pp. 221–236. PLDI 2019, ACM, New York,
NY, USA (2019)

14. Doucet, A., de Freitas, N., Gordon, N.: Sequential Monte Carlo Methods in Prac-
tice. Information Science and Statistics, Springer New York (2001)

15. Flanagan, C., Sabry, A., Duba, B.F., Felleisen, M.: The essence of compiling with
continuations. In: Proceedings of the ACM SIGPLAN 1993 Conference on Pro-
gramming Language Design and Implementation. p. 237–247. PLDI 1993, ACM,
New York, NY, USA (1993)

16. Funk, S., Kucharski, A.J., Camacho, A., Eggo, R.M., Yakob, L., Murray, L.M.,
Edmunds, W.J.: Comparative analysis of dengue and zika outbreaks reveals dif-
ferences by setting and virus. PLOS Neglected Tropical Diseases 10(12), 1–16 (12
2016)

17. Ge, H., Xu, K., Ghahramani, Z.: Turing: a language for flexible probabilistic in-
ference. In: International Conference on Artificial Intelligence and Statistics, AIS-
TATS 2018, 9-11 April 2018, Playa Blanca, Lanzarote, Canary Islands, Spain. pp.
1682–1690 (2018)

18. Gilks, W., Richardson, S., Spiegelhalter, D.: Markov Chain Monte Carlo in Prac-
tice. Chapman & Hall/CRC Interdisciplinary Statistics, Taylor & Francis (1995)

D. Lundén et al.54

Compiling Universal PPLs with Efficient Parallel SMC Inference 55

19. Goodman, N.D., Mansinghka, V.K., Roy, D., Bonawitz, K., Tenenbaum, J.B.:
Church: A language for generative models. In: Proceedings of the Twenty-Fourth
Conference on Uncertainty in Artificial Intelligence. pp. 220–229. AUAI Press
(2008)

20. Goodman, N.D., Stuhlmüller, A.: The design and implementation of probabilistic
programming languages. http://dippl.org (2014), accessed: 2020-07-09

21. Gordon, A.D., Henzinger, T.A., Nori, A.V., Rajamani, S.K.: Probabilistic pro-
gramming. In: Future of Software Engineering Proceedings. p. 167–181. FOSE
2014, ACM, New York, NY, USA (2014)

22. Huang, D., Tristan, J.B., Morrisett, G.: Compiling markov chain monte carlo al-
gorithms for probabilistic modeling. In: Proceedings of the 38th ACM SIGPLAN
Conference on Programming Language Design and Implementation. p. 111–125.
PLDI 2017, ACM, New York, NY, USA (2017)

23. Jetz, W., Thomas, G.H., Joy, J.B., Hartmann, K., Mooers, A.O.: The global di-
versity of birds in space and time. Nature 491(7424), 444–448 (Nov 2012)

24. Lundén, D., Borgström, J., Broman, D.: Correctness of sequential Monte Carlo
inference for probabilistic programming languages. In: Programming Languages
and Systems. pp. 404–431. Springer International Publishing, Cham (2021)

25. Lundén, D., Broman, D., Ronquist, F., Murray, L.M.: Automatic alignment of
sequential Monte Carlo inference in higher-order probabilistic programs. arXiv e-
prints p. arXiv:1812.07439 (2018)

26. Lundén, D., Öhman, J., Kudlicka, J., Senderov, V., Ronquist, F., Bro-
man, D.: Artifact: Compiling Universal Probabilistic Programming Lan-
guages with Efficient Parallel Sequential Monte Carlo Inference (Jan 2022).
https://doi.org/10.5281/zenodo.5914164

27. Lundén, D., Öhman, J., Kudlicka, J., Senderov, V., Ronquist, F., Broman, D.:
Compiling universal probabilistic programming languages with efficient parallel
sequential monte carlo inference. arXiv e-prints p. arXiv:2112.00364 (2022)

28. Murray, L., Lundén, D., Kudlicka, J., Broman, D., Schön, T.: Delayed sampling
and automatic Rao-Blackwellization of probabilistic programs. In: Proceedings of
the Twenty-First International Conference on Artificial Intelligence and Statistics.
vol. 84, pp. 1037–1046. PMLR (2018)

29. Murray, L.M.: Bayesian state-space modelling on high-performance hardware using
LibBi. arXiv e-prints p. arXiv:1306.3277 (2013)

30. Murray, L.M.: Lazy object copy as a platform for population-based probabilistic
programming. arXiv e-prints p. arXiv:2001.05293 (2020)

31. Murray, L.M., Lee, A., Jacob, P.E.: Parallel resampling in the particle filter. Journal
of Computational and Graphical Statistics 25(3), 789–805 (2016)

32. Murray, L.M., Schön, T.B.: Automated learning with a probabilistic programming
language: Birch. Annual Reviews in Control 46, 29–43 (2018)

33. Naesseth, C., Lindsten, F., Schön, T.: Elements of Sequential Monte Carlo. Foun-
dations and Trends in Machine Learning Series, Now Publishers (2019)

34. Narayanan, P., Carette, J., Romano, W., Shan, C., Zinkov, R.: Probabilistic in-
ference by program transformation in Hakaru (system description). In: Interna-
tional Symposium on Functional and Logic Programming - 13th International
Symposium, FLOPS 2016, Kochi, Japan, March 4-6, 2016, Proceedings. pp. 62–79.
Springer (2016)

35. Nielson, F., Nielson, H.R., Hankin, C.: Principles of Program Analysis. Springer-
Verlag (1999)

36. Ronquist, F., Kudlicka, J., Senderov, V., Borgström, J., Lartillot, N., Lundén, D.,
Murray, L., Schön, T.B., Broman, D.: Universal probabilistic programming offers a
powerful approach to statistical phylogenetics. Communications Biology 4(1), 244
(Feb 2021)

37. Tolpin, D., van de Meent, J.W., Yang, H., Wood, F.: Design and implementa-
tion of probabilistic programming language Anglican. In: Proceedings of the 28th
Symposium on the Implementation and Application of Functional Programming
Languages. IFL 2016, ACM, New York, NY, USA (2016)

38. Tran, D., Kucukelbir, A., Dieng, A.B., Rudolph, M., Liang, D., Blei, D.M.: Edward:
A library for probabilistic modeling, inference, and criticism. arXiv e-prints p.
arXiv:1610.09787 (2016)

39. Wainwright, M.J., Jordan, M.I.: Graphical models, exponential families, and varia-
tional inference. Foundations and Trends in Machine Learning 1(1–2), 1–305 (2008)

40. Wood, F., Meent, J.W., Mansinghka, V.: A new approach to probabilistic pro-
gramming inference. In: Proceedings of the Seventeenth International Conference
on Artificial Intelligence and Statistics. vol. 33, pp. 1024–1032. PMLR (2014)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

D. Lundén et al.56

