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Abstract
This paper seeks to investigate the role of autocorrelation and cross-serial

correlation for momentum in stock returns. Using different momentum

portfolios applied to the US stock market from January 1941 to December

2021, we find that negative cross-serial correlation drives momentum

profits over longer return horizons, while negative autocorrelations act as

a reducing factor. However, when the return horizons are shortened, their

roles change as autocorrelations become more positive, while cross-serial

correlations become less negative. We conclude that underreaction as an

explanation of momentum can co-exist alongside negative autocorrelation

since the value of serial-correlation varies with different return horizons.

Keywords: momentum, autocorrelation, cross-serial correlation,

underreaction, overreaction
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1 Introduction and Motivation
Momentum refers to the empirically observed tendency for asset prices

that previously have risen (fallen) to sustain their current trend. The

existence of this tendency is an anomaly that financial theory struggles to

explain. The issue lies within the efficient market hypothesis, which states

that previous price action in asset prices should not warrant future price

movements. Some of the earliest research done on the momentum anomaly

was conducted by Jegadeesh and Titman (1993). Similar research has been

conducted for several international markets, and the momentum anomaly

tends to hold, also in more recent studies, e.g. Fama and French (2008),

Barroso and Santa-Clara (2015) and Ottaviani and Sørensen (2015).

Our research aims to explore the source of momentum by looking

at autocorrelation patterns in returns in light of behavioral models

of overreaction and underreaction. Specifically, our research question

states: What is the role of autocorrelation and cross-serial correlation for

momentum in stock returns, and does this role change with different

return horizons? Through this research question, our thesis seeks

to improve the understanding of the mechanisms behind momentum.

Looking back on previous findings on the momentum anomaly is essential.

It helps gain a better fundamental and theoretical understanding of

momentum and how it stands the tests of time. By better understanding

the role of autocorrelation and cross-serial correlation in momentum

strategies, policymakers can improve market stability and efficiency.

Deeper understanding of the mechanisms behind the anomaly could

also be beneficial for investment decision making and asset pricing. As

an investment strategy, momentum is a thumb in the eye of the efficient

market hypothesis, one of the central tenets of modern finance, which

has made passive investing incredibly popular over the last 20 years. Yet,

various styles of momentum investing continue to reward their investor

practitioners with above-average returns.

Consider the iShares Edge MSCI USA Momentum Factor exchange-traded
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Figure 1.1: iShares Edge MSCI USA vs. SPDR SP 500 ETF Trust. Data collected
from Yahoo Finance for the period April 18th 2013 to December 31st 2021.

fund (ticker symbol: MTUM). Launched in 2013, the fund has grown

to $10 billion in assets by convincingly outperforming the benchmark

Standard & Poor’s 500 index for most of the last five years. The last

couple of decades have also seen a rise of smart beta funds, factor investing

and momentum strategies. In Europe alone, the share of institutional

investors adopting these strategies have gone from 40% in 2014 to 60%

in 2017, and are being considered a mega-trend according to the FTSE

Russel. (FTSE-Russell, 2017).

While there is no question of the existence of momentum and its role as

a serious investment strategy, the explanation and extent remain obscure.

Different studies propose different answers based on different proxies and

variables. One way to analyze the anomaly relates momentum to different

factors driving the cross-section of expected returns. Using this approach,

Lewellen (2002) suggested that cross-serial covariance drive momentum in

stock returns. He found that both the autocovariance and the cross-serial

covariances are negative, but the former is less negative than the latter.

Based on these findings, he concluded that the profitability of portfolio-

based momentum strategies is primarily driven by cross-serial correlations
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among portfolio returns. Interestingly, these results go against behavioral

theories that imply positive autocorrelation in stock returns.

To evaluate our research question, we follow the approach of Lewellen

(2002) and utilize the momentum decomposition of Lo and MacKinlay

(1990) to industry, size, and book-to-market portfolios for the 1941–2021

sample period. We formulate the portfolio-specific momentum strategies

with formation periods of 1, 3, 6, and 12 months and examine the

autocorrelation patterns for up to 18 months after formation. We

include individual stocks only for our first set of tests but omit them

when evaluating autocorrelation patterns of return. This is the most

glaring omission of this thesis. In order to better understand the roles of

autocorrelation and cross-serial correlation in momentum strategies, we

utilize both long- and short-term return horizons.
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2 Literature Review
The pioneering research on the momentum anomaly was a 1993 study by

Jegadeesh and Titman. Using data from the U.S. market, Jagadeesh and

Titman examined various momentum strategies that go long stocks with

relatively high returns over the last 3 to 12 months, and short stocks with

relatively poor returns. At the end of each month, all stocks that has a

return history of minimum 12 months are ranked into deciles based on

their past J-month return (j=3,6,9,12). They are then assigned to one out

of ten relative strength portfolios. These portfolios are equally weighted

at formation and held for K subsequent months (K=3,6,9,12). During

this time the weights are not rebalanced. They noted that such strategies

earn profits around 1% per month for the following year. For example,

portfolios which picked stocks based on their previous semi-annual returns,

for then to hold them for 6 months, would generate an extra 1% per month

above what was to be expected. More recent research still finds momentum

to be a valid investment strategy that generates positive returns in excess

of the market, e.g. Bali et al. (2012) and Jegadeesh and Titman (2011).

Similar research has also been conducted for several international markets

and generally tends to hold. E.g., Rouwenhorst (1998) found evidence

of momentum returns in different European markets, constructing their

model after Jegadeesh and Titman (1993). This was later substantiated

by Barroso and Santa-Clara (2015) who found evidence in the French,

German, Japanese and UK markets using a similar approach.

There are several proposed explanations behind the success of momentum

investing, most fall into one out of two categories. The first category

belongs to rational thinkers who believe that momentum premium is the

compensation for the high risk taken by momentum traders. Academic

studies suggest plausible risk-based momentum models (Conrad and Kaul

(1998); Berk et al. (1999); Moskowitz and Grinblatt (1999); Johnson

(2002); Bansal et al. (2004); Ruenzi and Weigert (2018)). The second

category consists of two subcategories of behavioral models: Investors
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either overreact or underreact to important information. Behavioral

explanations such as Da et al. (2014) argued using data from the US stock

market that momentum arises because investors underreact to information

arriving in small bits. Their research showed that stocks where past

returns gradually accumulate will exhibit more momentum than stocks

where returns are collected in a volatile fashion. Using all common stocks

listed on the NYSE and AMEX over the sample period February 1967

to December 2008, Antoniou et al. (2013) argued that momentum stems

from classic cognitive dissonance: investors react correctly to the news

that confirms their beliefs, but underreacts to new information which

refutes their ideas. Also utilizing the models of Jegadeesh and Titman

(1993), the study showed that momentum generally arise in bullish periods

since investors underreact to bad news.

Using CRSP stock-return data for the period 1971 to 2004, Hong et al.

(2007b) suggested that investors utilize overly simplified models when

they evaluate stocks. For example, investors may believe that stock

prices are vital for big-picture financial data. An investor trusting in a

particular model might use this model while making persistent forecast

errors as it ignores more relevant information, leading to momentum.

Based on research conducted on all NYSE and AMEX stocks in the

period 1962 to 1996, Grinblatt and Han (2005) proposed that investors

natural reluctance to short losers and their eagerness to sell winners causes

underreaction to new fundamental information. Based on US-stock market

returns, Hong and Stein (1999) suggested that the mechanical trading

of momentum investors causes an overreaction to new information since

investors continue to place directional bets even after fully incorporating

new information into the stock price.

Different studies suggest different explanations based on distinct samples,

proxies, and variables. One approach to examining momentum sources

is relating momentum to other factors that drives the cross-section of

expected stock return. Following this approach, Lewellen (2002) had

two sets of findings. First, looking at industry, size, and B/M portfolios,
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buying past winning portfolios and selling past losing portfolios, will

generate positive returns for about one year. Using NYSE, AMEX and

Nasdaq common stocks in the time-period 1941 to 1999, Lewellen found

that size and book-to-market portfolios exhibit momentum distinct from

momentum in individual stocks and industries, but similar in magnitude.

The second set of findings was based on Lo and MacKinlay (1990),

who observed that the expected profit of a momentum strategy might

come from three different sources. Based on a sample of 551 NYSE and

AMEX stocks in the period 1962 to 1989, Lo and MacKinlay (1990)

found that stocks that was performing well relative to others might

continue to do so because; (1) the stock has a high unconditional mean

relative to other stocks, (2) the stock return is positively correlated, so

its past return predicts high future returns, and (3) the stock return

is negatively correlated with lagged returns on other stocks (negative

cross-serial covariance), so their poor performance predicts high future

returns.

Lewellen used raw returns to separately calculate the auto- and cross-serial

covariances among industry, size, and book-to-market (B/M) portfolios.

For each set of portfolios, the average autocovariance is slightly negative,

however not statistically significant. The corresponding average of the

cross-serial covariances tends to be more negative but neither these are

usually statistically significant. Lewellen drew two conclusions based on

these results. First, the negative autocovariances is proof that industry,

size, and B/M momentum is not a result of past winners continuing to

outperform past losers. This claim contradicts the underreaction theory

and the behavioral models of momentum like Hong and Stein (1999), which

propose that positive autocorrelation in stock returns drives momentum.

Second, momentum in industry, size, and B/M portfolios stems from

negative cross-serial correlations. This corresponds to an overreaction

hypothesis where specific stocks overreact to a common factor while others

don’t.

Despite different theories regarding underlying behavioral investor biases,
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many of the previous proposed theories generally attribute momentum

to return continuations, e.g., Da et al. (2014), Antoniou et al. (2013)

Hong and Stein (1999). They all suggest a close relation to positive

autocorrelation in short horizons. This is either due to underreaction to

news, or continued overreaction. However, the results of Lewellen (2002)

document negative autocorrelation. While behavioral models generally

do not explicitly define any return horizon (Pan (2010)), it would be

reasonable to expect underreaction or overreaction at time horizons shorter

than those examined in Lewellen (2002). This is a gap which our thesis

aims to explore, and possibly reconcile these conflicting results. We

follow the same methodology as Lewellen (2002) and utilize the Lo and

MacKinlay (1990) decomposition, adding shorter return horizons to the

analyses. Our data slightly differs from that of Lewellen (2002), which

is discussed in detail in Section 4.3. We have utilized research portfolios

exported from the Ken French data library. The portfolio construction of

the industry, size, B/M and size-B/M portfolios are explained in detail in

Section 4.1.
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3 Methodology

3.1 Hypothesis

Our research question states: What is the role of autocorrelation and

cross-serial correlation for momentum in stock returns, and does this role

change with different return horizons? In order to answer this, we report

two sets of tests. We first look at the profitability of portfolio-based

momentum strategies, before further exploring autocorrelation patterns

in returns.

1. Assessing profitability of portfolio-based momentum

We use individual stocks, industry, size, and B/M portfolios for our

momentum strategy to see whether momentum still generate statistically

significant returns1. Using portfolio-based strategies we can also see

whether momentum can be attributed to firm-specific events or not.

These momentum portfolios are constructed as explained in Section 3.2.

We will test the hypothesis over different lags, for up to 18 months after

formation. Formation period for these tests is constant at 12 months.

As we can’t be certain that we will achieve positive returns, we use a

two-sided test.

Hypothesis 1: Profitability of portfolio-based momentum:

H0 : r̄w � r̄L = 0

HA : r̄w � r̄L 6= 0

The hypothesis answer whether portfolio-based momentum strategies

generate statistically significant return in the US stock market for the

time-period January 1941 to December 2021. In order to generate positive

return, the winners (r̄w) must outperform the losers (r̄L). If the momentum

return of these portfolios are significant, we can argue that there are other

sources for momentum besides portfolio-specifics.

1These portfolios are constructed as shown in Section 4.1.
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2. Autocorrelation patterns

For the second set of tests, we focus on cross-serial correlations and

autocorrelation patterns in return. We utilize Pearson’s correlation

coefficient to assess the linear correlation between two data sets. Statistical

inference is drawn using bootstrapping as described in Section 3.3.1. The

aim is to test the null hypothesizes that the true correlation coefficient ⇢

is equal to 0, based on the sample correlation coefficient.

Hypothesis 2.1: Autocorrelations:

H0 : ⇢(ri,t, ri,t+k) = 0

HA : ⇢(ri,t, ri,t+k) 6= 0

This hypothesis test whether the correlation between the formation period

return of asset i (ri,t) and its return k months after formation (ri,t+k) is

equal to zero.

Hypothesis 2.2: Cross-serial correlations:

H0 : ⇢(ri,t, rj,t+k) = 0

HA : ⇢(ri,t, rj,t+k) 6= 0

This hypothesis test whether the correlation between the formation period

return of asset i (ri,t) and other assets return k months after formation

(rj,t+k) is equal to zero.

While several authors have provided guidelines on the interpretation

of the correlation coefficient’s size (Buda and Jarynowski, 2010), such

interpretations are in some ways arbitrary, (Cohen, 1992). The size and

value depend on context and purposes. Qualitative analysis is therefore

also made with respect to the size and value in relation to the models of

momentum returns as described in Section 3.5.

To further investigate the role of autocorrelation, we look at each lag

individually. More specifically, we test whether the strategies generate

autocorrelations statistically different from zero at each lag of the given

horizon. We utilize an autoregressive model (i.e. yt = �0 + �1yt�1 + ✏t)

and estimate the slope coefficient when a portfolio’s monthly return is
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regressed on its lagged formation period return2. We use two-sided tests.

Hypothesis 2.3: Individual lags

H0 : �1 = 0

HA : �1 6= 0

3.2 Momentum Portfolios

To conduct our tests, we construct portfolios that buy past winners, and

sell past losers. We construct strategies which hold assets in proportion

to their market-adjusted returns. For simplicity the following formulation

focuses on one period returns. The results are however easily adopted to

multiple-period returns (as seen in footnote 4).

wi,t =
1

N
(ri,t�1 � rm,t�1) (3.1)

N is the total number of stocks, ri,t�1 equals the return in month t-1 for

asset i, while rm,t�1 is the equal-weighted index return in month t-1. We

assume that returns have unconditional means given by: µ ⌘ E [rt], and

the autocovariance matrix; ⌦ ⌘ E
⇥
(rt�1 � µ) (rt � µ)0

⇤
. We can then

express the portfolio return in any month t as:

⇡t =
X

i

wi,tri,t =
1

N

X

i

(ri,t�1 � rm,t�1) ri,t (3.2)

Then we can further express the expected profit as:

E [⇡t] =
1

N
E

"
X

i

ri,t�1ri,t

#
� 1

N
E

"
rm,t�1

X

i

ri,t

#
(3.3)

We write in terms of autocovariance for asset i and the equal-weighted

portfolio (⇢i, ⇢m):

E [⇡t] =
1

N

X�
⇢i + µ

2
i

�
�
�
⇢m + µ

2
m

�
(3.4)

Equation 3.4 illustrates how profit depends on the magnitude of asset

autocovariance relative to the markets autocovariance.

In matrix notation, the average autocovariance is given by tr(⌦)
N

, while ◆
0⌦◆

N2

2We also report the Ljung-Box Q-Test for these estimates
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is the autocovariance of the market portfolio3. We can then decompose

expected momentum return into three different components:

E [⇡t] =
1
N
tr(⌦)� 1

N2 ◆
0⌦◆+ �

2
µ

E [⇡t] =
N�1
N2 tr(⌦)� 1

N2 [◆0⌦◆� tr(⌦)] + �
2
µ

(3.5)

Equation 3.5 locates the potential sources of momentum that our

hypothesises are based upon4. First, stocks can inherit positive

autocorrelation:
�
N�1
N2 tr(⌦)

�
. This implies that firms with positive returns

are expected to continue to have so in the future. Second, momentum

could stem from negative lead-lag relations:
�
� 1

N2 [◆0⌦t� tr(⌦)]
�
. This

implies that if a firm does well today, then other firms will be negatively

affected. The last term
�
�
2
µ

�
arises as momentum strategies by nature

tends to go long stocks with high unconditional means on average. As

stocks with the highest unconditional means also have the highest realized

return, profits could still be positive, even in the absence of time-series

predictability, (Lewellen, 2002).

3.3 Pearson’s Linear Correlation Coefficient

We utilize Pearson’s linear correlation coefficient to test for correlation

effects and achieve the autocovariance matrix ⌦ used in our hypotheses.

For column Xa in matrix X and column Yb in matrix Y, having means X̄a =
P

n

i=1
Xa,i

n
and Ȳb =

P
n

j=1
Xb,j

n
, Pearson’s linear correlation coefficient (ra,b)

is defined as:

ra,b =

P
n

i=1

�
Xa,i � X̄a

� �
Yb,i � Ȳb

�

nP
n

i=1

�
Xa,i � X̄a

�2 Pn

j=1

�
Yb,j � Ȳb

�2o1/2
(3.6)

Where n is the length of each column. Values of the correlation coefficient

can range from –1 to +1.

3◆ is a vector of ones. tr(⌦) is the sum of the diagonal of the autocovariance matrix
4The tests consider strategies based on past 12-month returns and held for 1-18

months. Suppose annual return has unconditional mean � and the covariance between
month t+k returns and lagged 12-month return equals �k ⌘ E

⇥�
r12t � �

�
(rt+k � µ)0

⇤
.

The expected profit in month t+k is E [⇡t+k] = tr (�k) /N � ◆0�k◆/N2 + �µ�
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3.3.1 Bootstrap Simulations

We want to test our null hypotheses that the true correlation coefficient ⇢ is

equal to 0 based on the value of the sample correlation coefficient ra,b. We

use bootstrap simulations to construct confidence intervals for Pearson’s

correlation coefficient to assess them in accordance with Hypothesis 2.1

and 2.2.

In the non-parametric bootstrap, n pairs (Xa,i, Yb,i) are resampled with

replacements from the observed set of n pairs, and the correlation

coefficient ra,b is calculated based on the resampled data. This process

is repeated 1000 times, and we can use the empirical distribution of the

resampled correlation coefficients to approximate the sampling distribution

of the statistic. I.e., the 95% confidence interval for ⇢ is defined as the

interval spanning from the 2.5th to the 97.5th percentile of the resampled

ra,b values.

3.4 Statistical Significance

3.4.1 Student’s T-test

Our preferred method of testing the null hypothesis that the sample mean

is equal to a specified value µ0, is the one-sample student’s t-test:

tstat =
x̄� µ0

sp
n

(3.7)

where x̄ is the sample mean, µ0 is the hypothesized population mean,

s is the sample standard error, and n is the sample size. As we do not

know if the tests will produce positive or negative estimates, we will use

two-sided tests throughout the thesis.

Once the t value and degrees of freedom are determined, we find a p-value

using a table of values from Student’s t-distribution. If the calculated

p-value is below the threshold chosen for statistical significance5, then

the null hypothesis is rejected in favor of the alternative hypothesis.
5In order to stay consistent with Lewellen (2002) we utilize a 10% significance

threshold.
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3.4.2 Ljung-Box Test

We also report the formal Ljung-Box Q-Test to test whether or not

observations over time are random and independent. In particular, for a

given lag m, it tests whether the autocorrelations up to lag m are all 0.

The Ljung-Box test statistic is given by:

Q(m) = N(N + 2)
mX

k=1

⇢̂
2
k

N � k
(3.8)

where n is the sample size, ⇢̂2
k

is the sample autocorrelation at lag k, and

m is the number of lags being tested.

3.5 Models for Momentum Return

We now turn to the theoretical models. As mentioned in the literature

review, underreaction theory along with positive autocorrelation is a

common interpretation of momentum, [e.g. Moskowitz et al. (2012),

Ottaviani and Sørensen (2015)]. We present two models of underreaction

and overreaction as explanations of momentum return proposed by

Lewellen (2002)6.

His model of underreaction (Section 3.5.3) explains how the idea that

prices react slowly to news leads to positive autocorrelation and cross-

serial correlation. The second model (Section 3.5.4) explains how investors

can overreact to information about one firm when evaluating the prospects

of others. The overreaction model contains excess covariance, meaning

that prices covary more strongly than dividends. The model further shows

how as long as the overreaction described is not too large, momentum

profits will be positive.

6Lewellen (2002) also proposed a model of Time Varying Risk Premium as an
explanation of momentum. In this thesis we have focused solely on basic interpretation
of the underreaction and overreaction explanations
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3.5.1 Stock Prices

We use a basic representation of stock prices based on Fama and French

(1988). We assume that the vector of log prices (pt) can be separated into

a permanent and a transitory component:

pt = qt + ✏t (3.9)

qt follows a random walk and ✏t is a stationary process with mean

zero. Changes in qt should be interpreted as new information regarding

dividends. Changes in ✏t can be thought of as new information regarding

expected return. The vector qt then follows the process:

qt = µ+ qt�1 + ⌘t (3.10)

Expected drift is represented by µ. ⌘t is the white noise with mean zero

and covariance matrix
P

. This yields continuously compounded returns:

rt = pt � pt�1 = µ+ ⌘t +�✏t (3.11)

The vector of unconditional expected returns is E [rt] = µ

3.5.2 Constant Expected Returns

We assume that prices follow a random walk. Since returns are not

predictable, the first-order covariances are zero. Expected momentum

profits from one-period returns can be represented as:

E [⇡t] = �
2
µ

(3.12)

Where �
2
µ

is the cross-sectional variance of expected returns.
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3.5.3 Underreaction

In order to capture the idea of stock-prices responding slowly to news, we

assume that the temporary component of prices is given by:

"t = �⇢⌘t � ⇢
2
⌘t�1 � ⇢

3
⌘t�2 � . . . (3.13)

Where ⇢ is some number between zero and 1 and ⌘t is news regarding

dividends at time t. There will be an immediate price reaction of (1�⇢)⌘t

when new information occurs. The price will reflect
�
1� ⇢

k
�

of the news

occurred at time t after k periods has passed. Return will be given by:

rt = µ+ (1� ⇢)⌘t + (⇢� 1)"t�1 (3.14)

Underreaction both decrease volatility and induce positive autocorrelation

in returns. With ⌃ representing the dividend covariance matrix, the first-

order autocovariance matrix will be given by:

cov (rt, rt�1) =

✓
⇢
1� ⇢

1 + ⇢

◆
⌃ (3.15)

As we assume that underreaction is similar across stocks, ⌃ should be

proportional to the autocovariance matrix. Since ⇢ is some number

between 0 and 1, then the expression in the parentheses will be positive.

This further means that autocorrelations and cross-serial correlations will

typically be positive. By using Lo and MacKinlay’s decomposition from

1990, we get the following expected momentum profit:

E [⇡t] = ⇢
1� ⇢

1 + ⇢


1

N
tr(⌃)� 1

N2
◆
0⌃◆

�
+ �

2
µ

(3.16)

The expression within the bracket will also be positive as ⌃ is a covariance

matrix. Hence, this model of underreaction will lead to momentum.
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3.5.4 Overreaction

This model of overreaction illustrates cross-serial correlation in returns

as a source of momentum profits. The model assumes that investors

will overreact to news regarding one firm when evaluating the prospects

of others. The model contains «excess» covariance: prices covary more

strongly than dividends.

We assume shocks in dividends to be completely asset-specific to emphasize

the central idea of this section. We express this assumption as: cov (⌘t) =

�
2
⌘
I, where I reflects an identity matrix. As investors believe that new

information about one firm affects others, we can express the temporary

component of price from Equation 3.9 as:

"t = B⌘t +B⇢⌘t�1 +B⇢
2
⌘t�2 + ... (3.17)

B is a NxN-matrix with zero diagonal term as investors understand how

new information regarding a firm affects its own value. B is positive off

the diagonal, meaning that investors will overreact when valuing other

firms. ⇢ is an adjustment factor for time, ranging between 0 and 1.

Fluctuations around a random walk will be persistent, although temporary.

Specifically, "t = ⇢"t�1+ B⌘t, while returns will be rt = µ+ (I + B)⌘t +

(⇢� 1)"t�1. Returns will be more volatile and negatively autocorrelated.

The return variance then becomes:

cov (rt) = �
2
⌘


I +B +B

0 +
2

1 + ⇢
BB

0
�

(3.18)

which is positive off diagonal. Off-diagonal values represents the excess

covariance of stocks. The first order autocovariance matrix then becomes:

cov (rt, rt�1) = �
2
⌘
(⇢� 1)


B +

1

1 + ⇢
BB

0
�

(3.19)

As ⇢ < 1, and B only has positive terms, the first order autocovariance

matrix is strictly negative. Thus, both autocorrelations the cross-serial

correlations are negative, which shows how investors overreact to new

information.
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Without further restrictions on B, it’s unknown whether it is negative

autocovariances or negative cross-serial covariance that dominates.

Lewellen (2002) stated that it is reasonable to assume that news regarding

one stock will have a smaller, positive effect on other stocks:

B = b [◆◆0 � I] (3.20)

b is a scalar that ranges between zero and one. The matrix has zero on

the diagonals, b elsewhere. The important aspect of this restriction on b

is that it implies that a shock to one stock will have a smaller effect on

other stocks. Now we can write momentum profits as:

E [⇡t] = �
2
⌘

b(⇢� 1)(N � 1)

N


b

1 + ⇢
� 1

�
+ �

2
µ

(3.21)

This expression for expected momentum returns will be positive under

the restrictions of b. Thus, as long as overreaction is not too large, we

will expect positive momentum profits.
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4 Data

4.1 Data

This thesis investigates momentum in stock returns focusing on the US

stock market. The universe of assets includes all NYSE, AMEX and

Nasdaq common stocks and the sample period is between January 1941

and December 2021. We rely on Ken French’s research portfolios for

industry, size, and double sorted size-B/M portfolios, French (2022). For

tests involving individual assets, all NYSE, AMEX and Nasdaq common

stocks on the Center for Research in Security Prices (CRSP) are utilized.

These firms must have 12 months of past returns (no restrictions are

placed on survival going forward)

For the industry portfolios, each NYSE, AMEX, and NASDAQ stock is

assigned to an industry portfolio at the end of June of the year t based

on its four-digit SIC code. Ken French uses Compustat SIC codes for the

fiscal year ending in calendar year t-1. Whenever Compustat SIC codes

are not available, CRSP SIC codes are utilized for June of year t. They

then compute returns from July of t to June of t+1, French (2022).

The size portfolios include all NYSE, AMEX, and NASDAQ stocks for

which there exists market equity data for June of t. The portfolios are

constructed at the end of each June using the June market equity and

NYSE breakpoint, French (2022).

The B/M portfolios are formed on book equity/market equity each June

using NYSE breakpoints. The book equity used in June of year t is the

book equity for the last fiscal year-end in t-1. Market equity is price times

shares outstanding at the end of December of t-1. All NYSE, AMEX, and

Nasdaq stocks for which there exists market equity data for the future of

December of t-1 and June of t, and book equity t-1, French (2022).

The double sorted size-B/M portfolios, which are constructed at the end

of each June, are the intersections of 2 or 5 portfolios formed on size
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(market equity, ME) and 3 (2x3) or 5 (5x5) portfolios created on the ratio

of book equity to market equity (BE/ME). The size breakpoint for year t

is the median NYSE market equity at the end of June of year t. BE/ME

for June of year t is the book equity for the last fiscal year-end in t-1

divided by ME for December of t-1. The BE/ME breakpoints are NYSE

quintiles for 5x5 sort and 30th and 70th percentile for 2x3 sort. The

portfolios for July of year t to June of t+1 include all NYSE, AMEX, and

NASDAQ stocks for which we have market equity data for December of

t-1 and June of t, and (positive) book equity data for t-1, French (2022).

4.2 Summary Statistics

Table 4.1 shows the summary statistics for the portfolios created for our

research. As brevity is beauty, the table only displays the 10 industry

portfolios, the 10 size portfolios and the 25 size-B/M portfolios. We have

however also constructed 5-size portfolios, 5- and 10 B/M portfolios and

6 size-B/M portfolios, which can be seen in Appendix, Table A1.1.

10 Industry Portfolios 25 Size-B/M Portfolios
Portfolio Avg. ret. Std.dev. Firms Portfolio Avg. ret. Std. Dev. Firms
Non-durables 1.10% 4.18% 276 Small: Low 0.82% 7.98% 324
Durables 1.13% 5.35% 117 2 1.21% 6.72% 219
Manufacturing 1.08% 4.67% 600 3 1.24% 5.97% 227
Energy 1.22% 5.00% 144 4 1.43% 5.70% 290
Equipment 1.29% 5.63% 385 High 1.63% 6.35% 514
Telecom 1,04% 3.77% 48 2: Low 0.97% 6.65% 113
Shops 1.18% 4.91% 325 2 1.23% 6.65% 91
Health 1.28% 5.06% 170 3 1.26% 5.23% 94
Utilities 0.95% 3.86% 132 4 1.34% 5.23% 93
Other 1.12% 4.92% 927 High 1.55% 6.20% 72
Average 1.14% 4.74% 312 3: Low 0.99% 6.03% 90

2 1.19% 5.16% 75
3 1.17% 4.84% 70

10 Size Portfolios 4 1.33% 4.99% 62
Portfolio Avg. ret. Std. Dev. Firms High 1.44% 5.84% 43
Small 1.48% 6.56% 1427 4: Low 1.06% 5.40% 89
2 1.36% 5.92% 364 2 1.10% 4.82% 69
3 1.35% 5.56% 255 3 1.20% 4.78% 56
4 1.33% 5.39% 206 4 1.26% 4.93% 45
5 1.30% 5.14% 178 High 1.38% 5.84% 30
6 1.24% 4.93% 156 Large: Low 0.99% 4.45% 101
7 1.26% 4.86% 143 2 0.95% 4.21% 63
8 1.19% 4.60% 136 3 1.08% 4.12% 46
9 1.15% 4.34% 128 4 1.00% 4.63% 36
Large 1.07% 3.97% 125 High 1.18% 5.52% 20
Average 1.27% 5.13% 312 Average 1.20% 5.49% 117

Table 4.1: Summary Statistics for portfolios formed from all NYSE, AMEX and
Nasdaq stock during the period January 1941 to December 2021. The table report the
average value weighted return, standard deviation, and the average number of firms
for each portfolio throughout the time period.
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By looking at these results, two factors stand out. First, we notice that

there is a significant amount of cross-sectional variation in the portfolios.

The average monthly return varies from 0.85% to 1.17%, for the industry

portfolios, 0.96% to 1.36%, for the size portfolios and 0.82% to 1.63%, for

the size-B/M portfolios. We also see that the standard deviations vary

from 3.95% in the Utilities portfolio, to 6.38% in the Durables portfolio.

Second, we see that the different portfolios are all relatively well diversified

as the average number of firms per industry and in the size deciles are

339, while the portfolio constructed on size-B/M averages 117 number of

firms. This fact will be important when we later assess the macroeconomic

implications of the different portfolios.

4.3 Assessing replicability of Lewellen (2002)

As previously mentioned, our data differ slightly from that of Lewellen

(2002). The most glaring difference is the use of different industries.

Lewellen writes “Industries are based on two-digit SIC codes as reported

by CRSP. They typically contain firms in consecutive two-digit codes, but

some exceptions were made.”. Without further context and information

on said exceptions, it is unclear which major industry group is included

in each portfolio. We therefore utilize the Ken French industry research

portfolios. Figure A.3.1 in the appendix displays a summary of each

industry group and its constituent SIC codes.

Table 4.2 below display the summary statistics for portfolios exported

from the Ken French Data Library for equivalent time frames as that of

Lewellen (2002).
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10 Industry Portfolios 25 Size-B/M Portfolios⇤
Portfolio Avg. ret. Std.dev. Firms Portfolio Avg. ret. Std. Dev. Firms
Non-durables 1.04% 4.04% 252 Small: Low 0.85% 7.58% 323
Durables 1.14% 6.38% 111 2 1.29% 6.61% 204
Manufacturing 1.03% 4.76% 566 3 1.32% 5.98% 200
Energy 1.10% 5.61% 145 4 1.49% 5.61% 236
Equipment 1.17% 5.98% 498 High 1.62% 5.92% 431
Telecom 0.85% 4.22% 63 2: Low 0.98% 7.11% 101
Shops 1.10% 4.80% 341 2 1.22% 6.06% 79
Health 1.16% 4.81% 273 3 1.35% 5.40% 81
Utilities 0.93% 3.95% 122 4 1.45% 5.05% 79
Other 1.01% 5.03% 1019 High 1.56% 5.71% 66
Average 1.05% 4.96% 339 3: Low 1.05% 6.50% 81

2 1.25% 5.52% 65
3 1.20% 4.90% 65

10 Size Portfolios 4 1.36% 4.70% 57
Portfolio Avg. ret. Std. Dev. Firms High 1.51% 5.36% 41
Small 1.36% 6.57% 1511 4: Low 1.10% 5.77% 77
2 1.26% 6.21% 409 2 1.01% 5.15% 62
3 1.28% 5.79% 285 3 1.16% 4.76% 52
4 1.22% 5.57% 230 4 1.37% 4.65% 43
5 1.20% 5.36% 196 High 1.44% 5.29% 28
6 1.16% 5.06% 171 Large: Low 1.07% 4.72% 88
7 1.17% 5.00% 157 2 1.02% 4.51% 59
8 1.14% 4.77% 150 3 1.01% 4.27% 44
9 1.09% 4.43% 141 4 1.13% 4.23% 34
Large 0.96% 4.06% 136 High 1.22% 4.68% 20
Average 1.18% 5.28% 339 Average 1.24% 5.44% 105

Table 4.2: Summary Statistics for portfolios formed from all NYSE, AMEX and
Nasdaq stock during the period January 1941 to December 1999, (⇤Results for May
1963 to December 1999). The table report the average value weighted return, standard
deviation and the average number of firms for each portfolio throughout the time
period.

We note for the Ken French size portfolios, the returns vary from a

minimum of 0.96% to a maximum of 1.36% in the 1941-1999 sample.

The standard deviations vary from 4.06% to 6.57%. Lewellen notes

a minimum return of 1.06% and a maximum of 1.48% with standard

deviations varying from 3.97% to 6.78%. While there are some deviations

in returns, despite both Lewellen and Ken French using NYSE breakpoints

portfolio construction, we note that similar patterns arise. For example,

we note that for both the Ken French size portfolios and Lewellen’s

portfolios the large firms experience the lowest return as well as the

lowest standard deviations. Both samples experience increased return

and standard deviations with a decrease in size.

One explanation for differences is the changes in the CRSP-data from the

recently completed "Pre62 Daily Data Series Project". The project added

new daily data that resulted in changes to month-end prices. In addition

to this, CRSP have since 2013 started to backfill shares outstanding
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data and including pre 1947 shares outstanding data. Lewellen did not

have access to accounting data prior to 1963, thus all tests which utilizes

accounting data is limited to the sample period May 1963 to December

1999. Ken French’s data library have no such restriction and thus we

utilize the full sample from 1941 to 2021. These month-end changes affect

our autocovariance matrix and the differences can be seen in Table 4.3

below. We compare the results of the 5 size portfolios and the 5 B/M

portfolios. All differences between the correlation coefficients in the size

portfolios are 0.01 or less. Lewellen’s results are slightly more negative for

all correlations. The B/M portfolios contains somewhat larger differences,

but none greater than 0.02.

5 Size Value Weight 41-99 Lewellen (2002) 5 Size Value Weight 41-99
RSmall,t R2,t R3,t R4,t RLarge,t RSmall,t R2,t R3,t R4,t RLarge,t

RSmall,t�k -0.02 -0.03 -0.03 -0.04 -0.04 RSmall,t�k -0.02 -0.03 -0.03 -0.05 -0.05
R2,t�k -0.04 -0.04 -0.04 -0.05 -0.05 R2,t�k -0.04 -0.04 -0.04 -0.05 -0.05
R3,t�k -0.04 -0.05 -0.05 -0.05 -0.05 R3,t�k -0.05 -0.05 -0.05 -0.06 -0.05
R4,t�k -0.06 -0.06 -0.06 -0.06 -0.05 R4,t�k -0.07 -0.07 -0.06 -0.07 -0.05
RLarge,t�k -0.09 -0.08 -0.07 -0.07 -0.04 RLarge,t�k -0.10 -0.08 -0.07 -0.07 -0.04

5 B/M Value Weight 63-99 Lewellen (2002) 5 B/M Value Weight 63-99
RLow,t R2,t R3,t R4,t RHigh,t RLow,t R2,t R3,t R4,t RHigh,t

RLow,t�k -0.05 -0.07 -0.06 -0.07 -0.07 RLow,t�k -0.04 -0.07 -0.05 -0.08 -0.08
R2,t�k -0.03 -0.04 -0.04 -0.05 -0.04 R2,t�k -0.03 -0.04 -0.02 -0.05 -0.06
R3,t�k -0.04 -0.05 -0.04 -0.05 -0.05 R3,t�k -0.04 -0.04 -0.02 -0.05 -0.06
R4,t�k -0.05 -0.03 -0.03 -0.03 -0.05 R4,t�k -0.05 -0.03 -0.01 -0.03 -0.04
RHigh,t�k -0.05 -0.03 -0.02 -0.04 -0.04 RHigh,t�k -0.06 -0.02 -0.02 -0.04 -0.04

Table 4.3: The table displays the average serial correlation in the 5 size and 5 B/M
portfolios from our own research and those of Lewellen (2002) during the time period
1941 to 1999, and 1963 to 1999 respectively. The portfolios are formed from all NYSE,
AMEX and Nasdaq stocks. Bold denotes correlation coefficients that differs with more
than 0.005.
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5 Results and Analysis

5.1 Momentum Profits

In this section we assess our first hypothesis by establishing the basic

results of the momentum strategies. We utilize the methodology described

in Section 3.2 to construct our portfolios.

Month after formation
Assets 1 3 5 7 9 11 13 15 17
Individual Stocks

Avg. ret. 0.582 0.321 0.197 0.108 -0.038 -0.089 -0.281 -0.153 -0.182
t-statistic 5.65 3.35 2.18 1.30 -0.47 -1.13 -3.60 -2.09 -2.59

10 Industry Portfolios
VW Avg. ret. 0.540 0.375 0.228 0.165 0.046 -0.138 -0.252 -0.361 -0.365

t-statistic 4.27 3.00 1.85 1.35 0.37 -1.16 -2.16 -3.07 -3.22
EW Avg. ret. 1.148 0.640 0.337 0.159 -0.063 -0.220 -0.356 -0.381 -0.386

t-statistic 7.05 4.22 2.26 1.09 -0.43 -1.54 -2.56 -2.71 -2.84
5 Size Portfolios
VW Avg. ret. 0.355 0.247 0.302 0.320 0.253 0.176 0.151 0.218 0.132

t-statistic 3.83 2.71 3.34 3.44 2.64 1.79 1.58 2.32 1.46
EW Avg. ret. 0.449 0.285 0.323 0.336 0.252 0.165 0.167 0.169 0.098

t-statistic 4.44 2.96 3.40 3.45 2.52 1.59 1.66 1.76 1.05
10 Size Portfolios
VW Avg. ret. 0.340 0.246 0.270 0.278 0.227 0.173 0.145 0.211 0.116

t-statistic 3.87 2.79 3.22 3.28 2.55 1.90 1.65 2.46 1.41
EW Avg. ret. 0.451 0.310 0.356 0.356 0.258 0.179 0.170 0.189 0.112

t-statistic 4.48 3.23 3.84 3.75 2.66 1.80 1.77 2.13 1.29
5 B/M Portfolios
VW Avg. ret. 0.391 0.238 0.163 0.108 0.069 0.025 -0.011 -0.037 -0.024

t-statistic 4.69 2.96 2.03 1.31 0.84 0.31 -0.13 -0.46 -0.30
EW Avg. ret. 0.680 0.444 0.358 0.367 0.276 0.179 0.132 0.087 0.162

t-statistic 7.65 5.21 4.25 4.36 3.22 2.07 1.52 1.05 2.06
10 B/M Portfolios
VW Avg. ret. 0.422 0.269 0.203 0.132 0.087 0.044 0.015 -0.036 -0.051

t-statistic 4.98 3.38 2.53 1.64 1.07 0.56 0.18 -0.49 -0.66
EW Avg. ret. 0.671 0.465 0.368 0.365 0.287 0.206 0.158 0.103 0.156

t-statistic 7.22 5.25 4.31 4.39 3.41 2.39 1.85 1.29 2.05
6 size-B/M Portfolios
VW Avg. ret. 0.552 0.335 0.292 0.243 0.210 0.090 0.049 0.096 0.104

t-statistic 5.43 3.37 3.06 2.55 2.15 0.94 0.51 1.00 1.12
EW Avg. ret. 0.690 0.449 0.393 0.362 0.278 0.172 0.154 0.137 0.157

t-statistic 6.16 4.27 3.84 3.61 2.72 1.69 1.54 1.40 1.67
25 Size-B/M Portfolios
VW Avg. ret. 0.521 0.350 0.278 0.254 0.212 0.128 0.077 0.082 0.077

t-statistic 4.98 3.45 2.85 2.81 2.34 1.42 0.86 0.90 0.87
EW Avg. ret. 0.555 0.388 0.307 0.296 0.187 0.111 0.074 0.083 0.090

t-statistic 5.18 3.81 3.13 3.15 1.95 1.16 0.79 0.90 1.01

Table 5.1: The table present momentum profit for strategies based on 12 month
formation periods during the time period Jan. 1941 to Dec. 2021. They utilize all
NYSE, AMEX and Nasdaq stocks. The strategies use individual stocks and portfolios
sorted by industry, size and B/M (equal or value weighted, as seen in the table). The
weights are rescaled to have $1 long and $1 short. Returns are measured in percent.
Bold denotes estimates greater than 1.645 standard errors from zero.
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We see the results of the strategy implemented on the different sets of

portfolios presented in Table 5.1 above. The strategies use the average

past 12 month return to calculate their portfolio weights. We invest

wi,t = 1
N
(ri,t�1 � rm,t�1) in asset i, where ri,t�i � rm,t�1 is the lagged

return of the asset in excess of the equal weighted index; we rescale

the weights so that we are always $1 long and $1 short. There are two

reasons why constructing portfolios wi,t =
1
N
(ri,t�1 � rm,t�1) will be more

convenient for our research than constructing it by upper and lower

percentiles. First, Lo and MacKinlay (1990) argued that strategies using

these weights easily can be tied to autocorrelation in returns. Second,

using these weights will include all assets, and not just the extremes. We

get momentum profits for each lag up to 18 months after formation. For

simplicity, the table only report the odd months return, even though

discussions will frequently refer to the omitted months.

Both momentum in individual stock and across industry portfolios

generates significant profit for the first 5 months after formation. However,

these returns turn negative around 9 to 10 months after formation. Also,

these negative returns become significant from month 11. Individual stocks

experience a cumulative profit of 1.95% per dollar long after 6 months. In

comparison, the value-weighted industries portfolios accumulate to 2.11%,

while the equal-weighted industries portfolios achieve a 3.64% cumulative

profit over the first 6 months.

We see that momentum is as strong, and often even stronger over longer

periods in size- and size-B/M portfolios than what it is in individual

stocks and industries. This is consistent with previous research done by

e.g. Lewellen (2002) and Jegadeesh and Titman (2011). Throughout

the first 6 months after formation, value-weighted size, B/M, and size-

BM portfolios are 2.11%, 1.44%, and 2.15% respectively, with significant

t-statistics of 3.17, 2.96, and 3.76. We also note that the profits for

the equal-weighted portfolios are all strictly larger than those of their

corresponding value-weight portfolios. The results implies that the size

and B/M strategies inherit relatively large Sharpe Ratios equal to their
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t-statistics divided by
p
T .7 For example, individual stocks 1 month

return has a t-statistic of 5.65. This results in a Sharpe ratio of 0.18.

In contrast to momentum profits on individual stocks, the table shows

that momentum profits on size and B/M portfolios decay relatively slowly

compared to individual stock and industry momentum. Especially for

the size portfolios, we usually achieve significant results for all 18 months.

The B/M portfolios and size-B/M portfolios are usually significant for up

to about 10 months after formation.

The fact that we achieve significant results from the size and B/M

portfolios can be interpreted as evidence that momentum returns is

not solely being generated through firm-specific characteristics. First

of all, we have relatively diversified size- and B/M portfolios, usually

containing more than a hundred firms on average. Furthermore, Table 5.1:

Momentum Profits shows that broadening the portfolios will have just a

minor effect on momentum profits. The estimates in the 5- and 10-size

portfolios are quite similar to each other. The same applies for both the 5-

and 10-B/M portfolios, and the 6- and 25-size-B/M portfolios. Because of

this diversification, we can argue that these portfolios should not inherit

much idiosyncratic risk, thus making it seem likely that macroeconomic

factors can explain their momentum profit.

Lewellen (2002) further explored the connection between firm, industry

and size-B/M momentum by using benchmark-adjusted profits instead

of raw profits. He matched each stock either to its respective industry,

size decile or size-B/M quintile and then estimated profit of each strategy

using returns in excess of the market. E.g., for industry momentum, he

matched every stock with its belonging size decile and size-B/M quintile

before forming the industry portfolios. The industry return was then

the average of size and size-B/M adjusted returns for the stocks in that

industry. The importance of this finding was that industry, size and

size-B/M each appears to be distinct from each other. Lewellen claimed

that these observations could imply one of two tings; "either firm-specific

7For our sample period of January 1941 to December 2021, T = 972
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returns do not explain momentum at all, or there must be multiple sources

of momentum in returns", (Lewellen, 2002).

5.2 Autocorrelation Patterns in Returns

The results in Section 5.1 suggests that momentum can not be fully

explained by firm-specifics. In Section 3.5 we presented two models

of momentum proposed by Lewellen (2002) which discussed in detail

how and why momentum could occur. They illustrated how momentum

consistently inherit patterns of autocorrelation and cross-serial correlation

in returns. For the remainder of this thesis, we will investigate mentioned

autocorrelation patterns in value-weighted industry, size and B/M

portfolios with the intention to get a better understanding of what drives

momentum.

In this section we will test whether the annual return of a portfolio is

correlated with its own monthly return, and also how it is correlated

with other portfolios’ monthly return for different lags for up to 18

months. We remember from Section 3.2 that the average autocovariance

is given by tr(⌦)
N

, while ◆
0⌦◆

N2 is the autocovariance of the market portfolio.

Footnote 4 in Section 3.2 describes how we adjust this to multiple-period

returns. We will investigate the resulting autocovariance matrix �k ⌘

E
⇥
(r12

t
� �) (rt+k � µ)0

⇤
where � and µ are the vectors of the expected

12- and 1 month returns, and k is the specific holding period.

5.2.1 Autocorrelations

Table 5.2 shows the autocovariance matrix for 10 industry portfolios, 5

size portfolios and 5 B/M portfolios. As a table containing all lags would

be too large, Table 5.2 reports the average of the 18 lags.

In accordance with the definition of �k above, the portfolio used as the

predictive variable changes when we move down the columns. Meanwhile,

the portfolio which has its return being predicted will change as we move

across rows. As statistical significance is hard to assess analytically, we use
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bootstrap simulations to replicate the empirical tests. We do this using

artificial time-series of returns which are created by sampling replacement

from the actual return series. As we repeat this procedure 1 000 times,

we create a sampling distribution under the null. We see the results

presented in Table 5.2 below.

Industry Portfolios
R1,t R2,t R3,t R4,t R5,t R6,t R7,t R8,t R9,t R10,t

R1,t�k -0.03 -0.05 -0.04 -0.02 -0.04 0.01 -0.03 -0.01 -0.02 -0.04
R2,t�k -0.04 -0.05 -0.03 0.01 -0.01 0.00 -0.04 -0.01 0.00 -0,03
R3,t�k -0.06 -0.09 -0.06 -0.02 -0.05 -0.03 -0.07 -0.02 -0.03 -0.07
R4,t�k -0.06. -0.10 -0.07 -0.04 -0.08 -0.05 -0.07 -0.03 -0.03 -0.07
R5,t�k -0.02 -0.04 -0.03 -0.00 -0.01 -0.00 -0.03 0.01 0.02 -0.02
R6,t�k -0.01 -0.04 -0.03 -0.04 0.00 0.03 -0.02 0.01 0.01 -0,04
R7,t�k -0,05 -0,04 -0,04 -0.02 -0.02 0.00 -0.05 -0.02 -0.02 -0,05
R8,t�k -0,03 -0,04 -0,04 -0.02 -0.03 0.00 -0.03 -0.01 -0.03 -0,04
R9,t�k -0,04 -0,04 -0,04 -0.03 -0.04 -0.03 -0.04 -0.03 -0.05 -0,05
R10,t�k -0,04 -0,06 -0,04 -0.01 -0.02 -0.01 -0.04 -0.01 -0.01 -0,04

Size Portfolios B/M Portfolios
RSmall,t R2,t R3,t R4,t RBig,t RLow,t R2,t R3,t R4,t RHigh,t

RSmall,t�k - 0.03 - 0.03 - 0.04 - 0.04 - 0.04 RLow,t�k -0.03 -0.05 -0.04 -0.05 -0.05
R2,t�k -0.05 - 0.04 - 0.04 - 0.05 - 0.04 R2,t�k -0.05 -0.05 -0.05 -0.06 -0.07
R3,t�k -0.06 - 0.05 - 0.05 - 0.05 - 0.04 R3,t�k -0.04 -0.05 -0.04 -0.06 -0.06
R4,t�k -0.07 -0.06 -0.06 -0.06 - 0.04 R4,t�k -0.05 -0.05 -0.05 -0.06 -0.06
RBig,t�k -0.08 -0.06 -0.06 - 0.05 - 0.02 RHigh,t�k -0.04 -0.04 -0.03 -0.05 -0.06

Table 5.2: The table displays the average serial correlation in the industry, size and
B/M portfolios during the time period 1941 - 2021. Bold denotes estimates that are
significant at the 10% level based on bootstrap simulations.

The results of Table 5.2 shows that both autocorrelations and cross-

serial correlations are always negative in the size and B/M portfolios. In

the industry portfolios, we do find that Telecom (industry 6) exhibits

positive autocorrelation. The industry portfolios also exhibit a few positive

cross-serial correlations. However, none of these positive estimates are

significant based on the bootstrap simulations. Across all portfolios, we

achieve an average autocorrelation of -0.040, and an average cross-serial

correlation of -0.044.

There are several interesting patterns to take notice of in the table. We

see that the autocorrelation in the size portfolios is at their most negative

in the third and fourth biggest quintiles, with -0.05 and -0.06 respectively.

We also find that the autocorrelations are closer to zero for the very

smallest and largest firms. Furthermore, the matrices are not symmetric

for the size portfolios. Below the diagonal, the estimates are generally

greater than the estimates above the diagonal. This indicates a lead-lag
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relation between these portfolios. Put differently, larger stocks seem to

be "leading" smaller stocks.

Furthermore, Table 5.2 shows that reversal, not continuation, dominates

the autocorrelation matrices8. As this observation falls true regarding

all portfolios, this pattern does not seem to occur because of something

specific about the certain way a portfolio is created. Moving on, the only

two places where we actually find significant, average autocorrelation

estimates are in the Manufacturing portfolio (industry 3) and in the size 4

quintile. With the exception of the size portfolios, we see little significance

in either autocorrelations or in cross-serial correlations.

These findings are consistent with the overreaction model proposed by

Lewellen (2002) in Section 3.5.4. We find little evidence of persistence in

returns which the underreaction theory suggests. An alternative theory

is that investors might underreact to portfolio specific news but overreact

to market news.

Table 5.2 also provides intuition in how to distinguish between the different

models. First, let’s address the portfolio-specific underreaction story. The

intuition behind this theory is that investors can react different to market-

wide and idiosyncratic news. This is however something that is difficult for

behavioral models to explain, (Jegadeesh and Titman, 2011). A number

of previous research on the topic does not differentiate between the two

types of news. They claim that their models apply to both firm-specific

and general market news, (Barberis et al. (1998), Hong et al. (2007a)).

Thus, even if you could argue that portfolio-specific underreaction could

explain momentum returns, the results in Table 5.2 would reject that

these behavioral models should be considered a general description of

prices.

Another flaw to the underreaction theory is that the momentum returns

for our size and B/M quintiles can’t reasonably be characterized as

idiosyncratic, as these portfolios are quite broad, and we consider them

8We will later see that changing the length of the horizons will impact these results.
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macroeconomic. There is also a substantial amount of evidence that the

return of such portfolios capture the common risk factors in returns, (e.g.,

Fama and French (2008)). This doesn’t create much basis for predicting

that investors might underreact to the size- and B/M-specific news, only

to overreact to market-wide news (both being considered macroeconomic).

The overreaction model proposed in Section 3.5.4 does however not require

investors to react differently between one type of news rather than the

other. It only states that momentum and negative autocorrelation could

stem from the same source.

Based on the arguments of Lewellen (2002), the results from our

size quintiles would provide further evidence against portfolio-specific

underreaction. He assumed that negative autocorrelation could be entirely

driven by market reversals. In that case, the autocorrelation of a portfolio

should be a weighted average of the market and portfolio-specific return

autocorrelation:

cor (rit, rit�1) = �i cor (rmt, rmt�1) + (1� �i) cor ("it, "it�1) (5.1)

where �i is the squared correlation between ri and rm.9 According to the

model proposed by Lewellen (2002), then this should mean that most of

the variation in cor (rit, rit�1) should stem from differences in �i. To put it

another way, if it’s market reversals that explain negative autocorrelation,

then the portfolios that have the least amount of idiosyncratic risk would

be the ones who are the most negatively autocorrelated. Our results

shows that this however is not true. Quintile 5 contains the least amount

of idiosyncratic risk. �i varies from 0.68 in Quintile 1, to 0.98 in Quintile

5. However, the autocorrelation of Quintile 5 is the closest to zero.

The results of the cross-serial correlations based on a 12-month formation

period are also somewhat hard to reconcile with portfolio-specific

underreaction. Based on our results above, should market reversals

9Cor (rit, rit�1) = cov (rit, rit�1) / var (ri) =
�
�2
i ⇢m + ⇢"i

�
/ var (ri) where ⇢m and

⇢"i are market- and portfolio-specific return autocovariances. Equation 5.1 then comes
from substituting ⇢m = var (rm)⇥ cor (rmt, rmt�1) and ⇢"i = var ("i)⇥ cor ("it, "it�1)
in the numerator
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explain cross-serial covariances, then the covariance between ri,t and

rj,t�1 can be expressed as �i�j⇢M , Lewellen (2002). Collecting assets,

we get the covariance matrix cov (rt�1, rt) = ��
0
⇢M that has rows and

columns proportional to the vector of market betas. Likewise, the cross-

serial correlations matrix should have rows proportional to the vector of

correlations with the market portfolio.10 Table 5.2 shows that this however

is not true. The cross-serial correlations in the bottom row of the size

portfolios inherits the wrong pattern for this to be the case. The smaller

stocks should be the ones with correlations closest to zero, as these should

be the least similar to the stocks in the "Big" quintile. Additionally,

when we move up the matrix we see a reversion in the coefficient pattern,

showing that the rows are not proportional to each other.

Lewellen (2002) argued that cross-serial correlations could stem from

the excess-covariance model from Section 3.5.4. However, his proposed

model is not accurate enough to make decent predictions regarding

autocorrelation and cross-serial correlation patterns, besides that they

ought to be negative.

5.2.2 Autocorrelations and The Return Horizon

Even though Table 5.2 is an informative summary of the results, they

mask how the autocorrelation changes across lags. This section seeks to

further explore how autocorrelation changes as lags varies between 1 and

18 months. Table 5.3 below shows only autocorrelations, as we do not

find it practical to report cross-serial correlations for each lag.

10Lewellen (2002) pre- and post-multiply the covariance matrix by S�1, where S is
a diagonal matrix with the std. deviation of the portfolios along the diagonal
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Return Horizon (months)
Portfolio 1 3 5 7 9 11 13 15 17
Industry Portfolios
Non-durables 0.009 -0.003 -0.004 -0.004 -0.010 -0.011 -0.015. -0.010 -0.011
Durables 0.012 -0.003 -0.009 -0.005 -0.015 -0.023 -0.030 -0.025 -0.027
Manufacturing -0.003 -0.015 -0.016 -0.016 -0.020 -0.024 -0.023 -0.018 -0.022
Energy 0.002 0.004 -0.002 -0.007 -0.016 -0.019 -0.014 -0.020 -0.022
Equipment 0.010 0.000 0.000 0.000 -0.003 -0.007 -0.007 -0.004 -0.007
Telecom 0.024 0.020 0.014 0.005 0.000 0.001 -0.002 0.003 0.000
Shops 0.007 -0.010 -0.011 -0.010 -0.009 -0.016 -0.024 -0.015 -0.015
Health 0.010 0.002 0.005 0.002 -0.003 -0.005 -0.008 -0.007 -0.007
Utilities 0.006 0.001 -0.010 -0.019 -0.022 -0.018 -0.017 -0.010 -0.010
Other 0.008 -0.008 -0.08 -0.009 -0.010 -0.012 -0.018 -0.011 -0.015
Average 0.009 -0.001 -0.004 -0.006 -0.011 -0.013 -0.016 -0.012 -0.014

Size Portfolios
Small 0.012 -0.007 -0.005 -0.008 -0.014 -0.010 -0.014 -0.009 -0.011
2 0.002 -0.015 -0.008 -0.010 -0.015 -0.014 -0.016 -0.007 -0.013
3 -0.000 -0.016 -0.012 -0.014 -0.015 -0.016 -0.017 -0.009 -0.014
4 -0.003 -0.017 -0.014 -0.017 -0.020 -0.021 -0.020 -0.013 -0.018
Big 0.009 -0.001 -0.002 -0.004 -0.008 -0.012 -0.012 -0.008 -0.010
Average 0.004 -0.011 -0.008 -0.011 -0.014 -0.015 -0.016 -0.009 -0.013

Size-B/M Portfolios
Small: Low 0.003 -0.016 -0.008 -0.008 -0.015 -0.015 -0.017 -0.009 -0.011

2 0.005 -0.012 -0.006 -0.009 -0.014 -0.014 -0.017 -0.011 -0.018
High 0.011 -0.006 -0.005 -0.009 -0.013 -0.012 -0.016 -0.009 -0.016

Big: Low 0.004 -0.005 -0.006 -0.005 -0.008 -0.012 -0.012 -0.009 -0.010
2 0.004 -0.006 -0.008 -0.013 -0.017 -0.018 -0.018 -0.009 -0.015
High 0.010 -0.006 -0.008 -0.012 -0.018 -0.020 -0.021 -0.015 -0.020

Average 0.006 -0.009 -0.007 -0.009 -0.014 -0.015 -0.017 -0.010 -0.015

Table 5.3: Autocorrelation, 1941 - 2021. The table displays autocorrelation estimates
for value-weighted industry, size and size-B/M portfolios. Bold marks estimates greater
1.645 standard errors from zero. Ljung-Box Q-statistics is displayed in Table A4.1

Again, we see no strong evidence of persistence in returns when looking

at autocorrelations, even at short-term horizons. For the size and size-

B/M portfolios, we achieve uniformly negative estimates beyond the

first month. However, for the industry portfolios, we see that several

of the industries exhibits positive autocorrelation even up to 3 months

after formation. These estimates are however not significant. There are

two industries that stands out. The Health sector (industry 8) generate

positive autocorrelations up until month 7, while Telecom (industry 6)

only exhibits negative autocorrelation between month 9 and 13. However,

other than for Telecom, all positive autocorrelations after the first month

are insignificant. These results coincides with the research conducted

by Lo and MacKinlay (1990) and Jegadeesh and Titman (1995). They

argued that weekly lead-lag patterns have little effect on momentum

profits.
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We also observe that the estimates gradually decline for about 10 months.

For size, the average autocorrelation in month 2 is -0.008, while in month

10 it drops down to -0.015. For the size portfolios, the estimates are

more than 1.75 standard errors from zero in month 8 to 13. The industry

portfolios follow the same pattern, averaging an autocorrelation of 0.002

in month 2 before it reaches its most negative average in month 13 at

-0.016. Again, estimates are 1.75 standard deviations below zero in month

12 and 13. The way autocorrelations follows a U-shaped pattern is not

reflected in momentum profits as we see them in Table 5.1.

When looking at the estimates from an economic point of view, they imply

that there is significant time variation in returns. Normally, annual returns

contain standard deviation that varies between 20 and 25%. E.g., a one

standard deviation increase in annual returns, with a slope coefficient

of -0.01, would imply a 20 to 25 basis point drop in future returns. We

have many estimates of this size. E.g., the cumulative slope coefficient

for the average size portfolio is -0.044 over the first 6 months, and -0.130

over the first 12 months. For industry, the corresponding estimates are

-0.003 and -0.071, while for size-B/M it’s -0.034 and -0.122. From this

rationale, a change in expected return seems to be economically large and

of significance.

5.2.3 Autocorrelations and Momentum Profits

Purely based on the results above, there is reason to argue that momentum

is not something than can be explained by persistence in returns and

the underreaction theory. Utilizing the Lo and MacKinlay (1990)

decomposition, we investigate this claim. We recall from Equation 3.5

that expected momentum profit can be broken down into three parts:

E [⇡t+k] =
N � 1

N2
tr (�k)�

1

N2
[◆0�k◆� tr (�k)] + �µ,� (5.2)
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Here, �k is the autocovariance matrix11 defined in Section 5.2, describing

the covariance between rt+k and r
12
t

. The cross-sectional covariance

between 1- and 12-month expected returns is defined by �µ,�.

The first term catches autocorrelations in profits, denoted as Auto in

Table 5.4. The second term is dependent on the cross-serial correlations,

which is denoted Cross in the table. The final term catches the effect of

cross-sectional dispersion in unconditional means, which we denote Means

in the table.

Industry Portfolios 5 Size Portfolios 6 Size-B/M Portfolios
Month Auto Cross Means Total Auto Cross Means Total Auto Cross Means Total
1 2.93 -0.80 0.06 2.19 1.24 -0.43 0.07 0.87 1.96 -0.65 0.38 1.71
3 -0.28 2.02 0.06 1.80 -3.25 4.08 0.06 0.90 -2.61 3.55 0.36 1.29
5 -1.28 2.35 0.06 1.14 -2.35 3.26 0.07 0.97 -2.14 2.94 0.37 1.16
7 -2.07 2.61 0.06 0.60 -3.09 3.94 0.08 0.93 -2.93 3.51 0.37 0.96.
9 -3.59 3.43 0.06 -0.10 -4.23 4.89 0.08 0.74 -4.39 4.58 0.38 0.58
11 -4.42 3.87 0.06 -0.49 -4.28 5.06 0.07 0.85 -4.71 4.99 0.38 0.65
13 -5.22 4.01 0.06 -1.15 -4.66 5.26 0.07 0.68 -5.21 5.40 0.37 0.57
15 -3.82 2.18 0.06 -1.58 -2.70 3.21 0.06 0.58 -3.24 3.34 0.36 0.47
17 -4.46 2.88 0.06 -1.52 -3.89 4.35 0.06 0.51 -4.65 4.78 0.35 0.48
Bootstrap SE 2.10 1.75 0.05 1.14 2.32 2.14 0.09 0.39 2.46 2.03 0.10 0.61

Table 5.4: Decomposition of momentum profits, 1941 - 2021. The table displays
total profits. We invest wit = (1/N) (ri,t�1 � rm,t�1) in asset i, where (ri,t�1�rm,t�1)
is the lagged return of an asset in excess of the equal weighted index. Bold marks
estimates greater than 1.645 standard errors from zero based on bootstrap simulations.

The results displayed in Table 5.4 substantiates the analysis from our

previous results. We see that the autocorrelations are strictly negative for

all portfolios after month 1 and is thus a reducing factor of momentum

profits as of 3 months after formation. In month 3, the Auto-component

for profits is -0.28 (t-statistic of -0.13) for the industry portfolios. It

decreases to its lowest estimate in month 13 at -5.22 (t-statistic of -2.49).

We can compare these estimates with their corresponding cross-serial

components. The Cross-components for industry equal 2.02 (t-statistic

of 1.15) and 4.01 (t-statistic of 2.30) in month 3 and 13 respectively.

We see that total momentum profits decline and turns contrarian for

the industry portfolios as the Cross-component does not fully offset the

negative changes in the Auto-component. We see that the same pattern

occurs in both the size- and size-B/M portfolios. However, here we see

that total returns decrease more slowly, and does in fact never turn

11�k ⌘ E
⇥�
r12t � �

�
(rt+k � µ)0

⇤
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negative.

Looking at the cross-sectional variation in expected return, we see that

it only has a minor effect on momentum profits. For industries, the

Mean-component contributes to momentum by approximately 0.06% each

month and are never significant. This is a small contribution relative to

total profits which varies from 2.19% to -1.58%. We see the same results

for size and B/M portfolios. However, the results for the double-sorted

portfolios suggest that the Mean-component here has a more important

role for momentum returns. We see it remains stable just below 0.40%

over all months and are also all significant.

5.2.4 Market-adjusted Returns

Up until now, the analysis has presented us with two facts regarding

market-adjusted returns. First, given the strategy weights in Section 3.2,

momentum can be attributed to persistence in market-adjusted returns.

This would imply that market-adjusted returns should exhibit positive

autocorrelations. However, this will not help in distinguishing between

the two models in Section 3.5. The second fact stems from what we see

in the results from Section 5.2.1, where reversal in market returns does

not seem fully explain the lead-lag relation among stocks. This suggests

that market-adjusted returns should contain some interesting patterns of

lead-lag relations.

Table 5.5 examines the predictability of market-adjusted returns. More

precisely, it displays autocorrelations and cross-serial correlations for

marked-adjusted returns. Market-adjusted return is simply defined as the

return of the asset less the CRSP value-weighted market-index portfolio:

(ri � rvw.mkt).
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Industry Portfolios
R1,t R2,t R3,t R4,t R5,t R6,t R7,t R8,t R9,t R10,t

R1,t�k 0.03 0.03 0.00 -0.03 -0.02 0.03 0.03 -0.02 -0.04 0.01
R2,t�k -0.05 -0.04 -0.02 0.03 0.03 0.01 -0.05 -0.02 0.00 -0.03
R3,t�k 0.02 -0.06 0.02 0.03 -0.01 0.00 -0.03 0.01 0.01 -0.04
R4,t�k 0.05 -0.04 0.01 0.00 -0.05 0.00 0.02 0.02 0.03 0.03
R5,t�k 0.00 0.00 -0.02 0.01 0.02 -0.02 0.00 0.01 0.02 0.04
R6,t�k 0.01 0.01 -0.01 -0.03 0.04 0.02 0.02 0.00 -0.02 -0.04
R7,t�k -0.02 0.05 0.01 -0.03 0.01 0.03 -0.01 -0.04 -0.02 -0.02
R8,t�k 0.03 0.04 0.00 -0.03 0.01 0.01 0.03 0.00 -0.04 0.00
R9,t�k 0.01 0.05 0.06 -0.03 0.00 -0.03 0.03 -0.04 -0.05 0.00
R10,t�k -0.02 -0.02 -0.01 0.00 0.02 -0.01 0.01 -0.01 -0.01 -0.01
Mkt -0.01 -0.06 -0.04 0.03 -0.01 0.04 -0.02 0.04 0.04 -0.04

Size Portfolios B/M Portfolios
RSmall,t R2,t R3,t R4,t RBig,t RLow,t R2,t R3,t R4,t RHigh,t

RSmall,t�k 0.07 0.07 0.06 0.04 -0.08 RLow,t�k 0.04 -0.03 -0.03 0.00 0.00
R2,t�k 0.06 0.06 0.05 0.02 -0.07 R2,t�k 0.00 0.04 0.02 -0.02 -0.02
R3,t�k 0.06 0.07 0.06 0.03 -0.07 R3,t�k -0.03 -0.01 0.00 0.00 -0.03
R4,t�k 0.06 0.07 0.06 0.04 -0.06 R4,t�k -0.06 0.01 0.02 0.03 -0.02
RBig,t�k -0.06 -0.07 -0.06 -0.02 0.08 RHigh,t�k -0.06 0.00 0.04 0.02 -0.03
Mkt -0.08 -0.07 -0.07 -0.07 0.08 Mkt 0.02 -0.01 0.00 0.00 -0.04

Table 5.5: Serial correlation of market-adjusted returns, 1941 - 2021. The table
displays autocorrelations and cross-serial correlations for marked-adjusted returns.
Market-adjusted return is the return on the asset less the CRSP value-weighted
market-index portfolio (ri � rvw.mkt). The last row (Mkt) displays the correlation
between the market-adjusted returns and the past value-weighted index returns. Bold
marks estimates greater than 1.645 standard errors from zero based on bootstrap
simulations.

The table show that we achieve positive autocorrelation on average for

the industry, size and B/M portfolios of 0.00, 0.06 and 0.02 respectively.

However, we do not achieve particularly significant results outside of the

size portfolios. The size portfolios do all exhibit positive autocorrelations,

although only Small-stocks and Big-stocks inherit estimates greater than

1.645 standard errors from zero based on bootstrap simulations. The

estimates for the B/M portfolios are much weaker, and High-stocks

actually exhibit negative autocorrelations. The autocorrelation seems

to be the smallest and least significant for the industry portfolios. This

is somewhat misleading. We remember from Table 5.1 that industry

momentum only persists for about 10 months before turning into

contrarian profits. Table 5.5 displays the mean over 18 months, which

explains why the autocorrelations seems to be less significant here.

Moving on, cross-serial correlations also generate expected patterns

of negative estimates, although not particularly significant except for

between the size portfolios. However, they do reflect the contemporaneous

correlation among portfolios. In their research, Boudoukh, Richardson
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and Whitelaw stated that lead-lag relations between portfolios depend

on their contemporaneous correlations12, (Boudoukh et al., 1994). Their

conclusion holds only if ri,t�1 doesn’t inherit incremental information

regarding rj,t beyond portfolio j’s own past returns. It implies that

autocorrelations in a given column should always be greater than the

cross-serial correlation in the same column. Our results shows that the

cross-serial correlations are usually consistent with this statement, except

for in the industry portfolio. Here, we continuously see this restriction

being violated.

Furthermore, in the bottom row of each panel we display the correlation

between the lagged 12-month return on the CRSP value-weighted index

and the portfolio-specific return. We find that market returns exhibit

strong predictive power for the size portfolios. We achieve significant

negative correlations for size quintiles 1 to 4, and positive significant

for the Big size stocks. There are also significant estimates for several

industry and High B/M stocks. Thus, in addition to being predictable

by its own past return, portfolio-specific returns could also be predicted

using the return of the market. This result is consistent with the theory

on excess covariance in returns proposed by Lewellen (2002).

5.3 Reconciling Theories

Up until now we have utilized the same methods and return horizons

as Lewellen (2002). We have found that cross-serial correlation is what

drives momentum under these strategies, and we find little evidence that

support the underreaction theories. Pan (2010) argued that different

return horizons would however affect these results. Thus, in this section

we assess the second part of our research question by examining how the

role of autocorrelation and cross-serial correlation change over different

horizons.

Theoretically, momentum should correspond to positive autocorrelation.

12cor (ri,t�1, rj,t) = cor (rj,t�1, rj,t)⇥ cor (ri,t, rj,t)
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Empirically however, momentum could also exist in the presence of

negative autocorrelation since its value and the sign of serial correlation

can vary with return horizons. Even though behavioral models don’t

specify the length of return horizons when measuring price adjustment

to new information, it’s a reasonable assumption to expect that the

market would underreact, or belatedly overreact to news at horizons that

are much shorter than 1 year. Based on this assumption Pan (2010)

proposed that using shorter return horizons would assert a different role

to autocorrelation, more correspondent to that of behavioral theories

of underreaction. We will in this section test whether the inconsistency

between behavioral models and our findings could be explained by different

length of the formation period. To evaluate this issue, we repeat the

different strategies, but now with shorter formation periods of 1, 3 and 6

months.

5.3.1 Autocorrelations and Momentum Profits

As mentioned, we now turn to the second part of our research question.

To understand how the role of autocorrelation and cross-serial correlations

change over different return horizons, we extend the tests of Section 5.2.3,

now utilizing shorter time horizons. Table 5.6 shows momentum profits for

strategies implemented on the industry, size and size-B/M portfolios, with

horizons of 3 and 6 months. Again, the term Auto catches autocorrelations

in profits. Cross is dependent on the cross-serial correlations, while Means

catches the effect of cross-sectional dispersion in unconditional means.
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3 Month Formation Industry Portfolios 5 Size Portfolios 6 Size-B/M Portfolios
Month Auto Cross Means Total Auto Cross Means Total Auto Cross Means Total

1 3.03 -1.93 0.03 1.13 3.70 -3.84 0.04 -0.09 4.08 -3.40 0.11 0.79
2 1.08 -0.65 0.03 0.46 -0.58 0.70 0.04 0.16 0.11 0.42 0.11 0.71
3 4.24 -3.33 0.03 0.94 0.90 -0.52 0.04 0.42 1.96 -1.35 0.11 0.71

Bootstrap SE 1.82 1.39 0.11 0.61 2.39 2.36 0.14 0.34 2.04 2.00 0.21 0.55

6 Month Formation Industry Portfolios 5 Size Portfolios 6 Size-B/M Portfolios
Month Auto Cross Means Total Auto Cross Means Total Auto Cross Means Total

1 3.21 -1.75 0.06 1.52 2.68 -2.38 0.09 0.39 3.06 -2.08 0.21 1.20
2 1.62 -0.71 0.06 0.97 -0.03 0.50 0.09 0.57 0.46 0.46 0.21 1.12
3 2.21 -1.06 0.06 1.20 -0.71 1.30 0.09 0.68 -0.23 0.98 0.21 0.96
4 1.06 0.20 0.06 1.32 -1.45 2.04 0.09 0.68 -1.18 1.87 0.21 0.91
5 -0.34 1.54 0.06 1.26 -2.37 2.89 0.09 0.60 -2.29 2.85 0.21 0.77
6 -1.33 2.79 0.06 1.52 -3.03 3.41 0.09 0.47 -3.14 3.53 0.21 0.61

Bootstrap SE 1.98 1.76 0.17 0.81 2.32 2.18 0.21 0.54 2.47 2.05 0.32 0.69

Table 5.6: Decomposition of momentum profits, 1941 - 2021. The table displays total
profits. We invest wit = (1/N) (ri,t�1 � rm,t�1) in asset i, where (ri,t�1 � rm,t�1) is
the lagged return of an asset in excess of the equal weighted index. We use 3- and
6-month formation periods paired with 3 and 6 months of lags respectively. Bold
marks estimates greater than 1.645 standard errors from zero based on bootstrap
simulations.

We see that for the 3-month strategies, autocorrelations are now mostly

positive, with the exception of lag 2 in the 5 size portfolios. This means

that autocorrelations in these strategies with shorter formation periods

actually contribute positively to momentum profits. In the industry

portfolios, the Auto-component is significant at 4.24 (t-statistic of 2.34)

in month 3. The cross-component for industries in the same month is

significant at -3.33 (t-statistic of -2.39). This differs from our previous

results using a 12-month formation period. Here, the corresponding Auto-

and Cross components where -0.28 (t-statistic of -0.13) and 2.20 (t-statistic

of 1.15) respectively. We see that the roles of the two components have

now switched. This pattern repeats itself for the strategies on size and

size-B/M portfolios.

For the 6-month strategies, we get results that more resembles our previous

findings, especially in the size and size-B/M portfolios. However, we find

very few of these estimates to be more than 1.645 standard errors away

from zero. For the industry portfolios, the Auto-components stays positive

until month 5. The Auto-component for industries is at 3.21 (t-statistic

of 1.62) in month 1, and -1.33 (t-statistic of -0.67) in month 6. The

average of the Auto-components in industries over all 6 months is 1.07,

which is significantly higher than the average of the first 6 months in the

12-month strategy, which was -0.37. The average of the Cross-components
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in industries over all 6 months is 1.01, which also is significantly lower

than the average of the first 6 months in the 12-month strategy, which

was 1.58. For the size portfolios, the Auto-components turns negative

in month 2. In month 1, the Auto-component in the size portfolios is

2.68 (statistic of 1.16) but decrease to -3.03 (t-statistic of -1.31) in month

6. For the 5 size portfolios, the average of the Auto-components over

all 6 months is -0.82. Compared to the average of Auto-component in

size for the first 6 months in the 12-month strategy (-1.96), we see that

autocorrelation now contributes less to contrarian profits than what it

did before. The average of the Cross-components in size over all 6 months

is 1.29. This is much lower than the average of the first 6 months in the

12-month strategy, which was 2.81. The pattern repeat itself again for

the size-B/M portfolios. The 6-month average autocorrelation is much

less negative than before, while the cross-serial correlation contribution is

significantly decreased.

In the 12-month formation period strategy, we saw a number of significant

estimates across the different portfolios. Under the 3-month horizons we

had some significant results. However, the only significant estimate in

any of the 6-month strategies is the Cross-component in month 6 for the

6 size-B/M portfolios. We also note that the cross-sectional variations

in expected return (Mean) still only have minor contributions to total

momentum profit, and we find no sign of significance in either the 3-

month strategies, nor in any of the 6-month strategies. The general lack

of significance in the shorter horizon strategies are more consistent with

the findings of Conrad and Kaul (1998), who argue that momentum

is caused by variance of mean returns, not time-series predictability in

returns.

5.3.2 Autocorrelations at 6-month Horizons

Table 5.7 shows the autocovariance matrix for the industry, 5 size, and

5 B/M portfolios. Unlike table 5.2, we now focus on the intermediate

horizon of 6 months. To investigate how the return of these portfolios are
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correlated with themselves and other portfolios past return, we estimate

the autocorrelation and cross-serial correlations in semi-annual returns.

Industry Portfolios
R1,t R2,t R3,t R4,t R5,t R6,t R7,t R8,t R8,t R10,t

R1,t�k 0.03 0.00 -0.10 -0.09 -0.02 0.01 -0.03 -0.03 0.08 -0.03
R2,t�k -0.03 0.04 -0.12 -0.16 0.00 0.05 -0.02 -0.03 0.06 -0.01
R3,t�k -0.01 0.04 -0.06 -0.06 0.02 0.04 -0.03 -0.03 0.07 -0.01
R4,t�k 0.04 0.11 0.05 0.02 0.05 0.06 0.00 -0.03 0.08 0.05
R5,t�k -0.11 0.01 -0.10 -0.10 0.05 0.09 -0.05 -0.07 -0.03 -0.07
R6,t�k 0.04 0.09 -0.04 -0.11 0.05 0.16 0.04 -0.02 0.05 0.02
R7,t�k 0.03 0.00 -0.10 -0.08 -0.02 0.05 -0.03 -0.02 0.12 0.00
R8,t�k 0.02 0.01 -0.03 -0.05 0.04 0.07 0.02 0.04 0.05 0.01
R9,t�k 0.06 0.06 -0.01 -0.02 0.08 0.13 0.04 0.01 0.10 0.06
R10,t�k -0.01 0.04 -0.09 -0.08 0.01 0.02 -0.04 -0.07 0.04 -0.02
Average 0.01 0.04 -0.06 -0.07 0.03 0.07 -0.01 -0.03 0.06 0.00

Size Portfolios B/M Portfolios
RSmall,t R2,t R3,t R4,t RBig,t RLow,t R2,t R3,t R4,t RHigh,t

RSmall,t�k 0.00 -0.03 -0.02 0.00 -0.01 RLow,t�k 0.01 -0.02 -0.04 -0.05 -0.06
R2,t�k -0.03 -0.06 -0.04 -0.03 -0.01 R,t�k -0.02 -0.03 -0.03 -0.04 -0.05
R3,t�k -0.04 -0.07 -0.06 -0.04 -0.01 R3,t�k 0.01 0.00 -0.01 -0.02 -0.02
R4,t�k -0.05 -0.08 -0.07 -0.05 -0.01 R4,t�k 0.04 0.02 0.02 0.02 0.00
RBig,t�k -0.04 -0.05 -0.04 -0.01 0.05 RHigh,t�k -0.01 -0.01 -0.01 -0.01 -0.02
Average -0.03 -0.06 -0.05 -0.03 0.00 Average 0.01 -0.01 -0.01 -0.02 -0.03

Table 5.7: Serial correlation in industry, size and B/M portfolios, 1941 - 2021. The
table displays the autocorrelations of the cumulative return over the 6-month formation
period on the cumulative return of the 6 month holding period. Bold denotes estimates
that are significant at the 5 % level based on bootstrap simulations.

Over the 6-month horizon, our results show that both the autocorrelations

and cross-serial correlations are mostly negative in the size and B/M

portfolios. The average autocorrelation and cross-serial correlation

for the industry portfolio is 0.03 and 0.00. With industry portfolios

exhibiting positive autocorrelation, this means that autocorrelation is

now a positive contributor to momentum under this strategy. In the size

portfolios, negative cross-serial correlation still dominates. The average

autocorrelation for the size portfolios is -0.03, while the average cross-

serial correlation is -0.04. Coherent with the results of the decomposition

displayed in Table 5.6, the cross-serial covariances are mostly negative,

thus it is still acting as a positive contributor to momentum. In the

size-B/M portfolios, the average autocorrelation and the average cross-

serial correlation is quite similar at -0.04 and -0.03 respectively. With

these results, we see that autocorrelation can be a positive contributor

to momentum under shorter horizons. This gives more premise for the

underreaction theory than our previous results over 12-month horizons.



5.3 Reconciling Theories 41

5.3.3 Autocorrelations and Monthly Return Horizon

Still, our results support the claim that negative cross-serial correlations

between assets drives momentum for intermediate and longer horizons.

This shows that behavioral models that argue for positive autocorrelation

and return continuation are not able to explain momentum on intermediate

horizons of 6 to 12 months. However, we see that the negative pull of

autocorrelations, and the positive push from cross-serial correlation have

become weaker when the horizon decreases from 12 to 6 months. Even

more interestingly, the roles of autocorrelation and cross-serial correlations

even reverse at the 3-month horizon. This induces the idea that shorter

horizons will bring us closer to the predictions of the behavioral models.

Forecast horizon (months)
Portfolio 1 3 5 7 9 11 A6 A12 S6 S12 Q(6) Q(12)
Industry Portfolios
Non-durables 0.112 -0.011 0.071 0.021 -0.029 0.003 0.022 0.012 0.133 0.140 16.90 19,00
Durables 0.106 0.051 0.000 0.028 0.005 0.056 0.020 0.022 0.121 0.266 24.23 27.85
Manufacturing 0.062 0.006 0.015 -0.005 -0.035 -0.010 0.004 -0.003 0.022 -0.038 9.39 10.96
Energy 0.001 -0.016 0.007 0.058 -0.028 -0.028 0.007 -0.003 0.042 -0.039 3.08 14.58
Equipment 0.063 0.047 0.015 0.029 0.001 0.021 0.014 0.013 0.086 0.153 6.38 8.97
Telecom 0.057 0.107 0.080 0.016 -0.023 0.039 0.040 0.033 0.240 0.398 19.02 25.77
Shops 0.131 -0.021 0.027 -0.010 0.034 -0.003 0.006 0.010 0.037 0.116 22.75 24.93
Health 0.038 -0.026 0.048 0.031 -0.029 0.024 0.008 0.011 0.047 0.128 6.16 10.79
Utilities 0.074 0.029 0.118 0.006 -0.031 0.002 0.038 0.015 0.227 0.175 21.62 23.67
Other 0.121 0.011 0.055 0.005 -0.022 0.023 0.025 0.009 0.147 0.106 21.09 24.7
Average 0.077 0.018 0.044 0.018 -0.016 0.013 0.018 0.012 0.110 0.141

Size Portfolios
Small 0.183 -0.022 -0.002 0.039 -0.036 0.014 0.029 0.014 0.171 0.173 35.78 39.96
2 0.135 -0.031 -0.005 0.011 -0.021 0.001 0.009 0.001 0.052 0.017 19.83 22.01
3 0.120 -0.017 0.005 0.004 -0.027 -0.005 0.011 -0.001 0.064 -0.007 14.74 18.33
4 0.102 -0.006 0.028 0.004 -0.038 -0.021 0.012 -0.002 0.073 -0.026 11.66 15.65
Big 0.046 0.033 0.075 0.022 -0.024 0.001 0.017 0.012 0.102 0.143 12.42 13.41
Average 0.117 -0.009 0.020 0.016 -0.029 -0.002 0.015 0.005 0.092 0.060

Size-B/M Portfolios
Small: Low 0.149 -0.045 -0.011 0.034 -0.009 -0.004 0.011 0.004 0.066 0.048 22.61 24.86

2 0.139 -0.021 0.003 0.002 -0.028 0.001 0.015 0.006 0.087 0.066 20.16 21.95
High 0.146 0.002 0.005 0.011 -0.034 0.009 0.022 0.011 0.130 0.126 24.82 27.02

Big: Low 0.071 0.022 0.050 0.019 -0.024 -0.002 0.013 0.008 0.076 0.094 9.99 10.99
2 0.060 0.024 0.092 0.005 -0.037 -0.003 0.020 0.003 0.119 0.040 18.22 20.94

High 0.077 0.034 0.041 0.014 -0.022 0.007 0.025 0.010 0.148 0.116 11.85 14.2
Average 0.107 0.003 0.030 0.014 -0.026 0.001 0.017 0.007 0.104 0.082

Table 5.8: The table reports autocorrelations for lags 1–12 of the monthly returns for
value-weighted industry, size, and B/M portfolios in the time period 1941 to 2021. A6
and A12 are the average autocorrelation for lags of 1–6 and for lags 1–12 respectively.
S6 and S12 report the cumulative autocorrelation for lags 1–6 and 1–12 respectively.
Q(k) is the Ljung-Box Q-statistic for k order autocorrelation (Complete Ljung-Box
Q-statistics is displayed in table A4.2). Bold denotes estimates that are more than
1.645 standard errors away from 0.
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Short-horizon returns might be more appropriate to rely on than long

horizon returns when exploring investor under- and overreaction, (Pan,

2010). We will investigate this further by calculating the autocorrelation

of monthly returns for up to twelve lags. We see the results displayed

in Table 5.8 above. The table shows that more often than not, the

estimates of the monthly autocorrelation are positive. Besides from

month 1, we do not achieve many significant estimates. Interestingly,

every estimate that is significant are positive. This suggest that monthly

returns actually exhibit price continuation. We also see that smaller

stocks exhibit larger first-order autocorrelations than what larger stocks

does, which is consistent with the literature, (Pan, 2010).

Furthermore, we choose to display the average and the sum of

autocorrelations for lags 1 to 6, and 1 to 12 separately. We see that

both the average and the cumulative autocorrelation are almost uniformly

positive for all portfolios. For the size and size B/M portfolios, we see

that autocorrelation has a negative impact over the last 6 lags. For

the industry portfolios, autocorrelations actually slightly increase. The

autocorrelation averages do however significantly decrease for all industry,

size and size-B/M portfolios when the last 6 lags are included. The

average autocorrelation in industry decreases from 0.018 to 0.012, while

the averages in size and size-B/M decreases from 0.015 to 0.005 and 0.017

to 0.007 respectively.

The results of Table 5.8 indicates that there in general is positive

autocorrelation across the 12 months. Thus, these findings actually

support the argument of behavioral models that the momentum anomaly

corresponds to positive short-term autocorrelation in returns.
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6 Conclusion
This thesis has examined the two-folded research question; What is the

role of autocorrelation and cross-serial correlation for momentum in stock

returns, and does this role change with different return horizons? To

answer this, our thesis conducts two sets of tests. First, we show that

momentum still exists in size and B/M portfolios and is as strong as

in individual stocks and industries. These findings support the idea

that momentum is a pervasive feature of returns. It also confirms that

momentum is not solely an attribute of firm-specific returns. We consider

both the size and B/M portfolios to be relatively diversified. Thus,

their returns should reflect systematic risk. Macroeconomic factors, not

firm-specific returns, will then drive momentum in these portfolios.

The second set of tests focused on the autocorrelation patterns in

returns and examined the results in light of behavioral theories regarding

underreaction and overreaction. Furthermore, we performed the tests

using different return horizons to assess whether the role of autocorrelation

and cross-serial correlations can vary with formation period.

When examining longer return horizons of 6 to 12 months, we find that

with a few exceptions, industry, size, and B/M portfolios are negatively

autocorrelated after three months post formation. We also find that

the cross-serial correlations in these portfolios are mostly negative. The

results from strategies based on longer formation periods generally defy

simple underreaction models. We note that the results over these horizons

could be consistent with a combination of portfolio-specific underreaction

alongside market reversals. However, we find this explanation a bit hard to

defend based on our results in Section 5.2.4. First, we see that larger stocks

are weakly negatively autocorrelated, but they significantly predict other

portfolios. Second, market returns can predict portfolio-specific returns

quite strongly in the size portfolios and some of the industry portfolios.

This is a feature not anticipated by the underreaction story. This coincides

with the findings of Lewellen (2002). Lewellen proposed models of excess
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covariance among stocks as an alternative to the underreaction theory.

His proposed model generates autocorrelation patterns that coincide with

our findings under 12-month formation periods.

When we shorten the horizons, the role of autocorrelations and cross-serial

correlation changes. We argue that we achieve a better evaluation of

the analogous between momentum and positive autocorrelation. This

conjecture seems to be supported by the monthly autocorrelations, as

autocorrelations across 12 lags in monthly return for all portfolios tend to

be positive. Cross-serial correlations become less negative, thus reducing

their contribution to momentum strategies. These results coincides with

the results of Pan (2010) and imply that industry, size, and size-B/M

portfolios exhibit return continuation, reconciling our results with common

behavioral theories of underreaction.

To conclude, our results imply that cross-serial correlation drives

momentum profits over longer return horizons, while negative

autocorrelations act as a reducing factor. However, the roles swap when

the return horizons are shortened. The autocorrelations become more

positive, while cross-serial correlations become less negative. This result

suggests that the conflict between Lewellen (2002) and behavioral theories

exist as a consequence of different length of formation and holding periods.

Theoretically, momentum should correspond to positive autocorrelation.

Empirically, momentum can co-exist alongside negative autocorrelation

since the value of serial-correlation varies with different return horizons. In

other words, the role of autocorrelation differs when returns are measured

over different horizons.

Several questions remain unanswered regarding momentum. For example,

our research does not investigate momentum in individual stocks. An

interesting approach would be to look at whether similar features to our

results would apply to individual stock momentum. Also, a behavioral

model able to differentiate between a specific type of macroeconomic

news could help further validate the underreaction story, even at longer

horizons.
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By better understanding the relationship between momentum,

autocorrelation and underreaction, cross-serial correlation and

overreaction, policymakers can improve market stability and efficiency.

These observations could also be interesting for investment decision making

and asset pricing.
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7 Appendix

A1 Summary Statistics

5 Size Portfolios 10 B/M Portfolios
Portfolio Avg. return Std.dev. Firms Portfolio Avg. return Std.dev. Firms
Small 1.29% 6.24% 1920 Low 0.95% 4.78% 421
2 1.24% 5.64% 515 2 1.04% 4.44% 296
3 1.18% 5.16% 367 3 1.00% 4.36% 264
4 1.15% 4.83% 307 4 0.98% 4.39% 253
Large 0.98% 4.08% 278 5 1.10% 4.23% 247
Average 1.17% 5.19% 677 6 1.13% 4.33% 247

7 1.03% 4.54% 253
6 Size-B/M Portfolios 8 1.24% 4.75% 273

Portfolio Avg. return Std.dev. Firms 9 1.34% 5.07% 310
Small: Low 1.02% 6.27% 324 High 1.40% 6.19% 369

2 1.27% 5.21% 219 Average 1.12% 4.71% 293
High 1.47% 5.66% 227

Big: Low 0.99% 4.38% 290 5 B/M Portfolios
2 1.02% 4.10% 514 Portfolio Avg. return Std.dev. Firms
High 1.23% 4.97% 113 Low 0.99% 4.56% 1920

Average 1.17% 5.1% 281 2 0.98% 4.28% 515
3 1.12% 4.15% 367
4 1.13% 4.53% 307
High 1.36% 5.39% 278
Average 1.12% 4.58% 677

Table A1.1: Summary Statistics for portfolios formed from all NYSE, AMEX and
Nasdaq stock during the period January 1941 to December 2021. The table report the
average value weighted return, standard deviation and the average number of firms
for each portfolio throughout the time period.

A2 Comparing autocovariance matrices with

Lewellen (2002)

5 Size Value Weight 41-99 Lewellen (2002) 5 Size Value Weight 41-99
RSmall,t R2,t R3,t R4,t RLarge,t RSmall,t R2,t R3,t R4,t RLarge,t

RSmall,t�k -0.02 -0.03 -0.03 -0.04 -0.04 RSmall,t�k -0.02 -0.03 -0.03 -0.05 -0.05
R2,t�k -0.04 -0.04 -0.04 -0.05 -0.05 R2,t�k -0.04 -0.04 -0.04 -0.05 -0.05
R3,t�k -0.04 -0.05 -0.05 -0.05 -0.05 R3,t�k -0.05 -0.05 -0.05 -0.06 -0.05
R4,t�k -0.06 -0.06 -0.06 -0.06 -0.05 R4,t�k -0.07 -0.07 -0.06 -0.07 -0.05
RLarge,t�k -0.09 -0.08 -0.07 -0.07 -0.04 RLarge,t�k -0.10 -0.08 -0.07 -0.07 -0.04

5 B/M Value Weight 63-99 Lewellen (2002) 5 B/M Value Weight 63-99
RLow,t R2,t R3,t R4,t RHigh,t RLow,t R2,t R3,t R4,t RHigh,t

RLow,t�k -0.05 -0.07 -0.06 -0.07 -0.07 RLow,t�k -0.04 -0.07 -0.05 -0.08 -0.08
R2,t�k -0.03 -0.04 -0.04 -0.05 -0.04 R2,t�k -0.03 -0.04 -0.02 -0.05 -0.06
R3,t�k -0.04 -0.05 -0.04 -0.05 -0.05 R3,t�k -0.04 -0.04 -0.02 -0.05 -0.06
R4,t�k -0.05 -0.03 -0.03 -0.03 -0.05 R4,t�k -0.05 -0.03 -0.01 -0.03 -0.04
RHigh,t�k -0.05 -0.03 -0.02 -0.04 -0.04 RHigh,t�k -0.06 -0.02 -0.02 -0.04 -0.04

Table A2.1: The table displays the average serial correlation in the 5 size and 5 B/M
portfolios from our own research and those of Lewellen (2002) during the time period
1941 to 1999, and 1963 to 1999 respectively. The portfolios are formed from all NYSE,
AMEX and Nasdaq stocks. Bold denotes correlation coefficients that differs with more
than 0.005.
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A3 SIC Codes for Industry Groups

1. NoDur - Consumer Nondurables 2. Durbl - Consumer Durables 3. Manuf- Manufacturing 4. Enrgy - Energy 5 HiTec - Business Equipment
Food, Tobacco, Textiles, Apparel, Cars, TVs, Furniture, Machinery, Trucks, Planes, Chemicals, Oil, Gas, Computers, Software,

Leather, Toys Household Appliances Off Furn, Paper, Com Printing Coal Extraction & Products Electronic Equipment
0100-0999 2500-2519 2520-2589 1200-1399 3570-3579
2000-2399 2590-2599 2600-2699 2900-2999 3622-3622
2700-2749 3630-3659 2750-2769 3660-3692
2770-2799 3710-3711 2800-2829 3694-3699
3100-3199 3714-3714 2840-2899 3810-3839
3940-3989 3716-3716 3000-3099 7370-7379

3750-3751 3200-3569 7391-7391
3792-3792 3580-3621 8730-8734
3900-3939 3623-3629
3990-3999 3700-3709

3712-3713
3715-3715
3717-3749
3752-3791
3793-3799
3860-3899

6. Telcm - Telecom 7. Shops 8. Hlth - Health 9. Utils - Utilities 10. Other
Telephone, Wholesale, Retail, Healthcare, Drugs,

Television Transmission Laundries, Repair Shops Medical Equipment
4800-4899 5000-5999 2830-2839 4900-4949 Mines, Constr,

7200-7299 3693-3693 BldMt, Trans,
7600-7699 3840-3859 Hotels, Bus Serv,

8000-8099 Entertainment, Finance

Table A3.1: The table displays the SIC codes for each industry group used in constructing the industry portfolios.
The SIC codes are collected from Ken French’s data library, French (2022).
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A4 Ljung-Box test

Return horizon (months)
Portfolio 1 3 5 7 9 11 13 15 17
Industry Portfolios
Non-durables 9.62 11.01 16.00 17.13 16.92 17.96 18.63 22.73 25.82
Durables 6.66 11.11 16.71 24.75 24.02 27.54 26.87 33.13 32.11
Manufacturing 3.56 3.69 4.61 9.06 10.01 11.45 11.30 18.95 18.79
Energy 0.05 1.29 4.83 9.63 10.88 11.61 14.29 15.32 22.11
Equipment 2.52 6.06 6.70 7.51 8.33 9.42 11.61 12.59 19.05
Telecom 0.47 7.88 15.80 19.09 24.85 27.10 29.11 29.76 28.97
Shops 13.63 15.73 17.77 22.77 25.16 25.67 26.53 36.45 37.40
Health 0.54 1.53 4.19 7.49 10.30 11.43 13.07 16.65 16.99
Utilities 2.42 6.33 21.28 18.62 17.99 18.44 17.44 19.97 19.64
Other 12.5 14.18 18.28 21.46 24.25 26.68 28.04 36.30 36.12
Average 5.19 7.88 12.62 15.75 17.27 18.73 28.04 24.19 25.70

Size portfolios
Small 28.30 33.14 32.03 35.97 37.15 39.82 42.76 41.96 41.26
2 16.00 16.76 17.55 19.75 21.23 23.03 24.72 29.84 30.14
3 12.37 12.42 13.16 14.70 17.73 19.16 20.40 27.44 27.29
4 9.41 9.17 10.62 11.68 14.41 15.96 16.88 24.13 23.45
Big 1.02 3.19 10.49 13.38 13.34 13.69 15.26 18.83 19.80
Average 13.42 14.94 16.77 19.09 20.77 22.33 24.00 28.44 28.39

Size-B/M portfolios
Small: Low 18.92 20.14 21.03 24.38 24.46 25.07 25.94 31.45 33.38

2 16.10 17.24 17.65 19.31 20.91 22.41 24.58 30.71 31.40
High 17.14 19.87 19.89 23.01 25.24 27.08 32.09 34.88 33.94

Big: Low 3.61 5.76 8.90 10.92 10.99 11.35 12.08 15.24 16.07
2 2.60 4.54 15.51 17.88 19.43 20.29 20.12 27.89 29.03
High 4.58 7.18 9.32 11.51 12.31 13.98 15.86 25.42 25.43

Average 10.49 12.46 15.38 17.84 18.89 20.03 21.78 27.60 28.21

Table A4.1: Ljung-Box test, Q-stat score for table 5.3. Bold denotes Q-statistics
with p-values below 0.05.



A4 Ljung-Box test 49

Return horizon (months)
Portfolio 1 3 5 7 9 11
Industry Portfolios
Non-durables 10.86 11.15 15.62 17.50 18.13 19.00
Durables 10.07 13.46 18.45 25.10 25.23 27.83
Manufacturing 3.23 3.69 4.76 9.42 10.50 10.95
Energy 0.00 0.53 3.04 7.41 12.93 14.58
Equipment 3.43 6.10 6.37 7.25 7.83 8.97
Telecom 2.82 12.60 19.00 19.12 24.24 25.77
Shops 1.53 16.83 17.79 22.77 24.12 24.93
Health 0.89 1.88 4.64 7.29 9.81 10.79
Utilities 2.35 6.13 20.80 21.64 22.16 23.62
Other 13.56 13.76 17.83 21.10 23.73 24.70
Average 6.25 8.61 12.83 15.86 17.87 19.11

Size Portfolios
Small 34.89 35.62 35.66 37.23 39.03 39.96
2 18.10 19.17 19.22 19.93 21.93 22.00
3 13.29 13.98 14.04 14.74 18.26 18.33
4 9.03 9.48 10.34 11.67 15.05 15.65
Big 1.53 3.38 9.86 12.86 13.37 13.40
Average 15.37 16.33 17.82 19.29 21.53 21.87

Size-B/M Portfolios
Small: Low 20.29 22.36 22.59 23.54 24.84 24.86

2 19.19 19.54 19.67 20.16 21.91 21.95
High 22.82 22.97 23.26 24.99 26.65 27.01

Big: Low 3.84 5.57 8.10 10.38 10.90 10.98
2 3.04 4.58 14.36 18.24 20.66 20.94
High 6.53 7.92 10.18 12.08 13.32 14.19

Average 12.62 13.82 16.36 18.23 19.71 19.99

Table A4.2: Ljung-Box test, Q-stat score for table 5.8. Bold denotes Q-statistics
with p-values below 0.05.
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