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ABSTRACT 

This thesis investigates the potential of a Private Equity fund performance forecasting model, 

to assist Private Equity investors in their investment decision making process. Fund 

performance is measured by the fund’s Kaplan Schoar Public Market Equivalent and is 

forecasted using a binary classification approach. The top performing Machine Learning 

models are able to forecast Buyout fund performance with 63 % accuracy, and Venture Capital 

fund performance with 66 % accuracy. Therefore, the features used to train the models and 

selected based on the literature on Private Equity performance drivers, possess important 

predictive power, which can be integrated in the investment procedure.  
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1    Introduction 

 

Since its inception in 1946 the Private Equity (PE) Market has provided imperative 

funding to start-up companies, private companies, companies in financial distress 

and companies seeking buyout financing. The market’s rapid growth and increased 

importance, which started in the 1980s, has continued throughout the turn of the 

century, reaching 8 trillion USD AUM in 2021 (Preqin, 2022) – four times as much 

as in 2010. This expansion has been accompanied by an increase in the number of 

funds, with a significant performance gap between top and bottom quartile funds, 

which reached a mean of 13.15% from 2000 to 2016 (Preqin, 2022). As such, the 

difficulty, and the cost of the fund selection process for PE investors has increased. 

Concurrently, the use of Machine Learning (ML) in finance has expanded. 

However, it was mostly limited to areas such as cross-sectional stock market 

prediction, bankruptcy prediction, and default recovery rates. PE was relatively 

slow in incorporating the newly available digital tools. Currently, ML use in PE is 

mostly limited to PE firms, which employ Artificial Intelligence (AI), data mining, 

and web-based analytics to assist in the investment company selection process 

(Bain’s PE report, 2022). Consequently, the question arises about the viability of 

ML techniques to assist investors in their PE investment decision making process. 

Current research of ML application in PE is severely limited. However, since the 

traditional approach that PE investors use to select promising investments is based 

on a set of criteria (e.g., fund-level statistics, past fund performance), these 

‘performance drivers’ have been extensively investigated. Moreover, research on 

ML applications in other areas of finance (e.g., Gu et. al., 2019) is plentiful. 

Therefore, I draw from the findings of these research areas to investigate the 

question: Can ML tools be used to assist in the PE investors fund selection 

process? 

I conduct the investigation using a sample of 1434 funds, with vintages ranging 

from 1985 to 2017. To train the ML models I use fund-level statistics (e.g., fund 

size) and macroeconomic data (e.g., GDP), selected based on prior literature and 

data availability. I translate the fund selection process into a binary classification 

problem, where the classification is based on whether a fund is predicted to 

outperform or underperform a selected performance benchmark. The metric 
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selected to measure performance in this thesis, is the Kaplan Schoar Public Market 

Equivalent (KS-PME) measure, while the models used to predict fund performance 

are: Logistic Regression (LR), k-Nearest Neighbours (kNN), Support Vector 

Classifier (SVC), Support Vector Machine (SVM), Decision Tree Classifier (DTC), 

and Random Forest Classifier (RFC). The models’ performances are subsequently 

compared and a possible explanation behind the differences in their performance is 

given. Furthermore, the LR and RFC models offer insight into the contribution of 

different performance drivers to the classification process. Consequently, I discuss 

the findings of the feature importances and relate them to the existing literature.  

The analysis yields promising results in terms of ML use in the investment decision 

making process with the SVC performing best for the Buyout (BO) dataset and 

DTC and SVM performing best for the Venture Capital (VC) dataset. Moreover, all 

the models outperform the random classifier. While the analysis can be improved 

in many ways it still demonstrates the viability of ML use in the PE investor’s 

investment decision making process. Thus, it can serve as an incentive for further 

research in the application of ML in PE asset space. 

The subsequent parts of the thesis are organized as follows. Section 2 provides an 

overview of the existing literature on PE performance, performance drivers, and 

ML in finance. In Section 3, I describe the necessary theoretical characteristics of 

PE and ML. Section 4 includes a description of the PE funds used in the sample and 

the feature engineering required to train the ML models. Section 5 describes the 

methodology behind the approach to binary classification problems of the selected 

ML algorithms, as well as the measures, which are used to compare their 

performance. In Section 6 the results of the analysis are provided and discussed. 

The conclusive Sector 7 summarizes the main findings of the thesis and discusses 

the limitations and potential improvements which can be applied to the analysis. 
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2    Literature Review 

 

Machine Learning has been rapidly integrated into various areas of finance, due to 

an increase in the availability of data and the reduction in the cost of computing 

power. This thesis researches the possible application of ML techniques in the PE 

investment decision making process. Due to the relative scarcity of the data 

available to PE investors, the research regarding this specific topic is somewhat 

limited. Consequently, I will discuss two main strands of literature, which relate to 

the research area of this thesis: PE performance and performance drivers, and 

Machine Learning application in finance. 

2.1    Private Equity Performance and Performance Drivers 

2.1.1    Performance 

The traditional and still the most frequently used measures of PE performance are 

the Internal Rate of Return (IRR) and the money multiple (Gompers et. al., 2016). 

Compound returns have been chosen as the most appropriate performance metric 

over traditional annual return, due to the uncertain timing and amount of cash flows 

of a PE fund (Fraser-Sampson, 2010). Using a combination of money multiples and 

the IRR mitigates some of the well-known limitations associated with using only 

the IRR (it does not always exist, there can be multiple, it can be very sensitive to 

moving the timing of cash flows etc.) and using only the multiples (they do not 

account for the timing of cash flows). However, the most important drawback of 

using IRR and multiples as performance metrics is that they do not account for the 

risk associated with the investment. Moreover, Phallipou and Gottschalg (2009) 

highlight other potential problems regarding IRR in PE, most notably the significant 

upward bias of average IRRs. 

Long and Nickels (1996) were the first to introduce a new kind of performance 

metric called the PME, which was popularized and redefined by Kaplan and Schoar 

(2005). The PME performance measurement relates an investment in a PE fund to 

an investment in a public equity index (originally and most commonly to the S&P 

500). Since its origin there have been many improvements and generalizations of 

the seminal KS-PME, most notably by Korteweg and Nagel (2013), who relax the 

assumptions of the traditional PME by introducing an adapted SDF method. 
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However, the KS-PME is still the most commonly used PME metric (eVestment, 

2017) and Sorensen and Jagannathan (2013) provide a thorough explanation as to 

why it is still valid. Furthermore, recognizing the value of the PME performance 

metric, PE investors have started increasingly integrating it, in addition to the 

standard performance metrics, in their due diligence process (eVestment, 2017). 

However, the survey conducted by Gompers et. al. (2016), shows that by far the 

most commonly used metric is still the multiple of invested capital, followed by the 

IRR. The paper by Harris et. al. (2014b) demonstrates that all three main 

performance metrics are correlated, with IRRs and money multiples reliably 

predicting PMEs. 

To conclude, due to the nature of PE fund cash flows, traditional methods of 

performance measurement are not applicable. Consequently, the combination of 

IRR and money multiple is used, which has significant and well-known drawbacks, 

most notably they do not account for risk. The PME metric mitigates this limitation. 

While the money multiple and IRR are still the predominant metrics used in the 

industry, PME is becoming increasingly popular. 

2.1.2    Performance Drivers 

There have been several drivers of PE performance investigated in the literature. 

Fenn et. al. (2001) investigated the effect of aggregate amount of committed capital 

on PE returns. They concluded that the partnerships, which were formed during 

periods when small amounts of capital were raised, exhibited relatively high 

returns, while funds formed during periods when lar ge amounts of capital were 

raised, exhibited low returns. They argue that the reason for this is the breakdown 

in discipline in deal pricing and structuring during times of greater capital 

availability. 

Kaplan and Schoar (2005) further investigate the impact of capital flows on 

performance. Moreover, they extend the base of potential performance indicators 

to fund size, persistence, and overall fund manager survival. Their findings confirm 

the discovery of Fenn et. al. (2001) that funds raised in boom times of the PE 

industry perform poorly, however they find that the poor performance is mainly 

driven by new entrants into the industry, and that the performance of more 

established funds is less affected. They attribute this disparity to the heterogeneity 

in the skill and quality of fund managers. Furthermore, they find that larger funds, 

managed by more experienced managers perform significantly better. Additionally, 
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they observe a concave relationship between fund size and performance i.e., larger 

funds perform better, but when funds become very large, performance declines, and 

a convex relationship between manager experience and performance. However, this 

finding was not as significant as for fund size. Moreover, they detect significant 

persistence in fund returns across different funds, managed by the same manager. 

Similarly, to Kaplan and Schoar (2005), Phallippou and Zollo (2005) find that low 

performance is concentrated in small and inexperienced funds. In addition, they 

find that PE fund performance is significantly procyclical, that it increases with the 

average GDP growth rate and decreases with the average level of interest rates (both 

measured by multiple different proxies). Furthermore, they observe that 

performance increases with the average return on the stock market index (CRSP -

VW index). 

Lossen (2006) expands the investigation of performance predictors by examining 

the effects of diversification across financing stages, industries, and countries. The 

outstanding theoretical hypothesis states that due to significant information 

asymmetry in the industry, the expected outcome of diversification is that it harms 

returns. However, the author discovers that the rate of return of PE funds does 

indeed decline with diversification across financing stages, however, it increases 

with diversification among industries, and is not affected by diversification across 

countries. Additionally, he finds a strong negative link between rate of return of the 

MSCI World Index in vintage year, which is consistent with the findings of Kaserer 

and Diller (2009). He credits this negative relation to PE firms having to pay high 

prices for their investments when the global economy is performing well. The 

author also detects a discrepancy, compared to other literature, between the relation 

of fund size and the amount of new funds raised by the global PE industry, to fund 

performance. He detects a decrease in returns with the increase of fund size and an 

increase in returns with an increase in the number of new entrants. 

Aigner et. al. (2008), observe the same discrepancy with regards to fund size, 

however they provide an explanation, stating that using a squared term in the 

regression (similarly to Kaplan and Schoar (2005)) might result in a sign switch. 

Additionally, Aigner et. al. (2008) provide an overview of the impact of both 

endogenous (region, industry sector, financing stage, vintage year and fund 

manager) and exogenous (performance of the public market, interest rates, GDP 

growth) factors on fund performance. In accordance with other literature, they find 
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that fund manager experience, GDP growth and average MSCI growth is positively 

related to performance, and that interest rates yield a negative influence on 

performance. They argue that in times when interest rates are high, the cost of 

financing increases, resulting in lower returns. Interestingly, their investigation 

yielded a negative influence of public equity market growth (MSCI) to fund 

performance, despite a positive influence of average MSCI growth. Contrary to 

Lossen (2006), they found no significant impact of industry diversification and a 

positive relation of diversification across financing stages. Furthermore, they have 

corroborated Lossen’s (2006) findings that country diversification does not impact 

fund performance. 

More recent studies conducted by Roggi et. al. (2019) and Harris et. al. (2022) 

confirm the findings of Kaplan and Schoar (2005) that fund size and manager 

experience have a concave and convex relationship with fund performance, 

respectively. Moreover, they observe strong persistence in VC funds and a 

weakened persistence in BO funds, confirming that persistence has persisted in the 

PE industry. Additionally, Harris et. al. (2022) investigate persistence using 

information available to investors at the time of fundraising (rather than final fund 

performance). They find strong persistence for VC funds, but little evidence of 

persistence for BO funds. 

To conclude, there have been many different PE fund performance drivers studied 

in the literature. They can be broadly separated into fund specific drivers and 

macroeconomic drivers. Fund specific drivers include the fund size, management 

experience, fund strategy (as in Buyout or Venture Capital) and diversification 

across financing stages, industries and countries/regions. Macroeconomic drivers 

include the average GDP growth rate, the average interest rate and the (average) 

return in a selected global public equity index (all sampled in the vintage year of 

the investigated funds). Additionally, PE industry specific factors can be included 

in the macroeconomic driver category. They include the aggregate amount of 

committed capital flowing into the PE industry and the number of new funds raised 

in a given year. The literature yielded mixed results in terms of the effect of the 

aforementioned performance drivers. However, if results from the newer studies 

are given higher validity, due to the greater availability of data to perform their 

investigations and the access to all the prior literature on which they improve upon, 

we can deduce that the results obtained in the early 2000s have held up surprisingly 
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well. Fund size and manager experience are shown to have a positive effect on 

performance, with the performance gains diminishing and even reducing in the case 

of fund size. Moreover, the average GDP growth rate and the average return on a 

global public equity index are more or less accepted to have a positive effect on 

fund performance. Additionally, the aggregate amount of capital flowing into the 

PE industry, the average interest rate, and the return on a public equity stock index 

are relatively universally accepted as having a negative effect on fund performance. 

The effects of the number of new funds entering the PE industry in a given year, 

and fund diversification across financing stages, industries, and countries have 

yielded contrasting results. 

2.2    Machine Learning Application in Finance 

Using ML techniques to questions in finance is not a particularly modern concept 

and its applications and capabilities have expanded in the recent decades. Back in 

the mid-1990s, Hutchinson et. al. (1994) used a so-called Learning Network 

(nonparametric method for performing nonlinear regressions) to price and hedge 

derivative securities. Lo et. al. (2002) used nonparametric kernel regression to 

deduce the validity of Technical Analysis. Gavrishchaka and Banerjee (2006) used 

SVM to forecast stock market volatility, and De Spiegeleer et. al. (2018) applied 

ML to accelerate derivative pricing. 

The broad area of finance offers ML applications stemming from the classical 

SVM, kNN models (Farquad et. al., 2012; Imandoust and Bolandraftar, 2013), to 

modern DL techniques (Butaru et. al., 2016; Fischer and Krauss, 2018). ML 

application in finance has been mostly researched in relation to bankruptcy 

prediction (e.g., Zhao et. al., 2017), default recovery rates (e.g., Cheng et. al., 2018) 

and cross-sectional stock market prediction (e.g., Freyberger et. al., 2018). The 

expansion of studies in the last decade, is most likely because of the rising 

availability of financial data and the capability of ML techniques to process it 

efficiently and inexpensively (Warin and Stojkov, 2021). 

In the field of PE, ML techniques have been adopted by PE firms (predominantly 

VC firms) to screen for favourable investment candidates. This is largely due to the 

high demand for PE financing and of course the abundance of proprietary data that 

these firms have acquired from the companies that they have previously invested, 

or plan to invest in. Using ML techniques to assist PE investors in their find 
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selection process has, however, been rarely researched in the academic circles. 

Largely due to PE being a relatively new asset class and therefore adequately large 

datasets have not been widely available, until recently. With the recent expansion 

of commercial PE data providers such as Preqin and Pitchbook, researching ML 

application will likely pose a lucrative challenge for researchers in the near future.  
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3    Theoretical Framework 

3.1    Private Equity 

Private Equity is one of the most misunderstood asset classes, largely due to it being 

a relatively young asset class and therefore evolving at a pace that exceeds the 

capabilities of linguistics experts to construct a formal definition. Consequently, the 

definitions vary significantly, ranging from ‘A Private Equity investment is any 

equity investment in a company which is not quoted on a stock exchange’ (Fraser-

Sampson, 2010) to ‘Private equity is the universe of all Venture and Buyout 

investing, whether such investments are made through funds, fund of funds or 

secondary investments’ (EVCA, 2022). Regardless of the abundance of existing 

definitions, they rarely encompass all the aspects of the Private Equity asset class. 

3.1.1    Private Equity as an Asset Class 

The Private Equity asset class is categorized as being part of the alternative asset 

space. Alternative assets typically refer to investments that fall outside of the 

traditional asset classes, commonly accessed by most investors, such as stocks, 

bonds, or cash payments. They include but are not limited to Private Equity, Hedge 

Funds, Private Debt, Art and Antiques, Infrastructure, Natural Resources, and often, 

Real Estate. The traditional investments (meaning stocks, bonds, or cash) are traded 

via public markets and are subjected to heavy regulation from the financial 

regulatory authorities such as the SEC (Securities and Exchange Commission) or 

the FCA (Financial Conduct Authority). Contrarily, the alternative assets are traded 

privately and are often not heavily regulated. This lack of regulation often leads to 

alternative asset investments being available only to accredited investors. The 

reason accredited investors choose to invest in these alternative assets is because of 

their seemingly appealing risk-return characteristics. However, the private nature 

of these investments makes the assessment of their true risk-adjusted performance 

difficult, and therefore subject to debate. The measurement or assessment of the 

true risk-adjusted performance of these alternative asset classes surpasses the scope 

of this thesis. 

Investments in Private Equity can either be made directly i.e., an investor directly 

buys the shares of private companies, or indirectly i.e., via a PE firm. The firm, also 

known as the General Partner (GP), raises funding from external investors, also 

known as Limited Partners (LPs). The LPs are passive, meaning they take no part 
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in the business and have limited liability. They are comprised of institutional and 

accredited investors, who seek returns which exceed the return of the public equity 

markets, by investing in alternative asset classes such as Private Equity. The GPs 

role and responsibility is to invest the fund’s capital in investment companies, to 

actively manage the investments in the portfolio, seeking to generate operational 

improvements to increase the investment companies’ value, and to seek to achieve 

exits with high returns. A fund will have a specific set of investment criteria 

although different funds within a firm may have different objectives. The firms 

themselves grow by raising new funds as existing funds approach maturity 

(continual process of fund raising and closing). 

The mechanism of investing in a PE fund is different from investing in just about 

any other asset class. The investor does not invest all its committed capital i.e., the 

amount of capital which an investor has legally promised to provide to PE funds, at 

once. Instead, the capital is called when needed by the PE fund. Furthermore, when 

the PE fund sells an investment, the capital is distributed to LPs. This results in 

unpredictable cash flows coming in and out of the PE fund and result in the fund 

never actually holding money. Therefore, the fund acts as a conduit from the 

investments to the LPs. The firms typically invest around ninety percent of the total 

committed capital and reserve the remaining ten percent for additional investments 

in existing portfolio companies (used to cover operational costs, additional growth 

capital etc.). 

The GPs remuneration is structured as follows. Firstly, the LPs are charged an 

annual management fee on committed capital, which usually amounts to around 

two percent. Secondly, the GPs acquire carried interest, which typically represents 

around twenty percent of the investment return generated above a minimum hurdle 

rate, which typically amounts to around seven to ten percent. The remaining eighty 

percent of the return on investment is distributed to LPs. Importantly, Private Equity 

investments are long-term investments. Typically, the fund has a life cycle of 

around ten years, out of which the first five to seven represent the so-called 

investment cycle i.e., the period in which the GP grows the investment portfolio 

and is therefore characterized by frequent capital calls and infrequent distributions. 

Additionally, the last three to five years represent the exit or harvesting cycle, which 

is, intuitively, characterized by numerous exits and consequently distributions to 

LPs. 
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Private Equity investments are most commonly categorized into Buyout and 

Venture (Capital). However, Growth (Capital) and Development (Capital) may be 

introduced as additional categories (Fraser-Sampson, 2010). The categories are 

selected based on where the investment company is in its life cycle. The firm’s life 

cycle ‘position’ is closely related to the cash flows that it generates. Firms located 

in the ‘early stage’ generate negative cash flows, due to them having no product 

and/or service to sell and therefore no cash inflows. The firms in the ‘growth’ stage 

will have some inflows but its aggregate cash flows will still be strongly negative 

due to other costs e.g., promotion. In the ‘maturity’ stage, companies generate 

positive cash flows and are generally profitable. Lastly, in the ‘decline’ stage the 

companies generate, perhaps unintuitively, the highest cash flows (in theory, the 

reason for this is market consolidation). Importantly, the risk of a company 

surviving decreases, the further along its life cycle the company is located. 

Venture Capital investments focus on firms in the ‘early’ and ‘growth’ stage. They 

can be further classified by Sector and Stage. The three main sectors in which VC 

investment firms are Life Science (often also referred to as BioTech or Healthcare), 

Information technology and Telecommunications. However, the distinction 

between the sectors is not absolute and has become increasingly blurred. Moreover, 

the main stages of VC investments are seed, early, mid, and late, which, intuitively, 

refer to the phase in which the VC firm has invested in the target company. As with 

the Sector classification, the distinction between the stages is not apparent, with 

Seed and Early stages frequently representing the source of confusion. The VC firm 

or fund generates its returns by purchasing shares in a (private) company, expecting 

to eventually be able to sell them for a higher price. Historically, the so-called 

‘home runs’ (rare investment companies which have generated extraordinary 

returns) have driven the returns of VC firms, with less than 5% of companies by 

cost, generating 80% of the final fund value (Fraser-Sampson, 2010). 

Buyout investments focus on firms in the ‘maturity’ and ‘decline’ stages. They are 

further categorized based on the different Buyout deals that occur in the PE market 

(see Table 1). However, the differences between the deal types are not clear-cut.  

Buyout funds generate their returns, similarly to most PE investments, by selling 

the private company’s equity for a higher price than it was purchased. 
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Table 1: Buyout strategy subcategories 

The table represents the different Buyout deals that occur in the PE market as well as a 
brief description of each category (meanings of the category names are under 
Abbreviations). 

 

Category Description 

MBO 

Occurs when an executive or management team, 
who manages a particular business activity, decides 
to purchase said activity out of the parent company 
 

MBI 

Occurs when an executive or management team 
comes together to purchase another company, 
which operates in the same sector as the parent 
company 
 

BIMBO 

Occurs when outside executives are grafted on to 
the existing executive team in order to facilitate a 
buyout (combination of MBI and MBO) 
 

LBO 

Occurs when a buyout is not initiated by a 
management team (internal or external) but is 
instead initiated by a seller who appoints an 
investment bank to prepare a company for sale and 
then a buyout firm competes for ownership 
alongside industrial purchasers (the most blurred 
category since leverage is used in most buyout 
deals) 
 

P2P 
Occurs when a Buyout fund purchases a public 
company and de-lists it 
 

Roll-up 
Occurs when a Buyout fund purchases a lot of small 
operators in a fragmented industry and joins them 
 

Secondary BO 

Occurs when a Buyout fund’s exit of a particular 
investment is not routed via an IPO or sold to a 
trade buyer but is instead sold to another Buyout 
firm or fund 
 

PIPE 

Occurs when a particular investment instrument is 
created in a public company that may offer a PE-
type return and that company’s equity is quoted but 
the instrument is not (the instrument is usually a 
convertible loan note with equity kickers) 
 

 

However, Buyouts differ from the rest of the PE investment types in two important 

ways. Firstly, because the companies that they invest in already generate earnings 
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they can restructure the companies’ capital to replace some of the equity with 

additional debt and are thus able to distribute returns to investors without exiting 

the deal, which in turn gives them the ability to take advantage of the time value of 

money and therefore generate higher IRRs. Secondly, they take advantage of tax 

consolidation i.e., the treatment of a firm which owns another firm as one large 

company for tax purposes. This gives them an ability to use large amounts of 

leverage, because they can take advantage of the tax shield on interest payments. 

Furthermore, they can use the investment company’s own cash flows to repay the 

interest, which is also the main reason for targeting mature and/or declining 

companies. Historically, buyout deals have been increasing in size with as much as 

95% of available buyout capital in Europe and North America targeting 5% of 

companies by number (Fraser-Sampson, 2010). This deal size increase has left a 

gap in the middle market (company value less than 500 Mn USD). Consequently, 

the gap has been filled by first time funds, in which many investors have a ban on 

investing. Moreover, because buyout deals use debt extensively, the loan terms 

which funds can negotiate are of paramount importance. 

3.1.2    Private Equity Performance 

Private Equity performance can be measured in various ways. The two categories 

of performance metrics are Absolute performance metrics and Market-adjusted 

performance metrics. The Absolute performance metrics include the IRR and 

investment multiples such as the Distributed to Paid-In (DPI), the Residual Value 

to Paid-In (RVPI), and the Total Value to Paid-In (TVPI). The Market-adjusted 

performance metrics are the PME, which compare an investment in a Private Equity 

fund to an investment in a selected market index. Furthermore, there exist several 

improvements of the PME, which are also categorized as Market-adjusted 

performance metrics, however they have not been widely adopted by investors and 

will therefore not be included as a performance measure in this thesis. 

Compound returns (IRRs) have been universally accepted as the appropriate 

measure of performance in the PE industry. They measure the LPs annualized IRR 

based on fund contributions and distributions, net of fees and profit shares (carried 

interest). If a fund has not yet been liquidated, and therefore their final cash flow 

has not yet been revealed, the aggregate net values of the remaining assets of a fund 

are treated as that last ‘cash-flow’ in the calculation. The reason standard periodic 

returns cannot be used as a guide to PE performance is because of the uncertain 
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timing and amount of cash flows. The only certainty is that the total amount of cash 

inflows cannot exceed the amount of committed capital. Consequently, if we want 

the periodic returns to reflect the true return, we can calculate them only once the 

last cash flow has been paid out i.e., at the end of the fund’s life. 

If we want to observe the performance of a PE fund throughout the fund’s lifetime 

we use the so-called J-curve. The J-curve is produced by looking at the cumulative 

return of a fund to each year of its life (the first entry is the IRR of the fund’s first 

year, the second entry the IRR for the first two years, the third for the first three 

years etc.). There exist differences in the shape of the J-curve, which depend on the 

fund’s strategy and other investment specific factors. Typically, buyout funds tend 

to pay back their capital more quickly, which results in a quicker rising J-curve, 

whereas venture funds tend to pay back capital a bit later so the shape of the curve 

is flatter. 

Multiples are a different way to look at PE fund performance and are typically used 

in tandem with the compound returns (IRRs). They are useful because they 

demonstrate the three-way relationship between the IRR, the multiple and the 

holding period. If a fund holds money for a longer period, it will have to deliver a 

higher multiple to sustain the same IRR. Consequently, the harder it is to ‘put 

money to work’ i.e., longer holding periods, the more multiples become a relevant 

measure of performance. 

The DPI multiple compares the total amount of money paid out i.e., distributed to 

LPs to date, against the total amount of money paid into the fund by LPs. It is best 

used to measure performance of a fund once it is at the end of its life, because it 

shows the performance relative to all the money paid in, which includes fees and 

costs. It is not a good measure in two situations. Firstly, if the fund is not yet at the 

end of its life, because the fees and costs are high compared to invested capital. 

Secondly, if a fund has failed to invest all its capital, in which case fees and costs 

are again excessively high. 

RVPI multiple shows the current value of all remaining investments i.e., companies 

within the fund. It is expressed as a ratio to the total amount paid-in to date. It is 

most useful as a measure early on in the life of a fund i.e., before there have been 

many distributions, because in that case it will reflect to what extent the portfolio 

companies may have been revalued. Its disadvantage is that it may give 
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misleadingly low return expectations because companies are typically sold for more 

than their current valuation (especially in the case of Buyout funds) (Brown et. al., 

2019). 

TVPI multiple is one of the most useful ratios. It adds together both the residual 

value and the distributions to date. Consequently, it is subject to the same possible 

drawbacks as RVPI. 

A different approach to evaluating PE fund performance, which has gained traction 

in the recent years is the PME. The PME compares an investment in a private equity 

fund to an investment in a selected market index. While many different versions of 

the PME exist, I will briefly describe the KS version, which will be used as a 

performance evaluator in the thesis. The KS-PME is implemented by discounting 

all cash outflows of the fund to the total return to the S&P500 and comparing the 

resulting value to the value of the cash inflows to the fund discounted using the total 

return to the S&P500. PME is a useful measure for LPs because it reflects the return 

to the private equity investment relative to public equities and, is the only 

performance metric, out of the aforementioned, that incorporates risk. 

3.2    Machine Learning 

ML was developed by answering the question ‘how can computers learn to solve 

problems without being explicitly programmed’ (Samuel, 1959). According to 

Mitchell (1997), the aim of ML is to produce systems whose performance improves 

with experience. To date ML has been applied to a wide range of problems such as 

data mining, game playing, speech and image recognition, as well as software and 

hardware testing (Bergadano and Gunetti, 1996). Considering the scope of the 

applicable areas, many approaches of solving these problems have been developed, 

stemming from a number of fields including genetics and statistics.  

ML problems can be roughly categorized as supervised or unsupervised. In 

supervised learning the aim is to be able to predict an output measure based on one 

or multiple input measures. In unsupervised learning the aim is to discover some 

associations and/or patterns among a set of input measures. Additionally, 

supervised problems can be categorized into classification and regression. 

Regression is used when the goal is to predict quantitative outputs, while 

classification is used when the goal is to predict qualitative outputs. However, both 
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can be viewed as a task in function approximation. The focus of this thesis are 

supervised binary classification problems.  

Furthermore, supervised problems can be solved in two distinct ways. Firstly, we 

can use the parametric method i.e., make an assumption about the form of the 

function we are trying to estimate. This allows us to select a suitable model, based 

on this assumption, and estimate a set of parameters in that selected model. The 

advantage of this approach is that the solution to the problem has very high 

interpretability, while the drawback is that the assumptions we made may not 

always hold. Secondly, we can use the non-parametric method, which, intuitively, 

does not make any (or very mild) underlying assumptions, with respect to the form 

of the function we are trying to estimate. The advantage of this approach is that it 

tends to be more accurate, while the drawback is that it is often less efficient.  

The performance of parametric and non-parametric models is heavily dependent on 

the quantity of data we have available and/or the signal to noise ratio of that data. 

The less data we have or the ‘noisier’ the data is, the better parametric models tend 

to perform, compared to non-parametric models, and vice versa. This phenomenon 

occurs due to the so-called bias-variance trade-off. Mathematically, the trade-off 

can be represented as: 

  𝐸𝑟𝑟(𝑥) = 𝐸 [(𝑌 − 𝑓(𝑥))2] 

 

( 1 ) 

 
  𝐸𝑟𝑟(𝑥) = (𝐸[𝑓(𝑥)] − 𝑓(𝑥))2 + 𝐸 [(𝑓(𝑥)  −  𝐸[𝑓(𝑥)])2] +  𝜎𝑒2 

 

( 2 ) 

 
 𝐸𝑟𝑟(𝑥) = 𝐵𝑖𝑎𝑠2 + 𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 + 𝐼𝑟𝑟𝑒𝑑𝑢𝑐𝑖𝑏𝑙𝑒 𝐸𝑟𝑟𝑜𝑟 

 

Bias is the estimation error between the actual value and the predicted value, which 

occurs due to generalization. Variance is the variability of the model prediction i.e., 

how much would our prediction change, if we estimated a model using a different 

data set. The trade-off occurs when we attempt to fit the data (approximate the 

function) in such a way that ensures the highest possible out-of-sample 

performance. If we underfit the data, the bias is too high. If we overfit the data, the 

variance is too high. Consequently, to ensure the best performance of the model we 
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strive to find the ‘correct’ amount of both bias and variance i.e., minimize the total 

error. In practice this trade-off is regulated by changing the hyper-parameters of the 

models (e.g., the λ in LR or the k in kNN). 

Commonly, out-of-sample performance of the model is unknown. Therefore, we 

use techniques to estimate it and to ‘tune’ the hyper-parameters in a way that 

maximizes it. The most widely used technique is Cross Validation (CV). CV can 

be implemented in various ways. However, the idea behind all the implementations 

is similar: We separate the data into the training set and validation set, fit the model 

using the training set, and use the validation set to estimate the out of sample 

performance. We can use this approach just to estimate the out of sample 

performance of our model, to (continuously) change the hyper-parameters to 

achieve the maximal estimated out-of-sample performance, or to select the best 

performing model out of our selected model set. 
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4    Sample Selection and Data Description 

4.1    Characteristics of PE Fund Data 

In the recent years there has been significant growth in the amount of PE data 

accessible to researchers. This growth was spurred by the increase in the number of 

available commercial data suppliers. Currently the main commercial PE data 

providers are Burgiss, Cambridge Associates, Pitchbook, Preqin and Venture 

Economics. The reported data of the providers can be separated into performance 

related data (e.g., IRR, multiples), fund-level statistics (e.g., strategy, location, size) 

and cash flow level data (e.g., distributions, contributions). 

The potential biases caused by the differences in reported data of the suppliers were 

investigated by Brown et. al. (2015). They concluded that for North American (NA) 

BO funds all reviewed data providers i.e., Cambridge Associates, Burgiss, 

PitchBook and Preqin, have similar sample sizes. However, there are some notable 

differences across databases in coverage of NA VC funds, which stem from the 

differences in data collection techniques employed by the data providers. Despite 

the differences in NA VC fund coverage, all reviewed data sources provide similar 

signals on fund performance for both NA VC and NA BO funds. Outside NA, 

coverage varies substantially across databases for BO funds. However, performance 

measures are relatively consistent. For VC funds outside NA both the coverage and 

performance vary significantly by database. 

The PE related data used throughout this thesis has been sourced solely from the 

Preqin database. Consequently, the analysis could be improved by using a 

combination of data from different providers, which would minimize the selection 

bias. Preqin provides financial data and information on the alternative assets 

market, as well as tools to support investment in alternatives. Its data encompasses 

private capital and hedge funds, including fund, fund manager, investor, 

performance, and deal information. The asset classes it covers are PE, VC, hedge 

funds, private debt, real estate, infrastructure, natural resources, and secondaries. In 

addition to a variety of institutional investors Preqin collects performance data 

directly from fund managers. The performance figures from institutional investors 

are obtained via Freedom of Information Act (FOIA) requests (or their parallel 

outside the U.S.). Institutional LPs include CalPERS, Washington State Investment 

Board, and Florida State Board of Administration, among many others both in the 
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US and the UK. Additionally, fund managers of over 2200 firms submit a 

substantial proportion of Preqin’s performance data, with Preqin reaching out to 

regular contributors every quarter to ensure the reported data is the latest available. 

Other sources of data include listed firm financial reports, public filings, and annual 

reports. 

To ensure the collected data is consistent with Preqin’s calculation methodologies, 

the GPs and FOIA (or their parallel outside the U.S.) sources must comply with 

certain guidelines when submitting their data. Moreover, Preqin has a designated 

internal Performance Team, who is tasked with reviewing the aforementioned data 

and cross-referencing it against a benchmark of similar funds, as well as against 

other sources reporting for the same fund.  Consequently, the data provided on the 

database is as accurate as possible. The downside of the public approach to data 

collection is that the reliance on FOIA disclosures and voluntary submissions may 

lead to a sample that is not representative of the universe of funds. Because FOIA 

taps only certain types of investors (e.g., public pension funds) and because of 

voluntary submission (especially by GPs) the reported data may introduce selection 

and survivorship biases.  

4.2    Sample Selection 

To construct the sample of BO and VC funds a combination of both performance 

related data and cash flow level data was used, as well as fund-level statistics. The 

Appendix provides additional detail on the employed data supplementation process. 

4.2.1    Independent Variables 

The set of predictors was selected based on the reviewed literature and the available 

data. For macroeconomic drivers the GDP and Treasury bond were sourced from 

FRED (Federal Reserve Economic Data), while the MSCI world index return was 

sourced from WRDS (Wharton Research Data Services). Table 2 provides an 

overview of the selected variables. 
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Table 2: Overview of the independent variables 

The table provides the name and a brief description of the selected predictors used in the 
analysis, as well as the type of each variable. The predictors for which the squared term 
was also included in the analysis, have a note included in their description. 

 

Variable Description Type 

fund_size 
The size of commitments to a PE 
fund (squared term also included). 
 

Numerical 
(Continuous) 

fund_no_overall 

The number of funds raised by the 
fund manager (squared term also 
included). 
 

Numerical 
(Discrete) 

fund_no_series 

The number of funds raised by the 
fund manager in a specific series 
(squared term also included). 
 

Numerical 
(Discrete) 

geo_diversified 

Indicates whether the fund invests in 
firms located in a single or multiple 
countries.  
 

Binary 

ind_diversified 

Indicates whether the fund invests in 
firms operating in a single or multiple 
industries.  
 

Binary 

VC_specialization 

Indicates whether the fund invests in 
firms in a specific financing stage or 
firms in different financing stages 
(VC funds only). 
 

Binary 

geo_focus 
Indicates whether the fund invests 
primarily in NA, EU or Other. 
  

Categorical 
(3 categories) 

GDP_yoy 

The nominal (YoY) growth rate if the 
US GDP in the vintage year of the 
fund. 
 

Numerical 
(Continuous) 

DGS10 
The yield of a 10-year US Treasury 
bond in the vintage year of the fund. 
 

Numerical 
(Continuous) 

MSCI_World_yoy 
The annual return of the MSCI world 
index in the vintage year of the fund. 
 

Numerical 
(Continuous) 

funds_raised_in_VY 
The number of funds raised in the 
vintage year of the fund. 
 

Numerical 
(Discrete) 
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4.2.2    Dependent Variable 

In this thesis PME was selected as the appropriate metric for fund performance. 

However, the availability of data allows for a similar analysis to be performed for 

the IRR and TVPI metrics, as well. Out of all the available PME implementations, 

the original KS-PME was chosen, based on the reasons discussed in the literature 

review section. For some of the funds in the sample Preqin provided the KS-PME 

values. For others the values were calculated from the cash flow level data (detailed 

procedure described in the Appendix). The formula used for KS-PME calculations 

is as follows:  

The Future Value (FV) at a given date n is calculated for all distributions and 

contributions (Cash Flows) of a fund:  

  𝐹𝑢𝑡𝑢𝑟𝑒 𝑉𝑎𝑙𝑢𝑒 = (𝐶𝑎𝑠ℎ 𝐹𝑙𝑜𝑤)𝑡  ×  (𝑆&𝑃500 𝑉𝑎𝑙𝑢𝑒)𝑛(𝑆&𝑃500 𝑉𝑎𝑙𝑢𝑒)𝑡  

 

( 3 ) 

 

for all t ∈ (0, n) 

Where n is either the date when the fund is officially dissolved (for liquidated funds) 

or the date of the last reported Net Asset Values (NAV) (for closed funds). KS-

PME is subsequently calculated as:  

  𝐾𝑆 − 𝑃𝑀𝐸 =  Σ FV(Distributions) + 𝑁𝐴𝑉𝑛Σ FV(Contributions)  

 

( 4 ) 

 

 

Where NAV is equal to zero for liquidated funds and reported by the GP for closed 

funds.  

Since the NAVs are reported by the GP, questions about the validity of the reported 

values arise. The paper by Brown et. al. (2019) investigates if PE funds manipulate 

reported returns. They conclude that underperforming managers inflate reported 

returns, but are less likely to raise subsequent funds, while top performing funds 

understate valuations. The index value used in the KS-PME calculation is the 

‘close’ value of the S&P500 index, sourced from the WSJ. If the transaction 

occurred outside of trading days, the last available index value was used. 
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The final dataset consists of 1434 funds, out of which 721 employ a BO strategy 

and 713 employ a VC strategy. Their vintages range from 1985 to 2017. Funds 

raised after 2017 were excluded due to not completing the majority of their 

investments and as such the validity of their performance forecast would be 

questionable. Moreover, 72% of the funds invest primarily in NA, followed by 

16%, which invest in EU and the remaining 12% invest in other regions. 

Furthermore, 435 of the funds in the sample are liquidated, while 999 are closed. 

The collective committed capital for the funds in the sample amounts to 1.58 trillion 

USD. Table 3 contains the descriptive statistics of the sample. 

Table 3: Descriptive statistics 

The table provides the descriptive statistics of the VC and BO samples, as well as the entire 
sample pre-split. The value in the parenthesis below each category is the standard deviation. 
All the statistics are provided for the sample post-preprocessing i.e., the data that is directly 
used by the ML algorithms. 

 VC BO All 

Fund Size ($Mn) mean 

Fund Size ($Mn) median 

 

 

448.72 
280.0 

(651.68) 

1749.86 
752.5 

(2753.66) 

1102.92 
425.5 

(2108.17) 

Fund No. Overall mean 

Fund No. Overall median 

 

 

4.74 
4.0 

(3.98) 

5.0 
4.0 

(5.29) 

4.87 
4.0 

(4.68) 

Fund No Series mean 

Fund No. Series median 

 

 

3.91 
3.0 

(2.80) 

3.78 
3.0 

(2.26) 

3.84 
3.0 

(2.55) 

PME mean 

PME median 

 

 

1.16 
0.97 

(1.05) 

1.16 
1.11 

(0.49) 

1.16 
1.05 

(0.82) 

TVPI mean 

TVPI median 

 

 

1.92 
1.5 

(2.07) 

1.76 
1.63 

(0.81) 

1.83 
1.59 

(1.57) 

IRR (%) mean 

IRR (%) median 
 
 

11.74 
8.6 

(35.35) 

13.34 
13.2 

(18.10) 

12.54 
11.4 

(28.04) 

Called (%) mean 

Vintage mean 
95.48 
2007 

94.10 
2009 

94.79 
2008 

No of Funds 713 721 1434 
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4.3    Data Preprocessing 

Data preprocessing includes transforming or otherwise preparing the data so it can 

be interpreted and parsed by learning algorithms. Prior to data preprocessing the 

sample contained 6211 funds, out of which 5471 had calculated IRRs, 5833 had 

calculated TVPIs and 698 had calculated PMEs. After the data supplementation 

procedure, the sample consisted of 1475 funds, all containing their respective 

performance values. Subsequently, funds with missing relevant predictor data were 

excluded, resulting in a sample of 1434 observations. 

4.3.1   Constructing Categorical Variables 

Preqin provides the location and industry in which the funds’ investments are 

focused. Moreover, it provides the information about the financing stage of the 

investment companies of the fund, as well as which strategy the fund employs. The 

large number of categories in the geographical focus variable provided by Preqin 

makes it impractical to use as is. Consequently, I reduced the number of the funds’ 

geographical focus categories to EU, NA and Other, which is in line with the 

analyses conducted in past literature. Furthermore, I categorized the industry 

diversification variable as diversified if the fund invested in companies located in 

multiple industries and non-diversified if it invests in companies located in a single 

industry. Similar categorization was employed for the geographical diversification 

variable and the VC specialization variable (used for VC funds only). For 

categorizing the fund strategy variable, I relied on prior research, which classifies 

the strategies as either BO or VC (see Appendix for detailed explanation of the 

categorization process), and accordingly separated the dataset.  

4.3.2   Encoding Categorical Variables 

Encoding categorical data i.e., converting the data into numerical values, is 

necessary to ensure the proper functioning of the ML algorithms. Moreover, the 

performance of many ML algorithms is dependent on the encoding procedure used 

for categorical variables. There exist many different ways in which categorical data 

can be encoded, and the technique used is dependent on what type of categorical 

data the sample contains. Categorical data can be classified as ordinal or nominal. 

The data is ordinal, if the categories can be ordered in some way (e.g., low, medium, 

high), while the data is nominal, if such ordering is not possible (e.g., Norway, 

USA, Brazil). The sample of funds, used in the analysis contains nominal data, with 

up to three categories. Consequently, I selected binary encoding if a given variable 
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consisted of two categories, and one-hot encoding if a given variable consisted of 

three categories. To encode the dependent variable, I constructed a custom encoder, 

which sets the KS-PME variable as 1 if its value exceeds a predefined hurdle rate, 

and as 0, otherwise. The hurdle rate for this analysis was set to 1, to separate the 

funds which have outperformed the public equity market, from those who did not. 

However, the code allows for an arbitrary hurdle rate. Table 4 contains categorical 

variables, their respective categories, and their encoding.  

Table 4: Categorical variables 

The table provides the result of applying the encoding methods and the type of encoders 
used for each of the categorical variables. 

Variable Categories Encoding 

geo_diversified 1 – diversified 
0 – non-diversified 

Binary 

geo_focus 

 
[1, 0, 0] – EU focused 
[0, 1, 0] – NA focused 
[0, 0, 1] – Other  
 

One-Hot 

ind_diversified 
1 – diversified 
0 – non-diversified 
 

Binary 

VC_specialization 
1 – specialized 
0 – non-specialized 
 

Binary 

KS-PME 
1 – exceeds hurdle rate 
0 – subceeds hurdle rate 
 

Binary 

 

If the variable has two categories, binary encoding is equivalent to label encoding 

i.e., encoding each category as a positive integer (e.g., 0 – Cat, 1 – Dog, 2 – Cow, 

3 - Chicken). However, if the variable has more than one category, one-hot 

encoding is used for nominal data and label encoding is used for ordinal data. The 

reason for this selection is that label encoding nominal data might artificially 

introduce a relationship between the different categories (i.e., 1 is less than 2 and 2 

is less than 3), and as such might cause the ML algorithm to malfunction.  

4.3.3   Transformations and Feature Scaling 

Before the ML algorithms are applied, the sample’s numerical data is usually 

transformed. The reason for the transformation is to either help the data become 

more interpretable, for the data to meet the assumptions of inferential statistics, to 
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ensure the proper functioning of a ML algorithm, or to deal with potential outliers, 

which worsen the out-of-sample performance of the model. The selection of models 

used on the sample data includes linear models, which perform better if the data is 

normally distributed. Consequently, I performed log-transformations on the 

fund_size and fund_no_overall right-skewed variables to make them approximately 

conform to normality. Moreover, the fund_no_overall variable contained outliers, 

whose effects I reduced by Winsorizing the data to the 99-percentile range. To 

ensure the proper functioning of the distance-based ML algorithms (e.g., kNN), I 

standardized the data using the z-score normalization method. Additionally, the 

standardization process improves the efficiency of most ML algorithms, by 

increasing the speed of learning and thus leading to faster convergence. The z-score 

normalization method is implemented by applying the following formula to each 

observation of the sample’s numerical data: 

  𝑧 =  𝑥 − �̅�𝜎  

 

( 5 ) 

 

 

Where z is the new value, x is the old value, �̅� is the mean of the data, and σ is the 

standard deviation of the data.  

The result of applying the method transforms the data so the mean of the values is 

zero and the standard deviation is one. Importantly, the order in which the data 

transformation methods are performed is paramount. Firstly, either log-

transformation or Winsorization should be performed. Since the log-transformation 

is monotonic, Winsorizing the data before or after leads to the same result. 

Secondly, standardization (or other data rescaling techniques) should be applied. 

The reason behind this ordering is that performing log-transformation after 

standardizing the data would either not be possible (log-transforming negative 

values is impossible) or would defeat the purpose of the standardization procedure 

(log-transforming the data would result in it no longer having a mean of zero and 

standard deviation of one). The standardization procedure should also strictly be 

done after splitting the sample into the test and training split. The reason is that if 

standardization is performed before, the test split might contain information about 

the training split i.e., the mean and standard deviation of the entire sample. 
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Consequently, the estimation of the out-of-sample performance, would not really 

be out-of-sample. 
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5    Research Methodology 

 

To demonstrate the feasibility of predicting PE returns, I used several principally 

different ML models: Logistic Regression, k-Nearest Neighbours, Linear Support 

Vector Classifier, Support Vector Machine, Decision Tree, and Random Forest. 

Moreover, I used CV to ‘tune’ the hyperparameters of each of the aforementioned 

models, as well as to improve the estimate of the models’ out-of-sample 

performance. 

5.1    Cross Validation Implementation 

After the sample data has been appropriately prepared for use in the ML models, it 

must first be divided into the Test and Training set. The optimal size of each set is 

not clearly defined, however, for small datasets, as the one used in this thesis, the 

recommended split is 15% Test and 85% Training. Consequently, I split my original 

datasets (BO and VC) according to this recommendation. The reason for the 

Train/Test division is that we want to accurately evaluate the ML models’ 

performance i.e., ensure that the models are general enough to be applied to data, 

which the algorithm has not ‘seen’ before. Consequently, we use the Training set 

to, intuitively, train the model and the Test set to evaluate its performance strictly 

after all the training is completed. Additionally, a Validation set is usually extracted 

from the Training set. It is used to ‘tune’ the models’ hyperparameters and evaluate 

their performance. This technique of evaluating a ML model by training it on the 

subsets of input data (Training set) and evaluating it on the complementary subsets 

of data (Test and Validation set) is CV.  There are many ways in which CV can be 

implemented (e.g., Hold-out Method, Shuffle Split Method, Leave-One-Out 

Method etc.). The appropriate method is selected based on the type of input data 

(e.g., time-series data requires a different CV approach than cross-sectional data) 

and the task requirements (e.g., medical ML applications require a more 

complex/exhaustive CV approach than marketing ML applications). For the 

purposes of this thesis, I selected the Stratified K-Folds Method with six folds.  

5.1.1   Stratified K-Folds Method 

The K-Folds CV Method is implemented by randomly splitting the Training set into 

K unique datasets, with (generally) the same number of samples. The model is 

subsequently trained on K-1 datasets and evaluated on the Kth dataset. The process 
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is repeated until all the folds are used in the evaluation and training. The result is a 

selection of scores, which are calculated based on the model’s performance in each 

of the evaluation folds. These scores can successively be used in the hyperparameter 

selection process, or they can be averaged to get an estimate of the model’s out-of-

sample performance. The scoring method used in this thesis is accuracy scoring, 

whose loss function is the zero-one loss function: 

  𝐿(𝑖, 𝑗) = { 0     𝑖 = 𝑗 1     𝑖 ≠ 𝑗         𝑖, 𝑗 ∈ 𝑀 

 

( 6 ) 

 

 

Where M is the set of class labels (In the case of this thesis over or underperform). 

The function returns 0 as many times as the model classifies the objects correctly (i 

= j) and 1 as many times as the model classifies the objects incorrectly (i ≠ j). 

Therefore, the accuracy score of a model for which the loss function returned ‘1’ 

seven times and ‘0’ three times would be 30%. 

The stratified K-folds CV Method replaces the random sampling of data into folds 

with stratified sampling. This ensures that each fold includes an approximately 

equal ratio of labels. In the case of this thesis, that would mean that each fold 

includes an approximately same number of funds that have outperformed the public 

equity market. The reason for selecting this specific method is that it is not as 

computationally intensive, while still being an improvement over the traditional 

Leave-One-Out Method. Furthermore, since the purpose of the evaluated ML 

models is not deployment, but instead more of a proof of concept, complicated CV 

approaches are unnecessary. Moreover, the stratified method was used instead of 

the traditional one, because the dependent variable’s distribution is skewed. 

Consequently, using the stratified method over the traditional one leads to better 

model performance.  

5.2    Model Overview 

In the following model operation descriptions n will be used to indicate the number 

of observations in the sample. In the case of this thesis, n = 1434 i.e., the total 

number of funds. Furthermore, p will denote the number of independent variables. 

In the case of this thesis p = 13 for the BO dataset, and p = 14 for the VC dataset. 
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Moreover, the values of the independent variables will be represented in a matrix 

X: 

  

𝑋 =  (𝑥11 ⋯ 𝑥1𝑝⋮ ⋱ ⋮𝑥𝑛1 ⋯ 𝑥𝑛𝑝) 

 

( 7 ) 

 

  

Where the value of the independent variable j ∈ [1, p] for fund i  ∈ [1, n] is xij. 

The values of the dependent variable will be represented as a vector y: 

  𝑦 =  (𝑦1⋮𝑦𝑛) 

 

( 8 ) 

 

 

Where the value of the dependent variable for fund i  ∈ [1, n] is yi. In the case of 

this thesis yi ∈ {0, 1}. 

5.2.1   Logistic Regression 

The Logistic Regression model is the simplest linear parametric model used to solve 

binary classification problems. It is an adjustment of the Linear Regression model, 

in a way that limits the possible prediction results between zero and one. It does this 

by changing the fitting function into the sigmoid (also called logistic) function: 

  ℎ(𝑥) = log ( 𝑝(𝑥)1 − 𝑝(𝑥)) =  𝛽0 +  𝛽1𝑋1 + ⋯ +  𝛽𝑝𝑋𝑝   

( 9 ) 

 

 

Where X = (X1,…, Xp) are the predictors, p(x) is the predicted probability that the 

dependent variable is equal to one, and β = (β0,…, βp) are the coefficients we are 

trying to estimate.  

Due to the model’s structure, it can be fitted (i.e., its coefficients estimated) using 

LS. However, the more general method of maximum likelihood is preferred, due to 

its favourable statistical properties. The intuition behind the ML method in the case 

of this thesis is that it tries to find the coefficients, which result in a probability that 

is close to one (zero) for all funds that outperformed (underperformed) the public 
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equity market. This is implemented by choosing the coefficients, which maximize 

the likelihood function: 

    𝑙(𝛽0, 𝛽1, … , 𝛽𝑝) = ∏ 𝑝(𝑥𝑖) ∏ (1 − 𝑝(𝑥𝑖′))𝑖′:𝑦𝑖′ = 0𝑖:𝑦𝑖 = 1  

 

( 10 ) 

 

 

Importantly, the classification of fund, based on the predicted probability can be 

selected appropriately. The default setting is that the funds whose probability of 

outperforming the public equity market is greater or equal than 0.5, are classified 

as outperforming and others as underperforming.  

The advantages of using a simple linear model are that its results have high 

interpretability (e.g., a one-unit increase in fund_size is associated with an increase 

in the log odds of PME > 1 by 𝛽𝑓𝑢𝑛𝑑_𝑠𝑖𝑧𝑒 units). Moreover, the model’s simplicity 

enables it to perform better on data with few observations and/or data whose signal-

to-noise ratio is low (which is the case in this thesis and often the case with financial 

data). However, overfitting might occur, as a consequence of including too many 

predictors in the model. I mitigate this problem in two ways. Firstly, I only include 

features selected based on the reviewed literature. Consequently, I have a strong 

reason to believe that all included independent variables provide important 

predictive value to the model. Secondly, I use a regularization technique to penalize 

the inclusion of predictors which do not adequately improve the fit. Regularization 

methods reduce the variance (at the cost of an unequal increase in the bias) of the 

coefficient estimates by shrinking them towards zero. Consequently, by choosing 

the appropriate amount of penalization, we can achieve the minimum estimated out-

of-sample error. Because of the belief of the importance of all included predictors, 

I selected the Ridge Regularization method (also called L2 Norm Regularization). 

This method allows for shrinkage of the coefficients towards zero, but not setting 

them to zero (i.e., not excluding them). The amount of penalization is regulated via 

the parameter λ. If λ is set to 0, then there is no penalization and if λ is set to infinity, 

then all the coefficient estimates will approach zero. To select the amount of 

penalization that leads to the lowest estimated out-of-sample error, I used 6-Fold 

Stratified CV. The disadvantage of using this model is that it is not flexible. 

Consequently, if the underlying assumption of linearity does not hold, the model 
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will perform poorly. Furthermore, capturing interaction effects between the 

predictors is possible only if they are included in the independent dataset, which 

becomes unviable with an increasing number of predictors.  

5.2.2   K-Nearest Neighbours 

K-Nearest Neighbours is the simplest non-parametric model, which can be used to 

solve binary classification problems. It classifies a given observation x0, by 

estimating the conditional probability that the observation belongs to a given class, 

based on the response values of the K datapoints ‘closest’ to it. In the case of this 

thesis that would mean a fund is predicted to outperform the public equity market, 

because the funds whose predictors exhibited similar values, also outperformed the 

public equity market. Mathematically, the conditional probability is estimated as: 

  Pr(𝑌 = 𝑗|𝑋 =  𝑥0) = 1𝐾  ∑ 𝐼(𝑦𝑖 = 𝑗)𝑖 ∈ 𝐴0  

 

( 11 ) 

 

 

Where j is a class (In the case of this thesis outperforming), A0 is the set of K points 

‘closest’ to observation x0, and 𝐼(𝑦𝑖 = 𝑗) is the zero-one loss function. Intuitively, 

the observation x0 is subsequently assigned to the class with the largest probability 

(The boundary probability for classification is 0.5 by default and was not changed 

in the analysis). 

The advantage of using this model is that the method of finding the appropriate 

solution is very intuitive and therefore simple to explain. Moreover, it is 

computationally fast and the model itself is very flexible. Therefore, it can be used 

to estimate a decision boundary of any form. The main drawbacks of using this 

method is its low interpretability and the curse of dimensionality. With an 

increasing number of predictors, it becomes increasingly more difficult to find 

points, which are close to each other. In the case of this thesis that would mean that 

a fund cannot be classified, since no other fund in the dataset exhibited predictor 

values similar to those of that fund. The bias-variance tradeoff of kNN can be 

regulated via the K parameter. If K is equal to one, the variance is the highest (the 

bias is the lowest) and there is severe overfitting. If K is equal to n then the variance 

is the lowest (bias is the highest) and the classification is simply determined by the 

number of observations in the sample that belong to a given class. Consequently, 
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the value of K is selected so that the model achieves the highest possible out of 

sample performance. I used 6-Fold Stratified CV to estimate the out-of-sample 

performance of models with different values for K and selected the one with the 

highest accuracy score. 

5.2.3   Support Vector Classifier and Support Vector Machine 

The SVC (also known as a Linear Kernel SVM) is a linear parametric ML model, 

which classifies the observations in the sample dataset via the use of a hyperplane. 

A hyperplane is a p – 1 dimensional space that is used to separate the observations. 

Therefore, if an observation lies on one side of the hyperplane it is placed in one 

class and vice versa. The hyperplane is positioned so that the perpendicular distance 

from the closest observations to the hyperplane is maximal. Consequently, only the 

closest observations to the hyperplane determine its position and orientation and are 

thus appropriately renamed to Support Vectors. The mathematical representation of 

the SVC is: 

  

𝑓(𝑥) =  𝛽0 +  ∑ 𝛼𝑖𝐾(𝑥𝑖, 𝑥𝑖′)     ;     𝐾(𝑥𝑖, 𝑥𝑖′) =  ∑ 𝑥𝑖𝑗𝑥𝑖′𝑗𝑝
𝑗=1    𝑖 ∈ 𝑆  

 

( 12 ) 

 

 

Where 𝛽0 and 𝛼𝑖 are the coefficients, we are trying to estimate, S is the set of the 

support vector points and, 𝐾(𝑥𝑖, 𝑥𝑖′) is the Linear kernel function i.e., the inner 

products of the observations. The mathematical explanation as to why only the inner 

products of support vector observations affect the linear classifier 𝑓(𝑥), is beyond 

the scope of this thesis.  

Since all the observations are not always linearly separable, the SVC allows for 

some to be positioned on the wrong side of the hyperplane. The number and severity 

of the violations is determined by the tuning parameter C. If C is equal to zero then 

no violations are allowed, which, if the separation is possible, leads to the highest 

possible fit to the Training data. However, this solution is not very robust since a 

single observation sufficiently close to the existing hyperplane can severely impact 

its position and orientation. Thus, the tuning parameter C controls the bias-variance 

tradeoff. If C is small, then variance is high (bias is small) and accordingly if C is 

large the variance is small (bias is high). The advantages and disadvantages of this 
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ML model are similar to those of the Logistic Regression and the prevention of 

overfitting is handled in an equivalent way as well.  

SVM extend the SVC by allowing for non-linear boundaries and can thus be 

implemented to solve non-linear classification problems. It achieves this by 

enlarging the feature space i.e., including more features. While the feature space 

can be enlarged simply by adding squares, cubes etc. to the Linear Kernel function, 

the computationally viable alternative is to use different kernel functions. 

Consequently, the 𝐾(𝑥𝑖, 𝑥𝑖′) function in equation ( 12 ) can be changed based on 

the sample data and user preferences (e.g., Polynomial Kernel, Sigmoid Kernel 

etc.). For the purposes of this thesis, I selected the Radial Kernel, whose function 

is: 

  

𝐾(𝑥𝑖, 𝑥𝑖′) = exp (−𝛾 ∑(𝑥𝑖𝑗  − 𝑥𝑖′𝑗)2𝑝
𝑗=1 ) 

 

( 13 ) 

 

 

Where 𝛾 is a positive constant, which regulates the gradient of the decent of the 

Radial Kernel function and can be ‘tuned’ via CV to achieve the lowest estimated 

out-of-sample error. The advantages of SVM over SVC is that the model allows for 

a greater degree of flexibility and can achieve a better performance when dealing 

with non-linear classification problems.  

5.2.4   Decision Tree and Random Forest 

Decision Trees are non-parametric models that classify the observations in the data 

sample by stratifying or segmenting the predictor space into a number of simple 

regions, based on a set of splitting rules. There exist several different splitting rules, 

based on which the algorithm automatically decides on the predictor and the value 

of that predictor, upon which it splits the set. The most basic rule is the classification 

error rate minimization. It entails minimizing the number of the Training 

observations in a specific region that do not belong to the most common class. In 

the case of this thesis, that would mean creating splits that group together the funds 

that have outperformed or underperformed the public equity market, based on the 

values of the predictors. However, the classification error rate minimization is often 

not sufficiently sensitive. Consequently, other measures are preferable (e.g., Cross-

entropy, Log loss). For the purposes of this thesis, I selected the Gini index criterion, 
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which is a measure of total variance across the two classes i.e., node purity. The 

tree grows by repeating the splitting process on each of the subsequently created 

regions. The depth of the tree i.e., the total number of splits made, is controlled by 

the hyperparameter d. Intuitively, the depth hyperparameter also controls the bias-

variance tradeoff. If d is small the variance is low (bias is high) and vice versa. 

Therefore, the depth of the tree is selected via CV. The advantage of using decision 

trees is that they can capture both linear and non-linear predictor relationships. 

Nonetheless, linear models tend to perform better in case of linear relationships. 

Furthermore, they are very simple to explain and closely mirror the human decision-

making process. However, in practice they often do not display the same level of 

predictive accuracy as other classification approaches. Moreover, they have 

inherently high variance i.e., they often fail to generalize, since a small change in 

the training data can result in a very different set of splits. The main reason for this 

is the propagation of the change in a split to all the splits below it.  

RFCs significantly improve the performance of DTCs by producing multiple trees, 

which are combined to yield a single consensus prediction. In the classification 

setting the prediction is made by obtaining a class vote from each tree, and then 

classifying using a majority vote. When building each tree of the forest, the number 

of features, the features themselves, and the data used is randomly selected from 

the Training set. Consequently, the correlation between the trees is reduced and the 

model is less sensitive to the original dataset. The number of trees generated by the 

algorithm and the maximum depth of each tree is controlled hyperparameters. In 

practice the number of trees should be as high as will still improve the model and 

the depth should be enough to achieve the desired number of observations for each 

node split. Using the RFC offers many advantages. They have very high 

interpretability, and they often perform remarkably well with very little parameter 

tuning required. Furthermore, they can capture complex interaction structures in the 

data and can be used to estimate linear and non-linear decision boundaries. 

5.3    Model Comparison 

5.3.1   Confusion Matrix 

After the models have been trained on the Training data, their performance is 

assessed using the Test data. The performance assessment is based on the number 

of correct and incorrect predictions generated by the model.  
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These results are generally represented in a Confusion Matrix: 

  

[ 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 (𝑃𝑃) 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 (𝑃𝑁)𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 (𝑃) True Positive (𝐓𝐏) False Negative (𝐅𝐍)𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 (𝑁) False Positive (𝐅𝐏) True Negative (𝐓𝐍)] 

 

( 14 ) 

 

 

Where P and N are the number of observations in the Test data, with positive and 

negative outcomes (funds which have outperformed or underperformed the public 

equity market), respectively. Moreover, PP and PN are the number of positive and 

negative predictions of the outcomes, based on the observations in the Test data. 

TP (FN) is the number of positive outcomes that were predicted correctly 

(incorrectly). TN (FP) is the number of negative outcomes that were predicted 

correctly (incorrectly). 

From the results of the confusion matrix, different metrics of model performance 

can be derived: 

  𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  𝑇𝑃 + 𝑇𝑁𝑃 + 𝑁 =  𝑇𝑃 + 𝑇𝑁𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁 

 

( 15 ) 

 

  𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  𝑇𝑃𝑃 =  𝑇𝑃𝑇𝑃 + 𝐹𝑁 

 

( 17 ) 

 

 

For the purposes of this thesis, precision is the most important metric. This is 

because we want to ensure that the funds, we invest in, will overperform the desired 

benchmark i.e., we want to minimize investment mistakes. Consequently, 

sensitivity is not as important since it essentially measures the ‘missed 

opportunities’ for fund investment. The relatively higher importance of precision 

  𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  𝑇𝑃𝑇𝑃 + 𝐹𝑃 

 

( 16 ) 
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compared to recall is a desired characteristic of our ML use case, since there is 

usually a tradeoff between a high precision and a high sensitivity in practice. 

5.3.2   ROC Curve 

A different way of evaluating binary classification model performance is by 

measuring the area under the Receiver Operating Characteristic (ROC) Curve. The 

ROC Curve is constructed by plotting the True Positive Rate (TPR) against the 

False Positive Rate (FPR). TPR is simply another term for Sensitivity, while FPR 

can be derived from the Confusion Matrix as follows: 

  𝐹𝑃𝑅 =  𝐹𝑃𝑁 =  𝐹𝑃𝐹𝑃 + 𝑇𝑁 

 

( 18 ) 

 

 

The ROC curve can be interpreted as a representation of the costs (FP) and benefits 

(TP) of using a particular model. The perfect classification model would have a 

FPR equal to zero and TPR equal to 100%, while a random guess i.e., a model that 

has a 50% chance of correct classification (e.g., a coin flip), would be represented 

as a diagonal line from the origin to the 100% TPR and FPR points. Consequently, 

the points above the diagonal represent good classification results and points below 

represent bad results. To rank the effectiveness or predictive power of a model more 

simply, the area under the ROC Curve is used. The larger the Area Under the Curve 

AUC the better the model. While the appropriateness of the AUC as a performance 

measure has been questioned (e.g., by Hanczar et. al. (2010)) it is still extensively 

used in the ML community.  

  



37 
 

6    Analysis and Results 

6.1    Model Selection 

Given the different investment strategies, styles, and operations of VC and BO 

funds all the models were applied to datasets comprised of the funds of each type. 

Furthermore, the probability threshold used to classify the funds was 50%. 

Consequently, the funds who were expected to outperform the benchmark with a 

50% probability or higher were classified as outperforming and those with a lower 

probability were classified as underperforming. However, the models allow for the 

adjustment of the threshold according to user preferences. To ease the model 

selection process, I constructed a scoring system which assigns a final score to the 

model by equally weighing the Accuracy, Precision, and AUC scores. The 

performance of the models is summarised in Table 5: 

Table 5: ML model performance 

The table provides the performance results based on the appropriate metrics discussed in 
Chapter 5.3. All the results were calculated using the Test dataset. CV represents the mean 
of the CV folds accuracy scores, ACC represents accuracy, as given by equation ( 15 ); 
PCS represents precision, as given by equation ( 16 ); and AUC  is the performance measure 
described in Chapter 5.3.2. The abbreviations for model names are given in the List of 
Abbreviations. FS is the final score of the model, constructed by equally weighing the 
aforementioned scores. 

Model 
BO 

CV   ACC   PCS   AUC  FS 

VC 

CV   ACC   PCS   AUC  FS 

LR 0.62   0.60   0.64   0.64  0.627 0.56   0.59   0.57   0.59  0.583 

kNN 0.60   0.61   0.63   0.58  0.607 0.58   0.56   0.54   0.59  0.553 

SVC 0.64   0.63   0.63   0.64  0.633 0.54   0.53   0.55   0.63  0.570 

SVM 0.61   0.63   0.64   0.60  0.623 0.58   0.65   0.65   0.67  0.657 

DTC 0.60   0.53   0.63   0.53  0.563 0.59   0.66   0.67   0.64  0.657 

RFC 0.59   0.53   0.60   0.54  0.557 0.57   0.63   0.63   0.66  0.640 

 

For the BO dataset, SVC is the best performing model, while for the VC dataset 

DTC and SVM are the top performers. Overall, all of the models, in both datasets 

have a greater classification capability than the random classifier. Furthermore, the 

BO dataset model’s scores are on average similar than that of the VC dataset, 

indicating that the selected predictors contain information about BO funds and VC 
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funds. In the BO dataset, linear models are the best performers, indicating that the 

relationship between the selected predictors and fund performance is linear or, more 

likely, that the data’s Signal-to-Noise Ratio is low and therefore simpler models 

perform better. In the VC dataset, non-linear models are the best performers, 

indicating that the relationship is non-linear, or that they are able to capture complex 

effects, which linear models are unable to. Surprisingly, the performance of RFC is 

lower than DTC in the VC dataset. Given that RFC improves upon the DTC 

approach the expected results is the opposite. Figure 1 shows the ROC curves of 

the models of both the datasets: 

 

Figure 1: ML model ROC curves 

The figure illustrates the ROC Curves for the BO and VC dataset. The dotted diagonal line 
represents the ROC of the random binary classifier. 

  

 

6.2    Predictor Analysis 

The primary aim of this thesis was to test the viability of using ML to assist in PE 

fund investment decision making process. However, the interpretability of results 

is an important and desired model characteristic and will consequently be discussed 

as well. From the selected model set, LR, SVC and RFC offer insight into the 

importance of the selected predictors. Since LR and SVC have similar solution 

approaches, the SVC coefficient results will not be discussed. Because LR is a 

parametric model, the insight into predictor importance can be gained through 

model coefficient estimates. The LR model coefficient values are illustrated in 

Figure 2: 
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Figure 2: Logistic Regression coefficient estimates 

The figure illustrates the parameter values for the BO and VC dataset. The x-axis contains 
parameter names while the y-axis contains their values. The bar plots were generated using 
the Training data i.e., the same subset of data that was used to train the model and obtain 
results in Table 5. 

   

 

The coefficients for geographic focus show similar results for both BO and VC 

funds. However, the effect of European fund focus is proportionally lower in VC 

funds than BO funds, which might be attributed to a lower percentage of European 

funds included in the VC dataset (see Appendix). Furthermore, the effect of 

industry diversification for both VC and BO funds is shown to be negative, which 

is inconsistent with the findings of Lossen (2006), who finds a positive relationship 

to fund performance, and with Aigner et. al. (2008) who does not observe any 

relationship. Moreover, geographical diversification is shown to have a negative 

effect for both VC and BO funds, for which Lossen (2006) and Aigner et. al. (2008) 

find no effect. The VC Specialization (i.e., diversification across financing stages) 

coefficient’s positive effect is consistent with the findings of Lossen (2006). The 

effect of fund size for BO funds is consistent with the findings of Kaplan and Schoar 

(2005), Roggi et. al. (2019), and Harris et. al. (2022), which identify a concave 

relationship to performance. However, for VC funds the relationship suggested by 

the LR coefficients is convex. Furthermore, manager experience, measured by 

fund_no_overall and fund_no_series demonstrates differentiating effects for BO 

and VC funds. Firstly, fund_no_overall has a negative effect on fund performance 

for both VC and BO funds. Moreover, it exhibits a concave relationship. The 

negative effect is conflicting with the results with the work from Kaplan and Schoar 

(2005), Roggi et. al. (2019), and Harris et. al. (2022). Secondly, fund_no_series is 
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shown to have a positive effect on performance for BO funds and a negative effect 

for VC funds. The positive effect is in line with prior research, while the negative 

effect is not. The effects of macroeconomic performance drivers for BO funds 

correspond to the findings of the reviewed literature. Additionally, the 

macroeconomic drivers, except for GDP_yoy, also exhibit effects in line with the 

literature. 

The features with the highest (relative) predictive power for both datasets are 

Other_focus, VC_specialized, and DGS10_yoy. 

There are several different explanations as to why funds, which invest outside of 

NA or EU are predicted to be less successful. Firstly, they consist of newer funds, 

which are consequently not liquidated and therefore underestimate their residual 

value (Brown et. al., 2019). Secondly, PE markets in these areas are less developed, 

and as such administrative, travel, and other associated costs might be higher. 

Finally, regulatory constraints in these countries might inherently cause the returns 

to be lower. As mentioned in the Literature Review section, the general hypothesis 

of diversification is that it harms returns. The reason for this is the high degree of 

information asymmetry and agency problems present in the industry. Consequently, 

having specialized knowledge of the companies in a particular financing stage is 

assumed to be beneficial in the PE firms’ portfolio company selection process. The 

positive effect of this predictor implies that these costs outweigh the benefits of 

diversification. The reason interest rates have a negative impact on performance 

might be that in times when interest rates are high, the number of companies which 

are able to use debt financing decreases. As such they seek alternative ways of 

financing i.e., rely on PE firms. Consequently, the number of ‘good’ investment 

opportunities increases, and the associated performance of PE firms is higher. The 

degree of predictive power DGS10_yoy has on VC funds, compared to BO funds is 

surprising, since debt financing is usually associated with BO fund performance. 

The reason for this might be the higher percentage of NA funds in the VC dataset, 

for which the chosen interest rate proxy is more appropriate. 
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The importance of predictors as per the RFC is given in Figure 3: 

 

Figure 3: Random Forest feature importance 

The figure illustrates the importance of features in the RFC for the BO and VC dataset. The 
x-axis contains parameter names while the y-axis contains the mean decrease in impurity. 
The bar plots represent the feature importances of the forest, along with their inter-trees 
variability, which is represented by the black error bars. The bar plots were generated using 
the Training data i.e., the same subset of data that was used to train the model and obtain 
results in Table 5. 

 

 

The RFC calculates feature importance based on how much that feature is used in 

each tree of the forest. The importance of a feature is computed as the meaned 

reduction of the criterion, brought by that feature. In the case of this thesis the Gini 

Criterion is used to evaluate the splits, which can also be interpreted as a measure 

of node purity. Thus, the vertical axis of the plots in Figure 3, represent the mean 

decrease in impurity. In the RFC the higher the column in Figure 3, the more 

important the feature is deemed to be e.g., the most important feature for both 

datasets is the fund’s size and its square. 

The economic reasons behind the fund_size feature’s importance are several. A 

fund’s size determines how many portfolio companies a PE firm can have. 

Subsequently, a firm with more portfolio companies enjoys the benefits of 

diversification. However, the firm with fewer companies can pay more attention to 

its individual investments. Moreover, larger funds have less difficulty dealing with 

the fixed costs associated with running a PE fund, compared to smaller funds.  
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7    Conclusion 

 

The intention of this thesis was to examine the viability of using ML tools to assist 

in PE investors investment decision making process. The chosen metric for fund 

performance assessment is the KS-PME, due to its ability to reflect risk adjusted 

returns and its rising popularity among LPs. Consequently, the fund selection 

question was translated into a binary classification problem. The funds were 

classified based on whether they outperformed a user specified PME benchmark. 

Those that outperformed the benchmark were classified as outperforming and those 

that did not were classified as underperforming. The analysis was conducted using 

the KS-PME = 1 benchmark, which translates the problem into a selection of funds 

which are predicted to outperform or underperform the S&P500 public equity 

index. The ML models chosen to take on this binary classification problem, were 

trained and tested on data ranging from fund-level statistics to macroeconomic data. 

Moreover, all the data used in was acquired from either commercial or publicly 

available data sources. Relevant predictors were selected based on prior research 

on PE performance drivers as well as data availability. Due to the difference in the 

investment strategies of VC and BO funds, the original dataset was appropriately 

split. Consequently, all the models were trained on separate datasets. The analysis 

showed promising results for both VC and BO funds, with the top performing 

models in each dataset reaching 63% and 66% accuracy, respectively. For the BO 

dataset, linear parametric models performed better than non-parametric models, 

which can most likely be attributed to the privation of data. For the VC dataset, non-

linear models performed better, suggesting the presence of complex effects, which 

simpler models are unable to capture. The findings indicate a possibility of using 

ML as a complementary tool in the PE investment decision making process. They 

allow investors to scour many investment opportunities and perform detailed due 

diligence on only the most promising ones. Furthermore, they can adjust the desired 

return (benchmark) based on their own risk profile.  

While the research conducted in the thesis was intended to be proof of concept, 

there are several improvements that can be made to enhance the ML model 

performance. Firstly, several datasets sourced from different data providers can be 

used to minimize the sample selection bias. Moreover, proprietary data and 
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predictors can be included to further personalize the fund selection process. 

Secondly, the values of the used predictors were based on the vintage year of the 

fund (e.g., funds raised in the vintage year). Consequently, some of the used 

information may not be available to investors at the time of fund raising and the 

predictions would be incorrect. Therefore, an improved ML model would be trained 

on the data available on investors when the investment is made. Finally, due to the 

long holding periods of PE funds, a large proportion of funds included in the sample 

is not liquidated. Consequently, the NAVs, reported by the GPs, used in the PME 

calculation might be erroneous. As such, using a dataset which contains fewer non-

liquidated funds can offer a significant improvement.   
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A    APPENDIX 

A.1    Data Supplementation Process 

For the data supplementation process, a combination of two datasets was used. The 

first one is the Fund-level dataset, which contains predictor variable’s data and 

performance data. The second one was the Cash-Flow-level dataset, which 

contained information about the distributions and contributions of funds as well as 

basic fund-level data information.  

The reason the data supplementation procedure was necessary is because of the 

missing data in the Fund-level dataset. The details are provided in Table 6. 

 

Table 6: Fund-level data - missing data breakdown 

The table provides the information on the missing values of the Preqin provided fund level 
data. The data was not subjected to any processing or filtering, except for the limitation of 
the vintage to 2017 or younger and fund strategy to Buyout, Turnaround, Venture Capital, 
and Growth. The data is provided for the dataset after removing the duplicates. 

 Present Missing 

Fund Size 

 
5895 282 

Fund No. Overall  
 

6123 54 

Fund No Series 

 
6066 111 

KS-PME 

 
694 5483 

TVPI 
 

5801 376 

IRR 

 

5440 737 

Vintage 
 

6177 0 

Strategy 
 

6177 0 

Status 

 
6177 0 

Geographic focus 

 
6133 64 

Industries 
 

6141 36 
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Originally the Fund-level dataset contained 6211 funds. After removing the 

duplicates, the dataset contained 6177 funds.  

The Cash-Flow-Level dataset contained the information of 2410 funds. However, 

the dataset did not contain the information on important predictors (e.g., Fund No 

Series), and could therefore not be used in the analysis. Consequently, the missing 

performance data in the Fund-Level dataset would have to be supplemented by the 

performance data calculated from the Cash-Flow-Level dataset. 

To calculate the KS-PME value, equation ( 4 ) was used. For the IRR calculation I 

used the pyxirr library, which calculates the IRR in the same way as Excel and 

Preqin. However, since the IRR is not calculation is not always possible, the IRR 

values were missing for some funds. The TVPI was calculated using the procedure 

described in Section 3.1.2. 

Since the Cash-Flow-Level dataset did not necessarily include all of the transactions 

(i.e., distributions and contributions) that a fund has made, the performance metrics 

would have to be ‘close enough’ for the supplementation to be possible. Therefore, 

if the PME/TVPI/IRR value from the Cash-Flow-Level dataset was within a certain 

threshold of the corresponding value from the Fund-Level dataset, the 

supplementation was allowed, otherwise the observation was dropped. The 

thresholds selected were absolute, and their values were 0.05 for PME and TVPI 

and 0.5% for IRR. 

The details of the supplementation rules are provided in Table 7. 
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Table 7: Supplementation rules 

The table provides the information the conditions which had to be satisfied for the 
supplementation of the performance metrics in the Fund-Level dataset, with those 
calculated using the values in the Cash-Flow-Level dataset. TVPI, PME, and IRRfl 
represent the existence of these performance metrics in the Fund-Level dataset. IRRcf 
represents the existence of IRR in the Cash-Flow-Level dataset. If the number below the 
given threshold is 1, that signals that the value exists in that dataset. However, if it is 0, that 
signals it does not. The right column represents the action, written in bold, and the reasons 
for the action, where applicable. 

TVPI  IRRfl  PME  IRRcf  

0        0        0        0 Drop – No Values Exist 
0        0        0        1 Drop – No Values To Compare 
0        0        1        0 Drop – Missing IRR 
0        0        1        1 No Funds Satisfy Condition 
0        1        0        0 Drop – Missing IRR 
0        1        0        1 Check IRR 

0        1        1        0 Check PME 

0        1        1        1 Check PME and IRR 

1        0        0        0 Drop – Missing IRR 
1        0        0        1 Check TVPI 

1        0        1        0 Drop – Missing IRR 
1        0        1        1 Check TVPI and PME 

1        1        0        0 Check TVPI 

1        1        0        1 Check TVPI and IRR 

1        1        1        0 All Values are Available 
1        1        1        1 All Values are Available 

 

After the performance metric supplementation procedure, all the funds with missing 

predictor data were dropped, resulting in a final sample size of 1434 funds. 

 

A.2    Data Categorization Process 

The categorical predictors used in the analysis contained an unpractical number of 

categories when sourced directly from Preqin. Consequently, I grouped some of the 

categories to achieve the categorization structure described in Table 4. The 

geography related variables were constructed from the Geographic Focus variable 

from the Fund-Level dataset. For the geo_diversified variable, the grouping of 

categories is described in Table 8. 
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Table 8: Geographic diversification category grouping 

The table provides the description of the grouping used to construct the categories of the 
geo_diversified variable. If the category was grouped into the (Non-)Diversified group it is 
written under the (non-)diversified column. 

Diversified Non-Diversified 

North America US, France, Israel 
West Europe South Africa, Germany 
Asia Canada, Thailand, Mexico 
Europe UK, Italy, China, Turkey 
South Asia Australia, Japan, India 
Nordic Brazil, Poland, Lithuania 
Central and East Europe Greater China, Indonesia 
North Africa Finland, Peru, Portugal 
Americas New Zealand, Denmark 
Sub-Saharan Africa Russia, South Korea 
Africa Netherlands, Spain 
East and Southeast Asia Switzerland 
South America  
Australasia  

 

For the geo_focus variable, the grouping is described in Table 9. 

 

Table 9: Geographic focus category grouping 

The table provides the description of the grouping used to construct the categories of the 
geo_focus variable. If the category was grouped into the NA, Europe it is written in the 
respective column. If the category is not in either NA or Europe, it was classified as Other. 

NA Europe 

North America West Europe, Europe 
US Nordic 
Canada Central and East Europe 
 France, UK, Italy 
 Poland, Lithuania 
 Finland, Portugal 
 Denmark, Russia 
 Netherlands, Spain 
 Switzerland 
 Germany 

 

For the ind_diversified variable, the grouping was done similarly to the 

geo_diversified variable. 
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In the literature, a funds strategy is classified as either VC or BO. However, Preqin 

recognizes additional strategies, which were subsequently grouped in the 

aforementioned categories. The grouping approach was the same as the one used 

by Brown et. al. (2015). The VC group encompassed the following strategies used 

by Preqin: Growth, Venture (General), Early Stage: Seed, Early Stage, Early Stage: 

Start-up, Expansion / Late Stage. Consequently, the VC funds were categorized as 

non-specialized, if their strategy was Venture (General) and specialized if their 

strategy was one of the others available. The BO group encompassed the following 

strategies used by Preqin: Buyout, Turnaround. 

 

A.3    Distributions and Statistics of the Predictive Variables 

The distributions of the predictor variables are given below. The histograms of the 

BO dataset are on the left and are given in red, while the histograms for the VC 

dataset are on the right and are given in blue. 

Figure 4: Predictive variable distributions 

The figure illustrates the histograms of the predictive variables in the analysis. The 
histograms are given before any transformations were applied on the features. 

  

  



53 
 

  

  

  

  



54 
 

The macroeconomic predictor statistics for BO and VC funds are given in Table 10 

and Table 11, respectively 

Table 10: BO fund macroeconomic variable statistics 

The table provides the descriptive statistics of the macroeconomic variables used in the 
analysis of BO funds.  

 min max mean median stdev 

GDP_yoy 

 

-1.98 7.85 4.17 4.19 1.76 

DGS10 

 

-1.84 1.22 -0.17 -0.16 0.53 

MSCI_World_yoy 

 

-22.17 30.88 9.87 14.35 13.83 

funds_raised_in_VY 1 106 75.31 78 26.49 

 

Table 11: VC fund macroeconomic variable statistics 

The table provides the descriptive statistics of the macroeconomic variables used in the 
analysis of VC funds.  

 min max mean median stdev 

GDP_yoy 

 

-1.98 7.85 4.45 4.20 1.72 

DGS10 

 

-2.95 1.22 -0.14 -0.13 0.54 

MSCI_World_yoy 

 

-22.17 30.88 10.07 15.51 15.12 

funds_raised_in_VY 1 106 70.19 78 27.88 

 

A.4    Hyperparameter Analysis 

The hyperparameters for the models were selected by using 6-Fold Stratified CV 

for each parameter value. Consequently, the parameter who achieved the highest 

accuracy score was selected. The hyperparameter plots for the models where a 

single hyperparameter was tuned are given below. The tuning for the (VC) BO 

dataset is presented on the (left) right in (blue) red. 
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Figure 5: Hyperparameter tuning 

The figure illustrates the plots of the accuracy scores for different given hyperparameters 
values. The plots are displayed for the models for which a single hyperparameter was tuned. 

  

  

  

  




