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Abstract 

We estimate the trend and cycle of real GDP in Norway using a multivariate 

Beveridge–Nelson decomposition with a large information set. This method allows 

us to identify a small collection of variables that are major business cycle drivers. 

Using a dataset of 76 variables covering various sectors of the economy, we find 

that the implied output gap measure accounts for all historical recessions between 

1983 and 2021 and reveals a minimal set of variables that are important drivers of 

the business cycle: Unemployment, Total Reserves, GDP growth, Government 

Final Consumption Expenditure, Wages, Sight Deposit Rate, Income, Hours 

Worked, and Private Final Consumption Expenditure. 
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1. Executive Summary 

As the economy continues to grow and becomes more vulnerable to international 

and domestic macroeconomic developments, it would be highly beneficial to be 

able to predict the future economic path. The business cycles of a country can 

measure the economic situation and have implications for fiscal and monetary 

policy, and our findings may give valuable insight to policymakers. Identifying 

which variables drive the economy, in order to forecast business cycles, provides 

an opportunity for new knowledge of the path of output and its deviations from 

trend. In order to measure the business cycle, we can use the output gap to estimate 

the most important variables that drive the output growth. The output gap describes 

the difference between actual and potential output, where potential output is the 

level of output that is consistent with stable inflation. A positive output gap, 

meaning that actual output is higher than potential output, indicates pressures in the 

economy, usually accompanied by rising inflation. Contrariwise, a negative output 

gap indicates spare capacity and falling inflation (Bjørnland, Brubakk, & Jore, 

2005). This output gap may be informative for the central bank to quantify 

macroeconomic indicators.   

  

The aim of our thesis is twofold. The first objective is to estimate the output gap 

using a multivariate Beveridge-Nelson decomposition with large Bayesian vector 

autoregressions. The second objective is to establish which conditioning variables 

are most influential in generating output gap fluctuations. For both of these 

objectives, we wish to utilize the methods proposed by Morley and Wong (2020) 

in their paper “Estimating and accounting for the output gap with large Bayesian 

vector autoregressions” and apply this to Norwegian data. In doing so, we must 

consider that, in contrast to the US, Norway is a small open economy with a more 

considerable reliance on oil exports (Bjørnland, 2000), which might have particular 

implications for our second objective.  

 

As a first step, we collect a dataset containing 76 macroeconomic variables 

informed by a number of sources that may, in totality, contain sufficient information 

to describe the Norwegian economy. Next, we shrink the model towards a smaller 

collection of relevant variables and establish a 26-variable benchmark model. We 

estimate the output gap using our benchmark model to assess our first objective and 
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show that this collection of variables accurately represents the large dataset. To 

investigate our second objective, we calculate the standard deviation of 

informational contribution of the variables to the estimated output gap to identify 

the variables that contribute most to output gap fluctuations. We then apply this 

insight to estimate the output gap using a 9-variable model to examine objective 

two further. To check for robustness, we compare all three various-sized models 

and find that our results are robust in estimating the output gap fluctuations. We 

find that the nine variables: unemployment, total reserves, GDP growth, 

government final consumption expenditure (GFCF), wages, income, sight deposit 

rate, hours worked, and private final consumption expenditure (PFCE) provide the 

minimum set of variables that can accurately estimate the output gap fluctuations, 

and as such can, in future research, be informative for predicting future business 

cycles. 
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2. Literature Review  

2.1 Previous research on Norwegian business cycles   

In order to shed light on our research question, we want to examine previous 

literature on Norwegian business cycles for comparison. For this reason, we will 

briefly discuss the papers by; Bjørnland (2000), Aastveit, Jore, and Ravazzolo 

(2016), and Bjørnland, Brubakk, and Jore (2005).  

 

Bjørnland (2000) analyzes the stylized facts of the Norwegian business cycles by 

comparing different detrending methods such as the Beveridge-Nelson (BN) 

decomposition and the Hodrick-Prescott (HP) filter. Estimating the trend and cycle 

using the BN decomposition, Bjørnland treats the trend as the long-term forecast of 

the series after adjusting for the average rate of change. This method was applied 

to establish the initial trend component and determine the trend and cycle 

components. The paper highlights some advantages but also explains some 

disadvantages of fitting low order Autoregressive Integrated Moving Average 

(ARIMA) models in a univariate setting, which seemingly tend to overestimate the 

random walk components of the data.  

 

Interpreting the results, which emphasize a structural break in the trend in some of 

the variables, Bjørnland found some stylized facts. For all decompositions, the 

variables of investments and imports in Norway are highly volatile, while 

consumption and productivity have lower volatility than GDP. In contrast, 

Bjørnland found that when using a BN decomposition, the variable ‘money’ also 

ranks as the most volatile. Furthermore, the paper shows that GDP is procyclical 

while unemployment is persistently countercyclical and leads the cycle by one 

quarter, except when using the BN decomposition. Overall, the correlation 

coefficients are much lower than in other OECD countries. According to the paper, 

there is evidence that investment is leading GDP, whereas imports and productivity 

are lagging GDP. Furthermore, Norwegian output has a small correlation 

coefficient compared to other industrial countries, explained by the “fact that 

Norway is a small oil-producing country, which has experienced much more 

idiosyncratic shocks than many other OECD countries” (Bjørnland, 2000, p. 390). 

Finally, the results of Bjørnland’s paper show that using the HP filter on difference-

stationary or trend-stationary time series may create spurious cycles.   
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Another paper that has aimed to forecast Norwegian business cycles is the article 

by Aastveit, Jore, and Ravazzolo (2016). Their article defines and forecasts 

Norwegian business cycle turning points using a univariate and a multivariate Bry-

Boschan (BB) approach. For technical details on the BB approach, see Bry and 

Boschan (1971). The authors use real-time out-of-sample forecasting to show that 

univariate Markov-switching models are timely and accurate in calling the last peak 

in real-time but not too accurate and timely in calling the through in real-time.   

 

The abovementioned paper yields interesting results that may provide valuable 

insights into our two objectives. The methods used in their study differ from ours, 

but the article defines the historical business cycles of Norway in the period 

1978Q1-2011Q4 and investigates which variables to use in real-time forecasting of 

Norwegian business cycles. The authors argue that one should use data for mainland 

Norway as the measure of economic activity when investigating economic 

conditions in Norway. In doing so, one excludes oil and gas extraction and 

international shipping by omitting offshore activity. The reasoning behind their 

choice is that the large fluctuations of offshore activity may have minor short-term 

effects on the Norwegian labor market and domestic production. Further, in the 

short-term, the mainland economy is insulated from fluctuating revenue from the 

petroleum sector, and all revenues are transferred to the sovereign wealth fund with 

fiscally determined withdrawals each year. In their choice of variables for inclusion 

in the models, the authors find that particularly important variables in the 

Norwegian economy are the Brent blend oil price, employment in mainland 

Norway, household consumption, private real investments in Norway, exports of 

traditional goods, and GDP for mainland Norway. 

 

Aastveit et al. focus on predicting peaks and troughs of the business cycle, and they 

do not detrend the data as is often done when working with business cycles. In 

analyzing the dates for troughs and peaks in the Norwegian economy, the authors 

find that taking durations and amplitude into account while using a so-called 

“triangular approach,” the size of the cumulative change from peak to trough in 

Norway is quite similar to that in the US but smaller than in the other European 

countries. On the other hand, for the cumulative change from trough to peak, the 
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numbers are much larger, and still, the statistics of the Norwegian economy are 

closer to the US statistics than the other countries. While this does not mean that 

the Norwegian and US economies are the same, it is interesting to note the similarity 

in movement.   

 

There are many ways to estimate the output gap in an economy, and the paper by 

Bjørnland, Brubakk, and Jore (2005) investigates some methods of estimation in 

the Norwegian economy. Different estimation methods may yield different results, 

and historical estimates might also change when the data is revised. The problem 

of data revision is primarily disregarded in the paper but is still a concern worthy 

of mention. For the comparison, the authors have decided to group the methods into 

two main categories: univariate methods and multivariate methods.   

 

Bjørnland et al. propose several methods of detrending in a univariate case, such as 

the HP filter, band-pass, and univariate “unobserved component” methods (UC). 

The HP filter and band-pass decomposition have several drawbacks, like the end-

of-sample problem for the HP filter and the exclusion of the estimated output gap 

at the beginning and end of the sample for band-pass when not extending the dataset 

with forecasting. For the multivariate case, the paper introduces the production 

function method (PF), which emphasizes the supply-side factors like resources and 

technology on the potential output. Considering the use of HP-filtering in this 

method makes us aware of the potential problems of PF. A second method in the 

multivariate case is the multivariate “unobserved component” method (MVUC) 

which uses unemployment, domestic inflation, and the relationship between these 

two variables and the output gap. Although this method has several advantages, it 

is highly dependent on assumptions that must be placed on the relationship between 

the variables. Finally, the structural vector autoregression (SVAR) model in the 

paper introduces three variables to estimate the output gap and has the advantage 

of imposing few constraints. However, the constraints must be highly consistent 

with economic theory to avoid misleading results.   
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2.2 Previous literature on the output gap   

The literature on the output gap is too vast and we do not attempt to cover its entirety 

in this section. For a more complete overview of different estimation methods for 

the output gap, see Bjørnland and Thorsrud (2015). In this section, we focus on a 

paper by Morley and Wong (2020) which estimates and forecasts the output gap 

and finds the most impactful variables using US data.   

 

The paper uses the BN decomposition based on a Bayesian vector autoregression 

to estimate the trend and cycle of a large information set. The article tackles two 

considerations: firstly, they examine which conditioning variables contain the 

relevant information pertaining to the output gap by solving for the BN trend as a 

function of forecast errors for different variables, and in doing so, they are 

accounting for the variables’ contribution. Secondly, they utilize the Bayesian 

shrinkage method to mitigate the problem of overfitting in finite samples when 

working with models of large information sets. Morley and Wong used an empirical 

application of up to 138 different variables covering the US economy and found 

that the most important variables containing information beyond that in output 

growth for estimating the output gap are the unemployment rate and inflation. 

Further, they found six additional variables that to a lesser extent contain relevant 

information, which in total makes for an 8-variable model that accurately estimates 

the output gap.  

 

In order to determine the variables that span the relevant information, Morley and 

Wong account for the BN trend and cycle in terms of contributions from different 

forecast errors in the vector autoregression (VAR). These forecast errors are used 

to define a relevant information set and to interpret which variables are most 

important for estimating the trend and cycle of a target variable. To avoid overfitting 

the model, the authors applied Bayesian shrinkage, using a Minnesota prior with a 

key hyperparameter is considered to minimize the pseudo-out-of-sample forecast 

error variance for the target variable, mitigating the effects of sampling error for 

larger systems.   
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2.3 Research on our choice of methodology    

As we have chosen to apply the Beveridge-Nelson decomposition and utilize 

Bayesian estimation, we find it necessary to evaluate previous literature on related 

subjects to validate our choice of methodology. Firstly, we examine the original 

paper by Beveridge and Nelson (1981) as the baseline for our approach, followed 

by an introduction to the proposed approach to avoid overestimation by Banbura, 

Giannone, and Reichlin (2010), using Bayesian shrinkage. Finally, we discuss 

sources on the advantages and disadvantages of different detrending methods.  

 

The well-known paper by Beveridge and Nelson (1981) introduced a new method 

to decompose data and shed light on the advantages of using their proposed 

approach. The method decomposes the non-stationary time series into a permanent 

and a transitory component, in which the permanent component is a random walk 

with drift and the transitory one is a stationary process with a zero mean.   

  

The methodology proposed by Beveridge and Nelson is based on the observation 

“that any time series which exhibits the kind of homogeneous non-stationarity 

typical of economic time series can be decomposed into two additive components, 

a stationary series and a pure random walk” (Beveridge & Nelson, 1981, p. 153). 

Their paper shows that the permanent component, i.e., the trend, of their 

decomposition will always be a random walk with drift. The transitory component 

is a stationary process with a zero mean, which perfectly correlates with the 

permanent component. For this reason, we wish to use the BN decomposition so as 

not to infer spurious cycles when dealing with random walks with drift. This 

decomposition method also allows the time series to contain a unit root.   

 

Another problem we wish to mitigate is that of the end-of-sample problem. This 

problem presents severe concerns for studying real-time developments in indicator 

series since future observations are unavailable, and a moving average method 

would have to fill this gap, typically with the latest observations of the sample. The 

way in which Beveridge and Nelson proposed to decompose time series allows us 

to mitigate this problem. The procedure of cycle measurement is as follows; firstly, 

there is an identification of an ARIMA model for the first differences of the non-

stationary series of interest, and secondly, a numerical evaluation of the cycle 
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component using a practical equivalent of the uncorrelated error terms and their 

constants, lambda. In doing so, the computed value of the cyclical component will 

only contain past values of the observed series, thus mitigating the end-of-sample 

problem.   

  

Morley and Wong (2020) express a concern that when using a multivariate VAR, 

the many sources of information in the data may disturb the estimating model and 

generate an overestimation of the variables, which may impact which variables 

drive the output gap. Banbura et al. (2010) solve this problem and show how 

Bayesian shrinkage in a vector autoregression model is an appropriate tool for 

structural analysis in large dynamic models. The paper introduces parameter 

restrictions to account for overparameterization when the model contains a larger 

set of variables. According to the paper, Bayesian shrinkage in dynamic systems 

suggests a better forecast performance and solves the problem of over-

parameterization. The paper draws further on a discovery by Litterman, who 

introduced the Minnesota prior, which is a prior belief on the parameters, and found 

that setting the degree of shrinkage in relation to the model size controls for an over-

fitting of the model in the case of collinearity in large systems. This Minnesota prior 

is a principle that all equations are ‘centered’ around the random walk with drift for 

some variables and white noise for others. This prior is a natural conjugate and 

“shrinks all the VAR coefficients towards zero except for coefficients on the first 

lags of the dependent variable in each equation” (Koop, 2013, p. 177). The findings 

show that the overall shrinkage should increase as the model itself increases. 

  

Furthermore, Banbura et al. introduce three sizes of models from previous 

literature; a 7-variable model, a 20-variable, and a 131-variable model, and finds a 

sufficient size of model for the purpose of forecasting. The process of selecting 

variables starts with making the series stationary using the first difference. Then, a 

random walk prior is selected, and the paper concludes that a 20-variable BVAR 

model is feasible and remains robust. The paper by Banbura et al. is fundamental 

for selecting our model size and the forecast performance in terms of including a 

shrinkage prior.   
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Previous literature on decomposition methods by Christiano and Fitzgerald (2003) 

and Hodrick and Prescott (1997), namely the band-pass and HP decomposition, 

respectively, are typically used in a univariate setting. However, according to 

Morley and Wong (2020), these two decomposition methods often must be 

validated with information outside the model with other sources of information, and 

it can be difficult in a multivariate setting to determine which variables to include 

in the information set and how large it can be. The BN decomposition addresses 

this problem in combination with a vector autoregression. 

 

As proposed in Evans and Reichlin (1994), the BN decomposition handles the 

cyclical component of output with the economically beneficial interpretation that 

the growth of output that exceeds the trend of output is forecasted as the return to 

trend. That is, the deviation between the output trend over time and the current level 

of output is the cycle, often referred to as the output gap. In contrast to other 

detrending methods, such as the HP filter, the BN decomposition proposes 

advantages in mitigating problems that can occur in time series data. In a critique 

by Nelson and Kang (1981), using the fact that the unit root of a time series cannot 

be rejected and that stochastic shocks to the output permanently affect the time 

series, they found that detrending data that is following a random walk will infer 

spurious cycles in the data. Spurious cycles in the series can come from detrending 

a deterministic trend and may cause the persistence of the cyclical component to be 

over-estimated while under-estimating the trend component. Using the BN 

decomposition, thus allowing the series to contain a highly volatile unit root, we 

mitigate the problem of spurious cycles when dealing with random walks with drift. 

Following the critique from Nelson and Kang, the detrending mechanisms in the 

HP filter may generate spurious cycles even if they are not present in the data 

(Bjørnland, 2000).   

 

According to the critique by Hamilton (2018), the HP-filtering also proposes the 

disadvantage of the end-of-sample problem. As the detrending method penalizes 

any temporary shocks in the trend with its smoothing parameter using data ex-ante 

and ex-post its current level, any penalizing at the end of the sample will be absent. 

The lack of smoothing results in more sensitivity at the end of the sample, thus 

allowing for spurious cycles and higher volatility.   
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Although the BN detrending of time series may give different results when 

choosing different levels of ARMA, Morley and Wong (2020) find that the results 

are relatively robust when including more lags, given Bayesian shrinkage. A 

summary of the advantages and disadvantages of the most common detrending 

method is presented in Table 1 below.   

 

Table 1: Detrending methods 

Detrending  Advantages Disadvantages 

Hodrick- 

Prescott 

Easy to understand  

Easy to compute  

End-of-sample problem 

Spurious cycles 

Typically used in a univariate setting 

Validates outside the model 

Choosing smoothing parameter, a prioi  

Results are not robust to the value of the 

smoothing parameter 

Band-Pass Can easily change frequency, which 

expands the range of questions we 

can explore 

End-of-sample problem 

Typically used in univariate setting  

Validated outside the model 

Selection of preferred frequencies a priori  

Beveridge-

Nelson  

Easy to understand  

Relatively easy to implement 

Not inferring spurious cycles  

Mitigates end-of- sample problem 

Multivariate VAR 

Overestimation of variables  

Time-consuming  

Selection of ARMA may give different 

results  
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3. Methodology and estimation 

3.1 Theory and Model 

3.1.1 BN Decomposition for a single variable  

In the original article by Beveridge and Nelson (1981), they propose a univariate 

method of decomposing the trend and cycle. Generally, in order to identify the 

permanent and cyclical components, it is necessary to specify models that can be 

written as a stationary moving average process. For this reason, BN decompositions 

typically utilize ARIMA models to numerically evaluate the cycle using the 

uncorrelated error terms and their constants.   

 

It has, however, later been shown that the implied trend of the BN method can be 

defined as the minimum mean squared error (MSE) forecast of the long-run level 

of the series minus any deterministic drift. Alternatively, one can formulate the BN 

trend as the present level of the series plus the infinite sum of the minimum MSE j-

period ahead first difference forecasts (Bjørnland & Thorsrud, 2015, p. 142). 

Specifically, let 𝑦௧ be a time series process with a trend component that follows a 

random walk with a constant drift 𝜇, the BN trend 𝜏௧  at time 𝑡 is: 

 

𝜏௧ ൌ lim
୨→ஶ

ൣ 𝑦௧ା௝ െ 𝑗 ∗ 𝜇 ൧        ሺ1ሻ   

 

The BN cycle, 𝑐௧, is then simply the difference between the observed time series 

and trend at time 𝑡: 

 

𝑐௧ ൌ 𝑦௧ െ  𝜏௧         ሺ2ሻ 

 

 

3.1.2 BN Decomposition for multiple variables  

To address objective two, we would need the use of a multivariate setting to 

investigate the contribution of each of the benchmark variables to output gap 

fluctuations. For this reason, we will move away from a univariate setting as 

described in Beveridge and Nelson (1981) and consider a multivariate setting as 

described in a paper by Evans and Reichlin (1994). Evans and Reichlin show that 

when working with a multivariate setting, we will obtain different estimates than 
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those of a univariate setting using the BN decomposition. It is important to note 

that, while univariate BN decompositions typically imply ARIMA models, it is 

more common to consider a linear VAR model when moving to the multivariate 

case. Intuitively, output growth can be more accurately forecasted in multivariate 

models, resulting in a larger proportion of fluctuations in output growth being 

attributed to the cyclical component compared to the univariate case (Evans & 

Reichlin, 1994). Following the arguments of Morley and Wong (2020), we also 

know that the inclusion of variables that do not necessarily contain marginally 

relevant information for the forecast of the target variable will not yield different 

results than if we merely included the marginally relevant information sets. 

However, omitting one or more variables that span the relevant information, the BN 

cycle would have a strictly smaller variance. The key insight here is that the 

exclusion of any variable from the VAR representation that alters the BN cycle for 

output belongs in the model.   

 

If the vector of variables of interest, 𝛥𝑥௧, has a finite-order VAR(p) representation, 

then it has the following companion form (Morley & Wong, 2020):  

 

ሺ∆𝑋௧ െ 𝜇ሻ ൌ 𝐹ሺ∆𝑋௧ିଵ െ 𝜇ሻ ൅ 𝐻𝑒௧        ሺ3ሻ 

 

Where ∆𝑋௧ ൌ ሼ∆𝑥௧ᇱ,∆𝑥௧ିଵ
ᇱ , … ,∆𝑥௧ି௣ାଵ

ᇱ ሽ′, 𝜇 is a vector of unconditional means, F is 

the companion matrix, H is the VAR forecast errors of the companion form, and 𝑒௧ 

is a vector of serially uncorrelated forecast errors, such that 𝐻𝑒௧~𝑁ሺ0, Σሻ, and the 

eigenvalues of the companion matrix are less than one in absolute value. 

Consequently, given stationarity, we assume ሺ𝐼 െ 𝐹ሻିଵ exists.  

 

Next, we wish to solve for the BN trend and cycle. We denote 𝜏௧ and 𝑐௧ as vectors 

of the trend and cycle, respectively, and we calculate the trend to be the present 

level of the series, 𝑋௧, plus the infinite sum of the minimum MSE j-period ahead 

first difference forecasts (Morley, 2002): 

 

𝜏௧ ൌ 𝑋௧ ൅ lim
௝→ஶ

෍𝐸൫∆𝑋௧ା௝ െ 𝜇൯        ሺ4ሻ
ஶ

௝ୀଵ
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Analytical derivation from Equation (4) to Equation (5) can be found in section B 

of the Appendix. The trend is further defined by using the infinite sum of the 

geometric sequence of the companion matrix, F. The infinite sum of geometric 

series/sequence ∑ 𝐹௧ ൌ ଵ

ଵିி
ൌ ሺ1 െ 𝐹ሻିଵஶ

௧ୀ଴ , where |𝐹| ൏ 1, given the stationary 

time series. Thus, we can define the trend as follows: 

 

𝜏௧ ൌ 𝑋௧ ൅ 𝐹ሺ𝐼 െ 𝐹ሻିଵሺ∆𝑋௧ െ 𝜇ሻ        ሺ5ሻ 

 

The observed time series vector X is defined by the BN trend and cycle,  

𝑋௧ ൌ 𝜏௧ ൅ 𝑐௧, and the cycle is then defined by:  

 

𝑐௧ ൌ െ𝐹ሺ𝐼 െ 𝐹ሻିଵሺ∆𝑋௧ െ 𝜇ሻ        ሺ6ሻ 

 

The original paper by Beveridge and Nelson examined the univariate case, and 

since we are in a multivariate setting, we turn to Evans and Reichlin (1994) to 

determine how to find the relevant conditioning variables for the model. In this 

setting, the relative importance of the cyclical component depends on the size of 

the information set and is necessarily higher with multivariate BN decompositions. 

Intuitively, a larger information set may result in better forecasts of output growth, 

thus leading to a bigger attribution of the output fluctuations to the cyclical 

component. The variance of the trend component is invariant to the size of the 

information set, but the variance of the cyclical component is not. Generally, a 

larger information set leads to a higher variance of the cyclical component. 

However, should we have variables in the information set that are not marginally 

relevant for the forecasting of the target variable, then we would not see an increase 

in the cycle variance as the size of the information set increases. Following the 

notation of Morley and Wong (2020), let 𝑤௧ denote the vector of variables that span 

the relevant information, which follows a 𝑉𝐴𝑅ሺ𝑝∗ሻ process where 𝑝∗ is the true lag 

length of the VAR process. Then, with population values for 𝐹 and 𝜇, and with 

Δ𝑋௧ ൌ 𝑊௧ where 𝑊௧ ൌ ൛𝑤௧ᇱ, 𝑤௧ିଵ
ᇱ , … , 𝑤௧ି௣∗ାଵ

ᇱ ൟ
ᇱ
, Equations (5) and (6) would 

recover the true trends and cycles for 𝑥௧.  

 

Turning back to Evans and Reichlin (1994), we know that a smaller information 

set, denoted 𝑉௧, would yield a cycle with strictly smaller variance. Should we, 



 
 

14 
 

however, have a larger information set that includes extraneous variables that do 

not contain marginally relevant information for forecasting the target variable, the 

variance of the cycle would be unchanged compared to the case of 𝑊௧. Denoting 

this larger information set as 𝑍௧, we then have 𝑉௧ ⊂ 𝑊௧ ⊂ 𝑍௧ in which the variance 

of the cycle would only change if we moved from 𝑊௧ to 𝑉௧, given population values 

for 𝐹 and 𝜇. In practice, however, the cycle variance will change also when going 

from 𝑊௧ to 𝑍௧ due to sampling error, with a strictly larger variance for 𝑍௧.  

 

Morley and Wong (2020) propose a practical way, based on the observations of 

Evans and Reichlin (1994), to determine which conditioning variables span the 

relevant information for forecasting the target variable. Inserting Equation (3) into 

Equation (6), where Γ௜ ≡ 𝐹௜ሺ𝐼 െ 𝐹ሻିଵ, they obtain a definition of 𝑐௧ as a function 

of historical forecast errors:  

 

𝑐௧ ൌ  െ Γଵሺ∆𝑋௧ െ 𝜇ሻ ൌ  െ Γଵሼ𝐹ሺ ∆𝑋௧ିଵ െ  𝜇ሻ ൅ 𝐻𝑒௧ሽ                                             

ൌ  െ Γଵ𝐻𝑒௧ െ ሼ𝐹Γଵሺ ∆𝑋௧ିଵ െ  𝜇ሻሽ

ൌ  െΓଵ𝐻𝑒௧ െ ሼΓଶሺ∆𝑋௧ିଵ െ  𝜇ሻሽ                            

                               ൌ  െ෍Γ௜ାଵ𝐻𝑒௧ି௜ െ  Γ௧ାଵሺ ∆𝑋଴ െ  𝜇ሻ ൎ െ෍Γ௜ାଵ𝐻𝑒௧ି௜  

௧ିଵ

௜ୀ଴

   

௧ିଵ

௜ୀ଴

 ሺ7ሻ 

 

This multivariate method allows us to distinguish the variables most relevant for 

the cycle from the less relevant variables, thus establishing a unique minimum set 

of conditioning variables that span the relevant information for forecasting the 

target variable. Therefore, in contrast to the univariate BN decomposition, we can 

examine which conditioning variables contain the most important information for 

predicting output gap fluctuations to investigate our research question. The 

proposed approach by Morley and Wong (2020) is to start with a VAR based on the 

entire dataset and drop the variables that do not contain marginally relevant 

information until 𝑤௧ is found. The key insight of this approach, and the paper by 

Evans and Reichlin (1994), is that any variable whose removal alters the cycle for 

the target variable belongs in the model.  

 

Following from Equation (7) and using the fact that Γ௜ାଵ converges to zero when 

𝑡 increases since the series is stationary, we can define a new vector 𝑠௥,௤. This is a 
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vector of zeros in all rows, 𝑟, but equals 1 in the 𝑞th row, assuming 𝑛 variables and 

𝑝 lags in the VAR. The contribution of the forecast error in the 𝑘th variable is 

defined as:  

 

𝑐௞,௧ ൌ  െ෍𝑠௡௣,ଵ
ᇱ Γ௜ାଵ𝐻𝑠௡,௞𝑠௡,௞

ᇱ 𝑒௧ି௜

௧ିଵ

௜ୀ଴

        ሺ8ሻ 

 

This accounts “for the contribution of the forecast errors for the 𝑘th variable to the 

BN cycle of the 𝑙th-ordered target variable” (Morley & Wong, 2020, p. 4). For 

completeness, Morley and Wong define the BN trend growth as a function of 

forecast errors, which can be found by taking the first difference of Equation (5): 

 

∆𝜏௧ ൌ 𝑋௧ ൅ Γଵሺ∆𝑋௧ െ 𝜇ሻ െ ሼ𝑋௧ିଵ ൅ Γଵሺ∆𝑋௧ିଵ െ 𝜇ሻሽ ൌ 𝜇 ൅ Γ଴𝐻𝑒௧        ሺ9ሻ 

 

 

3.2 Estimation  

As the Norwegian economy is comprised of a vast set of macroeconomic variables, 

the need for a large dataset makes it hard to accurately estimate the output gap using 

ordinary least squares (OLS) estimation. Although OLS has the advantage of being 

the best linear unbiased estimator (BLUE), it can be hard to estimate large datasets 

as the estimates become imprecise with large standard deviations and imprecise 

coefficients. This comes from the bias-variance tradeoff, where OLS suggests a bias 

of zero, but the variance might be very high. It is worth noticing that if the data has 

enough information, it will always be pushed to the OLS estimate. A potential 

solution to this problem in large datasets is to introduce some bias to lower the 

variance and thus lower the mean squared errors to produce a better fit. This 

motivates us to introduce a ridge (penalized) regression to increase the bias slightly 

in order to decrease the variance. The connection between a penalized regression 

and a Bayesian prior allows us to use the latter prior to obtain the same point 

estimates, with the advantage of the probabilistic interpretation and the easily 

quantified methodology. 

 



 
 

16 
 

Bayesian estimation is a probabilistic approach to estimating model parameters 

founded on Bayes theorem, with the idea being that we want to estimate parameters 

𝜃 given data Y:  

 

𝑝ሺ𝜃|𝑌ሻ ൌ
𝑝ሺ𝜃,𝑌ሻ
𝑝ሺ𝑌ሻ

 

 

The left-hand side is the posterior probability, and the right-hand side is the joint 

distribution between the parameters and the data. This joint distribution can be 

factorized into a product of the conditional distribution of the data and the marginal 

distribution of the parameters:  

 

𝑝ሺ𝜃,𝑌ሻ ൌ 𝑝ሺ𝑌|𝜃ሻ𝑝ሺ𝜃ሻ 

 

Where 𝑝ሺ𝑌|𝜃ሻ is the likelihood function and 𝑝ሺ𝜃ሻ is the prior probability 

distribution of the parameters. The likelihood function emphasizes a fundamental 

part of the Bayesian perspective, namely that the observed data is given and thus 

non-random, as opposed to a frequentist perspective in which the observed data, 𝑌, 

is just a single realization of a data generating process. Accordingly, by the 

Bayesian perspective, the parameters are treated as random and consequently are 

characterized by a probability distribution. This prior distribution characterizes the 

uncertainty about the parameters before observing the data. Finally, in order to 

obtain the posterior probability, the joint distribution is divided by a marginal 

likelihood of the data, 𝑝ሺ𝑌ሻ. In total, Bayes’ rule is simply represented in the 

following equation: 

 

𝑝ሺ𝜃|𝑌ሻ ൌ
𝑝ሺ𝑌|𝜃ሻ𝑝ሺ𝜃ሻ

𝑝ሺ𝑌ሻ
 

 

The relationship between the joint distribution of the data and the parameters also 

has the advantageous interpretation that Bayes’ rule is a learning mechanism in 

which prior beliefs about the parameters are updated using information from the 

data in order to obtain the posterior distribution:  

 

𝑝ሺ𝜃|𝑌ሻ𝑝ሺ𝑌ሻ ൌ 𝑝ሺ𝜃,𝑌ሻ ൌ 𝑝ሺ𝑌|𝜃ሻ𝑝ሺ𝜃ሻ 
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As the parameters are treated as random, some prior belief must be specified by the 

researcher, and there is a wide variety of prior distributions based on different 

arguments, such as general properties of macroeconomic time series, theoretical 

models, and ease of computation (Woźniak, 2016). One such prior distribution is 

the so-called Minnesota prior, motivated by the observation that macroeconomic 

time series typically are unit-root non-stationary, meaning they can be interpreted 

as multivariate random walks. The key hyperparameter of the Minnesota prior, 

calibrated to minimize the pseudo out-of-sample forecast error variance of the target 

variable, determines the degree of shrinkage (Morley & Wong, 2020), which 

shrinks the parameters with weak signals to zero in order to enable more precise 

estimates of the remaining parameters. The general intuition behind the 

specification of priors is illustrated in Figure 1, in which prior 3 represents a flat 

prior that is uninformed, prior 2 represents an informative prior, and prior 1 is the 

case in between. Prior 3 does not impose any shrinkage on the parameters, whereas 

prior 2 imposes a high degree of shrinkage. We want to minimize the mean squared 

estimate (MSE) consisting of the bias and variance of the model fit, and prior 1 

illustrates the middle case in which we impose some bias in order to decrease the 

variance.   

 

Figure 1: Illustration of an informative and uninformative prior distribution 
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When estimating a finite dataset, Evans and Reichlin (1994) find that the BN trend 

and cycle estimates are sensitive to sampling errors compared to a univariate 

setting. The estimation of the large multivariate VAR model will lead to large 

standard errors, meaning a high variance. In accordance with the bias-variance 

tradeoff, including more variables or too many variables compared to what is given 

by the true data generating process (DGP), we will over-parameterize the model 

(Bjørnland & Thorsrud, 2015, p. 39). This can come from the fact that the model 

includes many possible sources of information. When introducing a prior, we 

influence the posterior distribution according to the degree of shrinkage, resulting 

in a posterior distribution that is slightly different from the likelihood function from 

the data, which is the classical estimator obtained using OLS. The abovementioned 

learning mechanism of Bayes’ rule is also illustrated in Figure 2, in that the prior 

distribution is updated using information from the likelihood function.   

 

Figure 2: Illustration of prior distribution, likelihood function and the resulting 

posterior distribution 

 

 

Although the Beveridge-Nelson decomposition contributes to several advantages 

for filtering time series, we must also consider the disadvantage of different results 

that can occur when selecting different ARMA models. Selecting the lag length can 

impose various results, and the main finding from Cochrane (1988) shows that 

selecting a low-ordered ARIMA model can overestimate the permanent component, 

namely the trend. Furthermore, the large increase in coefficients that follows from 
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an increase in endogenous variables in BVARs will, without regulation, lead to high 

parameter uncertainty and the previously mentioned over-parametrization problem, 

resulting in unreliable estimates (Cross, Hou, & Poon, 2020). The introduction of a 

prior on the lagged coefficients allows us to overcome this problem by shrinking 

the parameters with weak signals to zero, albeit at the cost of introducing some bias 

to the model. Morley and Wong (2020) find that using the Bayesian VAR gives 

robust results when introducing more lags, but the sensitivity increases in least 

squares estimation in accordance with Evans and Reichlin (1994).   

 

In order to mitigate the problem of sampling error in larger systems, where the large 

finite dataset contains many possible sources of information, Morley and Wong 

(2020) propose a practical way to employ a Minnesota-type shrinkage prior. For 

simplicity, we can denote the estimated vector of variables as the vector of variables 

minus the unconditional means, ∆𝑥෤௧ ≡ ∆𝑥௧ െ 𝜇, and we consider the following 

𝑉𝐴𝑅ሺ𝑝ሻ:  

 

∆𝑥෤௧ ൌ Φଵ∆𝑥෤௧ିଵ ൅ ⋯൅Φ௣∆𝑥෤௧ି௣ ൅ 𝑒௧                                                                          

      ൌ  ቎
𝜙ଵ
ଵଵ ⋯ 𝜙ଵ

ଵ௡

⋮ ⋱ ⋮
𝜙ଵ
௡ଵ ⋯ 𝜙ଵ

௡௡

  𝜙ଶ
ଵଵ ⋯ 𝜙ଶ

ଵ௡ 
⋮ ⋱ ⋮

  𝜙ଶ
௡ଵ ⋯ 𝜙ଶ

௡௡

⋯ ⋯ 𝜙௣ଵ௡ 
⋱ ⋱ ⋮

  ⋯ ⋯ 𝜙௣௡௡
቏  ൦

∆𝑥෤௧ିଵ
∆𝑥෤௧ିଶ
⋮

∆𝑥෤௧ି௣

൪ ൅ ൦

𝑒ଵ,௧

⋮
 
𝑒௡,௧

൪      ሺ11ሻ 

 

where 𝐸ሺ𝑒௧ᇱ, 𝑒௧ሻ ൌ Σ and 𝐸ሺ𝑒௧ᇱ, 𝑒௧ି௜ሻ ൌ 0 for all 𝑖 ൐ 0. Demeaning the estimated 

observation in ∆𝑥෤௧ is the equivalent to setting a flat prior on the unconditional 

means, 𝜇, meaning there is no need for an intercept in the model. The Minnesota 

shrinkage prior is represented in Φ௜, specifically in the slope coefficient 𝜙௜
௝௞. The 

shrinkage prior calibrates a key hyperparameter that minimizes the pseudo out-of-

sample forecast error for the target variable as seen in the variance of the slope 

coefficient. Following Morley and Wong (2020), the prior means and variances of 

the slope coefficients are defined as:  
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𝔼ൣ𝜙௜
௝௞൧ ൌ 0                                                  ሺ12ሻ 

𝑣𝑎𝑟ൣ𝜙௜
௝௞൧ ൌ

⎩
⎪
⎨

⎪
⎧ 𝜆ଶ

𝑖ଶ
,           𝑗 ൌ 𝑘     

𝜆ଶ𝜎௝
ଶ

𝑖ଶ𝜎௞
ଶ ,     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,

       ሺ13ሻ 

 

The shrinkage hyperparameter 𝜆 is defined in the variance of the slope coefficient 

𝜙௜
௝௞, where 𝜙 is the slope coefficient in the 𝑘th variable of the 𝑖th lag in the 𝑗th 

equation of the VAR. Equation (12) defines the prior means of the slope 

coefficients, while Equation (13) defines the variances of the slope coefficients. 

When the 𝑗th equation of the VAR equals the 𝑘th variable, we get the variance of a 

variable’s own lag as seen in the upper expression of Equation (13), while the lower 

expression determines the variance of the cross lags. The variables, 𝜎௝
ଶ and 𝜎௞

ଶ, are 

the variances of the residuals from the AR(4) model estimated using OLS in 

accordance with Banbura et al. (2010) and Koop (2013), and the term 𝑖ଶ in the 

denominator implies that coefficients shrink towards zero at longer lags, following 

the Minnesota prior (Morley & Wong, 2020). The shrinkage hyperparameter 𝜆 →

0, thus shrinking the variables following the assumption that they are independent 

white noise. 

 

Previous studies on forecasting with large BVARs imply that the hyperparameter 

should be set closer to zero as the number of variables in the model increases, 

meaning that the overall shrinkage should increase with the size of the model. 

According to Banbura et al. (2010), Bayesian shrinkage in dynamic systems 

suggests a better forecast performance and solves the problem of over-

parameterization. In contrast to the proposed method by Banbura, which focuses on 

choosing a hyperparameter to maximize the fit of the entire system, Morley and 

Wong (2020) propose to instead focus on point forecast accuracy. The reasoning 

behind this is that as the number of variables increases, the relative weight put on 

the target variable decreases, and so the BN cycle changes even as extraneous 

information is added to the model when focusing on the fit of the entire system. The 

specifics of the point forecast approach are that one conducts “numerical 

optimization to find the hyperparameter that maximizes the one-step-ahead root 
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mean squared forecast error (RMSFE) for the target variable 𝑦௧ over an evaluation 

sample using pseudo real-time estimation based on an expanding window starting 

with a particular initial fraction of the full sample” (Morley & Wong, 2020, p. 6).  
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4. Analysis  

4.1 Data analysis  

In order to determine which variables drive the Norwegian output gap, we have 

collected a large sample of Norwegian macroeconomic data. We used the variables 

included in the paper by Morley and Wong (2020) as a baseline and assessed and 

evaluated the relevance of the American data in comparison to Norwegian data. 

Additionally, a range of sources on business cycles in Norway have been 

informative in finding variables especially important for the Norwegian economy, 

as described in Section 2.1. In total, we retrieved 76 variables that together should 

span the relevant information of the Norwegian economy with a sufficient length 

to forecast the output gap. In addition, data availability has been a limiting factor, 

which has had implications for our collection of macroeconomic variables.  

 

The majority of the collected data has been retrieved from the Federal Reserve 

Economic Data (FRED) and Statistics Norway (SSB), but in some instances, like 

the collection of historical rates, the data has been retrieved from Norges Bank. 

Additionally, exchange rates have been collected from Refinitiv Eikon, and total 

reserves have been collected from The World Bank. Table A1 in the appendix 

specifies the sources for each variable. The total dataset of 76 variables is retrieved 

from as early as possible on a quarterly basis and is seasonally adjusted. The dataset 

is mainly presented in growth rates and consists of information on our manipulation, 

code of variable or table, unit of original data, and the source of collection.  

 

A sub-annual frequency makes for an easier analysis of tracking, understanding, 

and forecasting mechanisms in the economy (Miralles, Lladosa, & Vallés, 2003). 

Several economic time series relating to our thesis objectives are available at a 

quarterly frequency, but we necessarily had to transform the data to a quarterly 

frequency for those of an annual or monthly frequency. Monthly data reported in 

indices, rates, and levels have been transformed using a method of averaging to 

obtain a quarterly frequency. In the cases of additive units, the data has been 

summed over the period to obtain a quarterly frequency. The transformation of 

annual data into quarterly data can be done in a multitude of ways, and a much-used 

method is that proposed by Chow and Lin (1971). One caveat of the Chow-Lin 

method provides a quarterly series that is smoother than what the original series 
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would be (Miralles et al., 2003), and as such, we have aimed to find time series with 

a higher frequency when possible. However, in order to include all possibly relevant 

data, we have transformed some variables using this method, keeping in mind that 

they may not be as reliable as quarterly reported data. In some special cases, we 

have obtained both annual and quarterly data of the same variables where the older 

data are only reported in an annual frequency. In these cases, we have applied the 

Chow-Lin method to the annual data and merged the two series to obtain a longer 

series. These cases make it apparent that the Chow-Lin provides a smoother time 

series than what is reported in the more recent quarterly data.   

 

Analyses of economic time series generally use seasonally adjusted data, and for 

the trend and cycle decomposition, we wish to avoid spurious seasonal variation 

(Beveridge & Nelson, 1981), thus retrieving seasonally adjusted data when 

possible. However, several time series were not seasonally adjusted, and for these 

variables we have used a MATLAB function to deseasonalize the time series. The 

removal of seasonality in this manner is typically done to more accurately exert the 

trend and cycle.   

 

Stationarity is necessary to construct the Beveridge-Nelson trend and cycle (Morley 

& Wong, 2020), meaning we must transform all data to be stationary. When 

appropriate, we have taken natural logarithms of the data as well as differences to 

obtain growth rates. However, natural logarithms are not possible for some 

variables due to negative values. In these cases, as well as for variables already in 

percent, we have instead differenced the data only when an ADF-test cannot reject 

a unit root or if a Durbin-Watson statistics test implies autocorrelation in the 

residuals. The Augmented Dickey-Fuller (ADF) test checks if the data has a unit 

root and thus tests if the series is a random walk or trend stationary (Thorsrud & 

Bjørnland, 2015). To ensure stationarity, we have also performed both tests on data 

transformed to their natural logarithm, differencing those who did not satisfy the 

conditions of the tests. Table A2 in the Appendix presents the variables that did not 

initially satisfy the ADF test, along with the transformations to ensure stationarity.  

 

The full dataset contains roughly 150 quarters, starting in the second quarter of 

1983. A recursive estimation uses the first 12.5 years (one-third of the sample) and 
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the remaining 25 years in the evaluation of the root mean square forecast error 

estimation, and the shrinkage hyperparameter that minimizes this RMSFE 

determines the degree of shrinkage in our various-sized models. This method yields 

a lambda equal to 0.04, as illustrated in Figure A1 in the Appendix.  

 

4.2 Benchmark model 

To establish a benchmark model, containing what we believe to be the most relevant 

variables, a range of studies have been relevant for our choice of inclusion. 

According to Husebø and Wilhelmsen (2005) the stylized facts of Norway are fairly 

similar to those of the US. Consequently, the benchmark model established by 

Morley and Wong (2020) provides a good motivation for the selection of our 

benchmark model. Furthermore, we are motivated by Husebø and Wilhelmsen 

(2005) to include variables that are particularly important to the Norwegian 

economy. Banbura et al. (2010) finds that a small variable model is feasible and 

remains robust in estimating the output gap.  

 

Importantly, it has been necessary to consider variables of particular relevance to 

the Norwegian economy. A paper by Aastveit et al. (2016) investigating the method 

of forecasting the Norwegian business cycles argues that one should use data for 

mainland Norway as the measure of economic activity when investigating 

economic conditions in Norway. The reasoning behind this choice is that the large 

fluctuations of offshore activity may have small short-term effects on the 

Norwegian labor market and domestic production. Furthermore, in the short term, 

the mainland economy is insulated from fluctuating revenue from the petroleum 

sector, and all revenues are transferred to the sovereign wealth fund with fiscally 

determined withdrawals each year. In their choice of variables for inclusion in the 

models, the authors find that particularly important variables in the Norwegian 

economy are the Brent Blend oil price, employment in mainland Norway, 

household consumption, private real investments in Norway, exports of traditional 

goods, and GDP for mainland Norway.   

 

Since the results of Husebø and Wilhelmsen (2005) suggest that the stylized facts 

of Norway and the US are similar, we are motivated by Morley and Wong (2020) 

to include real GDP, private final consumption expenditure (PFCE), consumer price 
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index (PCI), M1 and M2 for Norway, producer price index (PPI) for all industrial 

activities, total manufacturing production, GDP implicit price deflator, total work 

started: Dwellings/Residential buildings, unemployment rate, persons in the labor 

force, wages and salaries for mainland Norway, hourly earnings for manufacturing, 

household disposable income, hours worked, value added per hour worked 

(productivity), total reserves, and industrial share prices in our benchmark model. 

We are further motivated by Husebø and Wilhelmsen (2005) to include imports of 

goods and services, exports of goods and services, gross fixed capital formation 

(GFCF) for mainland Norway, GFCF dwelling service for households, government 

final consumption expenditure (GFCE), Brent crude price, EURNOK exchange 

rate, and the sight deposit rate. The total benchmark model thus consists of 26 

macroeconomic explanatory variables of the Norwegian economy.   
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5. Results  

5.1 Estimating the output gap  

In order to evaluate our research question of which variables drive the Norwegian 

output gap, we will begin by estimating the Norwegian output gap using our 

predetermined benchmark model consisting of 26 variables. 

 

Figure 3: Estimated Norwegian output gap for benchmark BVAR with 90% 

credible set 

 

 

Figure 3 presents the estimated output gap using the Beveridge-Nelson 

decomposition on the 26-variable benchmark BVAR model with a 90% credible 

set. The Y-axis corresponds to 100 times natural log deviation from trend, and the 

output gap is calculated using Equation (6), which represents the analytical 

solutions of the BN cycle. The shaded areas are the recession periods in Norway, 

and the cycle corresponds reasonably well to these periods. In contrast to the 

officially published NBER reference cycles in the US, Norway has no official 

measure of recessions. For this reason, the choice of marked recessions in our 

figures is informed by Norges Bank (2016) and Aastveit et al. (2016). Notably, 

there is no marked recession for the period of 1993, yet we know from Norwegian 

economic history that the trough in 1993 is in accordance with the data. Starting in 

1988, Norway was hit by a significant bank crisis, following considerable loan 

growth and deregulation in the bank sector. This crisis did not end until 1993, when 
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key aspects of the Norwegian economy finally started showing signs of expansion 

(Norges Bank, n.d.). As we will show in Figure 6, the 26-variable benchmark model 

is sufficiently similar to the estimated output gap of the full 76-variable model, thus 

indicating that it contains all the relevant information for our objective. Naturally, 

one might wonder how the benchmark BVAR compares to other methods of 

estimating the output gap, and for this reason, we want to investigate the differences 

between our benchmark BVAR model, and the estimated output gap based on the 

BN decomposition for smaller models, as well as the HP filter. 

 

Figure 4: Estimated Norwegian output gap from univariate and multivariate BN 

decompositions, and using HP filter 

 

 

Figure 4 graphically illustrates the different methods, where the univariate model is 

based on an AR(4) for output growth, while the bivariate VAR model is based on a 

VAR(4) with output growth and the unemployment rate. The HP model is the 

estimated output gap using an HP filter with lambda set to 1600, and, finally, the 

BVAR is our 26-variable benchmark model estimated using the procedure of 

Morley and Wong (2020). The univariate and bivariate models, both of which are 

based on the BN decomposition, are obtained using least squares estimation. This 

estimation is equivalent to the maximum likelihood estimation under the 

assumption of Normality, which is also satisfied in Bayesian estimation. Consistent 

with the results from Evans and Reichlin (1994), larger information sets result in a 
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higher proportion of output growth being forecastable and thus ascribed to the 

cyclical component. This is especially apparent when comparing the univariate and 

bivariate models to the BVAR model. The difference in results is partly due to the 

theoretical features differing between univariate and multivariate BN compositions, 

but part of the difference in results is also due to estimation issues. As we will see 

below, the unemployment rate is an essential conditioning variable for the output 

gap, so it is intuitive that the inclusion of this variable in the bivariate VAR will 

increase the amplitude of the estimated output gap.  

  

Further, the inclusion of more variables will generally increase amplitude in a 

purely mechanical way, as the relative importance of the cyclical component 

depends on the size of the information set, and multivariate models can better 

forecast output growth (Evans & Reichlin, 1994). When using the HP filter to 

estimate the output gap, we face the issues of spurious cycles and the end-point 

problem, as can be seen at the beginning and end of our sample in Figure 4. The 

BN decomposition explicitly takes account of a random walk stochastic trend in the 

target variable, thus implicitly allowing for correlation between movements in trend 

and cycle. This is not the case for methods that assume trend stationarity, like the 

HP filter.  
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5.2 What drives the output gap  

To further analyze which variables drive the Norwegian output gap, we consider 

the impact of the information set that explains and contributes to the output gap. 

 

Figure 5A: Standard deviation of informational contributions  

 

 

Figure 5A illustrates all 26 variables in the BVAR benchmark model and their 

standard deviation of informational contribution to the output gap. Shares are 

calculated using Equation (8) for the contribution to the BN cycle of the output gap 

and are presented as the standard deviations of each variable that span the most 

relevant information. The black bars are the nine variables that have the highest 

standard deviation, including output growth itself, and we find that these are Oil 

Price, Industrial Share Prices, Government Final Consumption Expenditure, 

Unemployment rate, Wages and Salaries, Sight Deposit Rate, Household 

Disposable Income, and Total Reserves. Unemployment rate and Total Reserves 

have the highest shares of informational contribution and thus drive the output gap 

the most, while the target variable, output growth, contributes much less than these 

other two variables. The low output growth contribution also provides some clarity 

as to why the bivariate and univariate cases differ in Figure 4, where Unemployment 

rate is included in the bivariate setting. 
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According to Christiano et al. (1999), the contributed shares of a 20-variable 

benchmark model cover a sufficient information set for forecasting and estimation 

purposes in a multivariate BN decomposition using US data. Moreover, Banbura et 

al. (2010) conclude that a 20-variable BVAR model is feasible and remains robust 

for the purpose of forecasting and estimating, and so we know that the benchmark 

model, in theory, contains sufficient information to estimate the output gap. We 

wish to analyze which variables drive the output gap and therefore try to eliminate 

and exclude the variables with the lowest standard deviation of informational 

contribution, following the method proposed by Morley and Wong (2020). 

 

After evaluating and plotting the estimated output gap using only the nine variables 

of the highest share of informational contribution, we find that the variables marked 

in black bars in Figure 5A lead to an estimate that deviates significantly from the 

benchmark BVAR model and, accordingly, the large model as well. Figure A2 in 

the appendix displays that the magnitude of the estimated output gap is more than 

ten times as large in percentage change at the most extreme, indicating that the most 

impactful variables over-estimate the output gap. For this reason, it is evident that 

we must apply a different approach to obtain the small model, as illustrated in 

section E of the Appendix.  

 
Figure 5B: Most impactful variables – small model  
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As the first approach proposed by Morley and Wong (2020) does not yield accurate 

estimates of the output gap, we find it necessary to instead apply their second 

proposed approach, namely dropping variables one by one, starting from the least 

impactful, in order to find the most relevant variables for the small model. 

Furthermore, the exclusion of some variables with low contributions, like the 

PFCE, significantly altered the cycle, pointing to their significance in forecasting 

the output gap. Notably, Oil price and Share prices are pro-cyclical, and the 

exclusion of these components reduces the amplitude compared to the large dataset 

and the benchmark model. As a result, the final combination set of the small 9-

variable BVAR model, as seen in the black bars in Figure 5B, estimates and 

forecasts the benchmark model more adequately. The accuracy of our established 

9-variable model is presented in Figure 6.  

 
Figure 6: Estimated Norwegian output gap for the three different-sized BVAR 

models.  

 

Our medium-sized benchmark model is informed by various sources on business 

cycles and the Norwegian economy, and accordingly, our small 9-variable model 

is informed by these sources as well. In order to check the robustness of the two 

smaller models, we plot the estimated output gap for all three models in the top 

panel of Figure 6, ensuring that both the benchmark and the small models 

consistently estimate output gaps that are approximately equal to the large full-sized 

model. In doing this, we can ensure that we have found which conditioning 

variables span the relevant information for predicting the fluctuations in output 

growth.   
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The benchmark and small models are very similar across the whole sample, except 

for some more noticeable deviation in the 2008 recession, which suggests that the 

approach we have chosen to select the conditioning variables in the small model 

works well in practice. The difference between the large model and the two smaller 

models is more apparent in the first half of the sample and may, to some extent, 

reflect the structural changes in monetary policy in Norway. Norges Bank started 

conducting inflation targeting in 2001, and in the decades prior, there was first a 

target for low rates, followed by a target for stable exchange rates. Both of these 

targets eventually led to large fluctuations and periodically high inflation. The 

Norwegian government introduced a new mandate for the monetary policy 

authority in 2001 to maintain low and stable inflation, thus marking a shift to 

inflation targeting in Norway (Bergo, 2003). The targeting of inflation also helps 

stabilize employment, and interestingly, we can observe that the estimated output 

gap has lower fluctuations pre-2001 compared to the benchmark when we omit 

unemployment in the bottom panel of Figure 6. This further points to the fact that 

the Bayesian VAR approach can be quite sensitive to the omission of variables, 

especially when the variables contain highly relevant information, suggesting that 

it is the relevancy of the variables included that matters most for the accuracy of the 

estimated output gap, and not only the size of the information set.   
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6. Discussion 

The objective of our thesis is twofold: We wish to estimate the output gap using a 

multivariate Beveridge Nelson decomposition and establish which of the 

conditioning variables are most influential in generating output gap fluctuations. 

The main result of our first objective is presented in Figure 3, where we have plotted 

the estimated output gap using our benchmark 26-variable model with its 

corresponding 90% credible set. An advantage of using a Bayesian approach is that 

we can interpret this credible set as the certainty with which the output gap falls 

within these bounds. As the trend and cycle are inherently unobservable, this 

probabilistic interpretation gives us a more intuitive understanding of the estimate. 

A key aspect of evaluating whether an estimated output gap is credible is to check 

that the fluctuations are in line with the recessions of an economy. Unfortunately, 

there is no official record of recession periods in Norway, but as our marked dates 

for recessions are informed by Norges Bank (2016) and Aastveit et al. (2016), we 

feel confident that this is well enough informed to evaluate the estimate of the 

output gap. We see from the plot that the multivariate BN decomposition provides 

an estimate that accounts for all marked recessions in Norway over the sample 

period, and more generally, it is in line with the movements of other estimates of 

the Norwegian output gap like the one produced by Statistics Norway (2014). Their 

particular estimate is produced using an HP filter, although it is essential to bear in 

mind that Statistics Norway uses a lambda of 40 000, and the movements of the 

business cycles look more similar to the benchmark model in Figure 3 than the HP 

cycle presented in Figure 4 with a lambda of 1600. Statistics Norway justify their 

choice of lambda by the fact that the Norwegian economy is relatively small, and 

so random fluctuations might have too much of an influence even on aggregate data 

(Statistics Norway, 2018, p. 16). Furthermore, the estimate using our benchmark 

model is robust compared to the estimate of the entire sample with 76 variables as 

presented in Figure 6, where we would see that the estimates of the different sized 

models are virtually identical had we included the 90% credible interval.   

 

The second objective of our thesis is to establish which conditioning variables have 

the most informational contribution in accounting for the output gap fluctuations. 

Figure 5A highlights the variables with the highest share of informational 

contribution, with unemployment and total reserves explaining approximately 30% 
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of the fluctuations in output growth each, and they do so to a much larger extent 

than output growth itself. The following most informational variables are, in 

descending order, GDP growth, government final consumption expenditure 

(GFCE), industrial share prices, wages, income, Brent blend oil price, and the sight 

deposit rate. The exact values of the informational contributions of the various 

benchmark variables are presented in Table A3 in the appendix. Following the 

results of Morley and Wong (2020), we expected to see that the variables with the 

highest informational contribution would yield an estimate of the output gap that 

was sufficiently similar to the benchmark model. Figure A2 in the appendix makes 

it evident that this is not the case with Norwegian data. The amplitude of the 

fluctuations is vastly larger for most of the time series, but the instant we omit oil 

price, we see that the amplitude falls dramatically in Figure A3, albeit still with an 

overestimation problem. This could point to the fact that the mainland data for 

Norway is to some extent isolated from the more volatile offshore activity and oil-

related variables. While the insight of Figure 5A is valuable, we wish to establish 

the minimum number of variables that can be used to accurately estimate the output 

gap. As our initial approach of using the most informational variables did not yield 

satisfactory results in this area, we instead opted for the approach of dropping and 

adding variables from the benchmark model until we reached the small model, 

consisting of the highlighted variables in Figure 5B. The procedure for obtaining 

the small model is illustrated in section E of the Appendix. Interestingly, we omit 

the Brent blend oil price and Industrial share prices to obtain this model and instead 

include hours worked and private final consumption expenditure (PFCE). 

 

Following the results presented in Figure 5B, we found that the variables most 

influential in generating output gap fluctuations are dominated by the 

unemployment rate and total reserves. Although the findings on the impact of 

unemployment are foreseen, with stylized facts that the unemployment rate is 

countercyclical and leads the Beveridge-Nelson cycle by one quarter (Bjørnland, 

2000), we found the results of total reserves quite astonishing. The World Bank 

defines total reserves as “the holdings of monetary gold, special drawing rights, 

reserves of IMF members held by the IMF, and holdings of foreign exchanges under 

the control of monetary authorities” (The World Bank Group, n.d.). Accordingly, 

Norges Bank reports its management of foreign exchange reserves, which is 
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described as both a fixed income portfolio and an equity portfolio. A petroleum 

buffer portfolio is also included in the foreign exchange reserves and is used to 

convert currency for the Government Pension Fund Global (GPFG) (Norges Bank, 

n.d.). The correlation between both the fixed income and equity market with GDP 

might be an explanatory factor to the high impact on the output gap. Also, some 

cross-country variation factors may be incorporated in the total reserve variable 

where the performance of both the fixed income and equity market is highly 

dependent on international presentation.   

 

While our analysis makes it evident that the use of large Bayesian vector 

autoregressions can provide a good estimate of the output gap as well as answer 

questions regarding the importance and contributions of macroeconomic variables, 

there are still some extensions that could yield even more informed estimates and 

results. One such extension could be to include the GDP growth from the main 

trading partners of Norway, as the country is a small open economy that can, to 

some extent, be highly influenced by international economic movements. 

Additionally, one could include international macroeconomic variables that may be 

explanatory, such as unemployment rates of key trading partners, CPIs, or key 

interest rates. The inclusion of exchange rates can partly proxy international 

relationships, but there may be even more informational value in including these 

variables directly. The model can also be extended to answer further questions 

about what drives other key variables of interest, such as inflation or 

unemployment. One can easily change the target variable of interest, and the model 

is thus a flexible tool for assessing relevant policy questions. We have not taken 

data revision into account in our analysis, which is a problem that can often be 

disregarded in estimations of business cycles. Accounting for this problem would 

therefore be a valuable extension.   

 

Although our analysis focuses on estimating the output gap and establishing the 

most influential variables, another interesting extension could be to find the stylized 

facts using this method and compare them with those of Bjørnland (2000), who uses 

a range of estimation methods such as the HP filer and a univariate BN 

decomposition. Furthermore, one could extend our analysis to investigate the peaks 

and troughs of the business cycle as is done in Aastveit et al. (2016), allowing for a 
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new method of establishing recession periods in Norway. Nonetheless, we leave all 

the above-mentioned expansions and modifications of the model to future research.   
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7. Conclusion  

In this paper, we have applied a multivariate Beveridge-Nelson decomposition with 

Bayesian shrinkage to obtain an estimate of the Norwegian output gap as our first 

objective. We have further used the Bayesian VAR approach to investigate our 

second objective: which of the conditioning variables are most influential in 

generating output gap fluctuations. After establishing a full model containing 76 

macroeconomic explanatory variables, we have found that a medium-sized 

benchmark model comprising 26 key macroeconomic variables effectively 

estimates the output gap with four lags, accounting for all marked recession periods 

over the sample period. We have utilized the standard deviation of informational 

contribution to establish the variables that have the highest power in explaining the 

output gap fluctuations, as well as a minimum set of 9 variables that can accurately 

estimate the output gap in accordance with the benchmark model and the full 76-

variable model. Our findings are robust to the size of the models used to estimate 

the output gap, as all three models of different sizes are virtually identical. Using 

the standard deviation of informational contribution, we find that Unemployment 

and Total Reserves have the highest share of contribution to the output gap 

fluctuations. The advantage of using this proposed method is that it allows us to 

utilize large multivariate datasets to accurately estimate the trend and cycle while 

mitigating detrending issues, such as the end-of-sample problem. Furthermore, 

there are several ways to extend the model, for instance, by introducing cross-

country variation factors or changing the target variable in order to analyze the 

driving factors of inflation or unemployment.   
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Appendix 

A. Data 

Table A1 presents the 76 variables of the full dataset, with the source of the data in 

the last column. For variables sourced from SSB, the table is presented in column 

three. For variables sources from FRED, the corresponding FRED-code is 

presented in column 2. The remaining variables have been given their own 

individual codes. The fourth column, “Adjust”, presents the manipulation applied 

to each variable, where “Log” is the natural logarithm of the variable, and “∆௜ ” 

means the variable have been differenced i times. The variables marked with an “x” 

in the BM column means the variable is in the 26-variable benchmark model. The 

code used for obtaining growth rates have resulted in variables having a negative 

sign where intuition would have them with a positive sign, and vice versa. For our 

analysis, we have simply taken the inverse of the graphs to ensure that all estimates 

of the output gap are converted to the correct sign for interpretation.  

 

Table A1: Variable details  

Variable name Code Table 

(SSB) 

Adjust BM Source 

Brent Crude price- Oil Prices  LCOc1 
 

∆  x Refinitiv  

Real Gross Domestic Product, 3 Decimal CLVMNACSCAB1GQNO 
 

Log, ∆,  x FRED 

Total Retail Trade NORSARTQISMEI 
 

Log, ∆ 
 

FRED 

Balance of payments BPM6: Capital account NORB6CATT00NCCUQ 
   

FRED 

US$ exchange rate for Norway NORCCUSMA02GYQ 
   

FRED 

Total Industrial Share Prices SPINTT01NOQ661N 
 

Log, ∆ x FRED 

Credit to Private Non-Financial Sector by Banks QNOPBMUSDA 
 

Log, ∆ 
 

FRED 

Credit to Private Non-Financial Sector by Banks QNOPBM770A 
 

Log, ∆ 
 

FRED 

Total Credit to Private Non-Financial Sector CRDQNOAPUBIS 
 

Log, ∆ 
 

FRED 

Residential Property Prices QNON628BIS 
 

Log, ∆ 
 

FRED 

Total Manufacturing Production PRMNTO01NOQ657S 
  

x FRED 

Production: Total manufacturing  NORPRMNTO01GYSAQ 
   

FRED 

Gross Domestic Product by Expenditure: Exports 

of Goods and Services for Norway 

NAEXKP06NOQ652S 
 

Log, ∆ 
 

FRED 

Producer Prices Index: Total Industrial Activities  PIEATI01NOQ661N 
 

Log, ∆ x FRED 

Gross Domestic Product by Expenditure: Gross 

Fixed Capital Formation 

NAEXKP04NOQ189S 
 

Log, ∆ 
 

FRED 

Gross Domestic Product by Expenditure: Imports 

of Goods and Services  

NAEXKP07NOQ657S 
   

FRED 

Gross Domestic Product by Expenditure: Private 

Final Consumption Expenditure  

NAEXKP02NOQ189S 
 

Log, ∆ 
 

FRED 

Imports of Goods and Services NORIMPORTQDSMEI 
 

Log, ∆ x FRED 
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Exports of Goods and Services  NOREXPORTQDSMEI 
 

Log, ∆ x FRED 

Government Final Consumption Expenditure NORGFCEQDSMEI 
 

Log, ∆ x FRED 

Private final consumption expenditure NORPFCEQDSMEI 
 

Log, ∆ x FRED 

Consumer Price Index: All Items for Norway NORCPIALLQINMEI 
 

Log, ∆ x FRED 

M1 for Norway MANMM101NOQ189N 
 

Log, ∆  x FRED 

M2 for Norway M2NO 
 

Log, ∆  x FRED 

Real Effective Exchange Rates Based on 

Manufacturing Consumer Price Index  

CCRETT01NOQ661N 
 

Log, ∆  
 

FRED 

Net Trade: Value Goods  XTNTVA01NOQ664S 
 

∆  
 

FRED 

Hourly Earnings: Manufacturing  NORHOUREAQISMEI 
 

Log, ∆ x FRED 

GDP Implicit Price Deflator NORGDPDEFQISMEI 
 

Log, ∆ x FRED 

Narrow Effective Exchange Rate NNNOBIS 
 

Log, ∆ 
 

FRED 

Work Started: Construction: Dwellings / 

Residential buildings: Total for Norway 

NORWSCNDW01GPSAM 
  

x FRED 

Final Consumption expenditure of local 

government 

09190x1 09190 Log, ∆ 
 

SSB 

Final consumption expenditure of central 

government 

09190x2 09190 Log, ∆ 
 

SSB 

Household final consumption expenditure: Goods 9173x1 9173 Log, ∆ 
 

SSB 

Household final consumption expenditure: 

Services  

9173x2 9173 Log, ∆ 
 

SSB 

Final consumption expenditure of households: 

Non-durable goods 

09173x3 09173 Log, ∆ 
 

SSB 

Gross fixed capital formation (GFCF) 09190x3 09190 Log, ∆ 
 

SSB 

GFCF Mainland Norway  09190x4 09190 Log, ∆ x SSB 

Dwelling service (households): GFCF 09190x5 09190 Log, ∆ x SSB 

GFCF Oil and gas extraction including services 09183x1 09183 Log, ∆ 
 

SSB 

Production account and income generation, Total 

Industry  

09171x1 09171 Log, ∆ 
 

SSB 

Production account and income generation, 

Mainland Norway 

09171x2 09171 Log, ∆ 
 

SSB 

Unemployment rate: 15-74 years 08518x1 08518 
 

x SSB 

Unemployed: 15-24 years  08518x2 08518 ∆  
 

SSB 

Persons in the labor force: 15-74 years  08518x3 08518 ∆  x SSB 

Household final consumption expenditure: Goods 

(price indices) 

09190x6 09190 Log, ∆  
 

SSB 

Household final consumption expenditure: 

Services (price indices) 

09109x7 09190 Log, ∆ 
 

SSB 

Wages and salaries, mainland Norway (SPLIT 

series) 

09175x1 09175 Log, ∆ x SSB 

Sum of Dwelling started (SPLIT series)  11006x10996 11006/109

96 

Log, ∆ 
 

SSB 

Sight deposit rate (styringsrente, nominell) SRATE 
 

∆ x Norges 

Bank 

Consumer price index: Transport 03013x1 03013 Log, ∆ 
 

SSB 

Consumer price index: Health 03013x2 03013 Log, ∆ 
 

SSB 

Consumer price index: Housing, water, electricity, 

gas and other fuels 

03013x3 03013 Log, ∆ 
 

SSB 



 
 

43 
 

Consumer price index: Miscellaneous goods and 

services 

03013x4 03013 Log, ∆ 
 

SSB 

Consumer price index: Food and non-alcoholic 

beverages 

03013x5 03013 Log, ∆ 
 

SSB 

Consumer price index: Alcoholic beverages and 

tobacco 

03013x6 03013 Log, ∆ 
 

SSB 

Consumer price index: Communications 03013x7 03013 Log, ∆ 
 

SSB 

Consumer price index: Recreation and culture 03013x8 03013 Log, ∆2 
 

SSB 

Consumer price index: Education 03013x9 03013 Log, ∆ 
 

SSB 

Consumer price index: Restaurants and hotels 03013x10 03013 Log, ∆ 
 

SSB 

Consumer price index: Furnishings, household 

equipment and routine maintenance 

03013x11 03013 Log, ∆ 
 

SSB 

EURNOK  EURNOK  
 

∆  x Refinitiv  

USDNOK  USDNOK  
 

∆  
 

Refinitiv  

GBPNOK  GBPNOK  
 

∆  
 

Refinitiv  

Household disposable income  10799x10 10799 Log, ∆ x SSB 

Employed persons. Employees and self-employed 09175x10 09175 Log, ∆ 
 

SSB  

Full time equivalent employment. Employees and 

self-employed 

09175x11 09175 Log, ∆ 
 

SSB  

Total hours worked for employees and self-

employed 

09175x12 09175 Log, ∆ x SSB  

Compensation of employees 09175x13 09175 Log, ∆ 
 

SSB  

Value added at basic values per hour worked 09176x1 09176 ∆  x SSB 

Wages and salaries per hour  09176x2 09176 ∆  
 

SSB  

Full time equivalent employment 09176x3 09176 Log, ∆ 
 

SSB 

Gross Domestic Product Per Capita for Norway NORPFCEQDSMEI 
 

Log, ∆ 
 

FRED 

Total reserves incl. Gold FI.RES.TOTL.CD 
 

Log, ∆ x World Bank 

Total reserves ex. Gold FI.RES.XGLD.CD 
 

Log, ∆ 
 

World Bank 

Direct purchases by non-residents 09190x8 09190 ∆  
 

SSB 

Share prices Index  SPIOS 
 

Log, ∆ 
 

Oslo Børs  
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Table A2 presents the variables of our full dataset which did not satisfy the 

stationarity check. All variables of which an ADF test of five lags could not reject 

a unit root at the 5% critical value level were deemed to not be stationary, and Table 

A2 presents our adjustments to ensure stationarity. In the second column, >10% crit 

value means that the ADF test cannot reject a unit root at the 10% critical value 

level. If the ADF test could reject a unit root at 10% for only one or a few lags, the 

specific lag is specified in the second column as well. The third column describes 

the transformation of the data to ensure stationarity, where "∆" means that the 

variable has been differenced, and log refers to taking the natural logarithm of the 

data. The fourth column then describes the level at which a unit root can be rejected 

after the transformations of the data, where all variables are stationary following 

the adjustment.   

 

Table A2: Stationarity test  

Variable Rejected level  Adjust  Rejected level 

Brent Crude price- Oil 

Prices 
>10% crit value ∆ 1% crit value 

Real Gross Domestic 

Product, 3 Decimal 
>10% crit value Log, ∆ 1% crit value 

M1 for Norway >10% crit value Log, ∆ 1% crit value 

M2 for Norway >10% crit value Log, ∆ 1% crit value 

Net Trade: Value Goods  >10% crit value ∆ 1% crit value 

Unemployed: 15-24 years  10% on 2 lags, >10% on 3 

lags 

∆ 1% crit value 

Persons in the labor force: 

15-74 years  
>10% crit value ∆ 1% crit value 

Consumer price index: 

Recreation and culture 
>10% at lag 3 ∆ 1% crit value 

EURNOK  >10% crit value ∆ 1% crit value 

USDNOK >10% crit value ∆ 1% crit value 

GBPNOK  >10% at lag 1 and 2, 10% at 

lag 3 

∆ 1% crit value 

Value added at basic values 

per hour worked 
10% at lag 3, >10% at lag 4 ∆ 1% crit value 

Wages and salaries per hour  10% crit value ∆ 1% crit value 

Direct purchases by non-

residents 

>10% crit value ∆ 1% crit value 
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B. Derivation  

In order to obtain Equation (5), we first start by inserting from Equation (3) into 

Equation (4): 

 

ሺ∆𝑋௧ െ 𝜇ሻ ൌ 𝐹ሺ∆𝑋௧ିଵ െ 𝜇ሻ ൅ 𝐻𝑒௧    ሺ3ሻ 

 

𝜏௧ ൌ 𝑋௧ ൅ lim
௝→ஶ

෍𝐸൫∆𝑋௧ା௝ െ 𝜇൯,        ሺ4ሻ
ஶ

௝ୀଵ

 

 

This yields the following expression: 

 

𝜏௧ ൌ 𝑋௧ ൅ E୲෍ሺ𝐹൫∆𝑋௧ା௝ିଵ െ 𝜇൯ ൅ 𝐻𝑒௧ሻ,       ሺ4. 𝑏ሻ
ஶ

௝ୀଵ

 

 

Since we have that 𝐻𝑒௧~𝑁ሺ0, Σሻ, the equation implies the following:  

 

𝜏௧ ൌ 𝑋௧ ൅෍𝐹൫∆𝑋௧ା௝ିଵ െ 𝜇൯,       ሺ4. 𝑐ሻ
ஶ

௝ୀଵ

 

 

Using the infinite sum of geometric series/sequence ∑ 𝐹௧ ൌ ଵ

ଵିி
ൌ ሺ1 െஶ

௧ୀ଴

𝐹ሻିଵ,  where |𝐹| ൏ 1, we arrive at the following expression in Equation (5), with 

the term 𝐹ሺ𝐼 െ 𝐹ሻିଵ accounting for the fact that our geometric sum begins in period 

𝑗 ൌ 1: 

 

𝜏௧ ൌ 𝑋௧ ൅ 𝐹ሺ𝐼 െ 𝐹ሻିଵሺ∆𝑋௧ െ 𝜇ሻ      ሺ5ሻ 
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C. Informational contribution 

Table A3 presents the shares of standard deviation of informational contribution as 

shown graphically in Figure 5A. Units are standard deviations, and the 

contributions to the estimated output gap are calculated using Equation (8).  

 

Table A3: Shares of standard deviation of informational contributions  

Variable Shares 

Unemployment 0.3660 

Total Reserves 0.2985 

GDP growth 0.0705 

GFCE 0.0593 

Industrial Share Prices 0.0552 

Wages 0.0471 

Income 0.0451 

Oil Price 0.0437 

Sight Deposit Rate 0.0399 

EURNOK 0.0319 

Hours Worked 0.0316 

GFCF 0.0266 

GFCF Dwelling 0.0249 

Imports 0.0246 

PPI 0.0234 

Price Deflator 0.0233 

Labor Force 0.0231 

Hourly Earnings 0.0218 

Production 0.0195 

Productivity 0.0188 

CPI 0.0179 

PFCE 0.0139 

M1 0.0132 

Exports 0.0114 

Dwellings 0.0107 

M2 0.0091 

 1.371 
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Table A4 presents the shares of standard deviation of informational contribution for 

the variables that constitute the small 9-variable model. The procedure of 

establishing the small model is described in Figure A2 through A6.  

 

Table A4: Shares of contribution on variables in the 9-variable model  

Variable Shares  

Unemployment 0.3660 

Total Reserves 0.2985 

GDP growth 0.0705 

GFCE 0.0593 

Wages 0.0471 

Income 0.0451 

Sight Deposit Rate 0.0399 

Hours Worked 0.0316 

PFCE  0.0139 
 

0.9720 
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D. Calculation of lambda  

Figure A1: One-step-ahead pseudo out-of-sample root mean square forecast error 

for various-sized BVARs  

 

 

Figure A1 illustrates the one-step-ahead pseudo out-of-sample RMSFE for the 9-

variable, 26-variable, and 76-variable BVAR models. The line of the shrinkage 

parameter 𝜆 is set to minimize the RMSFE and decreases when more variables are 

added to the model, meaning as more variables are added to the model, more 

shrinkage is added to the model through a lower 𝜆. The estimation of the shrinkage 

hyperparameter 𝜆 is set using the approach presented in Morley and Wong (2020). 

Our data contains roughly 150 quarters, resulting in using the first 12.5 years (one-

third of the sample) in the recursive estimation and the remaining 25 years in the 

evaluation of the root mean square forecast error estimation, resulting in 𝜆 ൎ 0.04. 

 

 

 
  

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

2.1

2.2

9 Variables 26 Variables 76 Variables



 
 

49 
 

E. Selection of variables in the small model  

The smallest model with nine variables with the highest shares of standard deviation 

of informational contributions: Unemployment, Total Reserves, GDP growth, 

GFCE, Industrial Share Prices, Wages, Income, Oil Price, Sight Deposit Rate.  

 

Figure A2 displays the estimates output gap using the 9-variables with the highest 

share of informational contribution. These variables are as follows: Unemployment, 

Total Reserves, GDP growth, GFCE, Industrial Share Prices, Wages, Income, Oil 

Price, Sight Deposit Rate.  

 

Figure A2: Estimated Norwegian output gap for 3 different sized BVAR models 

 

 

Following from Figure A2 using the highest contribution shares, we then omit the 

Oil Price component as this variable are the one of the lowest contributors to the 

output gap. Figure A3 represent the small VAR-sized model compared to the 

benchmark-model and the full-sized 76 variable model, and we see a significantly 

change in the amplitude of the cycle.  
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Figure A3: Estimated Norwegian output gap for 3 different sized BVAR models 

 

 

The selection continues from Figure A3 where we further omit the variable 

Industrial Share Prices. A representation is shown in Figure A4.  

 

Figure A4: Estimated Norwegian output gap for 3 different sized BVAR models 

 

 

The small model is then modified by including Hours Worked after adding and 

dropping variables. Figure A5 shows that the amplitude of the model converges 

towards the benchmark model and the full-sized variable model.  
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Figure A5: Estimated Norwegian output gap for 3 different sized BVAR models 

 

 

The final model selection is displayed in Figure A6 below, where we included the 

variable PFCE to the variable selection from Figure A5. Compared to the model 

selection in Figure A2, we have omitted the Oil Price and Industrial Share Prices, 

and added Hours worked and Private Final Consumption Expenditure (PFCF) from 

the benchmark model. The final 9-varibale model now includes Unemployment, 

Total Reserves, GDP growth, GFCF, Wages, Income, Sight Deposit Rate, Hours 

Worked and PFCE.  

 
Figure A6: Estimated Norwegian output gap for 3 different sized BVAR models 
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