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ABSTRACT

This thesis adds to the already broad literature investigating sim-
ple trend-following strategies. We study the ability of a time series
momentum strategy to generate abnormal returns following the
methodology of Moskowitz et al. (2012). We find evidence of the
strategy generating statistically significant returns, even though we
further find overwhelming evidence for lower return predictability
in the period of 2009-2021. This suggests a diminishing effect of
the momentum anomaly. We also find that adding drawdown con-
trol as a risk management tool extensively enhances the strategy’s
performance.
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or conclusions drawn.
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1 Introduction and Motivation

Ever since Fama (1970) presented his efficient markets hypothesis, there has

been an ongoing discussion on the degree of the efficiency in capital markets.

Fama’s hypothesis suggests that past prices and trading volumes are reflected

in current prices, and trading on historical price movements should there-

fore not generate a significant alpha. The findings of Fama (1970) was later

confirmed by Stiglitz (1982), French and Roll (1986), and Lo and MacKin-

lay (1988). However, Moskowitz et al. (2012) find overwhelming empirical

evidence that even a simple trend-following strategy can generate abnormal

returns. Trend-following strategies that purely focus on a security’s own re-

turn, referred to as Time Series Momentum, was firstly researched by Daniel

et al. (1997), Barberis et al. (1998), and Berk et al. (1999), and was later con-

firmed by Moskowitz et al. (2012), Asness et al. (2013), Hurst et al. (2014),

and Levine and Pedersen (2016). This makes the momentum anomaly is one

of the most researched anomalies in the financial markets.

Trend-following strategies were suggested already in the early 1800s by the

British economist David Ricardo, as his mantra suggested to ”...cut temporary

losses and let the profits run on” (Pedersen, 2015). This mantra was later

repeated by the famous trader Jesse Livermore, who stated that ”... big money

was not in the individual fluctuations but ... sizing up the entire market and its

trend” (Pedersen, 2015). Hedge funds utilizing trend-following strategies have

existed since at least 1949 and have been proliferated since the 1970s, with the

number of funds utilizing trend-following strategies increasing extensively. In

other words, strategies such as Time Series Momentum are not something new.

However, even tough institutional investors exploit it, and numerous renowned

researchers further verify it, the return predictability of time series momentum

is still widely discussed. The recent literature suggest a diminishing effect of
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the momentum anomaly, and further a significant tail risk attached to trend-

following strategies.

1.1 Research Question

As international researchers disagree about the predictability of time series

momentum, we find the theme highly topical. The thesis, therefore, aims to

add to the already large body of literature investigating simple trend-following

strategies. Firstly, we wish to assess if we obtain the same results as Moskowitz

et al. (2012) using an extended sample period, researching if the momentum

anomaly still is present in global financial markets. After that, we study if

we manage to improve the strategy by adding drawdown control as a risk

management tool, reducing its volatility. This leads to the following research

question:

Is the momentum anomaly still present in global financial markets, and is it

possible to improve a time series momentum strategy by adding drawdown

control as a risk management tool?

We use the time series momentum strategy developed by Moskowitz et al.

(2012) to evaluate the presence of the momentum anomaly. This means that

we do not consider if our results would differ using a cross-sectional momentum

strategy. Furthermore, we use instruments from the four largest asset classes,

i.e., equities, bonds, commodities and currencies. The instruments we use are

among the most liquid and exploited within each asset class, and we therefore

presume our data will work as an adequate proxy for global financial markets.

Lastly, our research does not emphasize the influence of transaction cost.

1.2 Summary of Findings

We find statistically significant evidence for the presence of the momentum

anomaly in our sample period. Following the methodology of Moskowitz et al.

(2012), we create a time series momentum strategy, finding that the strategy
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generates a Sharpe ratio of 0.75, compared to a passive long investment in

the same instruments, generating a Sharpe ratio of 0.73. We further find that

when adjusting for relevant risk factors, the strategy generates a statistically

significant monthly alpha of 0.44%, supplying evidence against the efficient

market hypothesis of Fama (1970).

However, we also find overwhelming evidence of lower to zero return pre-

dictability during the last decade. When controlling three independent sub-

periods, we find that the strategy generates a negative alpha in the period

of January 2009 to December 2021. Even though the alpha is insignificant,

the strategy generated a positive and statistically significant alpha in the two

other subperiods. This insignificance suggests that the effect of the momen-

tum anomaly is diminishing, and that the markets are more efficient than first

assumed, supporting the efficiently inefficient hypothesis of Pedersen (2015).

The lower return predictability can be explained by the results of McClean

and Pontiff (2016), as they find low return predictability in heavily researched

anomalies. In addition, research by Cotter and McGeever (2018) suggests a

diminishing effect of the momentum anomaly in the U.K.

Finally, we find that adding drawdown control as a risk management tool

enhances the strategy’s performance, both in terms of Sharpe ratio, and in

terms of risk-adjusted return. The Sharpe ratio of the strategy with drawdown

control is 1.07, compared to 0.75 without. Adding drawdown control also

increases the abnormal return of the strategy, improving the monthly alpha

by seven basis points.
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2 Literature review

Relevant literature has been reviewed thoroughly. First, we explore the broad

literature discussing trend-following strategies and drawdown control as a risk

management tool, setting the empirical foundation for our thesis. Second,

we look into theory discussing the efficient market hypothesis, which lays the

theoretical foundation for whether past prices and trading volumes are reflected

in current prices. Thereafter, we focus on theory explaining the economic

rationale behind trend-following strategies, before we review theory exploring

the economic interpretation of drawdown control. We regard these topics as

essential to review as they give both an empirical and a theoretical framework

for our thesis.

2.1 Time Series Momentum

Moskowitz et al. (2012) conclude that the past 12-month return could posi-

tively predict the return for the next one to 12 months. They also conclude

that a time series momentum strategy could earn a significant average- and

risk-adjusted return. This finding is further examined by Asness et al. (2013),

Hurst et al. (2014), and Levine and Pedersen (2016), who investigate differ-

ent forms of times series momentum on new asset classes and sample periods,

finding the same results as Moskowitz et al. (2012).

However, Kim et al. (2016) explain that the time series momentum strategy

is driven by volatility scaling and that its performance without this scaling is

not significantly better than an ordinary buy-and-hold strategy. In a parallel

study, Goyal and Jegadeesh (2018) show that if you adjust the leverage ratio

appropriately, a traditional cross-sectional momentum strategy will generate

higher returns than time series momentum. Due to these findings, the return

predictability of time series momentum is disputed.

Huang et al. (2020) find little statistical and economic evidence of time se-

ries momentum when using the same data as Moskowitz et al. (2012). They
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conclude that the presence of the momentum anomaly across the global as-

set classes is questionable. By adopting the methodology of Moskowitz et al.

(2012), running a pooled regression, they find strong evidence against no pre-

dictability. Huang et al. (2020) argue that the pooled regression used by

Moskowitz et al. (2012) is likely to over-reject the null hypothesis due to up-

wards bias (Hjalmarsson, 2010), persistence in the past 12-month returns (Li

and Yu, 2012), and volatility scaling (Kim et al., 2016). When separating the

volatility effect, Huang et al. (2020) find that the performance of the time

series momentum strategy does not necessarily originate from predictability.

They further find that the trend-following strategy has little predictive power,

based on the predictive slope developed by Lewellen (2011). Huang et al.

(2020) end their argumentation by stating that they do not claim that there is

no predictability in any asset class, but that the predictability is not as simple

as a constant 12-month return rule. Risk premium in the stock market can be

predicted by a range of macroeconomic variables and investor sentiments, as

shown by Jiang et al. (2019).

Another criticism of trend-following strategies is the transaction cost. Lesmond

et al. (2003) state that the assets creating significant momentum returns are

also the assets with highest trading cost. They conclude that the abnormal

returns associated with following a momentum strategy create a phantasm

of returns, as they do not exist. Furthermore, Korajczyk and Sadka (2004)

conclude that trading on the momentum anomaly is only profitable on a tiny

scale. However, Novy-Marx and Velikov (2016) argue that these papers study

the obsolete momentum strategies, and not the strategies designed to mini-

mize transaction cost. They point to the findings of Frazzini et al. (2012), who

conclude that the momentum anomaly is robust and implementable, and that

the potential scale of the strategy is substantially larger than what previous

studies have suggested. These findings are further supported by the results of

Hurst et al. (2014), stating that time series momentum, following the method-
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ology of Moskowitz et al. (2012), has generated a consistent positive return

over the last century, net of transaction costs and management fee.

An essential addition to the literature discussing the predictability of time

series momentum is whether the momentum anomaly is diminishing. As dis-

cussed by McClean and Pontiff (2016) in Does academic research destroy stock

return predictability?, investors learn about mispricing from academic publica-

tions. In their research, the authors find significantly lower predictability in the

returns of publication-informed trading. McClean and Pontiff (2016) especially

emphasize the role of hedge funds in exploiting market anomalies, which ulti-

mately increases the efficiency grade of the market. Moreover, Boehmer and

Kelley (2009) find that stocks with a higher grade of institutional ownership

exhibit lower predictability in returns. Finally, the phenomenon that the mo-

mentum effect is starting to evaporate is researched by Cotter and McGeever

(2018), finding that in the U.K., the return of trend-following strategies has

been decreasing after 2007.

2.2 Drawdown Control

Grossman and Zhou (1993) define drawdown control as a reactive mechanism

that seeks to limit losses as they evolve. Drawdowns are costly, as they, in

addition to direct losses, can lead to increasing margin requirements from prime

brokers (Pedersen, 2015). We use drawdown control to minimize the risk that

the drawdowns of the strategy exceeds a prespecified maximum acceptable

drawdown (MADD). If the current drawdown in time t is given by DDt, then

Pedersen (2015) suggests the following drawdown control policy:

V aRt ≤ MADD −DDt (1)

The right-hand side of the equation illustrates the largest acceptable loss given

the amount already lost. In contrast, the left-hand side shows the most that
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can be lost given the current positions and market risk, at a certain confidence

level (Pedersen, 2015). Drawdowns are calculated from the current high water

mark, i.e., the highest cumulative return achieved by the strategy in the period.

When the strategy does not experience a drawdown, the high water mark

increases until a subsequent drawdown occurs.

If Equation (1) is violated, one should reduce risk by unwinding positions until

VaR reaches a satisfying level. Gray and Vogel (2013) argue that drawdown

can be used as a simple method to capture the tail risk, which is often unno-

ticed by linear factor models like the Fama-French-Carhart Four-Factor Model.

They study the tail risk in market anomalies, finding an extreme tail risk in

a long/short strategy like time series momentum. Furthermore, they find the

usefulness of using drawdown to manage tail risk as significant.

Drawdown challenges a manager’s financial and psychological tolerance. Ac-

cording to Chekhlov et al. (2000), a drawdown of 50% is unlikely to be tolerated

in any average account. Furthermore, Chekhlov et al. (2005) argue that an

account may be closed even if the drawdown breaches 20%. Finally, Gray and

Vogel (2013) argue that the drawdown of a long/short momentum portfolio

will, in most cases, be so extreme that an investor would most likely suffer

direct margin calls via direct broker intervention or indirect margin calls via

forced liquidations. As shown by Zhou and Zhu (2009), the probability of a

50% drawdown to happen over a century, even if the stock markets are mod-

eled as a random walk, is 90%. This emphasizes the importance of having

control over the drawdowns of a strategy.
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3 Theory

3.1 Efficient Capital Markets

In Efficient Capital Markets: A Review of theory and Empirical work, Fama

(1970) presented his efficient market hypothesis. Fama argues that an efficient

market is where prices reflect all relevant information. He states that it is

difficult, or even impossible, to predict prices in the short run, as the market

incorporates stock news into prices. In efficient markets, the market price

always equals the fundamental value, and if any news gets out, the market will

immediately react to reflect the new information. Therefore, there is no point

in active investing, and investors should buy the market instead of trying to

beat it. Fama (1970) further introduced three forms of market efficiency -Weak

Form, Semi-Strong Form, and Strong Form. The weak form suggests that

prices reflect information about historical prices, making a trading strategy

based on historical prices, like time series momentum, of no value. The semi-

strong form states that the market reflects all publicly available information,

making trading based on underlying firm fundamentals useless. The strong

form of market efficiency indicates that prices reflect all public and private

information. Fama (1970) observe extensive evidence for his efficient markets

model, finding support for both the weak- and the semi-strong form. This

research was later tested and confirmed by Stiglitz (1982).

Shiller (2003) provides a new view in this discussion in his article From effi-

cient markets theory to behavioral finance. Shiller show that stock prices move

away from their fundamental value more than standard theory can explain,

arguing that markets do not reflect all information. Furthermore, Shiller ar-

gues that the prediction of price development is possible in the medium to long

run. Hence, he argues that markets are less efficient than first assumed. This

argument opposes the efficient market hypothesis of Fama (1970). If Fama

is correct, then time series momentum will not be able to generate abnormal

returns, as all historical information is reflected in the stock price. However,
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as described previously, there is overwhelming evidence that simple trend-

following strategies can generate abnormal returns. Hence, markets cannot be

fully efficient. At the same time, Pedersen (2015) argues that markets cannot

be as inefficient as Shiller describes, as then everyone would beat the market.

In his book Efficiently Inefficient: How smart money invests & market prices

are determined, Pedersen (2015) gives new insight to this discussion. He argues

that markets are just so inefficient that money managers can be compensated

for their costs and risk through superior performance. On the other hand,

he also argues that the markets are just efficient enough that the returns

investors generate on active investing after all costs do not encourage the entry

of new managers or additional capital. Hence, Pedersen argues for something

between Fama and Shiller. The markets are efficiently inefficient (Pedersen,

2015). In other words, generating positive abnormal returns on a simple trend-

following strategy could be possible, as the market does not fully incorporate all

information. According to Pedersen (2015), managers in an inefficient market

are compensated for providing liquidity to the market, i.e., helping investors

transact. Money managers are compensated for taking the other side of these

trades due to the liquidity risk they expose upon themselves. Financial market

frictions influence the real economy and also the efficiency of markets. These

frictions’ effects are also supported by the findings of Acharya and Pedersen

(2003) and Garleanu and Pedersen (2011).

3.2 Economic Interpretation of Time Series Momentum

Pedersen (2015) describes a trend-following strategy’s economic rationale by

illustrating a trend’s ”life cycle.” At first, an initial underreaction to a shift

in the fundamental value allows the strategy to invest before the market in-

corporates the information. As a trend-following strategy buys the assets due

to the initial upward price move, it capitalizes as the price will continue to

increase due to the initial underreaction. Several behavioral tendencies and
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market frictions are leading to this phenomenon. Duffie (2010) argues that

market frictions delay the response, leading to a drop and rebound in prices.

Mitchell and Pulvino (2012) point out that people tend to sell winners too

early and ride losers too long. When there are fewer sellers in the market,

this keeps prices from adjusting as fast as they should. Furthermore, investors

tend to be biased towards historical data, insufficiently adjusting their views

to new information.

After the initial underreaction, a trend starts. The cycle continues when the as-

set experiences a delayed overreaction. Research finds several phenomena that

extend the trend beyond the asset’s fundamental value. Daniel et al. (1997)

show that people tend to look for information that confirms their beliefs, look-

ing at recent price moves as representative of the future. This leads investors

to move capital into assets that are increasing, and out of assets that are de-

creasing. Vayanos and Woolley (2013) argue that when prices have moved,

some investors follow the stream, so-called ”herding.” Herding has been docu-

mented in the forcasts of equity analysts, earnings forecasts, and institutional

investment decisions. Vayanos and Woolley (2013) also discuss the fund flows

of institutional managers. As managers underperform, investors will with-

draw their money, forcing the manager to reduce his position, hence selling

losers. On the other hand, managers overperforming will experience an inflow

of cash, adding buying pressure to winning stocks. All these phenomena are

strengthening the initial underreaction and the overreaction, continuing the

trend. However, in the end, no trend lasts forever. Pedersen (2015) argues

that at some point, prices extend far beyond fundamental value. As investors

recognize this, prices will revert to the fundamental value, and the trend will

die.

According to theory, time series momentum generates the most considerable

returns during extreme markets. According to Fung and Hsieh (2001), this is
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because the strategy goes long when the market has a significant upswing, and

then short when the market crashes. This theory is further supported by the

findings of Moskowitz et al. (2012) and Pedersen (2015), stating that a simple

trend-following strategy historically has performed best in significant bull- or

bear markets, while generating lower return when the market is flat. The logic

behind this is that deep bear markets often occur when markets go from ”bad”

to ”worse,” causing traders to panic and prices to collapse. Collapsing prices

will make the short positions of the strategy generate large returns, explaining

why the strategy is profitable during such events. However, a look-back period

that is too long can lead to substantial losses. In the case of sharp trend

reversals, the strategy will not manage to alter its positions, inducing losses.

3.3 Economic Interpretation of Drawdowns

Using drawdown control could be compared to an investor trying to identify

trends that have pushed the price far beyond the asset’s fundamental value,

also called overextended trends (Pedersen, 2015). With drawdown control,

a strategy can pinpoint such overextended trends, limiting losses from sharp

trend reversals. As Pedersen (2015) further describes, drawdown control also

gives the strategy the ability to recognize short-term counter-trends, improving

the strategy’s performance in range-bound markets. Combined, the limitation

of losses and the identification of short-term counter-trends ultimately increase

the returns of a strategy (Pedersen, 2015).
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4 Data

To replicate the results of Moskowitz et al. (2012) we try to retrieve the same

data used in their research. The data include futures prices for 24 commodi-

ties, 12 cross-currency pairs, nine developed equity indices, and 13 developed

government bond futures. As all of the instruments are among the most liquid

futures in the market, we believe our results are not biased by illiquidity nor

stale prices.

Since BI Norwegian Business School does not have the same data access as

Moskowitz et al. (2012), we need to do adjustments for some asset classes.

These adjustments are explained in Appendix A. We retrieve our data mainly

from Bloomberg and Datastream. As each asset class is composed of instru-

ments from different countries, we experience problems as stock exchanges

worldwide do not have the same opening days throughout the year. There-

fore, we simplify by assuming that prices are constant when the exchanges are

closed. To do this, we align all daily data with the correct date from 01.01.1985

- 31.12.2021. In addition, for the securities that are missing data on a specific

date, we assume the price is the same as the day before. By making these

adjustments, we have a data set with prices for all futures and their corre-

sponding proxies. Table 1 provides sample statistics on each instrument; their

start date, their annualized mean, and their annualized volatility.
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Data start date Annualized mean Annualized volatility Data start date Annualized mean Annualized volatility

Our data Our data Our data Moskowitz et al. Moskowitz et al. Moskowitz et al.

Commodity futures

ALUMINIUM Jun-86 3.91% 20.69% Jan-79 0.97% 23.50%

BRENTOIL Jun-88 11.46% 36.32% Apr-89 13.87% 32.51%

CATTLE Jan-85 3.58% 17.94% Jan-65 4.52% 17.14%

COCOA Jan-85 5.1% 29.93% Jan-65 5.61% 32.38%

COFFEE Jan-85 0.% 36.89% Mar-74 5.72% 38.62%

COPPER Apr-86 8.26% 24.33% Jan-77 8.9% 27.39%

CORN Jan-85 5.76% 26.83% Jan-65 -3.19% 24.37%

COTTON Jan-85 5.87% 28.83% Aug-67 1.41% 24.35%

CRUDE Jan-85 1.05% 67.91% Mar-83 11.61% 34.72%

GASOIL Jul-89 10.58% 34.11% Oct-84 11.95% 33.18%

GOLD Jan-85 6.16% 16.17% Dec-69 5.36% 21.37%

HEATOIL Jul-86 11.98% 36.41% Dec-78 9.79% 33.78%

HOGS Apr-87 8.24% 36.08% Feb-66 3.39% 26.01%

NATGAS Apr-90 17.51% 54.86% Apr-90 -9.74% 53.30%

NICKEL May-87 12.24% 35.71% Jan-93 12.69% 35.76%

PLATINUM Jan-85 3.97% 24.02% Jan-92 13.15% 20.95%

SILVER Jan-85 7.81% 28.95% Jan-65 3.17% 31.11%

SOYBEANS Jan-85 6.16% 16.17% Jan-65 5.57% 27.26%

SOYMEAL Jan-85 6.69% 27.2% Sep-83 6.14% 24.59 %

SOYOIL Jan-85 4.82% 23.23% Oct-90 1.07% 25.39%

SUGAR Jan-85 10.84% 36.77% Jan-65 4.44% 42.87%

UNLEADED Apr-87 13.3% 40.6% Dec-84 15.92% 37.36%

WHEAT Jan-85 6.61% 29.7% Jan-65 -1.84% 25.11%

ZINC Jan-89 5.58% 25.49% Jan-91 1.98% 24.76%

Equity index futures

ASX SPI 200 (AUS) Jan-85 7.93% 16.72% Jan-77 7.25% 18.33%

DAX (GER) Jan-85 10.49% 22.54% Jan-75 6.33% 20.41%

IBEX 35 (ESP) Jan-85 8.3% 22.62% Jan-80 9.37% 21.84%

CAC 40 10 (FR) Jan-85 8.71% 21.82% Jan-75 6.73% 20.87%

FTSE/MIB (IT) Jan-85 7.41% 18.45% Jun-78 6.13 % 24.59%

TOPIX (JP) Jan-85 4.46% 22.1% Jul-76 2.29% 18.66%

AEX (NL) Jan-85 8.12% 20.81% Jan-75 7.72% 19.18%

FTSE 100 (U.K.) Jan-85 6.53% 18.45% Jan-75 6.97% 17.77 %

S&P 500 (U.S.) Jan-85 10.92% 19.26% Jan-65 3.47% 15.45%

Bond futures

3-year AUS May-88 0.35% 1.27% Jan-92 1.34% 2.57%

10-year AUS Jan-85 0.36% 1.31% Dec-85 3.83% 8.53%

2-year EURO Jun-97 0.72% 1.17% Mar-97 1.02% 1.53%

5-year EURO Okt-91 1.32% 3.44% Jan-93 2.56 % 3.22 %

10-year EURO Nov-91 2.49% 5.65% Dec-79 2.40% 5.74%

30-year EURO Okt-98 3.25% 12.77% Dec-98 4.71 % 11.70%

10-year CAN Jan-95 3.87% 5.72% Dec-84 4.04% 7.36%

10-year JP Dec-86 1.18% 4.62% Dec-81 3.66% 5.40%

10-year U.K. Jan-85 2.85% 7.12% Dec-79 3.00% 9.12%

2-year U.S. Jun-90 1.29% 1.55% Apr-96 1.65% 1.86%

5-year U.S. May-88 2.6% 3.87% Jan-90 3.17 % 4.25 %

10-year U.S. Jan-85 4.17% 6.26% Dec-79 3.80% 9.30%

30-year U.S. Jan-85 8.89% 10.13% Jan-90 9.50% 18.56%

Currency forwards

AUD/USD Jan-85 0.35% 11.91% Mar-72 1.85 % 10.86%

EUR/USD Jan-85 1.79% 10.69% Sep-71 1.57% 11.21%

CAD/USD Jan-85 0.39% 7.49% Mar-72 0.60% 6.29%

JPY/USD Jan-85 2.68% 10.81% Sep-71 1.35% 11.66%

NOK/USD Jan-85 0.74% 11.36% Feb-78 1.37% 10.56%

NZD/USD Jan-85 1.73% 12.17% Feb-78 2.31 % 12.01%

SEK/USD Jan-85 0.61% 10.96% Feb-78 -0.05% 11.06%

CHF/USD Jan-85 3.48% 11.62% Sep-71 1.34% 12.33%

GBP/USD Jan-85 0.91% 10.02% Sep-71 1.39% 10.32%

Table 1: Summary statistics of futures contracts

Tab.1. The table shows summary statistics of each instrument for our data and the data of Moskowitz et al.

(2012). We report the annualized mean and volatility as well as the start date of the data.
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4.1 Data Quality

Due to access limitations, we are not able to retrieve the same data as

Moskowitz et al. (2012). We do however assess that since we use Bloomberg

and Datastream as our data sources, the quality of the data we retrieve is

adequate. Nonetheless, we see some differences when comparing our results

in Table 1. For bonds, the annualized mean and the annualized volatility is,

on average, lower in our data than in the findings of Moskowitz et al. (2012).

There could be several reasons for this difference. However, we deem the

source and length of the data as the most probable causes, and therefore find

the quality sufficient for replication.

For currencies, the data is retrieved from a different source than Moskowitz

et al. (2012). However, when comparing our results to Moskowitz et al. (2012)

the difference is not momentous, especially considering the volatility. Looking

at the average return, we see that Moskowitz et al. (2012) report a slightly

negative return for SEK/USD, while we have a positive return. This difference

can be explained if we look at the development of the exchange rate over the

last ten years, where the dollar has appreciated relative to the Swedish Krona.

In regards to commodities, we see that overall sample statistics are quite sim-

ilar for our data and the data used by Moskowitz et al. (2012). This similarity

is not surprising, as both retrieve their data from Bloomberg, and the sample

length is virtually the same. We do, however, notice that Moskowitz et al.

(2012) report a negative annualized mean for Corn, Natural Gas, and Wheat.

For Corn and Wheat, the authors’ data starts in 1965, including a large drop

in the price that we do not have in our data. The two commodities also experi-

ence a large price increase after 2009, explaining why our annualized return is

positive. For Natural Gas, we believe the negative return shown in Moskowitz

et al. (2012) is explained by the large price decrease in 2008, following the

financial crisis. The return do, however, double after 2009, explaining our pos-
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itive returns. The extensive development of commodity return after 2009 is

illustrated in Figure 11.

On average, our equity index futures have a higher return than the findings of

Moskowitz et al. (2012). This difference is logical, as their data ends after the

financial crisis, while we see a massive increase in return after 2009, illustrated

in Figure 11. The stock market has recovered after the financial crisis, and

we, therefore, see higher returns in our data. The difference is exceptionally

high in the returns of the S&P 500, but as we show in Figure 11, the index

has more than tripled since 2009.
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5 Methodology

Using the historical prices for all instruments we create return series’. As

futures do not require a upfront investment, our returns are already excess,

giving us the daily excess return. We compound the daily excess returns to

a cumulative return index for all secuirities, making it possible to compute

returns at any horizon within the range or sample period. Table 1 presents

summary statistics for all instruments.

5.1 Ex Ante Volatility Estimate

As shown in Table 1, the volatility varies dramatically across all assets. There-

fore, as Moskowitz et al. (2012), we scale the returns by their volatility to make

meaningful comparisons across instruments. In detail, we estimate each asset’s

ex ante volatility, σ2
t , at each point in time using a simple univariate GARCH

model; the exponentially weighted lagged squared daily returns. The advan-

tage of this model is that we avoid volatility clustering. Moreover, the model

considers potential heteroskedasticity in the data, assuming autocorrelation in

the variance error term. The formula is calculated as follows:

σ2
t = 261 ∗ Σ∞

i=0 ∗ (1− δ) ∗ δi ∗ (rt−1−i − r̄t−1) (2)

The variance is returned in annual terms by the scalar 261, i.e., assuming 261

trading days a year. The weights in the model, (1− δ)δi, add up to 1, and r̄t−1

is the exponentially weighted average return. Furthermore, the parameter δ is

chosen as Σ∞
i=0 ∗ (1− δ) ∗ δi ∗ i = δ/(1− δ) = 60 days, stating that the center

of mass of the weights equals 60 days.

The model is not altered for any instrument. As we are using volatility esti-

mates at time t - 1, we are limiting the probability of look-ahead bias contam-

inating the results, making it comparable to Moskowitz et al. (2012).
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5.2 Time Series Momentum Trading Strategy

The in-depth analysis of time series momentum (TSMOM) in Moskowitz et al.

(2012) focuses on the properties of a 12-month TSMOM strategy with a one-

month holding period. We therefore do the same. We consider whether each

asset’s excess return over the past 12 months is positive or negative. If the

return is positive, we go long the instrument, and if negative, we go short. In

both cases, we hold the instrument for one month. For each instrument, we

scale it with 40%∗ 1
σ2
t−1

, each month. 40% represents the risk of an average in-

dividual stock, and by doing this, we size each position in the strategy to have

constant ex ante volatility (Moskowitz et al., 2012). This scaling is helpful as

aggregating strategies across instruments with the same volatility levels are

easier. Furthermore, having a time series with relatively stable volatility pre-

vents the strategy from being dominated by a few volatile periods (Moskowitz

et al., 2012).

To derive the time series of monthly returns, we follow the methodology used

by Jegadeesh and Titman (1993). The return at time t represents the average

return across the instruments at that time, i.e., the return of the portfolio that

was constructed last month. We compute the time-t return for each asset based

on the positive or negative past return from time t-k-h to t-h, where k = 12

and h = 1. The result is a time series of monthly returns from the portfolio we

hold for one month. Taking the average return across all instruments within

an asset class then gives us the return of our strategy, defined as rTSMOM
t,t+1 .

Specifically, the TSMOM return for any instrument s at time t is given by:

rTSMOM,s
t,t+1 = sign(rst−12,t) ∗ 40% ∗ 1

σs
t

∗ rst,t+1 (3)

Using this equation, we compute the return for each instrument in each avail-

able month from January 1985 to December 2021. The overall return of the
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strategy, consisting of an equally-weighted portfolio of the different securities,

can be written as:

rTSMOM
t,t+1 =

1

St

∗
St∑
s=1

∗sign(rst−12,t) ∗ 40% ∗ 1

σs
t

∗ rst,t+1 (4)

where St represents the number of available securities at time t.

5.3 Asset Pricing Benchmark

Jensen (1968) uses the Capital Asset Pricing Model (CAPM) to evaluate how

mutual funds perform. The research of Jensen (1968) states that an alpha value

different from zero either imply that the fund either creates or destroys. Fama

and French (1993) later expand the model of Jensen (1968), stating that market

movements cannot solely explain stock returns. They extend the model by

adding two additional factors, Small-Minus-Big (SMB) and High-Minus-Low

(HML). SMB is a size strategy, going long small cap stocks and short-selling

large cap stocks. HML is a value strategy, buying value stocks and shorting

growth stocks. This model is named The-Fama-French three-factor model (FF3

model). Carhart (1997) further supplements the FF3 model by adding the

cross-sectional momentum factor UMD of Jegadeesh and Titman (1993). UMD

measures exposure towards time-varying risk, as the cross-sectional momentum

strategy buys winning stocks and shorts losing stocks in the cross-section. This

model of Carhart (1997) is referred to as The Fama-French-Carhart Four-

Factor Model.

To evaluate the risk-adjusted performance of the strategy we follow the

methodology of Moskowitz et al. (2012), using the Fama-French-Carhart

Four-Factor Model. We use MSCI World Index as a proxy for the stock

market factor, MKT. The MSCI World Index is a stock market index

covering over 1500 companies in 24 countries. The index is weighted by

market capitalization and is commonly used as a benchmark for the global
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market, representing a broad cross-section of world stocks. Furthermore, we

retrieve the SMB - and HML-factors from Kenneth French’s homepage, and

the UMD-factor from Bloomberg.

In addition, we also control for exposure to the bond market, proxied by Bar-

clays Aggregate Bond Index, and the commodity market, proxied by the S&P

GSCI Index. This is because the Carhart Four-Factor Model mainly measures

exposure to the stock market. We believe adding the bond and commodity

markets when risk-adjusting the performance of the time series momentum

strategy will give more robust results.

Barclays Aggregate Bond Index is a market capitalization-weighted index rep-

resenting the U.S. bond market. We use this bond index as a proxy for the

bond market for several reasons. Firstly, the U.S. bond market alone consti-

tutes nearly 40% of the total bond market in the world. Furthermore, USD is

the world currency for financial markets, and USD fluctuations will therefore

affect both the U.S. bond market and the world bond market. Another al-

ternative could have been the FTSE World Government Index. However, our

assessment is that this index puts too much emphasis on government bonds

that are irrelevant to our strategy.

The S&P GSCI Index is an index covering the futures market of commodities.

The index consists of the exact same commodities as in our strategy. The

index uses a production weighting, giving weight to each commodity according

its average production quantity. This is advantageous as it gives the index

the trait of measuring investment performance and additionally work as an

economic indicator.

5.4 Violations of Ordinary Least Square Assumptions

In the thesis, we use the Ordinary Least Square model (OLS) to assess the

risk-adjusted performance of the strategy. For the OLS to be the best linear
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unbiased estimator (BLUE), several assumptions need to hold. Even though

some researchers run diagnostics to test for violations of these assumptions,

we have chosen not to do this. Instead, we follow the methodology of Fama

and French (1993) and Carhart (1997) when assessing risk-adjusted returns,

i.e., not adjusting for any violations. This methodology is also adopted by

Moskowitz et al. (2012). A violation of the assumptions might impact the

significance of our observations, leading to misleading results. However, we

find it sensible to not adjust as we compare our results with Moskowitz et al.

(2012).

Assessing each of the assumptions, the plotting of quarterly returns in Fig-

ure 5 more or less rejects the hypothesis of linearity in the residuals. Violating

second assumption of normality in the data, could lead to a biased alpha. How-

ever, because of our large sample size, we believe the Central Limit Theorem

will make the data approximately normalized. Therefore, we assess that the

alphas in our regressions are statistically robust. Regarding heteroscedasticity

in the data, this is common in time series regressions, and could lead to invalid

observations. Therefore, violating this assumption might affect our results.

Moreover, we expect that there will be autocorrelation in the data. A simple

trend-following strategy takes advantage of autocorrelation, and adjusting for

it would offset our strategy. As for the last assumption of no multicollinearity,

this does not have any noteworthy influence on our results.
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6 Results and Analysis

In this section we will present the results of our analysis and further discuss

the impact of our findings.

6.1 TSMOM Predictability of Future Returns

By regressing the excess return rst for each instrument s in month t on its return

lagged h months, where we scale the returns by their ex ante volatility’s σs
t−1,

we examine the time series predictability of future returns like Moskowitz et al.

(2012). Hence, we have the following regression:

rst
σs
t−1

= α + βh
rst

σs
t−h−1

+ εst (5)

As shown in Table 1, the volatility of each asset class varies vastly. Moskowitz

et al. (2012) therefore scale all returns by their volatility to have them in

relevant measurements. Qualitatively, the regression results will be similar

to running an OLS regression without adjusting for each security’s volatility.

The method can therefore be compared to the Generalized Least Square (GLS)

method. As the time series momentum relies on past returns, there will be a

certain degree of correlation between the residuals in the regression. Therefore,

when measuring the predictability of the strategy, the GLS is a more fitting

model.

Using all futures contracts in our data, we run a pooled panel regression and

compute t-Stats that account for group-wise clustering by time (monthly level).

In the regression, we used lags of h = 1, 2, ..., 60 months. This method is

the same procedure as Moskowitz et al. (2012), and allows us to compare our

results.

To verify that we successfully manage to replicate the results of Moskowitz

et al. (2012), we test the predictability of the time series momentum strategy

in regression specification (5) using the same sample length as they have in
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their study. A comparison of the findings is visualized in Figure 1. The panel

to the right shows the findings of Moskowitz et al. (2012), while the panel

to the left illustrates our results. As the figure shows, we observe numerous

similarities when using the same sample length. Firstly, we see a pattern of

positive and significant t-Stats when looking at the first 12 lags. This similarity

underpins that we have data and a strategy that captures the same trends as

Moskowitz et al. (2012). Secondly, we have a significant reversal in month 13,

and even more significant than Moskowitz et al. (2012). These points indicate

a continuation of returns for the first 12 months, continued by a reversal of

the returns, just like the strategy we are replicating. However, looking at the

t-Stats for the regressions with more extended look-back periods, our results

differ as we have more positive t-Stats. This indicates that although we manage

to capture the same trends, the data have some differences. Secondly, this

implies that our strategy will not be a perfect replication. Nevertheless, we

asses our results to demonstrate a successful replication of the strategy.

Figure 1: Comparison with Moskowitz et al. (2012) of t-Stats for all asset classes

Fig.1. The figure compares our findings with the findings of Moskowitz et al. (2012). In the panel to the

right we find the time series predictability across all assets of Moskowitz et al. (2012), and to the left is

our results. To calculate the predictability, we regress the monthly return of each instrument on its own

lagged return over different time lengths,
rst

σs
t−1

= α+ βh
rst

σs
t−h−1

+ εst . In this regression, we use the size of

the lagged return as a predictor, scaling returns by their ex ante volatility to make meaningful comparisons

across assets. Sample period is January 1985 to December 2009.
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Figure 2 plots the t-Stats from the pooled regression by month lag h for all

asset classes for the full sample, i.e., from January 1985 to December 2021. We

observe the same trends as in Figure 1. However, we see than when extending

the sample period, the return predictability of the strategy decreases, with only

two out of 13 t-Stats being significant on a 5% level. The lower significance

suggest a downgrade in return predictability after 2009, pointing towards low

statistical evidence of the momentum anomaly.

Figure 2: T-Stats for all asset classes with lagged return as predictor

Fig.2. The panel shows the time series predictability across all assets for the full sample period, i.e., from

January 1985 to December 2021. We regress the monthly return of each instrument on its own lagged return

over different time lengths,
rst

σs
t−1

= α + βh
rst

σs
t−h−1

+ εst . In this regression, we use the size of the lagged

return as a predictor, scaling the returns by their ex ante volatility to make reasonable comparisons across

asset classes. Sample period is January 1985 to December 2009.

We further look at the time series predictability only focusing on the sign of

past excess returns. We use the following regression:

rtt
σt
t−1

= α + βh ∗ sign(rst−h) + εst (6)

where sign(rst−h) represents whether the past excess returns are negative or

positive, taking the value of 1 if positive and -1 if negative. To make reasonable

comparisons across asset classes, we scale the returns by their ex ante volatility.
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Figure 3 shows the t-Stats from a pooled regression with standard errors clus-

tered by time (monthly level) for the same h as before, only focusing on the

sign of the past return. We observe only positive signs for the first 12 months

and negative signs for the next 14 months, showing the same return continu-

ation and then reversal as Figure 2. This is in accordance with the findings

of Moskowitz et al. (2012). However, our regression shows positive t-Stats

between months 27 and 50, where the results of Moskowitz et al. (2012) are

primarily negative. These observations are interesting, as our results point to

a more long-term return continuation while the findings of Moskowitz et al.

(2012) show more long-term reversals. As mentioned previously, this could be

explained by the difference in data. In addition, we believe that the strong

growth in especially equities and commodities after 2009, as shown in Figure

11, could somewhat explain this difference. However, neither our observations

nor the observations of Moskowitz et al. (2012) in this period are statistically

significant.

Figure 3: T-Stats for all asset classes with sign of return as predictor

Fig.3. The figure shows the time series predictability across all assets. We regress the monthly return of

each instrument on its own lagged return over different time lengths,
rtt

σt
t−1

= α + βh ∗ sign(rst−h) + εst . In

this regression, we use the sign of the lagged return as a predictor, scaling returns by their ex ante volatility

to make meaningful comparisons across assets. Sample period is January 1985 to December 2021.
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We also look at the individual predictability for each asset class, using both

the lagged return, (5), and the sign of the lagged return,(6), as predictor. The

results are illustrated in Figures 12 and 13, which are Appendix B. We do not

find anything contrary when studying each asset class individually.

Our findings from both regression specification (5) and (6) show that the pre-

dictability of the TSMOM strategy is partly statistically significant. This

result is somewhat contrary to the findings of Huang et al. (2020), as they

reported strong evidence supporting no predictability. Looking at our results,

we find evidence of some predictability, especially when looking at the same

sample period as Moskowitz et al. (2012), with six out of the first 13 months in

the look-back period being statistically significant on a 5% significance level.

This could be explained by persistence in the return of the past 12 months,

as Li and Yu (2012) show. Moreover, when increasing the sample period until

December 2021, Figure 2 illustrates a decreasing trend, with only two out of

the first 13 months showing statistically significant predictability. This trend

could be related to the findings of McClean and Pontiff (2016), reporting lower

predictability in the returns of publication-informed trading, and especially

trading on anomalies heavily exploited by hedge funds. Momentum is one of

the most researched market anomalies the last decade, with the research of

Moskowitz et al. (2012) later being supported by Asness et al. (2013), Hurst

et al. (2014), and Levine and Pedersen (2016). Furthermore, the number of

hedge funds and other sophisticated investors that have started to pursue sim-

ple trend-following strategies has been ever-increasing since 1970 (Pedersen,

2015). This tendency points to the fact that being heavily researched and

exploited by large institutional investors might have lowered the predictability

of time series momentum over the last decade. The findings of Cotter and

McGeever (2018) support the decrease in predictability, showing a significant

diminishing effect of the momentum anomaly after 2007 in the U.K.
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In terms of return predictability, two conclusions emerge from the results.

First, we find statistically significant return predictability when looking at

the same sample period as Moskowitz et al. (2012). This can be explained

by return persistence in the past 12 months (Li and Yu, 2012). Second, we

see that when extending the sample period, we observe lower predictability,

pointing towards a diminishing effect of the TSMOM strategy.

Nevertheless, as we find statistical significant return predictability both when

looking at the sample period of Moskowitz et al. (2012) and our sample period,

this violates thew weak form of market efficiency (Fama, 1970). The results

are therefore more in line with the research of Shiller (2003), as he argues

that markets do not reflect all information, and that return predictability is

possible in the medium to long term. To further assess the efficiency of the

market, we evaluate the strategy’s performance.

6.2 Performance of Time Series Momentum

Figure 4 shows the cumulative excess return for the diversified time series mo-

mentum strategy plotted against the cumulative excess return of a diversified

passive long position in all instruments. As the figure shows, the diversified

TSMOM strategy outperforms the diversified passive long portfolio. How-

ever, in terms of Sharpe ratios, the TSMOM strategy generates an annualized

Sharpe ratio of 0.75, barely beating the passive portfolio’s Sharpe ratio of 0.73.

Both Sharpe ratios are statistically significant from zero on a 1% significance

level.
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Figure 4: Time series momentum compared to a passive long strategy

Fig.4. The relative performance of our TSMOM strategy compared to a diversified passive long strategy.

Plotted are the cumulative excess return of the diversified time series momentum strategy and cumulative

excess return of the passive long position with equal weight in each instrument. Sample period is from

January 1985 to December 2021.

We see that the strategy generates large profits in the last quarter of 2008.

This period represents the peak of the Global Financial Crisis. Furthermore,

the TSMOM strategy suffers losses in quarter three of 2008, as the strategy

is still long in many instruments due to the 12-month look-back period. In

the last quarter, the price movements have caused the strategy to be short in

many instruments, generating significant profits as all markets except bonds

continued to fall dramatically. We further see that the TSMOM strategy

incurred significant losses when the financial crisis ended in the second quarter

of 2009. Due to the look-back period of 12 months, the strategy was still

short most of the instruments, and as the market started to rise in the second

quarter of 2009, the strategy suffered losses. The same trends can be observed

in the second quarter of 2020, which is the start of the Covid-19 pandemic. In

March 2020, the equity indices on average fell approximately 20%, and we also

see a sizeable drop in commodities, shown in Figure 11. After the substantial
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drop, the asset classes started to rise in the third quarter. The observations

illustrate that our strategy performs well during a crisis and worse right before

and after. This outcome is in line with what Pedersen (2015) argues, as sharp

reversals will make a trend-following strategy incur losses as it does not manage

to adapt quickly enough.

Figure 5: Time series momentum smile

Fig.5. The time series momentum smile. The quarterly returns of the TSMOM strategy are plotted against

the returns of the S&P 500. As the figure visualizes, the TSMOM strategy performs best in extreme markets,

i.e., when the market has high absolute returns, while generating less returns in flat markets. This creates

a ”smile”. Sample period is January 1985 to December 2021.

Figure 5 emphasizes the discussion above. The figure plots the returns of

TSMOM against the returns of the S&P 500. As one can see, the returns

of TSMOM are the highest during the most immense movements in the S&P

500. This result indicates that the strategy delivers its highest profits during

extreme markets while having lower profits during normal market conditions.

TSMOM strategies generate profits because they go long when the market has

a large upswing, and short when the market crashes, as shown by Fung and

Hsieh (2001). Following the argumentation of Moskowitz et al. (2012), this

suggests that the average positive returns from TSMOM are most likely not

compensation for ”crash risk”, but rather the fact that during extreme market
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events, the economy goes from normal to bad. This makes the TSMOM go

short the more risky assets, and then when the economy goes from bad to

worse, the strategy generate profits.

An interesting observation is that the strategy performs very poorly after 2016.

The cumulative return decreases from the height of approximately 2600% to

approximately 1900%, a significant decrease. One hypothesis is this is due to

sharp market reversals, making the TSMOM strategy go long when it should

have been short, and vice versa. Another hypothesis is that the momentum ef-

fect has started to evaporate. As discussed, we find lower return predictability

when using the full sample. Our findings, therefore, give even more support to

the findings of McClean and Pontiff (2016) and Cotter and McGeever (2018),

as they argued for lower return predictability in exploited anomalies, and the

momentum effect diminishing, respectively.

6.2.1 Sharpe Ratio

We analyze the strategy’s performance in terms of Sharpe ratio to further eval-

uate the presence of the momentum anomaly. Figure 6 reports each instru-

ment’s annualized gross Sharpe ratio. As the figure shows, all 55 instruments

contribute positively to the time series momentum’s return. We further find

that 43 out of 55 Sharpe ratios are statistically different from zero on a 5%

significance level, while 45 are statistically different from zero on a 10% signif-

icance level. The 2-year U.S. treasury generates the highest Sharpe ratio, with

a strategy Sharpe ratio of 0.98. This result is closely followed by the S&P 500,

generating a strategy Sharpe ratio of 0.71. We also observe that, on average,

commodities generate a lower Sharpe ratio than the other asset classes. This

outcome is most likely due to the commodities’ high volatility, as visualized in

Table 1.

Our findings are in accordance with Moskowitz et al. (2012). Their study

found that 49 instruments are statistically different from zero on a 5% level,

29



which is six more than our result. Regarding the Sharpe ratios, we observe

that the 2-year U.S. treasury also generates the highest Sharpe ratio in their

study, but that the remaining results somewhat differs. We see that, on aver-

age, our Sharpe ratios are slightly lower than what is reported by Moskowitz

et al. (2012). As previously discussed, our findings have pointed toward a

decrease in the predictability of time series momentum over the last decade.

The lower average Sharpe ratio is in line with these results, giving a rational

explanation for the underperformance of our strategy compared to the strategy

of Moskowitz et al. (2012).

Figure 6: Sharpe ratio of TSMOM by instrument

Fig.6. The annualized Sharpe ratio of the TSMOM for each instrument. The Sharpe ratio is calculated by

using monthly returns divided by the monthly volatility and then annualized. To test whether the Sharpe

ratio is statistically different from zero we use a t-Test to test the mean of all instruments. Sample period

is January 1985 to December 2021.

6.2.2 Alpha and Loading on Risk Factors

We evaluate the risk-adjusted performance of the time series momentum strat-

egy using the Fama-French-Carhart Four-Factor Model, following the steps of

Moskowitz et al. (2012). We regress the excess return of the TSMOM strategy

on the excess return of the factors. These are the stock market MKT, the size
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factor SMB, the value factor HML, and the cross-sectional momentum factor

UMD. We obtain the following regression:

rTSMOM
t = α+ β1 ∗MKTt + β2 ∗ SMBt + β3 ∗ UMDt + β4 ∗HMLt + ϵt (7)

The results are presented in Panel A of Table 2. As one can see, the TSMOM

delivers a statistically significant alpha with respect to the mentioned factors

of 0.63% per month. This finding states that the strategy creates value when

risk-adjusting for the Carhart Four-Factor model. We see that the strategy

loads negatively on both SMB and HML, but neither is statistically significant.

Furthermore, the regression shows that TSMOM loads heavily on the cross-

sectional momentum factor, UMD. This is not surprising, as the cross-sectional

momentum factor focuses on relative performance among a set of assets, going

long the top tier and short the bottom tier. The UMD-factor is statistically

significant on a 1% significance level. Lastly, we observe that the strategy

loads significantly on the market proxy on a 5% significance level.

When comparing to Moskowitz et al. (2012), we see that our findings are

approximately the same. They find negative and insignificant loading on the

SMB and HML factors, and heavy and significant loading on the UMD factor.

As Moskowitz et al. (2012) control for Carhart Four-Factors, they find that

the market coefficient is statistically significant on a 10% level. However,

Moskowitz et al. (2012) find a monthly alpha of 1.58% compared to our alpha

of 0.63%. Looking back at Figure 5, we see that our strategy performs poorly

after 2016, with several large drawdowns. This performance could explain the

value destroyed and we will further examine this in section 6.4.2.

However, as we mention in Section 5.3, we do not assess the Carhart Four-

Factor to measure the exposure of all asset classes, as these factors primarily

explain movements in the stock market. We, therefore, choose to also control
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for exposure to the bond market, BOND, and the commodity market, GSCI.

We obtain the following regression:

rTSMOM
t = α + β1 ∗MKTt + β2 ∗BONDt + β3 ∗GSCIt+

β4 ∗ SMBt + β5 ∗ UMDt + β6 ∗HMLt + ϵt

(8)

The results from the regression are presented in Panel B of Table 2. Here we

observe several intriguing results. First, we see that the exposure to the

market proxy, MSCI World, is not significant on a 5% level anymore. Second,

we see that the loading on SMB and HML still are insignificant, while the

loading on UMD is still quite large and significant. However, what is most

interesting is the TSMOM strategy’s loading on the bond market. We

observe that the excess return of the strategy loads extensively and

significantly on the BOND-factor. This is interesting, as this implies that the

returns from the bond market is covaries with the returns of our strategy.
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Panel A: Regression specification (7)

MSCI SMB HML UMD Intercept

Coefficient 0.0969 -0.0825 -0.0577 0.3292 0.0063

(t-Stat) (2.382)** (-1.458) (-0.922) (8.435)*** (3.7)***

Panel B: Regression specification (8)

MSCI SMB HML UMD BOND GSCI Intercept

Coefficient 0.0707 -0.0350 -0.0490 0.3148 0.7701 0.0084 0.0044

(t-Stat) (1.717)* (-0.624) (-0.798) (8.257)*** (5.046)*** (0.281) (2.60)***

Panel C: Regression specification (9)

BOND UMD Intercept

Coefficient 0.8108 0.3059 0.0045

(t-Stat) (8.475)*** (5.435)*** (2.684)***

Table 2: Risk-adjusted performance

Tab.2. The table shows the risk adjusted performance of the TSMOM strategy. The performance of the

strategy is evaluated using regression specification (7), (8) and (9). The significance level of the t-Stat is

specified using ”*”, where * equals that the observation is statistically significant on a 10% level, ** equals

that the observation is statistically significant on a 5% level and *** equals the observation being statistically

significant on a 1% level. The corresponding t-Stat for the different significance level are 1.645, 1.96, and

2.576, respectively. Sample period is January 1985 to December 2021. As the table visualizes, the strategy

generates a statistical significant alpha on a 1% level when controlling for all three regression specifications.

The covariation with the bond market could be surprising, but when looking

back at Figure 6, one must remember that the 2-year U.S. treasury generated

the highest Sharpe ratio among the securities in the strategy. We also see

that several bonds generate a relatively high Sharpe ratio. Therefore, the ob-

servation is not surprising when adding that all the Sharpe ratios generated

by bonds are statistically different from zero. At last, we observe that the

strategy’s monthly alpha is now 0.44% or 5.28% annualized, and is still sta-

tistically significant on a 1% significance level. This result implies that when

additionally controlling for exposure to the bond and commodity markets, the

strategy still generates a statistically significant alpha.
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If we remove all insignificant observations, we are left with the following equa-

tion:

rTSMOM
t = α + β1 ∗BONDt + β2 ∗ UMDt + ϵt (9)

The final regression from specification (9) shows all significant variables when

risk-adjusting the excess return of the TSMOM strategy. As Panel C in Table 2

shows, the returns of the strategy heavily load on both the BOND- andUMD-

factor. When controlling for all significant variables, the strategy generates

a statistically significant alpha of 0.45% per month or 5.4% annualized. This

result is, as mentioned, somewhat lower than the alpha of Moskowitz et al.

(2012) and underlines our previous findings of lower return predictability, but

also illustrates that a simple trend-following strategy generate abnormal re-

turns in our sample period.

Our findings in section 6.2, section 6.2.1, and section 6.2.2 all points in the

opposite direction of the efficient market hypothesis of Fama (1970). Fama

(1970) stated that even in the weakest form of market efficiency, simple trend-

following strategies could not generate abnormal returns as the strategy is

based on historical prices. However, our results show evidence that a strategy

like our time series momentum strategy can generate abnormal returns. The

cumulative return and the Sharpe ratio of the strategy outperform a long

passive portfolio in the same instruments, and, as we show in the previous

paragraph, the strategy generates a statistically significant alpha of 5.28%

annualized. As we discuss, this is more in line with the research of Shiller

(2003), stating that it is possible to predict return in the medium to long

term. At the same time, we find overwhelming confirmation suggesting lower

return predictability in the last decade. As Pedersen (2015) stated, the market

must be so inefficient that investors can be compensated for their costs and

risk through superior performance, but also so efficient that the returns do not

encourage the entry of new managers or additional capital. The lower return
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predictability after 2009 points towards that the market has become more

efficient, which is further supported by the findings of McClean and Pontiff

(2016) and Cotter and McGeever (2018). Our results therefore support the

efficiently inefficient hypothesis of Pedersen (2015), as we see significant, but

decreasing, return predictability of the momentum effect. To further analyze

these results, we have look at the performance of the time series momentum

strategy after 2009.

6.3 Performance of TSMOM Strategy After 2009

To verify our findings of lower return predictability after 2009, we analyze

the relative performance of the strategy between 2009 and 2021. Figure 7

shows the cumulative return of the TSMOM strategy after 2009 compared

to a diversified passive long portfolio. As illustrated, the TSMOM strategy

performed poorly after 2009, and is actually outperformed by the passive long

strategy when comparing cumulative returns. In terms of Sharpe ratio, the

difference is even more significant, with the TSMOM strategy generating an

annual Sharpe ratio of 0.25, compared to a Sharpe ratio of 0.45 for the passive

long strategy. This further supports the findings of McClean and Pontiff (2016)

and Cotter and McGeever (2018), and is also in accordance with the efficiently

inefficient hypothesis of Pedersen (2015), as it seems like extensive research

and trading might have evaporated the momentum anomaly.
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Figure 7: TSMOM cumulative return between 2009 - 2021

Fig.7. Performance of TSMOM strategy in subperiod 2009-2021, compared to a passive investment with

equal weight in all instruments. In terms of cumulative return, the strategy is heavily outperformed by the

passive market portfolio.

To validate our findings from Figure 7 we evaluate the risk-adjusted perfor-

mance of the TSMOM strategy, using regression specification (7), (8) and (9).

Table 3 illustrate the results.
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Panel A: Regression specification (7)

MSCI SMB HML UMD Intercept

Coefficient 0.0915 -0.1111 -0.329 0.6887 0.0001

(t-Stat) (1.056) (-0.799) (0.219) (6.203)*** (0.034)

Panel B: Regression specification (8)

MSCI SMB HML UMD BOND GSCI Intercept

Coefficient 0.1608 -0.0576 0.1613 0.6610 0.7433 -0.079 -0.0018

(t-Stat) (1.609)* (-0.413) (1.00) (5.892)*** (1.759)* (-1.089) (-0.549)

Panel C: Regression specification (9)

BOND UMD Intercept

Coefficient 0.6191 0.6258 -0.0008

(t-Stat) (1.626) (6-218)*** (-0.236)

Table 3: Risk-adjusted performance between 2009 and 2021

Tab.3. The table shows the risk adjusted performance of the TSMOM strategy. The performance of the

strategy is evaluated using regression specification (7), (8) and (9). The significance level of the t-Stat is

specified using ”*”, where * equals that the observation is statistically significant on a 10% level, ** equals

that the observation is statistically significant on a 5% level and *** equals the observation being statistically

significant on a 1% level. The corresponding t-Stat for the different significance level are 1.645, 1.96, and

2.576, respectively. Sample period is January 2009-December 2021. As the table visualizes, the strategy

performs badly in this period, generating a negative, though insignificant, alpha when controlling both for

regression specification (8) and (9).

Table 3 presents several interesting results. Both Panels A, B, and C illustrate

that the alpha has decreased substantially. In two out of three regressions, the

strategy generates a negative alpha, with the third observation being approxi-

mately equal to zero. Even though non of the alpha’s from the regressions are

statistically significant, these findings clearly show that the TSMOM strategy

did not generate abnormal returns in this period, and further indicates that

it actually destroyed value. Comparing with our results in Table 4, the cova-

ration with the BOND- and UMD-factor is still high, but the significance of

the observations is, in general, lower. The HML-factor now shows a positive

covariation, but is still insignificant. Our observations are in line with the re-
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sults of Cotter and McGeever (2018), and emphasize our previous suggestion

of a decrease in the return predictability of time series momentum. To check

the robustness of our, we control the strategy’s performance in two additional

subperiods to confirm that the sample size does not explain our insignificant

results.

6.4 Controlling Other Subperiods

Table 4 shows the performance of the TSMOM strategy in three different sub-

periods in addition to the full sample. The strategy produces a statistically

significant alpha in all periods except January 2009 to December 2021. This

shows that the insignificant performance of the strategy in this period is not

explained by the small sample size, and underline our findings of the momen-

tum anomaly diminishing. On the basis of the robustness check in this section

and the results presented in Section 6.3, we conclude that the performance

of the momentum strategy has significantly decreased in the last decade, fur-

ther supporting the research of McClean and Pontiff (2016) and Cotter and

McGeever (2018). Following the decrease in performance, we find it meaning-

ful and very interesting to see if using drawdown control as a risk management

tool could add value to the strategy in terms of cumulative return, Sharpe

ratio, and risk-adjusted returns.
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1985-1997 1997-2009 2009-2021 Full sample

Alpha from regression (7) 0.75***% 1.04***% 0.01% 0.63%***

Alpha from regression (8) 0.69**% 0.8***% -0.18% 0.44%***

Alpha from regression (9) 0.59***% 0.77***% -0.08% 0.45%***

Sharpe Ratio 1.11 1.10 0.25 0.75

Table 4: Performance in all subperiods including the full sample

Tab.4. The table shows the risk adjusted performance and the Sharpe ratio of the TSMOM strategy in all

subperiods in addition to the full sample. The risk adjusted performance of the strategy is evaluated using

regression specification (7), (8) and (9). The significance level of the t-Stat is specified using ”*”, where

* equals that the observation is statistically significant on a 10% level, ** equals that the observation is

statistically significant on a 5% level and *** equals the observation being statistically significant on a 1%

level. The corresponding t-Stat for the different significance level are 1.645, 1.96, and 2.576, respectively.

Sample period is January 2009-December 2021. As the table visualizes, the strategy performs badly in

the last subperiod, generating a negative, and insignificant, alpha when controlling both for regression

specification (8) and (9).

6.5 Improving the Strategy

In this section we will analyze if drawdown control could improve our strat-

egy. First, we analyze when the most significant drawdowns in our strategy

occur. Second, we analyze the implications of using drawdown control as a risk

management tool. To further assess if using drawdown control enhances the

strategy’s performance, we analyze the relative performance with and without

risk management.

6.5.1 Measuring Drawdown

We define a drawdown as any period when the cumulative return of the strategy

is lower than its current high water mark. Figure 8 visualizes the drawdown of

the strategy. As one can see, the most significant drawdowns are experienced

after 2008, with the largest happening in 2019, amounting to a loss of 28.3%.
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Looking back at Section 6.3, we see a connection between the large drawdowns

in this period and the poor performance of the TSMOM strategy in the same

period. As Figure 8 shows, the strategy starts to generate negative returns

after 2016 and never manages to bounce back.

Figure 8: Drawdown of TSMOM strategy

Fig.8. The figure shows the drawdowns of the TSMOM strategy by measuring when the cumulative return

of the strategy is below its high water mark. As illustrated, the largest drawdowns are experienced after

2009. Sample period is January 1985 to December 2021.

Based on the visualization of drawdowns, we see a potential for improving the

strategy. Being able to minimize drawdowns will make the strategy recover

from its losses more quickly, ultimately making it continue to increase its high

water mark.

6.5.2 Using Drawdown as a Risk Management Tool

As Chekhlov et al. (2005) describe, an account may be closed if a drawdown

breaches 20%. Looking at Figure 8, we see that our strategy has several

drawdowns exceeding 20%. Even for a superior hedge fund, several drawdowns

of more than 20% could result in a margin call. Especially the period after

2016 would have been difficult to sustain, with a period of approximately five
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years without reaching a new high water mark. This would at least lead to

unhappy investors and might even make the investors try to withdraw their

money, creating liquidity problems (Gray and Vogel, 2013).

Following the research of Chekhlov et al. (2005), we define our maximum

acceptable drawdown as 20%. We then obtain the following equation:

DD ≤ 20% (10)

Equation (10) states that the strategy’s drawdown shall never exceed 20%. To

accomplish this, we need to reduce risk before the drawdown reaches 20%. If

we start reducing risk when the drawdown is 20%, this would violate Equa-

tion (11), and we would need to unwind all positions immediately. Unwinding

all positions would generate substantial transaction cost, and also equals that

the investor is left without have any position in the market. This is often

unacceptable for large institutional investors. On the basis of this we create a

”signal” for when we start reducing the risk. Whenever the strategy’s draw-

down is higher than 15%, we start unwinding positions to scale down the risk.

Further, we do not unwind more than 50% of our positions, ensuring that we

always have a stake in the market.

Figure 9 displays the drawdown of the TSMOM strategy after implementing

drawdown control. As one can see, the maximum acceptable drawdown of 20%

is never breached, with the new maximum drawdown being 18.9%. This is a

reduction of approximately 33% from the previous maximum drawdown, or ten

percentage points. We also observe that the strategy now manages to bounce

back to a new high water mark in 2021, an achievement that is not feasible

without risk management. This might imply that drawdown control manages

to reduce some of the tail risk associated with trend-following strategies, as

Gray and Vogel (2013) describes.
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Figure 9: Drawdown control of TSMOM strategy

Fig.9. The figure displays the drawdown of the TSMOM strategy after the use of drawdown control as a

risk management tool. The drawdown is measured as whenever the cumulative return of the strategy goes

below its high water mark. Sample period is January 1985 to December 2021 .

6.6 Relative Performance of TSMOM with Drawdown

Control

To assess the relative performance of the TSMOM with drawdown control,

we first look at the cumulative return of the strategy, comparing it to the

TSMOM without drawdown control and the passive long strategy. When

we study Figure 10, we see that in terms of cumulative return, the TSMOM

strategy with drawdown control outperforms the original TSMOM strategy. As

the figure illustrate, the improved TSMOM strategy generates a significantly

higher return than the replication of Moskowitz et al. (2012) when using the

full sample period.
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Figure 10: Cumulative return of TSMOM with drawdown control

Fig.10. The figure visualises the cumulative return of the TSMOM strategy with and without drawdown

control, also including a equally-weighted passive long strategy. As displayed, the TSMOM with draw-

down control heavily outperforms the two other strategies, showing the importance of risk management.

Transaction costs are not included. Sample period is January 1985 to December 2021.

The difference becomes immense in the period after 2016, which is reasonable,

considering the lower return predictability we find after 2009. In terms of

performance measures, Table 5 reports the annualized Sharpe ratio for the

TSMOM, TSMOM with drawdown control, and the passive long strategy. All

Sharpe ratios are statistically significant on a 1% significance level, and as

the table illustrates, the TSMOM strategy with drawdown control generates

a substantially higher Sharpe ratio than the other strategies. However, this

result is expected, as we implemented drawdown control as a risk management

tool. Figure 10 clearly illustrate that the volatility in the strategy is reduced,

while the return is increased.
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Annualized Annualized Sharpe Ratio

mean volatility

TSMOM 10.0% 13.3% 0.75

TSMOM with drawdown control 12.6% 11.8% 1.07

Passive long 6.0% 8.2% 0.73

Table 5: Annualized Sharpe ratio for TSMOM with and without drawdown

control

Tab.5. The table shows the annual return, volatility and Sharpe ratio of for the TSMOM with and without

drawdown control, in addition to a passive strategy starting with an equal position in each instrument. The

sample period is January 1985 to December 2021, and all observations is statistically significant different

from zero on a 1% significance level, using a t-Test.

When further evaluating the performance of TSMOM with drawdown control,

we evaluate the strategy’s alpha. To compare it with the TSMOM without

drawdown control, we run a regression using regression specification (8) and

(9).
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MSCI SMB HML UMD BOND GSCI Intercept

World

Panel A: Comparison of strategies using regression specification (8)

TSMOM

Coefficient 0.0707 -0.0350 -0.0490 0.3148 0.7701 0.0084 0.0044

(t-Stat) (1.717)* (-0.624) (-0.798) (8.257)*** (5.046)*** (0.281) (2.60)***

TSMOM with drawdown control

Coefficient 0.0692 -0.0271 -0.0551 0.2940 0.77009 0.0166 0.0051

(t-Stat) (1.746)* (-0.503) (-0.933) (8.011)*** (5.246)*** (0.574) (3.117)***

BOND UMD Intercept

Panel B: Comparison of strategies using regression specification (9)

TSMOM

Coefficient 0.8108 0.3059 0.0045

(t-Stat) (8.475)*** (5.435)*** (2.684)***

TSMOM with drawdown control

Coefficient 0.8047 0.2865 0.0052

(t-Stat) (8.235)*** (5.596)*** (3.210)***

Table 6: Risk-adjusted performance with and without drawdown control

Tab.6. The table shows the performance of the TSMOM strategy. In this table, we illustrate the risk

adjusted return of the TSMOM strategy with and without drawdown control using regression specification

(7) and (8). The significance level of the t-Stat is specified using ”*”, where * equals that the observation is

statistically significant on a 10% level, ** equals that the observation is statistically significant on a 5% level

and *** equals the observation being statistically significant on a 1% level. The corresponding t-Stat for the

different significance level are 1.645, 1.96, and 2.576, respectively. Sample period is January 2009-December

2021.

Panel A of Table 6 shows the comparison of the risk loading of the TSMOM

with and without drawdown control using regression specification (8). In gen-

eral, there are few differences between the risk loading of the two strategies.

Both strategies load heavily on the BOND- and UMD-factor. This is, however,

not a surprise, as we have not altered the strategy’s positions, but decreased

the size when drawdowns breached 15%. Nonetheless, what we find interesting

is that we see an increase in the monthly alpha of approximately seven basis

points when adding drawdown control to the strategy. This increase amounts

to an annualized alpha of 6.12%, compared to 5.28% for the strategy without

drawdown control. We further observe that the significance of the observation

also increases.
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Panel B of Table 6 compares the two strategies when only controlling for

factors significant on a 5& level. We observe the same trend as in Panel A.

The strategy with drawdown control generates a monthly alpha that is seven

basis points higher, and the significance of the alpha increases. The result

shows that our findings are robust, underlining that using drawdown control

not only manages the risk by reducing the risk, but also generates abnormal

returns.

Adding drawdown control increases our strategy’s Sharpe ratio and generates

a higher abnormal return than the strategy without risk management. Fur-

thermore, we see that the additional value created by the drawdown control

outweighs the lower return predictability after 2009. This ultimately creates

a superior time series momentum strategy than presented by Moskowitz et al.

(2012). We have not considered the transaction costs that would have oc-

curred from the drawdown control. This factor will lower the total return of

the superior strategy. However, considering that the instruments in our study

are among the most liquid in the world, we believe our results are still robust

and show the advantages of using drawdown control to manage the risk of a

trend-following strategy.
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7 Conclusion

This thesis researches if a time series momentum strategy manages to generate

abnormal returns, investigating the presence of the momentum anomaly in

financial markets. Further, the thesis researches if using drawdown control

as a risk management tool enhances the time series momentum strategy’s

performance. The research question of the thesis is:

Is the momentum anomaly still present in global financial markets,

and is it possible to improve a time series momentum strategy by

adding drawdown control?

We find evidence for the presence of the momentum anomaly in our sample

period. The TSMOM strategy outperforms a diversified passive long strat-

egy, with a Sharpe ratio of 0.75 compared to a Sharpe ratio of 0.73. The

TSMOM strategy also generates a statistically significant monthly alpha of

0.44% per month when controlling for exposure to the Carhart Four-Factor

model and the bond and commodity markets. These findings suggest that

a simple trend-following strategy based on historical prices actually creates

value, which is contrary to the weak form of market efficiency presented by

Fama (1970), but aligned with the findings of Moskowitz et al. (2012). How-

ever, we find overwhelming proof of a decrease in the return predictability of

the TSMOM strategy over the last decade. We find statistical evidence stat-

ing that the return predictability decreases significantly when extending the

sample period from December 2009 to December 2021. When controlling the

TSMOM strategy from 2009 to 2021, we find that the strategy is outperformed

by a passive long strategy, with a Sharpe ratio of 0.25 compared to a Sharpe

ratio of 0.45, respectively. Interestingly, when controlling for exposure to the

mentioned risk factors, the strategy generates a negative alpha. Even though

the alpha is statistically insignificant, the result implies that the TSMOM

strategy destroyed value during this period. These findings are aligned with
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the research of McClean and Pontiff (2016) and Cotter and McGeever (2018),

finding lower return predictability and a diminishing effect of the momentum

anomaly in the U.K. Our finding also somewhat support Huang et al. (2020)

criticism of Moskowitz et al. (2012), reporting insufficient statistical evidence

for the return predictability of TSMOM. Our results suggest that the effect of

the momentum anomaly is diminishing, possibly due to extensive research pub-

lication and a rapid increase of sophisticated investors exploiting the anomaly.

This points toward the efficiently inefficiently hypothesis presented by Pedersen

(2015), stating that financial markets are just so inefficient that it is possible

to generate abnormal returns, but also so efficient that when anomalies are

extensively exploited, their superior performance diminishes.

We further find that when adding drawdown control to a TSMOM strategy,

the performance enhances substantially. The strategy with drawdown control

generated a significant Sharpe ratio of 1.07, compared to the strategy without,

generating a Sharpe ratio of 0.75. We find that drawdown control increases

the monthly alpha by seven basis points, and also increases the observation’s

statistical significance. Not surprisingly, the TSMOM strategy experienced the

most significant drawdowns after 2009. In this period, the drawdown control

creates value because it manages to limit losses from sharp trend reversals, and

further generate returns from identifying short-term counter trends (Pedersen,

2015).

Future research could focus on exploring the diminishing effect of the momen-

tum anomaly, testing other look-back and holding periods. Further, one could

also research if one can observe the same evaporation of return predictability

when using a cross-sectional momentum strategy. In addition, future research

could also focus on different risk management tools that could enhance the a

trend-following strategy’s performance.
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A Appendix: Data Sources

A.1 Country Equity Indices

For Country Equity Indices, Moskowitz et al. (2012) have futures from nine

developed equity markets: ASX SPI 200 (Australia), CAC 40 10 (France),

DAX (Germany), FTSE/MIB (Italy), SP 500 (U.S.), TOPIX (Japan), AEX

(Netherlands), IBEX 35 (Spain), and FTSE 100 (U.K.). We retrieve the data

on equity index futures from Bloomberg and Datastream. However, we only

have access to futures prices for the full sample length for FTSE, S&P 500,

and AEX, so we use proxies for the remaining indices. As Moskowitz et al.

(2012), we use the MSCI country-level index prior to the availability of the

remaining futures returns.

A.2 Government Bond Futures

We use bond futures from 13 developed bond markets. These are 3-year Aus-

tralian, 10-year Australian, 2-year Euro, 5-year Euro, 10-year Euro, 30-year

Euro, 10-year Canadian, 10-year Japanese, 10-year U.K., 2-year U.S., 5-year

U.S., 10-year U.S., and the 30-year U.S. We obtain the data from Bloomberg

and Datastream. As Table 1 shows, we only manage to retrieve data for the

full sample length for 10-year Australian, 10-year U.K., 10-year U.S., and the

30-year U.S. Moskowitz et al. (2012) use JP Morgan country-level bond index

returns as their proxy to returns prior to the availability of future returns. BI

Norwegian Business School does not have access to the JP Morgan country-

level bond index. Moskowitz et al. (2012) end their time series in December

2009, while we have data until December 2021. The total amount of data is

therefore approximately the same, and we regard our data as satisfactory for

the replication. We therefore choose not to prolong the data with a proxy.

Further, to be consistent with Moskowitz et al. (2012), we scale the daily re-

turns of our bond futures to a constant duration of two years for 2- and 3-year
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bonds, four years for 5-year bonds, seven years for 10-year bonds, and twenty

years for 30-years bonds.

A.3 Currency Forwards

For the foreign exchange, we have a base of 12 cross-currency pairs. This is

AUD-NZD, AUD-USD, EUR-JPY, EUR-NOK, EUR-SEK, EUR-CHF,

EUR-GBP. JPY-AUD, GBP-USD, USD-EUR, USD-CAD, and USD-JPY.

Moskowitz et al. (2012) have an investment universe of currency forwards

covering ten exchange rates. The universe includes Australia, Canada,

Germany spliced with the Euro, Japan, New Zealand, Norway, Sweden,

Switzerland, United Kingdom, and the United States of America. For

simplicity, Moskowitz et al. (2012) choose to look at the first nine currencies

vs. USD. These nine forward exchange rates underline the movements in the

12 cross-currency pairs. Unfortunately, we do not have access to spot- and

forward rates from Citigroup, so we retrieve data from Bloomberg and

Datastream. We use forward exchange rates from October 1990 to

present-day to calculate currency returns. Before October 1990, we use spot

exchange rates as a proxy for forward rates to calculate the returns.

A.4 Commodity Futures

For commodities, we use 24 different commodity futures gathered from seven

different exchanges. The data on Aluminum, Copper, Nickel, and Zinc are from

London Metal Exchange (LME), Brent Crude, Gas Oil, Cotton, Coffee, Cocoa,

and Sugar are from the Intercontinental Exchange (ICE), Live Cattle and Lean

Hogs are from Chicago Mercantile Exchange (CME), Corn, Soybeans, Soy

Meal, Soy Oil, and Wheat are from Chicago Board of Trade (CBOT). Further,

WTI Crude, RBOB Gasoline spliced with Unleaded Gasoline, Heating Oil, and

Natural Gas are from New York Mercantile Exchange (NYMEX), Gold and

Silver are from New York Commodities Exchange (COMEX), and Platinum
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from Tokyo Commodity Exchange (TOCOM). We obtain the futures prices

from Bloomberg. Unfortunately, we do not manage to obtain returns for all

commodities back to 01.01.1985, but as Table 1 illustrates, this is also the case

for Moskowitz et al. (2012). We therefore decide to implement the different

commodities in the strategy as their data becomes available.

Figure 11: Cumulative returns for each asset class

The figure shows the cumulative return of a portfolio with equal weight in each instrument within each asset

class. The strategy is passive and long only. Sample period is January 1985 to December 2021.
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B Appendix: Individual Asset Class Return

Predictability

B.1 Using lagged return as predictor

Figure 12: T-Stat for each asset class

The figure shows the time series predictability for each asset class. We regress the monthly return of each

instrument on its own lagged return over different time lengths,
rst

σs
t−1

= α + βh
rst

σs
t−h−1

+ εst . In this

regression, we use the size of the lagged return as a predictor, scaling returns by their ex ante volatility to

make meaningful comparisons across assets. Sample period is January 1985 to December 2021. We find that

all classes more or less follow the same trends as Figure 2, with one-to-12-month positive t-Stats followed

by reversals in month 13. We also see that each asset class have a reversal in month 26.
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B.2 Using sign of return as predictor

Figure 13: T-Stat for each asset class

The figure shows time series predictability across each asset class. We regress the monthly return of each

instrument on its own lagged return over different time lengths,
rtt

σt
t−1

= α + βh ∗ sign(rst−h) + εst . In this

regression, we use the sign of the lagged return as a predictor, scaling returns by their ex ante volatility to

make meaningful comparisons across assets. Sample period is January 1985 to December 2021. We observe

that equities, bonds, and currencies follow the same trends as Figure 3 for the first 12 months, while the

predictability of commodities vary. It is, however, only equities that have significant t-Stats in this period.

Furthermore, the different asset classes all show a reversal in month 13.
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