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ABSTRACT 

In this paper, we have constructed an implied volatility index for the Norwegian equity 

market (OBX-VIX). We have tested its properties and have used it to look at the 

asymmetric relationship between implied volatility and equity returns. The sample 

period for our analysis spans an extensive period, from 2007 to 2020, to capture 

multiple financial downturns. We find evidence that OBX-VIX can predict movements 

in OBX, and OBX is a predictor of movements in OBX-VIX. 
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1. Introduction 

Investors worldwide have, throughout the times, figured out different ways of 

quantifying the risks related to investments. From statistical methods to complicated 

Greeks on equity options. The Greeks used the first options to bet on olive crops and 

were later used to bet on movement in equities without owning the underlying itself. 

Standardized option trading first started when CBOE opened its business in 1973. 

Recently, we have seen an increase in the use of equity options from retail traders after 

commission-free brokers have entered the market in the US. One of the critical aspects 

of valuing options is the implied volatility in the Black-Scholes model, which has 

proven to be a good measurement of the volatility in the equity market. The implied 

volatility is the unobservable expectation of the volatility of the underlying equity. The 

original work on a volatility index comes from Brenner and Galai in an article from 

1989 (Brenner & Galai, 1989). After that, CBOE hired Robert E. Whaley to construct 

the Volatility Index (VIX) based on his previous work on the subject. Today, the VIX 

is often referred to in media as the “investor fear gauge” and measures the implied 

volatility on the S&P 500 index based on SPX options. 

The VIX lays the foundation for our thesis, where we want to explore the characteristics 

of an implied volatility index based on Oslo Børs. We find it puzzling that this 

important measurement is not being used in more markets. We question whether this 

is due to liquidity or other factors making the index less accurate in other markets. Our 

work is inspired by Bugge et al. (2016) and their creation of the NOVIX.  

This paper shows an asymmetric relationship between implied volatility and equity 

return in the Norwegian market. Essentially, it was necessary to construct an implied 

volatility index for the OBX options (OBX-VIX) to conduct our research since there is 

no official implied volatility index for the Norwegian market. Further, we find evidence 

that OBX-VIX can predict movements in the Norwegian equity market in cases where 

we observe the highest increases in implied volatility. We also find evidence that the 

asymmetric relationship is strongest in high volatility market conditions, which is in 

line with a previous study done in India by Chandra and Thenmozhi (2015) and the 

leverage effect (Black, 1976). We also find that the classic risk-reward relationship, 

first presented by Sharpe (1964), does not hold. Increased implied volatility lowers 
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investors' returns more than it generates positive returns, suggesting that the 

relationship is not linear. In addition, we find contradicting evidence that Simon´s 

(2003) theory of deviations from 5-days moving average signals trends in the market.  

The thesis is structured as follows; we start by presenting our research question in 

section 2, then we present the relevant literature related to the topic in section 3. In 

section 4, we will cover the methodology, and in section 5, we will present our findings. 

We find the topic of implied volatility of options as a measurement for equity market 

volatility very exciting. We hope to shed light on an area not widely researched in 

Norway, as no previous studies are done using the same methodology in the Norwegian 

market.  

2. Research question 

There has been extensive research on this topic, and Chandra and Thenmozhi (2015) 

studied the asymmetric relationship between implied volatility and the market returns 

for the Indian stock market. Based on previous studies, the research question to be 

investigated is whether there is an asymmetric relationship between implied volatility 

and the underlying stock market at Oslo Børs. This is particularly interesting 

considering the liquidity and sector concentration in the Norwegian stock market.  

Further, we want to expand the analysis to examine whether implied volatility can 

indicate market direction. Chandra and Thenmozhi (2015) concluded such without 

regressing market returns as the dependent variable. Our research is, therefore, an 

extension of previous studies conducted by Chandra and Thenmozhi (2015).  

 

2.1 Testable hypothesis 
Concerning our research question, we investigate the relationship between the implied 

volatility index for OBX and the returns from the OBX index. We start by formulating 

the following hypothesis:  

𝐻0: There is not an asymmetric relationship between implied volatility and returns in 

the OBX Total Return Index. 
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𝐻1: There is an asymmetric relationship between implied volatility and returns in the 

OBX Total Return Index. 

We are particularly interested in investigating if specific market conditions (e.g., 

upward market momentum or distressed market conditions) are more applicable in 

providing information on the future direction of the Norwegian equity market. We will 

therefore expand the research with a quantile regression approach. We formulate the 

following hypothesis:  

𝐻0: OBX-VIX does not provide explanatory information regarding the market 

direction. 

𝐻1: OBX-VIX does provide explanatory information regarding the market direction. 

 

3. Literature review 

The following chapter will introduce relevant literature concerning our research 

question and hypothesis. The literature stems from the fundamentals of the Black-

Scholes notion, key findings regarding volatility, and quantile regression. 

3.1 Risk-reward relationship 
Early financial research has proven a positive correlation between risk in the portfolio 

and expected return. Especially known is the Capital Asset Pricing Model (CAPM) 

developed by Sharpe (1964).  

Since the risk-free rate and market risk premium are given in CAPM, the portfolio's 

risk is the only parameter that can be varied, implying that an increase in beta 

(idiosyncratic risk) will yield a higher expected return. This contradicts much of the 

research on the VIX index (Hibbert et al., 2008), as much of the evidence points that 

the VIX and returns are negatively correlated.  

3.2 Black-Scholes and volatility 
The market participants generally rely on past asset price movements to determine 

volatility expectations, looking at prior volatility of the respective asset price. 

Consequently, investors have a backward-looking approach to the volatility parameter. 

Alternatively, decision-makers can investigate implied volatility inferred from reported 
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option prices, providing information regarding expected volatility. The prices of 

options can be derived from the Black-Scholes model (Black & Scholes, 1973), where 

the option's value depends on the expected future volatility.  

The model assumes a no-arbitrage condition, meaning that one should not be able to 

make risk-free profits by constructing a long-short portfolio in options and the 

underlying stock. Furthermore, Black and Scholes assumed ideal conditions in the 

market, suggesting that short-term interest rates are known and constant. The asset 

price follows a random walk in continuous time with a variance rate proportional to the 

square of the price fluctuation. The distribution of possible asset prices at the end of 

the interval is lognormal, and the volatility measure (variance rate of return) on the 

asset is constant. Also, the valuation formula assumes that the underlying stock has no 

kind of cash distribution or similar, and the options are of European style, meaning it 

can only be exercised at maturity (Black & Scholes, 1973). 

The infamous mathematical notion for the Black-Scholes (Black & Scholes, 1973) 

formula: 

𝐶 = 𝑆𝑡𝑁(𝑑1) − 𝐾𝑒 −𝑟𝑡𝑁(𝑑2) 

𝑑1 =
ln

𝑆𝑡
𝐾 + (𝑟 +

𝜎𝑣
2 

2 ) 𝑡

𝜎𝑠√𝑡
 

𝑑2 = 𝑑1 − 𝜎𝑠√𝑡 

Equation 1: Black & Scholes option pricing model 

Where:  

C = Call option price 

S = Current market price of underlying 

K = Strike price 

R = Risk-free interest rate 

T = Time to maturity 

N = A normal distribution 

 

The Black-Scholes model (Black & Scholes, 1973) assumes that the underlying price 

follows a geometric Brownian motion with constant volatility. The original model 

suggests that all options with the same underlying provide the same implied volatility. 

However, Rubinstein (1994) examined the S&P 500 index option concluding that the 
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Black-Scholes model suggests that implied volatility tends to vary across strike prices 

and time to expiration. A similar conclusion has been drawn from examining the 

Philadelphia Exchange foreign currency options market by Taylor and Xu (1995). 

Options deep in or out of the money have the highest implied volatilities. The implied 

volatility tends to be lowest at-the-money, due to convexity. This relationship can be 

plotted into a u-shaped curve – associated with the volatility smile. The plotted implied 

volatility shape is not absolute and not perfectly formed. Near-term equity options and 

currency-related options are more likely to have a u-shaped curve.  

3.3 Leverage effect 
The leverage effect refers to the volatility and equity return relationship. More 

specifically, it addresses the negative correlation between asset return and volatility 

changes. It was first introduced by Black (1976), where the intuition is based on 

changes in earnings. The firm´s stock price would decrease with decreasing expected 

earnings and increasing leverage due to increased debt to equity ratio. With the 

increased leverage, the volatility increases. Hence, the negative relationship between 

the equity returns and volatility. 

3.4 Asymmetric Volatility Phenomenon 
Volatility is lower in bull markets and higher in bear markets. This is known as the 

asymmetric volatility phenomenon (AVP). This phenomenon is well documented 

empirically and refers to the stylized fact that depreciation in stock prices implies 

higher volatility for the corresponding stock and vice-versa. (e.g. (Wu, 2001), (Bekaert 

& Wu, 2000)). The AVP literature has debated whether the phenomenon is more 

suitable for firm-specific effects such as leverage or systematic market conditions.  

A study by Dennis et al. (2006) examined the relationship between implied volatility 

innovation, stock returns, and the asymmetric volatility phenomenon indicating that a 

relationship between stock returns and idiosyncratic volatility (firm-specific) is 

substantially near zero. Furthermore, the result suggests that asymmetric volatility is 

attributed to systematic volatility (market-wide).  

3.5 Implied Volatility Index and stock return 
Extensive studies have also examined the asymmetric relationship between implied 

volatility index and stock market returns. Chandra and Thenmozhi (2015) examined 

the relationship between the India VIX and CNX Nifty returns. The Indian implied 
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volatility index follows the same methodology as CBOE´s white paper for constructing 

VIX with S&P 500 options, measuring the implied volatility for at-the-money options. 

Over a sample period spanning from March 1, 2009, through November 30, 2012, 

Chandra and Thenmozhi (2015) found that CNX Nifty returns and India VIX level is 

negatively correlated. Still, the relationship tends to be more independent in high 

upward market momentum cases. In sharp declining markets, the asymmetric 

relationship between implied volatility and the market becomes stronger.  

3.6 Volatility clustering and mean reversion 
Cont (2005) wrote a paper on volatility clustering and concluded that periods of low 

volatility follows low volatility and high volatility follows high volatility. He also 

points to the mean-reverting effects of volatility. In his Agent theory, in periods of low 

volatility, Agents tend to update their thresholds with small increments as they are 

happy with the market's pricing. Similarly, in periods of high volatility, Agents will 

update their threshold with large increments and become less reactive to signals, 

lowering the amplitude of returns. When investors get used to the new market 

environment, volatility will revert to its mean.  

3.7 Previous work on implied volatility index in Norway 
Bugge et al. (2016) created a VIX index on the Oslo Børs (NOVIX), following the 

methodology that CBOE used to develop the VIX for the S&P 500. Their paper also 

compared different indices with the NOVIX and evaluated the indices regarding 

volatility forecasting. They find that the NOVIX has many of the same characteristics 

as the VIX and the VDAX-NEW (volatility index for the German market). The 

negative correlation between OBX and NOVIX became stronger during the sample 

period and is closer to the correlation of S&P 500 VIX and VDAX-NEW in 2016. This 

makes us more confident in using Norwegian equity volatility to determine if it can be 

used to forecast equity returns.  

3.8 Quantile regression approach 
The highly cited research from Koenker and Hallock (2001) is an extension of the 

quantile regression first introduced by Koenker and Bassett (1982). The concept sheds 

light on conditional quantile functions where quantile regression models the 

relationship between independent variables and specific quantiles of the dependent 

variables. Furthermore, the approach models the relationship to a target, most often set 
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to the median of the distribution. Quantile regression makes no assumptions about the 

distribution of the dependent variable, which is different from ordinary least squares 

regression. Quantile regression tends not to be influenced by outlying observations and 

is applicable to regress OBX-VIX and OBX returns. 

4. The research methodology and design 

This chapter will go through the research design and methodologies used in our 

analysis of OBX-VIX. All computations and analyses are done in Python. 

4.1 Research design 
Our research design for our research question can be divided into four stages. In stage 

1, we collect historical data for the OBX option from Oslo Børs to construct our implied 

volatility index, OBX-VIX. We start by identifying the relevant options according to 

CBOE´s white paper and calculate the implied volatility for near-term and next-term 

options.  

In stage 2, we test the robustness of OBX-VIX, where we conduct descriptive analysis 

and calculate correlation to compare the findings to the well-established VIX index 

from CBOE.  

Stage 3 involves running a multiple regression analysis of the OBX-VIX concerning 

key variables addressed in the methodology.  

In stage 4, we run a quantile regression analysis of OBX-VIX and OBX returns to test 

the relationship between implied volatility and OBX returns.  

 

4.2 Methodology 

This section will examine the methods used in our research and why they were chosen. 

We will explain how we created OBX-VIX, one of the key input variables in our 

different regression models.  

4.2.1 VIX construction 

In creating OBX-VIX, we have opted to use the same methodology as CBOE in 

creating the VIX. This is the industry standard way of calculating a model-free implied 

volatility approach on underlying indices. We believe this will give us the most 
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accurate results as the methodology has been tested in multiple markets. In this section, 

we will present critical calculations used in the creation. 

 

𝜎2 =
2

𝑇
∑(

𝛥𝐾𝑖

𝐾𝑖
2

𝑖

𝑒𝑅𝑇 𝑄(𝐾𝑖) −
1

𝑇
[

𝐹

𝐾0
− 1]

2

 

Equation 2: The general formula to calculate VIX 

Where: 

 = VIX/100 → VIX =  x 100 

T = Time to expiration 

F = Forward index level derived from index option prices 

K0 = First strike below the forward index level, F 

Ki = Strike price of ith out-of-the-money option; a call if Ki >K0 and a put if Ki<K0; both put and call if Ki=K0 

R = Risk-free interest rate to expiration 

Q(Ki) = The midpoint of the bid-ask spread for each option with strike Ki 

Ki = Interval between strike prices – half the difference between the strike on either side of Ki 

 

𝛥𝐾𝑖 =
𝐾𝑖+2 − 𝐾𝑖−1

2
 

Equation 3: Interval between strike prices in VIX calculation 

 

In the OBX-VIX, we will use near- and next-term put and call options with more than 

23 days to expiration and less than 37 days to expiration. In the case of a lack of option 

quotes, we have made an exception to the rule in our code. If there are no options with 

30 days to maturity, we allow the next best option to be chosen. We measure TTM in 

minutes to have the precision most often used in options trading. 

𝑇 =
{𝑀𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝑑𝑎𝑦 + 𝑀𝑆𝑒𝑡𝑡𝑙𝑒𝑚𝑒𝑛𝑡 𝑑𝑎𝑦 + 𝑀𝑂𝑡ℎ𝑒𝑟 𝑑𝑎𝑦𝑠}

𝑀𝑖𝑛𝑢𝑡𝑒𝑠 𝑖𝑛 𝑎 𝑦𝑒𝑎𝑟
 

Equation 4: Time to maturity in VIX calculation 

Where: 

MCurrent day = Minutes remaining until midnight of the current day 

MSettlement day = Minutes from midnight until 16:30 for “standard” OBX expirations 

MOther days = Total minutes in the days between the current day and expiration day 
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The risk-free rates are based on the Norwegian Treasury yields at the options 

expiration. We select out-of-the-money OBX calls for the options used, and out-of-the-

money OBX puts with non-zero bids, close to the strike price, K0. To find F, we 

calculate the difference between calls and puts to find the strike where the difference 

is smallest. We do this for both near- and next-term options. Next, we determine K0, 

the strike price equal to or immediately below the forward index level, F. After that, 

we select out-of-the-money put options with strike prices < K0. We work our way 

down, exclude any options with no bid, and stop when we reach two successive puts 

with no bids. We perform the same calculation upwards for the call options with strikes 

> K0. Lastly, we find the call and put with strike = K0 and the midpoint price, using the 

average.  

𝐹 = 𝑆𝑡𝑟𝑖𝑘𝑒 𝑃𝑟𝑖𝑐𝑒 + 𝑒𝑅𝑇 ∗ (𝐶𝑎𝑙𝑙 𝑃𝑟𝑖𝑐𝑒 − 𝑃𝑢𝑡 𝑃𝑟𝑖𝑐𝑒) 

Equation 5: Future price on underlying asset in VIX calculation 

 

Calculate volatility for both near-term and next-term options: 

𝜎1
2 =

2

𝑇1
∑

𝛥𝐾𝑖

𝐾𝑖
2 𝑒𝑅1𝑇1 𝑄(𝐾𝑖) −

1

𝑇1
[

𝐹1

𝐾0
− 1]

2

𝑖

 

𝜎2
2 =

2

𝑇2
∑

𝛥𝐾𝑖

𝐾𝑖
2 𝑒𝑅2𝑇2 𝑄(𝐾𝑖) −

1

𝑇2
[
𝐹2

𝐾0
− 1]

2

𝑖

 

Equation 6: Volatility for near- and next-term options in VIX calculation 

 

Each option added to the index is proportional to K and the price. It is inversely 

proportional to the square of the option´s strike. In general, K will be half the 

difference between the strike prices on either side of Ki. 

 

To find the 30-day weighted average of 2
1 and 2

2: 
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𝑂𝐵𝑋 − 𝑉𝐼𝑋 = 100 ∗ √{[
𝑁𝑇2

− 𝑁30

𝑁𝑇2
− 𝑁𝑇1

] + 𝑇2𝜎2
2  [

𝑁30 − 𝑁𝑇1

𝑁𝑇2
− 𝑁𝑇1

]} ∗
𝑁365

𝑁30
 

Equation 7: 30-day weighted average value of the volatility in VIX calculation 

Where: 

NT1 = number of minutes to settlement of the near-term options 

NT2 = number of minutes to settlement of the next-term options 

N30 = number of minutes in 30 days 

N365 = number of minutes in a 365-day year 

 

Using monthly options will result in the index always reflecting an interpolation of 2
1 

and 2
2. For our construction based on the Norwegian market, we have made some 

minor alterations as a perfect replication of the methodology used by CBOE is not 

feasible with our data. To ensure that we get credible readings, we have had to include 

options with maturities widening outside the 24 to 36 days window used by CBOE. 

The complete code can be found in the appendix.  

The liquidity of the Norwegian option market made it more difficult to calculate an 

accurate representation of the implied volatility. This led to us not having daily data 

for the entire sample period but some weeks with three or four data points. We also had 

to exclude some of the outliers on the low side of the index due to obvious calculation 

errors because of the low liquidity.  

For in-depth information on the construction, we refer to the CBOE white paper (Cboe 

VIX White Paper, n.d.). 

4.2.2 Multiple Linear Regression 

Denote the observed log prices with daily data from Oslo Børs and the implied 

volatility output from the OBX-VIX index of the Norwegian equity market; we follow 

a regression-based methodology to examine any asymmetric relationship between the 

indices. We incorporate findings from Simon (2003) suggesting that technical 

indicators might signal market trends. More significant positive deviations of OBX 

returns from its 5-day MA (moving average) may indicate market sentiment. We will 

analyze the empirical features of implied volatility established from OBX and the 

equity return by conducting the following multiple regression: 
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∆𝑂𝐵𝑋𝑉𝐼𝑋𝑡 =  𝛽0 + 𝛽1𝑂𝐵𝑋𝑉𝐼𝑋𝑡−1 + 𝛽2𝑂𝐵𝑋𝑟𝑒𝑡𝑡
+ + 𝛽3𝑂𝐵𝑋𝑟𝑒𝑡𝑡

− + 𝛽4𝐷𝑒𝑣𝑀𝐴5𝑡
+

+ 𝛽5𝐷𝑒𝑣𝑀𝐴5𝑡
− 

Equation 8: Multiple Linear Regression model 

Where: 

∆𝑂𝐵𝑋𝑉𝐼𝑋𝑡= first difference of OBX-VIX in t 

𝑂𝐵𝑋𝑉𝐼𝑋𝑡−1= the lagged value of OBX-VIX 

𝑂𝐵𝑋𝑟𝑒𝑡𝑡
+= positive OBX return in t 

𝑂𝐵𝑋𝑟𝑒𝑡𝑡
−= negative OBX return in t 

𝐷𝑒𝑣𝑀𝐴5𝑡
+= positive deviation term of 5-day moving average from the closing price of OBX in t 

𝐷𝑒𝑣𝑀𝐴5𝑡
−= negative deviation of 5-day moving average from the closing price of OBX in t 

 

By the above multiple regression, we will study the statistical properties of OBX-VIX 

and the underlying equity market by looking at the dependent variable ∆𝑂𝐵𝑋𝑉𝐼𝑋𝑡 (first 

difference) in respect to the performance of OBX returns. By separating positive and 

negative OBX returns and including deviation from the 5-day MA in the multiple linear 

regression model, we hope to capture the relationship dynamics between the implied 

volatility index and the underlying index that can indicate future stock market 

performance.  

According to Simon (2003), deviation from the recent market tendency (5-day MA) 

can indicate market trends and the respective trend's direction. He argues that market 

participants tend to demand more call options in upward market conditions (above 5-

day MA), which results in investors bidding up the implied volatility. In such situations, 

the positive (negative) deviation coefficient would be significantly positive (negative). 

Therefore, including the deviation terms will help us analyze the anticipated 

asymmetric relationship between OBX-VIX and the equity market changes with 

respect to deviations from the stock market tendency. 

4.2.3 Quantile Regression 

We assume the financial time series has a leptokurtic distribution and will therefore 

examine the statistical properties of OBX-VIX and the OBX returns using a quantile 

regression approach to capture a more comprehensive view of the relationship of the 

data. First, the regression technique estimates the conditional median function, and then 
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the entire range of the other conditional quantile functions. This allows us to obtain a 

picture of the behavior of returns and implied volatility in different quantiles. Koenker 

and Hallock (2001) found that quantile regression better measures outliers in the time 

series. 

First, we establish the quantile regression with the following for the 𝜏-th conditional 

quantile function of OBX-VIX. The parameter 𝑦(𝜏) is the effect of OBX returns at the 

respective quantile of the conditional distribution. 

 

𝑄𝑂𝐵𝑋𝑉𝐼𝑋𝑡(𝜏|𝑂𝐵𝑋𝑟𝑒𝑡𝑡−1 , 𝑥𝑡) = 𝑦(𝜏) 𝑂𝐵𝑋𝑟𝑒𝑡𝑡−1 + 𝑥´𝑡
 (𝜏) 

Equation 9: Conditional quantile function 

 

Second, to estimate the model above, we solve it for 𝜌𝑡(𝑢), which is the standard 

quantile regression check function ((Koenker & Bassett, 1982), (Koenker, 2005)). The 

result from the equation will be set as the pooled quantile regression estimator. 

min
𝛾,𝛽 ∈ Ç × Β  

 ∑  𝜌𝑡(𝑂𝐵𝑋𝑉𝐼𝑋𝑡 − 𝑦(𝑂𝐵𝑋𝑟𝑒𝑡𝑡−1 − 𝑥′𝑡
 𝛽)

𝑇

𝑡=1

 

Equation 10: Minimizing problem equation 

 

Lastly, we examine the relationship between OBX returns and the implied volatility 

index performance by estimating the quantile regression model from equation 11. The 

quantiles we choose to investigate range from 0.1 to 0.9 to get a better picture of any 

outliners. We have selected these quantiles to minimize the probability that different 

market conditions (high implied volatility and low implied volatility market 

conditions) get mixed in the same quantiles. We expect that the lowest and highest 

quantiles will provide the most robust results from the regression. 

𝑂𝐵𝑋𝑉𝐼𝑋𝑟𝑒𝑡𝑡 = 𝛼0 + 𝛼1𝑂𝐵𝑋𝑟𝑒𝑡𝑡
+ + 𝛼2𝑂𝐵𝑋𝑟𝑒𝑡𝑡

− 

Equation 11: Quantile regression model 

Where: 

𝑂𝐵𝑋𝑉𝐼𝑋𝑟𝑒𝑡𝑡=return of OBX-VIX in time t 

𝛼 = respective coefficients 
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4.3 Data collection 
In this section, we introduce the method for data collection, including sources used to 

collect data. Moreover, we will present necessary data handling for constructing the 

OBX-VIX. 

4.3.1 OBX option 

The BI Norwegian Business School Library provided the raw OBX option data files in 

arrangement with Oslo Børs. The data consists of daily closing bid and ask quotes, 

strike prices, and days to expiry for all put and call options and was initially stored in 

the OBI database. However, the dataset was incomplete, with missing data for 2009 

and 2020. 

To solve this issue, we substituted the missing data with an earlier version of an implied 

volatility index (NOVIX) which follows the same methodology for calculating the 

implied volatility index, using the OBX Total Return Index options.  

The following data has been used to construct the implied volatility index OBX-VIX:  

Data Source Data Range 

OBX options OBI database 2007.01.02-2008.12.30 

NOVIX Index Bugge et al. 2009.01.02-2009.12.30 

OBX options OBI database 2010.01.04-2019.12.30 

NOVIX Index Bugge et al. 2020.01.01-2020.05.22 

Table 1: Overview of data used to construct the OBX-VIX index.  

The data starts in 2007 to capture the financial crisis. The sample period will include 

several periods of market distress and upward momentum to capture any outliners in 

the financial time series. We can better picture the relationship between the OBX return 

and OBX-VIX in these events. Furthermore, the sample period ends in May 2020 since 

Euronext acquired Oslo Børs, and the stock exchange had a transition to new data 

reporting and storage systems. All other data in our thesis corresponds with the time 

series described above in Table 1. 

According to Anders Holen, some market makers on Oslo Bøes tend to pull screen 

prices right before market close, meaning that the data set, including bid and ask quotes 

at market close, does not necessarily give the correct picture of the market. This may 
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explain some of the missing data points but could be mitigated by choosing a different 

time during the day to collect the data. This, however, requires high-frequency data. 

4.3.3 OBX Total Return index and Risk-free rate 

We have collected daily closing prices for the OBX Total Return Index from Refinitive 

Eikon. The index currently constitutes 82% of the market capitalization of the OSEBX 

index and is an indicator of the overall performance of the Oslo Stock Exchange.  

We used the 12 months Norwegian Treasury yield curve for the risk-free rate. The data 

was fetched from Norges Bank´s API for interest rates.  

5. Results 

In this chapter, we will present our results based on our analysis. We will go into detail 

on correlations and our different regression models and summarize the findings giving 

an economic interpretation of our findings. 

5.1 Descriptive analysis 
Table 2 summarizes descriptive statistics for OBX-VIX and VIX in level terms and 

returns. In OBX-VIX, we can see that the maximum value is 74.92, observed 2008-10-

16. The maximum value occurred at the break-out of the financial crisis in 2008, where 

we also saw the VIX reach its maximum value of 82.69. The table shows that the mean 

of the returns of both volatility indices is close to zero but slightly positive. The data 

has an excess kurtosis above 0, implying that the data is leptokurtic, with fatter tails 

than the normal distribution, in line with most financial data. The skewness of the data 

is closer to zero on returns, but the absolute values of the indices have a positive 

skewness, which might imply that the data is slightly right-skewed. In figure 1, we have 

plotted the implied volatility and the realized volatility over the sample period to 

visualize the data. 
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 Mean (%) Std. (%) Min. (%) Max. (%) Skew. Ex. Kurt. 

OBX-

VIX 

22.43 9.31 10.03 74.92 1.97 5.21 

OBX-

VIX ret 

0.01 5.78 -50.49 43.51 0.20 9.35 

VIX 19.68 9.83 9.14 82.69 2.48 8.03 

VIX ret 0.03 7.78 -35.06 76.83 1.04 6.12 

Table 2: Descriptive statistics of OBX-VIX and VIX and their respective returns. 

           

Figure 1: Implied volatility (red) and realized volatility (green) over the sample period. 

5.2 Correlation 
As presented in table 3, we tested different variables in different sample periods. We 

can see the negative correlation between OBX-VIX and OBX becomes stronger, from 

-0.340 in 2007-2010 to -0.456 in the last sample, and the correlation is approaching 

the results from S&P 500 and VIX in the same sample period. We believe that 

looking towards the correlation between S&P 500 and VIX as a benchmark value 

since the US market is the most liquid in the world. Our results are similar to those of 
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Bugge et al. (2016). In figure 2, we have plotted the time series together to visualize 

the findings. 

 

Figure 2: OBX-VIX (red), VIX (green), and OBX (blue) over the sample period. 

The more surprising result is how correlated the volatility indices are. Intuitively, one 

would believe that there would be more significant discrepancies in what risk factors 

affect investors when investing in different markets. Even though the economy and 

financial markets are globalized, we still believe that the difference in industry 

weighting in the underlying indices would be exposed to different risks and 

macroeconomically factors that affect the markets differently. The strong correlation 

between the two volatility indices begs the question if the creation of an official OBX-

VIX which will enable trading volatility is necessary. With the already low liquidity in 

the Norwegian derivative market, it would be hard to justify the creation of this index 

due to potential high liquidity costs for investors.  

In addition, we calculated the 30-day realized volatility on OBX and S&P 500. We 

wanted to test how well the implied volatility could be used to predict the realized 

volatility. The phenomenon is well researched; for example, Jiang & Tian (2006) found 

that VIX subsumes all information contained in the realized volatility in the S&P 500. 

After analyzing the correlation between RV OBX and OBX-VIX, we find similar 
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results, indicating that implied volatility is also a suitable method of forecasting 

realized volatility. 

  Entire sample  

2007-2020  

First period  

2007-2010  

Second period  

2011-2015  

Third period  

2015-2020  

OBX-VIX and 

VIX  

0.906 0.948 0.844 0.859 

RV** OBX and 

RV S&P 500 

0.895 0.957 0.829 0.877 

OBX and S&P 

500 

0.538 0.533 0.611 0.499 

S&P 500 and 

VIX  

-0.731 -0.762 -0.827 -0.688 

OBX and OBX-

VIX  

-0.363 -0.340 -0.401 -0.456 

OBX and VIX -0.394 -0.420 -0.462 -0.373 

RV OBX and 

OBX-VIX 

0.906 0.924 0.857 0.811 

Table 3: Correlation between the different variables across different sample periods. 

* All results are statistically significant at the 1% level. 

** 30-days realized volatility calculated as: 

 𝑟𝑖 = ln(𝑝𝑡) − ln(𝑝𝑡−1) 

𝑅𝑉 = ∑ 𝑟𝑖
2𝑇

𝑖=1 ∗ √252, with ri
2 being calculated with a 30-day rolling window 

 

5.3 Multiple Linear Regression 

5.3.1 Model and results 

In our analysis of equation 12, we have separated the regression into six models (table 

4). This technique has been used to measure better the degree to which independent 

variables provide explanatory power to the dependent variable separately. We also 

want to study if expanding the regression with independent variables will have a 

meaningful impact on the adjusted R-square and regressed coefficients. In other words, 

we will be able to evaluate which model is best suited to comprehend the relationship 

between implied volatility and the performance of the underlying equity market. The 
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regression for all models has used the entire sample period, where table 4 shows the 

results from the multiple regression for the respective models.  

In our regression, we study how the lagged value of OBX-VIX (𝑂𝐵𝑋𝑉𝐼𝑋𝑡−1) has any 

explanatory power to the change of OBX-VIX (∆𝑂𝐵𝑋𝑉𝐼𝑋𝑡), together with the 

performance of the underlying equity market. We have separated positive (𝑂𝐵𝑋𝑟𝑒𝑡𝑡
+) 

and negative (𝑂𝐵𝑋𝑟𝑒𝑡𝑡
−) OBX returns to identify better the expected asymmetric 

relationship between implied volatility and index performance. In addition, we have 

added positive (𝐷𝑒𝑣𝑀𝐴5𝑡
+) and negative (𝐷𝑒𝑣𝑀𝐴5𝑡

−) 5-day moving average deviation 

in percentage to the regression to capture any market trends.  

The multiple regression is based on equation 13:  

∆𝑂𝐵𝑋𝑉𝐼𝑋𝑡 =  𝛽0 + 𝛽1𝑂𝐵𝑋𝑉𝐼𝑋𝑡−1 + 𝛽2𝑂𝐵𝑋𝑟𝑒𝑡𝑡
+ + 𝛽3𝑂𝐵𝑋𝑟𝑒𝑡𝑡

− + 𝛽4𝐷𝑒𝑣𝑀𝐴5𝑡
+ + 𝛽5𝐷𝑒𝑣𝑀𝐴5𝑡

− 

Equation 12: Multiple Linear Regression with the first difference of OBX-VIX as the dependent variable 
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Variable Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 

Constant 0.0032 

(0.026) 

[0.124] 

0.2383 

(0.029) 

[8.250]*** 

-0.2692 

(0.027) 

[-

10.031]*** 

-0.0617 

(0.031) 

[-2.004]** 

 

0.00733 

(0.032) 

[0.226] 

-0.0115 

(0.033) 

[-0.345] 

Lagged 

value of 

OBX 

VIX 

-6.2286 

(0.448) 

[-

13.908]*** 

-5.9545 

(0.431) 

[-

13.805]*** 

-6.3864 

(0.416) 

[-

15.359]*** 

-7.6958 

(0.414) 

[-

18.586]*** 

-7.3530 

(0.408) 

[-

18.013]*** 

-7.9423 

(0.422) 

[-18.826]*** 

Positive 

OBX 

returns 

 -42.4658 

(2.648) 

[-

16.035]*** 

 -31.4949 

(2.545) 

[-

12.375]*** 

 -11.4422 

(3.218) 

[-3.555]*** 

Negative 

OBX 

returns 

  -51.2293 

(2.255) 

[-

22.717]*** 

 -42.2740 

(2.269) 

[-

18.628]*** 

-20.7508 

(3.455) 

[-6.006]*** 

Positive 

Dev 

from 

MA5 

   40.9188 

(1.984) 

[20.626]*** 

 23.9073 

(3.022) 

[-7.910]*** 

Negative 

Dev 

from 

MA5 

    38.0467 

(2.269) 

[-

14.558]*** 

28.6111 

(3.271) 

[-8.746]*** 

R square 0.057 0.127 0.187 

 

0.229 0.238 

 

0.254 

Adjusted 

R square 

0.057 0.126 0.187 0.228 0.237 0.253 

F-

statistic 

193.4 233.0 370.3 317.7 333.7 218.3 

Table 4: Multiple Linear Regression, a summary of statistics from the six different models. 

SE and t-statistics are reported in () and [] respectively. 

*** Significant at 1% level; ** Significant at 5% level. 
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Model 1 estimates the coefficient of the lagged value of OBX-VIX with respect to the 

change in OBX-VIX. From the regression, the constant variable is insignificant at all 

levels. We get a significant coefficient of -6.2286 with a 1% significance level. This 

implies that the change in OBX-VIX at time t will be negatively impacted by the 

absolute value of OBX-VIX the previous day.  

In model 2, we include positive OBX returns (𝑂𝐵𝑋𝑟𝑒𝑡𝑡
+) to the regression. The lagged 

value of OBX-VIX and positive OBX returns are negatively related to the change in 

OBX-VIX and significant at a 1% significance level. The constant is also significant at 

the same significance level. Moreover, including positive OBX returns as an 

independent variable has increased the adjusted R-square to 0.126.  

Model 3 examines the explanatory power of positive OBX returns and the lagged OBX-

VIX regarding the change in OBX-VIX. All coefficients and the constant term are 

significant at a 1% significance level and negatively related to the change in OBX-

VIX. Furthermore, by replacing the positive OBX return with negative OBX returns as 

an independent variable, the adjusted R-squared has increased from 0.126 to 0.187. 

The coefficient from negative OBX returns is also greater than in model 2. Thus, 

negative returns in the underlying index have a greater statistical and economic 

explanatory power to the implied volatility change than positive returns. This finding 

is according to our expectations as investors are more concerned about the downside 

risk than upside risk and are in line with the results of Kahneman and Tversky (1979). 

Model 4 considers the lagged value of OBX-VIX, positive OBX returns, and the 

deviation term capturing the positive 5-day moving average digression from the market 

tendency. The constant is significant at a 5% significance level from the regression, 

while all other coefficients are significant at a 1% significance level with an adjusted 

R-square equal to 0.228. The independent variables lagged OBX, and positive OBX 

returns remain negatively related to the change in OBX-VIX. The coefficient from the 

positive 5MA deviation term is positively related to the change in OBX-VIX. Our 

results reveal that a positive deviation in percentage from the current market trend 

positively impacts the change in OBX-VIX. In other words, the implied volatility 

increases when the market trend is above its recent 5-day tendency.  
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Model 5 estimates the statistical and economic explanatory power from the 

independent variables lagged OBX-VIX, negative OBX returns, and the negative 5MA 

deviation term in relation to the changes in OBX-VIX. The constant of model 5 is not 

significant. Meanwhile, the remaining coefficients are significant at all significance 

levels. The lagged OBX-VIX variable and negative OBX returns remain negatively 

related to the change in OBX-VIX. Interestingly, we observe that the negative 5MA 

deviation term is positively related to the change in OBX-VIX and differs from the 

findings of Simon (2003). Economically, a market trend below the recent 5-day 

tendency decreases the implied volatility. We expected a negative coefficient because 

investors would bid up implied volatility by demanding put options in a downward 

trend. However, the findings do not necessarily provide sufficient economic 

explanation since the mean of negative 5-day moving average deviation in percentage 

from the market equals negative 0.6%. Thus, it is suggested that on average that the 

5MA deviation term will affect the change in OBX-VIX only equal to 0.228 (absolute 

term). The adjusted R-square from model 5 equals 0.237.  

Model 6 considers the lagged value of OBX-VIX, positive OBX returns, negative OBX 

returns, positive 5MA deviation, and negative 5MA deviation in relation to the change 

in OBX-VIX. All estimated coefficients are significant at a 1% significance level 

without the constant term, which is not significant. The adjusted R-square is the highest 

in model 6, equaling 0.253, and therefore has the highest explanatory power of all the 

models. 

Furthermore, the lagged value of OBX-VIX being negatively related to the change in 

OBX-VIX suggest that implied volatility is mean-reverting. This is because volatility 

reverts to its mean, according to Cont (2005). Our results also show that positive and 

negative OBX returns are negatively related to OBX-VIX. Higher positive OBX 

returns will decrease the OBX-VIX. A 1% increase in the index results in an 11.44% 

decrease in OBX-VIX, and a 1% decrease in the OBX index will increase the OBX-

VIX by 20.75%. This is consistent with the findings from the other models, where 

investors are more sensitive to declining markets than increasing markets. 

Economically, the negative OBX return has a greater impact because put options 

generally have a higher premium than call options, suggesting higher expected 

volatility in the downfall.  
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Regarding the positive and negative 5MA deviation terms, we find them contradictory 

to the findings from Simon (2003). In model 6, both coefficients were significant at 

1%. Still, the coefficient for negative deviation is positively related to changes in OBX-

VIX, suggesting that when the market is below its 5-day tendency, the change in OBX-

VIX decreases. This might be the case since market makers at Oslo Børs, on average, 

anticipate lower implied volatility in these conditions, or the demand for put options is 

poor where we observe minor deviations from the 5-day tendency, reducing their 

option quotes. However, using the 5MA deviation term has low economic explanatory 

power since the average positive, and negative deviation from its 5MA equals 

respectively 0.6% and -0.6% resulting in a low impact on the change of OBX-VIX.  

From our overall results from the multiple linear regression, it is evident that positive 

returns in the market decrease the implied volatility because this reduces the negative 

market sentiment, and negative market returns increase the implied volatility, where 

the latter has the most significant impact. Moreover, we see a tendency from our results 

that an increase (decrease) in the implied volatility index is subsequent to a decrease 

(increase) in OBX returns for the same trading day. 

5.3.2 Linear regression assumptions and our data 

There are some complications in using financial time-series data concerning the classic 

linear regression assumptions that lay the foundation for the multiple linear regression. 

This is especially true for the homoscedastic and normally distributed error terms 

assumptions. By performing White`s test and Jarque-Bera's tests on our models, we 

can see that the data violates two of the classical assumptions. On the other hand, we 

have such a large sample size that we believe the effects on our results will be minimal. 

 

5.4 Quantile Regression: OBX-VIX as the dependent variable 
The key observation from our multiple regression analysis was the asymmetric 

relationship between the implied volatility index and the underlying equity market. We 

expand our research by conducting a quantile regression analysis to get a more 

comprehensive picture of this relationship.  

In the case of quantile regression, we seek to estimate the expected asymmetric 

relationship between implied volatility and returns, studying quantiles of the 
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conditional distribution of the response variable (Koenker & Hallock, 2001). The 

quantile function for each quantile can be addressed as follows:  

𝑄𝑂𝐵𝑋𝑉𝐼𝑋𝑡(𝜏|𝑂𝐵𝑋𝑟𝑒𝑡𝑡−1 , 𝑥𝑡) = 𝑦(𝜏) 𝑂𝐵𝑋𝑟𝑒𝑡𝑡−1 + 𝑥´𝑡
 (𝜏) 

Equation 13: Quantile function for each quantile 

 

The parameter captures the impact OBX returns contribute to at the (𝜏)-quantile of the 

conditional distribution of the OBX-VIX index. Following the methodology described 

in 4.2.3, we pool the quantile regression estimators by solving equation 10. 

We obtain our quantile regression analysis results by regressing the following equation. 

The results from the quantile regression are gathered in table 5. 

𝑂𝐵𝑋𝑉𝐼𝑋𝑟𝑒𝑡𝑡 = 𝛼0 + 𝛼1𝑂𝐵𝑋𝑟𝑒𝑡𝑡
+ + 𝛼2𝑂𝐵𝑋𝑟𝑒𝑡𝑡

− 

Equation 14: Quantile regression with returns of OBX-VIX as the dependent variable 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 24 

Quant
ile 

Constan
t 

  OBX ret 
(+) 

  OBX ret 
(-) 

  

 Coeffici
ent 

SE t-
Statistic 

Coeffici
ent 

SE t-
Statistic 

Coeffici
ent 

SE t-
Statistic 

0.100 -0.0337 0.0
02 

-
16.327
*** 

-2.442 0.1
45 

-
15.499
*** 

-0.1898 0.1
75 

-1.086 

0.200 -0.0168 0.0
01 

-
17.076
*** 

-2.1646 0.0
70 

-
30.918
*** 

-0.5981 0.0
80 

-
7.515*
** 

0.300 -0.0110 0.0
01 

-
13.764
*** 

-1.8167 0.0
60 

-
30.306
*** 

-0.9755 0.0
63 

-
15.499
*** 

0.400 -0.0068 0.0
01 

-
9.058*
** 

-1.5138 0.0
59 

-
25.492
*** 

-1.2418 0.0
56 

-
22.086
*** 

0.500 -0.0027 0.0
01 

-
3.437*
** 

-1.3113 0.0
65 

-
20.136
*** 

-1.5727 0.0
58 

-
27.339
*** 

0.600 0.0020 0.0
01 

2.294*
** 

-1.0226 0.0
75 

-
13.678
*** 

-1.8800 0.0
61 

-
30.890
*** 

0.700 0.0085 0.0
01 

8.631*
** 

-0.8838 0.0
87 

-
10.145
*** 

-2.1439 0.0
66 

-
32.441
*** 

0.800 0.0174 0.0
01 

12.632 
*** 

-0.7083 0.1
27 

-
5.575*
** 

-2.4289 0.0
87 

-
27.908
*** 

0.900 0.0335 0.0
02 

15.014
*** 

-0.3510 0.2
18 

-1.613 -3.0502 0.1
32 

-
23.141
*** 

Table 5: Quantile regression, summarizing statistics from quantile 0.1-0.9. 

*** Significant at 5% level; ** Significant at 1% level. 
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All constant terms are statistically significant from the quantile regression with a 1% 

significance level. This violates the stylized facts of volatility being mean-reverting 

since we can display a significant negative trend from the constant term from all 

quantiles from the regression. In the case of mean-reverting volatility, we should not 

be able to observe any significant trend. This finding is according to evidence provided 

by Chandra and Thenmozhi (2015) from their quantile regression for the Indian market 

and Siriopoulos and Fasas (2008) for multiple markets.  

The estimated coefficients are statistically significant at 1% for all quantiles except the 

lower quantile (0.1) for negative OBX returns and upper quantile (0.9) for positive 

OBX returns, where the coefficients are insignificant. The results suggest that the 

relationship between OBX returns and OBX-VIX returns are negatively related in both 

directions. This is consistent with our findings from the multiple regression analysis.  

As expected, the results hold more for market declines than upward market conditions. 

It becomes evident that the negative relationship between negative OBX returns and 

OBX-VIX becomes stronger in the quantiles where the volatility index increases the 

most. Economically this can be interpreted as investors’ expectations of future 

volatility to increase more in a market downturn, accordingly to volatility clustering 

(Cont, 2005).  

We see that positive OBX returns have a low estimated coefficient in the upper bound 

of the quantiles. Therefore, the market will not be comforted with positive returns when 

the implied volatility is already high. However, there is a significant negative 

relationship for both positive and negative OBX returns, and it is evident that 

substantial leverage effects are present.  

 

5.5 Quantile Regression: OBX return as the dependent variable  
The results from the quantile regression above also imply that returns in the underlying 

market are related to the returns in the implied volatility index. Looking at this the other 

way, the returns in OBX-VIX contribute to the movements in OBX returns because it 

changes the market sentiment and market participants position themselves with options 

instead of the underlying equity, causing delta hedging from the market maker. 
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However, this relationship is vaguer and will be further analyzed by reversing the 

quantile regression from section 5.4.  

By pooling the quantiles with respect to the return of the OBX-VIX index, we can 

examine whether there is a negative relationship between the OBX return (dependent 

variable) and lagged positive and negative OBX-VIX returns (independent variables) 

in different implied volatility environments.  The highest quantile has the highest 

increases in OBX-VIX, and the lowest quantile includes market situations where the 

return in OBX-VIX is the lowest. The quantiles go from 0.1 to 1.  

We obtain our results from our quantile regression analysis by regressing the following 

equation: 

𝑂𝐵𝑋𝑟𝑒𝑡𝑡 = 𝛼0 + 𝛼1𝑂𝐵𝑋𝑉𝐼𝑋𝑟𝑒𝑡𝑡−1
+ + 𝛼2𝑂𝐵𝑋𝑉𝐼𝑋𝑟𝑒𝑡𝑡−1

−  

Equation 15: Quantile regression with returns of OBX as the dependent variable 

 

From the quantile regression, we observe that only in the highest quantile can we obtain 

significant results at a 1% significance level. At this quantile, the return on the OBX-

VIX index is the highest, meaning the anticipated volatility has increased. The 

estimated coefficient for positive OBX-VIX returns equals -0.1473, while negative 

OBX-VIX returns remain insignificant. The constant term is significant at a 1% 

significance level with a coefficient of -0.0128. This implies that increased implied 

volatility will negatively impact the market performance the following day in highly 

distressed market conditions. 

From the results, we see that in highly distressed market conditions, the selling pressure 

will increase with a hike in the implied volatility index. This could often be a 

reallocation from risky assets since investors are more sensitive to downside risk. The 

reason for the estimated coefficient for negative OBX-VIX returns being insignificant 

is because the distribution within the highest quantile only consists of positive returns 

in the OBX-VIX.  At this quantile, the interval includes OBX-VIX returns from 5.63% 

to 43.5%, meaning with such changes in the implied volatility index, we can anticipate 

a negative impact on the market performance the following day.  
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5.6 Discussion and findings of empirical evidence  
This section will summarize our findings from the previous chapters and discuss the 

economic implications of these results. We started with a descriptive analysis of the 

data and investigated the correlation between variables. We found that the descriptive 

statistics between OBX-VIX and VIX were very similar, giving us a quick and good 

indication that we had successfully created a valid volatility index in the Norwegian 

market. This was further confirmed by our results in the correlation, as we saw that the 

correlation of the OBX-VIX and OBX closed in on the correlation between VIX and 

S&P 500. The more interesting point here is the reason for the stronger correlation over 

the sample period. We believed the stronger correlation was due to more activity in the 

options market, but as figure 3 shows, there has been a steady decline in turnover in 

the index options market on Oslo Børs. After the crash in 2008, most investment banks 

stopped trading options to take on risk, which had been very popular up until this point. 

With new regulations regarding this in the US, the effect hit the Norwegian market. 

There must therefore be another explanation for the stronger correlation. A possible 

reason could be that technological advancement could provide market makers with 

more correct pricing of volatility across markets, as market makers often operate in 

multiple markets globally. 

 

Figure 3: Turnover on index options on Oslo Børs 2006-2020 
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Regarding our hypotheses, we believe we have found sufficient evidence to reject our 

first null hypothesis and conclude that we have discovered an asymmetric relationship 

between implied volatility and returns on Oslo Børs. The findings are more apparent 

in market downturns than upward moving markets, which the leverage effect and the 

asymmetric volatility phenomenon can partly explain. Regarding our second 

hypothesis, we find that the relationship is apparent both ways and we can reject the 

second null hypothesis as well. Extreme returns in OBX-VIX will negatively affect 

OBX returns the following day.  

The asymmetric relationship between the stock market returns and OBX-VIX 

demonstrates that the expected behavior of implied volatility in the Norwegian equity 

market is according to stylized facts and established theory. However, from our 

multiple regression analysis, the theory from Simon (2003) does not entirely hold since 

the coefficient for the negative deviation term (DevMA5-
t) was positive. We expected 

this coefficient to be negative, suggesting that implied volatility increases with a 

percentage deviation from the recent market tendency because investors prefer put 

options in such cases, driving implied volatility upwards.  

We have also used quantile regression to examine whether this asymmetric relationship 

is stronger in different market conditions. This was the case for sharp market declines 

and strong upward market momentum for respectively negative and positive market 

returns. Interestingly, we found a violation of implied volatility being mean-revering 

for the quantiles from the quantile regression. This is, however, not necessarily the 

case. The quantiles obtained less than 400 data points, and we found strong evidence 

of the implied volatility being mean-reverting from the multiple regression with the 

entire sample. 

We recommend a larger sample size spanning more years for future research. Our 

sample has been from a period spanning from one of the most significant market 

crashes in modern times to the longest bull-run we have seen, complemented by two 

other significant crises. We believe the evidence would be more apparent and more 

rooted in normal market conditions with an extended period of data. We would also 

recommend utilizing high-frequency data due to new information being priced in by 
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market participants in seconds rather than days. In addition, this will prevent the data 

issue caused by market makers pulling prices on close. 

When we started with the thesis, we also wanted to see what value OBX-VIX could 

bring to the market and if it would be feasible with an official version of the index at 

some point. From our research, we can conclude that this will probably not be 

worthwhile for other than research purposes. As seen in the chapter on correlation, 

OBX-VIX and VIX have a strong correlation over the sample period meaning that 

investors will get close to the same exposure trading derivatives on both indices. As 

discussed with Anders Holen, Norway's options market has been relatively slow in the 

last few years. There does not seem to be a market for providing derivatives on 

volatility. 

 

6. Conclusion 

In this paper, we have constructed an implied volatility index for Oslo Børs. We have 

looked at characteristics, compared them to VIX, and looked at asymmetric 

relationships between implied volatility and returns in the Norwegian market. We 

found that the relationship is more evident in market downturns than upward market 

tendencies. In addition, we have researched if the relationship can be found both ways. 

There is clear evidence that returns affect implied volatility and the other way around.  
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Appendix 

1. from ast import If 
2. import numpy as np 
3. import pandas as pd 
4. import datetime as dt 
5.   
6.   
7. yields = pd.read_csv('12M RF.csv', sep=';', usecols= 

[11,12]) 

8. yields['OBS_VALUE'] = yields['OBS_VALUE'] 
9.   
10. path = "obx_raw.csv" 
11. df = pd.read_csv( 
12.         path, 
13.         sep=",", 
14.         header=None, 
15.         parse_dates=[0], 
16.         date_parser=lambda col: pd.to_datetime(col, 

format="%Y%m%d",), 

17.         low_memory=False 
18.     ) 
19.   
20. df.drop([1,3,4,6,7,10,11,12,13,14,15,16], axis=1, 

inplace=True) 

21.   
22. df.columns = ['Date', 'Option', 'Expiration', 'Bid', 

'Ask'] 

23.   
24. df['Expiration'] = 

pd.to_datetime(df['Expiration'],format="%Y%m%d") 

25. df['Days'] = df['Expiration'] - df['Date'] 
26.   
27. df['Days'] = pd.to_numeric(df['Days'].dt.days, 

downcast='integer') 

28.   
29. result = df['Option'].str.split('(\d+)([A-Za-z]+)', 

expand=True) 

30. result = result.drop([0,1,4,5,6], axis=1) 
31. result = result.loc[:,[2,3]] 
32. result.rename(columns={2:'Option type', 3:'Strike'}, 

inplace=True) 

33.   
34. df = pd.concat([df,result],axis=1) 
35.   
36. df['Strike'] = pd.to_numeric(df['Strike'], errors 

='coerce') 

37. df.drop(['Option','Expiration'], axis=1, inplace=True) 
38. df.dropna(subset = ['Strike'], inplace=True) 
39.   
40. c = ('A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', 

'K', 'L') 
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41. p = ('M', 'N', 'O', 'P', 'Q', 'R', 'S', 'T', 'U', 'V', 
'W', 'X') 

42. c1 = [] 
43. p1 =[] 
44.   
45. c1.append(df[df['Option type'].isin(c)]) 
46. p1.append(df[df['Option type'].isin(p)]) 
47.   
48. calls = pd.concat(c1) 
49. puts = pd.concat(p1) 
50. calls.drop(['Option type'], axis=1, inplace=True) 
51. puts.drop(['Option type'], axis=1, inplace=True) 
52.   
53. calls.rename(columns={'Bid':'Call_Bid', 'Ask': 

'Call_Ask'}, inplace='True') 

54. puts.rename(columns={'Bid':'Put_Bid', 'Ask': 
'Put_Ask'}, inplace='True') 

55.   
56. CP_df = calls.merge(puts, on=['Date', 'Strike', 

'Days'], how='outer') 

57.   
58. CP_df['Call_Premium']  = (CP_df['Call_Bid'] + 

CP_df['Call_Ask']) / 2  

59. CP_df['Put_Premium']  = (CP_df['Put_Bid'] + 
CP_df['Put_Ask']) / 2  

60. CP_df.loc[CP_df['Call_Bid']<0,'Call_Premium'] = np.nan                    
61. CP_df.loc[CP_df['Put_Bid']<0,'Put_Premium'] = np.nan                      
62. CP_df.dropna(subset = ['Call_Premium', 'Put_Premium'], 

inplace=True) 

63.   
64. CP_df.rename(columns={'Call_Premium':'C','Put_Premium':

'P'}, inplace=True) 

65. CP_df.set_index(['Date','Days','Strike'], inplace=True) 
66.   
67. CP_df = CP_df.reset_index().set_index(['Date', 'Days', 

'Strike']).sort_index()  

68.   
69.   
70. CP_df['CPdiff'] = (CP_df['C'] - CP_df['P']).abs() 
71.   
72. CP_df['min'] = CP_df['CPdiff'].groupby(level = 

['Date','Days']).transform(lambda x: x == x.min()) 

73.   
74.   
75. df_all = CP_df.reset_index().set_index(['Date', 

'Days']).sort_index()  

76.   
77.   
78. df = CP_df[CP_df['min'] == 1].reset_index()          
79.   
80. yields.rename(columns={'TIME_PERIOD':'Date', 

'OBS_VALUE': 'Rate'}, inplace='True') 

81. yields['Date'] = pd.to_datetime(yields['Date']) 
82. df = pd.merge(df, yields.reset_index(), how = 'left') 
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83.   
84. df.drop (['index'], axis=1, inplace=True) 
85.   
86.   
87. df['Forward'] = df['CPdiff'] * np.exp(df['Rate'] * 

df['Days']/36500) 

88. df['Forward'] += df['Strike']                    
89.   
90. forward = df[['Date', 'Days', 'Forward']] 
91.   
92. df.set_index(['Date','Days'], inplace=True) 
93.   
94.   
95. df_all = df_all.merge(forward, on=['Date', 'Days'], how 

= 'left') 

96. df_all.set_index(['Date','Days'], inplace=True) 
97. print(df_all) 
98.   
99. df_all['mid_strike'] = df_all[df_all['Strike'] < 

df_all['Forward']]['Strike'].groupby(level = 

['Date','Days']).max() 

100. df29 = df_all.reset_index() 
101. mid_strike = df29[['Date', 'Days', 'mid_strike']] 
102.   
103.   
104. df_all.loc[df_all['mid_strike']<0, 'mid_strike'] = 

np.nan 

105. df_all.dropna(subset = ['mid_strike'], inplace=True) 
106.   
107.   
108. df_puts = df_all.drop(['Call_Bid', 'Call_Ask', 'C'], 

axis=1) 

109. df_calls = df_all.drop(['Put_Bid', 'Put_Ask', 'P'], 
axis=1) 

110.   
111. df_calls = df_calls.assign(zero_bid=lambda df: 

(df_calls['Call_Bid'] == 0).astype(int)) 

112. df_calls['zero_bid_accum'] = df_calls.groupby(level = 
['Date','Days'])['zero_bid'].cumsum() 

113.   
114. df_puts = df_puts.groupby(level = 

['Date','Days']).apply(lambda x: 

x.sort_values(['Strike'], ascending = False)) 

115. df_puts = df_puts.assign(zero_bid=lambda df: 
(df_puts['Put_Bid'] == 0).astype(int)) 

116. df_puts['zero_bid_accum'] = df_puts.groupby(level = 
['Date','Days'])['zero_bid'].cumsum() 

117.  
118. df_puts = df_puts.reset_index().set_index(['Date', 

'Days']).sort_index()  

119. df_calls = df_calls.reset_index().set_index(['Date', 
'Days']).sort_index()  

120.   
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121. df_puts = df_puts[(df_puts['zero_bid_accum'] < 2) & 
(df_puts['Put_Bid'] > 0)] 

122. df_calls = df_calls[(df_calls['zero_bid_accum'] < 2) & 
(df_calls['Call_Bid'] > 0)] 

123.   
124.   
125.   
126. condition1 = df_all['Strike'] < df_all['mid_strike']         
127. condition2 = df_all['Strike'] > df_all['mid_strike']         
128.   
129. df_all['Premium'] = (df_all['P'] + df_all['C']) / 2  
130.   
131. df_all['Premium'].loc[condition1] = 

df_all['P'].loc[condition1] 

132. df_all['Premium'].loc[condition2] = 
df_all['C'].loc[condition2] 

133.   
134. print(df_all) 
135.   
136. def compute_adjoining_strikes_diff(group): 
137.     new = group.copy() 
138.     if len(new) >= 3: 
139.         new.iloc[1:-1] = np.array((group.iloc[2:] - 

group.iloc[:-2]) / 2) 

140.         new.iloc[0] = group.iloc[1] - group.iloc[0] 
141.         new.iloc[-1] = group.iloc[-1] - group.iloc[-2] 
142.         return new 
143.     else: 
144.         new.iloc[:] = np.nan 
145.         return new 
146.   
147. df_all['dK'] = df_all.groupby(level = ['Date', 

'Days'])['Strike'].apply(compute_adjoining_strikes_diff) 

148. df_all = pd.merge(df_all.reset_index(), 
yields.reset_index(), how = 'left') 

149.   
150. df_all['sigma2'] = df_all['dK'] / df_all['Strike'] ** 2 
151. df_all['sigma2'] *= df_all['Premium'] * 

np.exp(df_all['Rate'] * df_all['Days'] / 36500) 

152.   
153. print(df_all) 
154.    
155. sigma2 = 

df_all.groupby(['Date','Days'])[['sigma2']].sum() * 2          

156.   
157. sigma2 = sigma2.merge(mid_strike, on=['Date', 'Days'], 

how = 'left') 

158. sigma2 = sigma2.merge(forward, on=['Date', 'Days'], how 
= 'left') 

159.   
160. sigma2.set_index(['Date','Days'], inplace=True) 
161.   
162. sigma2['sigma2'] -= (sigma2['Forward'] / 

sigma2['mid_strike'] - 1) ** 2 
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163. sigma2['sigma2'] /= 
sigma2.index.get_level_values(1).astype(float) / 365 

164. sigma2 = sigma2[['sigma2']] 
165.   
166. sigma2 = sigma2.reset_index() 
167.   
168.   
169. print(sigma2) 
170.   
171. def f(group): 
172.     days = np.array(group['Days'])                       
173.     sigma2 = np.array(group['sigma2'])   
174.   
175.     if days.min() <= 30:   
176.         T1 = days[days <= 30].max() 
177.     else: 
178.         T1 = days.min() 
179.   
180.     if len(days[days > T1]) > 0: 
181.         T2 = days[days > T1].min()   
182.     else: 
183.         T2 = days.min() 
184.   
185.     sigma_T1 = sigma2[days == T1][0] 
186.     sigma_T2 = sigma2[days == T2][0] 
187.   
188.     return pd.DataFrame([{'T1' : T1, 'T2' : T2, 

'sigma2_T1' : sigma_T1, 'sigma2_T2' : sigma_T2}]) 

189.   
190. two_sigmas = 

sigma2.reset_index().groupby('Date').apply(f).groupby(lev

el = 'Date').first() 

191.   
192. print(two_sigmas)        
193.  
194.   
195. df = two_sigmas.copy() 
196.   
197.   
198.   
199. for t in ['T1','T2']: 
200.     df['days_' + t] = df[t].astype(float) / 365 
201.     df[t] = (df[t] - 1) * 1440. + 510 + 930 
202.   
203.   
204. df['sigma2_T1'] = df['sigma2_T1'] * df['days_T1'] * 

(df['T2'] - 30. * 1440.) 

205. df['sigma2_T2'] = df['sigma2_T2'] * df['days_T2'] * 
(30. * 1440. - df['T1']) 

206. df['VIX'] = ((df['sigma2_T1'] + df['sigma2_T2']) / 
(df['T2'] - df['T1']) * 365. / 30.) ** .5 * 100 

207.   
208. VIX = df[['VIX']] 
209.   
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210. print(VIX)  
211.   

212.  

213. import pandas as pd 

214. from scipy.stats import pearsonr 

215. from functools import reduce 

216. import numpy as np 

217. import matplotlib.pyplot as plt 

218. import seaborn as sns 

219.   

220.   

221. sp = pd.read_csv("SP500_return.csv", usecols = 

['Exchange Date', 'Close', '%Chg']) 

222. sp.columns = ['Date', 'SP', 'ChgSP'] 

223. sp["Date"] = pd.to_datetime(sp["Date"]) 

224. sp = sp.loc[sp['Date'] <= '2020-05-22'] 

225. sp.drop([0], axis = 0, inplace = True) 

226. sp['SP'] = sp['SP'].str.replace(" ", "") 

227. sp['SP'] = pd.to_numeric(sp['SP']) 

228.   

229.   

230.   

231. obx = pd.read_csv("OBX_return.csv", usecols = 

['Exchange Date', 'Close', '%Chg']) 

232. obx.columns = ['Date', 'OBX', 'ChgOBX'] 

233. obx["Date"] = pd.to_datetime(obx["Date"]) 

234. obx = obx.loc[obx['Date'] <= '2020-05-22'] 

235. obx.drop([0,1], axis = 0, inplace = True) 

236.   

237.   

238. vix = pd.read_csv("vix.csv", usecols = 

['Close','Date']) 

239. vix.columns = ['Date', 'VIX'] 

240. vix = vix.loc[vix['Date'] <= '2020-05-22'] 

241. vix["Date"] = pd.to_datetime(vix["Date"]) 

242. #print(vix) 

243.   

244. obx_vix = pd.read_csv('OBX_VIX_FINAL.csv', usecols 

= ['Date', 'OBX_VIX']) 

245. obx_vix["Date"] = pd.to_datetime(obx_vix["Date"]) 

246. obx_vix.drop([0], axis = 0, inplace = True) 

247. #print(obx_vix) 

248.   

249. data_frames = [obx_vix, vix, obx, sp] 

250. df = reduce(lambda  left,right: 

pd.merge(left,right,on=['Date'], 
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251.                                             

how='outer'), data_frames) 

252.   

253.   

254. df.sort_values(by=['Date'], inplace = True) 

255. df.drop([0], axis = 0, inplace = True) 

256. df.dropna(subset = ['OBX_VIX', 'OBX', 'VIX', 'SP'], 

inplace=True) 

257. df.drop(['ChgOBX', 'ChgSP'], axis = 1 , 

inplace=True) 

258.   

259. df['OBX_VIXchg'] = np.log(df.OBX_VIX) - 

np.log(df.OBX_VIX.shift(1)) 

260. df['VIXchg'] = np.log(df.VIX) - 

np.log(df.VIX.shift(1)) 

261. df['OBXchg'] = np.log(df.OBX) - 

np.log(df.OBX.shift(1)) 

262. df['SPchg'] = np.log(df.SP) - 

np.log(df.SP.shift(1)) 

263. df.drop([1], axis = 0, inplace = True) 

264.   

265. selected_col = df[['Date','OBX_VIXchg', 'VIXchg', 

'OBXchg', 'SPchg']] 

266. df_chg = selected_col.copy() 

267.   

268.   

269. fig,ax = plt.subplots() 

270. ax.plot(df['Date'], df['OBX_VIX'], color="red", 

linewidth=1, label = "OBX VIX") 

271. ax.plot(df['Date'], df['VIX'], color="green", 

linewidth=1, label = "VIX") 

272. ax.set_xlabel("Date",fontsize=14) 

273. ax.set_ylabel("Volatility Index",fontsize=14) 

274.   

275. ax2=ax.twinx() 

276. ax2.plot(df['Date'], df['OBX'], linewidth=1, 

color="blue", label = "OBX") 

277.   

278. ax2.set_ylabel("OBX",fontsize=14) 

279. lines_labels = [ax.get_legend_handles_labels() for 

ax in fig.axes] 

280. lines, labels = [sum(lol, []) for lol in 

zip(*lines_labels)] 

281.   

282. fig.legend(lines, labels) 

283.   

284. fig.set_size_inches(10, 7.5) 
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285.   

286. plt.show() 

287.   

288.   

289. #Correlation for the entire sample 

290. corr = pearsonr(df['VIX'], df['OBX_VIX']) 

291. print("Correlation for the entire sample VIX and 

OBX_VIX:", corr) 

292.   

293. #Correlation for first sample (insert time) 

294.   

295. sample1 = df.loc[df['Date'] <= '2010-12-31']  

296. corrs1 = pearsonr(sample1['VIX'], 

sample1['OBX_VIX']) 

297. print("Correlation for the first sample VIX and 

OBX_VIX:", corrs1) 

298.   

299. #Correlation for second sample (insert time) 

300.   

301. sample2 = df.loc[(df['Date'] >= '2011-01-01') & 

(df['Date'] <= '2015-12-31')]  

302. corrs2 = pearsonr(sample2['VIX'], 

sample2['OBX_VIX']) 

303. print("Correlation for the second sample VIX and 

OBX_VIX:", corrs2) 

304.   

305. #Correlation for third sample (insert time) 

306.   

307. sample3 = df.loc[df['Date'] >= '2016-01-01']  

308. corrs3 = pearsonr(sample3['VIX'], 

sample3['OBX_VIX']) 

309. print("Correlation for the third sample VIX and 

OBX_VIX:", corrs3) 

310.   

311. #Correlation for US 

312.     #Correlation for entire sample 

313. uscorr = pearsonr(df['SPchg'], df['VIXchg']) 

314. print("Correlation for the entire sample S&P and 

VIX:", uscorr) 

315.     #First sample 

316. us1 = df.loc[df['Date'] <= '2010-12-31']  

317. uscorr1 = pearsonr(us1['SPchg'], us1['VIXchg']) 

318. print("Correlation for the first sample S&P and 

VIX:", uscorr1) 

319.   

320.     #Second sample 
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321. us2 = df.loc[(df['Date'] >= '2011-01-01') & 

(df['Date'] <= '2015-12-31')]  

322. uscorr2 = pearsonr(us2['SPchg'], us2['VIXchg']) 

323. print("Correlation for the second sample S&P and 

VIX:", uscorr2) 

324.   

325.     #Third sample 

326. us3 = df.loc[df['Date'] >= '2016-01-01']  

327. uscorr3 = pearsonr(us3['SPchg'], us3['VIXchg']) 

328. print("Correlation for the third sample S&P and 

VIX:", uscorr3) 

329.   

330. #Correlation for Norway 

331.     #Correlation for the entire sample 

332. nocorr = pearsonr(df['OBXchg'], df['OBX_VIXchg']) 

333. print("Correlation for the entire sample OBX and 

OBX_VIX:", nocorr) 

334.   

335.     #First sample 

336. no1 = df.loc[df['Date'] <= '2010-12-31']  

337. nocorr1 = pearsonr(no1['OBXchg'], 

no1['OBX_VIXchg']) 

338. print("Correlation for the first sample OBX and 

OBX_VIX:", nocorr1) 

339.   

340.     #Second sample 

341. no2 = df.loc[(df['Date'] >= '2011-01-01') & 

(df['Date'] <= '2015-12-31')]  

342. nocorr2 = pearsonr(no2['OBXchg'], 

no2['OBX_VIXchg']) 

343. print("Correlation for the second sample OBX and 

OBX_VIX:", nocorr2) 

344.   

345.     #Third sample 

346. no3 = df.loc[df['Date'] >= '2016-01-01']  

347. nocorr3 = pearsonr(no3['OBXchg'], 

no3['OBX_VIXchg']) 

348. print("Correlation for the third sample OBX and 

OBX_VIX:", nocorr3) 

349.   

350. #Correlation between OBX and S&P 500 

351.     #Entire sample 

352. incorr = pearsonr(df['OBXchg'], df['SPchg']) 

353. print("Correlation for the entire sample OBX and 

S&P:", incorr) 

354.   

355.     #First sample 
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356. in1 = df.loc[df['Date'] <= '2010-12-31']  

357. incorr1 = pearsonr(in1['OBXchg'], in1['SPchg']) 

358. print("Correlation for the first sample OBX and 

S&P:", incorr1) 

359.   

360.     #Second sample 

361. in2 = df.loc[(df['Date'] >= '2011-01-01') & 

(df['Date'] <= '2015-12-31')]  

362. incorr2 = pearsonr(in2['OBXchg'], in2['SPchg']) 

363. print("Correlation for the second sample OBX and 

S&P:", incorr2) 

364.   

365.     #Third sample 

366. in3 = df.loc[df['Date'] >= '2016-01-01']  

367. incorr3 = pearsonr(in3['OBXchg'], in3['SPchg']) 

368. print("Correlation for the third sample OBX and 

S&P:", incorr3) 

369.   

370. # Correlation betweetn OBX and VIX 

371.     #Entire sample 

372. ovcorr = pearsonr(df['OBXchg'], df['VIXchg']) 

373. print("Correlation for the entire sample OBX and 

VIX:", ovcorr) 

374.   

375.     #First sample 

376. ov1 = df.loc[df['Date'] <= '2010-12-31']  

377. ovcorr1 = pearsonr(ov1['OBXchg'], ov1['VIXchg']) 

378. print("Correlation for the first sample OBX and 

VIX:", ovcorr1) 

379.   

380.     #Second sample 

381. ov2 = df.loc[(df['Date'] >= '2011-01-01') & 

(df['Date'] <= '2015-12-31')]  

382. ovcorr2 = pearsonr(ov2['OBXchg'], ov2['VIXchg']) 

383. print("Correlation for the second sample OBX and 

VIX:", ovcorr2) 

384.   

385.     #Third sample 

386. ov3 = df.loc[df['Date'] >= '2016-01-01']  

387. ovcorr3 = pearsonr(ov3['OBXchg'], ov3['VIXchg']) 

388. print("Correlation for the third sample OBX and 

VIX:", ovcorr3) 

389.   

390. """ 

391. Calculating realized 30 days volatility 

392.   

393. """ 
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394.   

395. window = 21 

396. trd_days = 252 

397. ann_factor = trd_days 

398.   

399. df['rlz_var_sp'] = df['SPchg']**2 

400. df['rlz_var_sp'] = 

df['rlz_var_sp'].rolling(window).sum() 

401. df['rlz_vol_sp'] = np.sqrt(df['rlz_var_sp']) * 

np.sqrt(trd_days) 

402.   

403. df['rlz_var_obx'] = df['OBXchg']**2 

404. df['rlz_var_obx'] = 

df['rlz_var_obx'].rolling(window).sum() 

405. df['rlz_vol_obx'] = np.sqrt(df['rlz_var_obx']) * 

np.sqrt(trd_days) 

406.   

407. #Correlation realized volatility OBX and S&P 

408. df.dropna(subset = ['rlz_vol_sp', 'rlz_vol_obx'], 

inplace=True) 

409.   

410. #Entire sample 

411. rlz_corr = pearsonr(df['rlz_vol_sp'], 

df['rlz_vol_obx']) 

412. print("Correlation entire sample realized 

volatility OBX and S&P:", rlz_corr) 

413.   

414. #First sample 

415. rlz1 = df.loc[df['Date'] <= '2010-12-31']  

416. rlz_corr1 = pearsonr(rlz1['rlz_vol_sp'], 

rlz1['rlz_vol_obx']) 

417. print("Correlation first sample realized volatility 

OBX and S&P:", rlz_corr1) 

418.   

419. #Second sample 

420. rlz2 = df.loc[(df['Date'] >= '2011-01-01') & 

(df['Date'] <= '2015-12-31')]  

421. rlz_corr2 = pearsonr(rlz2['rlz_vol_sp'], 

rlz2['rlz_vol_obx']) 

422. print("Correlation second sample realized 

volatility OBX and S&P:", rlz_corr2) 

423.   

424. #Third sample 

425. rlz3 = df.loc[df['Date'] >= '2016-01-01']  

426. rlz_corr3 = pearsonr(rlz3['rlz_vol_sp'], 

rlz3['rlz_vol_obx']) 
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427. print("Correlation third sample realized volatility 

OBX and S&P:", rlz_corr3) 

428.   

429. #Correlation realized volatility and implied 

volatility 

430. df['rlz_vol_obx'] = df['rlz_vol_obx'] * 10 

431.   

432. #Entire sample 

433. rlziv_corr = pearsonr(df['OBX_VIX'], 

df['rlz_vol_obx']) 

434. print("Correlation entire sample realized 

volatility and implied volatility OBX and OBX_VIX:", 

rlziv_corr) 

435.   

436. #First sample 

437. rlziv1 = df.loc[df['Date'] <= '2010-12-31']  

438. (rlziv1['OBX_VIX'], rlziv1['rlz_vol_obx']) 

439. print("Correlation first sample realized volatility 

and implied volatility OBX and OBX_VIX:", rlziv_corr1) 

440.   

441. #Second sample 

442. rlziv2 = df.loc[(df['Date'] >= '2011-01-01') & 

(df['Date'] <= '2015-12-31')]  

443. rlziv_corr2 = pearsonr(rlziv2['OBX_VIX'], 

rlziv2['rlz_vol_obx']) 

444. print("Correlation second sample realized 

volatility and implied volatility OBX and OBX_VIX:", 

rlziv_corr2) 

445.   

446. #Third sample 

447. rlziv3 = df.loc[df['Date'] >= '2016-01-01']  

448. rlziv_corr3 = pearsonr(rlziv3['OBX_VIX'], 

rlziv3['rlz_vol_obx']) 

449. print("Correlation third sample realized volatility 

and implied volatility OBX and OBX_VIX:", rlziv_corr3) 

450.   

451.   

452. fig1,ax1 = plt.subplots() 

453.   

454. ax1.plot(df['Date'], df['OBX_VIX'], color="red", 

linewidth=1, label = "IV OBX") 

455. ax1.plot(df['Date'], df['rlz_vol_obx'], 

color="green", linewidth=1, label = "RV OBX") 

456.   

457. ax1.set_xlabel("Date",fontsize=14) 

458. ax1.set_ylabel("Volatility" ,fontsize=14) 

459.   
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460. lines_labels1 = [ax1.get_legend_handles_labels() 

for ax1 in fig1.axes] 

461. lines1, labels1 = [sum(lol, []) for lol in 

zip(*lines_labels1)] 

462.   

463. fig1.legend(lines1, labels1) 

464.   

465. fig1.set_size_inches(10, 7.5) 

466.   

467. plt.show() 

468.   

469. turnover = pd.read_excel("Contract turnover 1990-

2020.xls.xlsx", usecols = [1,3]) 

470. turnover = turnover.loc[23:37] 

471. turnover.columns = ['Date', 'Turnover'] 

472. turnover['Turnover'] = turnover['Turnover']/1000000 

473. fig2,ax2 = plt.subplots() 

474.   

475. ax2.bar(turnover['Date'], turnover['Turnover']) 

476. ax2.set_xlabel("Date",fontsize=14) 

477. ax2.set_ylabel("Turnover in million contracts" 

,fontsize=14) 

478.   

479.   

480. fig2.set_size_inches(10, 7.5) 

481.   

482. plt.show() 

483.  

484. from itertools import groupby 
485. import numpy as np 
486. import pandas as pd 
487. from matplotlib import pyplot as plt 
488. from sklearn.linear_model import LinearRegression 
489. from sklearn.model_selection import KFold 
490. import statsmodels.api as sm 
491. from statsmodels.stats.diagnostic import het_white 
492. import statsmodels.formula.api as smf 
493. from sklearn import linear_model 
494. from scipy.stats import kurtosis 
495. from scipy.stats import skew 
496.   
497.   
498. obxvix = pd.read_csv('OBX_VIX_FINAL.csv', usecols = 

['Date', 'OBX_VIX'])                    

499. obxvix.columns =['Date', 'Vix'] 
500.   
501.   
502. obxvix['Date'] = pd.to_datetime(obxvix['Date']) 
503.   
504.   
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505. dataobx = pd.read_csv('OBX_return.csv', usecols = 
['Exchange Date', 'Close']) 

506.   
507. dataobx.rename(columns={'Exchange Date': 'Date', 

'Close': 'Prices'}, inplace=True) 

508. dataobx['Date'] = pd.to_datetime(dataobx['Date']) 
509.   
510. dataobx['OBX_returns'] = np.log(dataobx.Prices) - 

np.log(dataobx.Prices.shift(1))  

511. dataobx = dataobx.dropna()  
512.   
513.   
514. df1 = dataobx.merge(obxvix, on=['Date'], how='inner') 
515.   
516.   
517. fig,ax = plt.subplots() 
518. ax.plot(df1.Date, df1.Prices, color='red') 
519. ax.set_xlabel('year',fontsize=10) 
520. ax.set_ylabel('Prices',fontsize=10) 
521.   
522. ax2=ax.twinx() 
523. ax2.plot(df1.Date, df1['Vix'],color='blue') 
524. ax2.set_ylabel('Vix',fontsize=10) 
525. plt.show() 
526.   
527. df1['SMA5_OBX'] = df1['Prices'].rolling(5).mean() 
528. df1['DevMA5'] = (df1['SMA5_OBX'] - df1['Prices']) / 

df1['Prices'] 

529.   
530. df1['Vix_first_diff']= df1['Vix'].diff() 
531. df1['Vix_returns']= np.log(df1.Vix) - 

np.log(df1.Vix.shift(1))  

532.   
533. df1 = df1.dropna()  
534.   
535.   
536. #x_1 = df1.OBX_returns 
537. #y_1 = df1.Vix_returns 
538.   
539. #print(y) 
540.   
541. #x = sm.add_constant(x_1) #Adds the constant 
542. #model1=sm.OLS(y,x).fit() #Makes the regression model 

with the defined y and x 

543. #model1.summary() 
544. #print(model1.summary()) 
545. #plt.scatter(x_1, y) 
546. #yhat1 = 0.0023 -0.3489 * x_1 
547. #fig1 = plt.plot(x_1,yhat1, c="red", linewidth=2) 
548. #plt.show() 
549.   
550. #White´s test 
551. #white_test = het_white(model1.resid,  

model1.model.exog) 
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552.   
553. #define labels to use for output of White's test 
554. #labels = ['Test Statistic', 'Test Statistic p-value', 

'F-Statistic', 'F-Test p-value'] 

555.   
556. #print results of White's test 
557. #print(dict(zip(labels, white_test))) 
558.   
559.   
560. df2 = pd.DataFrame() 
561.   
562.   
563. df2 = df2.append(df1.Vix_returns) 
564. df2 = df2.append(df1.OBX_returns) 
565. df2 = df2.T 
566. df2['OBXpos'] = 

df1.OBX_returns.where(df1.OBX_returns>=0,0) 

567. df2['OBXneg'] = 
df1.OBX_returns.where(df1.OBX_returns<0,0) 

568. df2['SMA5pos'] = df1.DevMA5.where(df1.DevMA5>=0,0)       
569. df2['SMA5neg'] = df1.DevMA5.where(df1.DevMA5<0,0)        
570. df2['VIX_first_diff'] = df1.Vix_first_diff 
571. df2['Vix_return_lagged'] = df1['Vix_returns'].shift(1) 
572.   
573.   
574. df2 = df2.dropna()  
575.   
576.   
577. ''' 
578. print('Mean Vix:') 
579. print(df1['Vix'].mean()) 
580. print('Mean Vix returns:') 
581. print(df1['Vix_returns'].mean()*100) 
582.   
583. print('Std Vix:') 
584. print(df1['Vix'].std()) 
585. print('Std Vix returns:') 
586. print(df1['Vix_returns'].std()*100) 
587.   
588.   
589. print('Vix min:') 
590. print(df1['Vix'].min()) 
591. print('Vix returns min:') 
592. print(df1['Vix_returns'].min()*100) 
593.   
594.   
595. print('Vix max:') 
596. print(df1['Vix'].max()) 
597. print('Vix_returns max:') 
598. print(df1['Vix_returns'].max()*100) 
599.   
600. print('Vix skew:') 
601. print(df1['Vix'].skew()) 
602. print('Vix return skew:') 
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603. print(df1['Vix_returns'].skew()) 
604.   
605. print('Vix kurt:') 
606. print(kurtosis(df1['Vix'], fisher = True, bias = 

False)) 

607. print('Vix returns kurt:') 
608. print(kurtosis(df1['Vix_returns'], fisher = True, bias 

= False)) 

609. ''' 
610.   
611. #Multivariate regression (Model 1) 
612. X_mv1 = df2[['Vix_return_lagged']] 
613. y_mv1 = df2['VIX_first_diff'] 
614.   
615. xx1 = sm.add_constant(X_mv1) 
616. model_mult1 = sm.OLS(y_mv1,xx1).fit() 
617. model_mult1.summary() 
618. print(model_mult1.summary()) 
619.   
620. #Multivariate regression (Model 2) 
621. X_mv2 = df2[['Vix_return_lagged', 'OBXpos']] 
622. y_mv2 = df2['VIX_first_diff'] 
623.   
624. xx2 = sm.add_constant(X_mv2) 
625. model_mult2 = sm.OLS(y_mv2,xx2).fit() 
626. model_mult2.summary() 
627. print(model_mult2.summary()) 
628.   
629. #Multivariate regression (Model 3) 
630. X_mv3 = df2[['Vix_return_lagged', 'OBXneg']] 
631. y_mv3 = df2['VIX_first_diff'] 
632.   
633. xx3 = sm.add_constant(X_mv3) 
634. model_mult3 = sm.OLS(y_mv3,xx3).fit() 
635. model_mult3.summary() 
636. print(model_mult3.summary()) 
637.   
638. #Multivariate regression (Model 4) 
639. X_mv4 = df2[['Vix_return_lagged', 'OBXpos', 'SMA5pos']] 
640. y_mv4 = df2['VIX_first_diff'] 
641.   
642. xx4 = sm.add_constant(X_mv4) 
643. model_mult4 = sm.OLS(y_mv4,xx4).fit() 
644. model_mult4.summary() 
645. print(model_mult4.summary()) 
646.   
647. #Multivariate regression (Model 5) 
648. X_mv5 = df2[['Vix_return_lagged', 'OBXneg', 'SMA5neg']] 
649. y_mv5 = df2['VIX_first_diff'] 
650.   
651. xx5 = sm.add_constant(X_mv5) 
652. model_mult5 = sm.OLS(y_mv5,xx5).fit() 
653. model_mult5.summary() 
654. print(model_mult5.summary()) 
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655.   
656. #Multivariate regression (Model 6) 
657. X_mv5 = df2[['Vix_return_lagged', 'OBXpos', 'OBXneg', 

'SMA5pos', 'SMA5neg']] 

658. y_mv5 = df2['VIX_first_diff'] 
659.   
660. xx5 = sm.add_constant(X_mv5) 
661. model_mult5 = sm.OLS(y_mv5,xx5).fit() 
662. model_mult5.summary() 
663. print(model_mult5.summary()) 
664.   
665.   
666. #Quantile regression  
667. mod = smf.quantreg("Vix_returns ~ OBX_returns", df2)          
668. res = mod.fit(q=0.5) 
669. #print(res.summary()) 
670.   
671. quantiles = np.arange(0.1, 1, 0.1) 
672.   
673. def fit_model(q): 
674.     res =mod.fit(q=q) 
675.     return [q, res.params['Intercept'], 

res.params['OBX_returns']] + res.conf_int().loc[     

676.         'OBX_returns' 
677.     ].tolist() 
678.   
679. models = [fit_model(x) for x in quantiles] 
680. models = pd.DataFrame(models, columns =['q', 'a', 'b', 

'lb', 'ub']) 

681.   
682. ols = smf.ols('Vix_returns ~ OBX_returns', df2).fit() 
683. ols_ci = ols.conf_int().loc['OBX_returns'].tolist() 
684. ols = dict( 
685.     a=ols.params['Intercept'], 

b=ols.params['OBX_returns'], lb=ols_ci[0], ub=ols_ci[1] 

686. ) 
687.   
688. print(models) 
689. print(ols) 
690.   
691. #Plot quantile regression and OLS 
692. x = np.arange(df2.OBX_returns.min(), 

df2.OBX_returns.max(), 0.01) 

693. get_y = lambda a, b: a + b * x 
694.   
695. fig, ax3 = plt.subplots(figsize=(8,6)) 
696.   
697. for i in range(models.shape[0]): 
698.     y = get_y(models.a[i], models.b[i]) 
699.     ax3.plot(x, y, linestyle='dotted', color ='grey') 
700.   
701. y = get_y(ols['a'], ols['b']) 
702.   
703. ax3.plot(x, y, color='red', label='OLS') 
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704. ax3.scatter(df2.OBX_returns, df2.Vix_returns, alpha 
=0.5) 

705. ax3.set_xlim((-0.15,0.15)) 
706. ax3.set_ylim((-0.5,0.5)) 
707. legend = ax3.legend() 
708. ax3.set_xlabel('OBX_returns', fontsize=16) 
709. ax3.set_ylabel('Vix_returns', fontsize=16) 
710. plt.show() 
711.   
712. #second plot 
713. n = models.shape[0] 
714. p1 = plt.plot(models.q, models.b, color='black', 

label='Quantile Reg.') 

715. p2 = plt.plot(models.q, models.ub, linestyle='dotted', 
color='black') 

716. p3 = plt.plot(models.q, models.lb, linestyle='dotted', 
color='black') 

717. p4 = plt.plot(models.q, [ols['b']] * n, color='red', 
label='OLS') 

718. p5 = plt.plot(models.q, [ols['lb']] * n, 
linestyle='dotted', color='red') 

719. p6 = plt.plot(models.q, [ols['ub']] * n, linestyle= 
'dotted', color='red') 

720. plt.ylabel(r"$\beta_{OBX_returns}$") 
721. plt.xlabel('Quantiles of the conditional Vix ret 

distribution') 

722. plt.legend() 
723. plt.show() 
724.   
725.   
726. #Multiple Quantile Regression  
727.   
728. mod2 = smf.quantreg("Vix_returns ~ 1 + OBXpos + 

OBXneg", df2)          

729. res2 = mod2.fit(q=0.5) 
730.   
731.    

732. from ast import If 

733. from heapq import merge 

734. import numpy as np 

735. import pandas as pd 

736. import datetime as dt 

737. from itertools import groupby 

738. from matplotlib import pyplot as plt 

739. from sklearn.linear_model import LinearRegression 

740. from sklearn.model_selection import KFold 

741. import statsmodels.api as sm 

742. from statsmodels.stats.diagnostic import het_white 

743. import statsmodels.formula.api as smf 

744. from sklearn import linear_model 

745. from scipy.stats import kurtosis 

746. from scipy.stats import skew 
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747. from functools import reduce 

748. import seaborn as sns 

749. from sklearn import datasets 

750. from sklearn.linear_model import LinearRegression 

751.   

752.   

753. obxvix = pd.read_csv('OBX_VIX_FINAL.csv', usecols = 

['Date', 'OBX_VIX'])  #2007 til 2020                  

754. obxvix.columns =['Date', 'Vix'] 

755. obxvix.rename(columns={'Vix': 'obxvix_prices'}, 

inplace=True)           #obxvix_prices 

756. obxvix['Date'] = pd.to_datetime(obxvix['Date']) 

757.   

758. obxvix['obxvix_returns'] = 

np.log(obxvix.obxvix_prices) - 

np.log(obxvix.obxvix_prices.shift(1))     

759. obxvix = obxvix.dropna()  

760.   

761. dataobx = pd.read_csv('OBX_return.csv') 

762.   

763. dataobx.drop(['%Chg','Unnamed: 3','Unnamed: 

4','Unnamed: 5','Unnamed: 6','Unnamed: 7','Unnamed: 

8','Unnamed: 9','Unnamed: 10','Unnamed: 11','Unnamed: 

12','Unnamed: 13','Unnamed: 14','Unnamed: 15'], axis=1, 

inplace=True) 

764. dataobx.rename(columns={'Exchange Date': 'Date', 

'Close': 'obx_prices'}, inplace=True) 

765. dataobx['Date'] = pd.to_datetime(dataobx['Date']) 

766.   

767. dataobx['obx_returns'] = np.log(dataobx.obx_prices) 

- np.log(dataobx.obx_prices.shift(1))  

768. dataobx = dataobx.dropna()  

769.   

770. sp500 = pd.read_csv('SP500_return.csv')       

771.   

772. sp500.drop(['%Chg','Unnamed: 3','Unnamed: 

4','Unnamed: 5','Unnamed: 6','Unnamed: 7','Unnamed: 

8','Unnamed: 9','Unnamed: 10','Unnamed: 11','Unnamed: 

12'], axis=1, inplace=True) 

773. sp500.rename(columns={'Exchange Date': 'Date', 

'Close': 'sp500_prices'}, inplace=True) 

774. sp500['Date'] = pd.to_datetime(sp500['Date']) 

775.   

776. sp500['SP500_returns'] = np.log(sp500.sp500_prices) 

- np.log(sp500.sp500_prices.shift(1))  

777. sp500 = sp500.dropna()  

778.   
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779. cbeovix= pd.read_csv('CBEOVIX.csv')       

780.   

781. cbeovix.drop(['Unnamed: 2','Unnamed: 3','Unnamed: 

4','Unnamed: 5','Unnamed: 6','Unnamed: 7','Unnamed: 

8','Unnamed: 9','Unnamed: 10','Unnamed: 11', 'Unnamed: 

12'], axis=1, inplace=True) 

782. cbeovix.rename(columns={'Exchange Date': 'Date', 

'Close': 'cbeovix_prices'}, inplace=True) 

783. cbeovix['Date'] = pd.to_datetime(cbeovix['Date']) 

784.   

785. cbeovix['cbeovix_returns'] = 

np.log(cbeovix.cbeovix_prices) - 

np.log(cbeovix.cbeovix_prices.shift(1))  

786. cbeovix = cbeovix.dropna()  

787.   

788. ''' 

789. #VIX DESCRIPTIVE 

790. print('Mean Vix:') 

791. print(cbeovix['cbeovix_prices'].mean()) 

792. print('Mean Vix returns:') 

793. print(cbeovix['cbeovix_returns'].mean()*100) 

794.   

795. print('Std Vix:') 

796. print(cbeovix['cbeovix_prices'].std()) 

797. print('Std Vix returns:') 

798. print(cbeovix['cbeovix_returns'].std()*100) 

799.   

800.   

801. print('Vix min:') 

802. print(cbeovix['cbeovix_prices'].min()) 

803. print('Vix returns min:') 

804. print(cbeovix['cbeovix_returns'].min()*100) 

805.   

806.   

807. print('Vix max:') 

808. print(cbeovix['cbeovix_prices'].max()) 

809. print('Vix_returns max:') 

810. print(cbeovix['cbeovix_returns'].max()*100) 

811.   

812. print('Vix skew:') 

813. print(cbeovix['cbeovix_prices'].skew()) 

814. print('Vix return skew:') 

815. print(cbeovix['cbeovix_returns'].skew()) 

816.   

817. print('Vix kurt:') 

818. print(kurtosis(cbeovix['cbeovix_prices'], fisher = 

True, bias = False)) 
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819. print('Vix returns kurt:') 

820. print(kurtosis(cbeovix['cbeovix_returns'], fisher = 

True, bias = False)) 

821. ''' 

822.   

823. data_frames = [dataobx, sp500, obxvix, cbeovix] 

824.   

825. df = reduce(lambda  left,right: 

pd.merge(left,right,on=['Date'], 

826.                                             

how='inner'), data_frames) 

827.   

828. obxvixdata = dataobx.merge(obxvix, on=['Date'], 

how='inner') 

829.   

830. obxvixdata['obxvix_first_diff'] = 

obxvixdata['obxvix_prices'].diff() 

831.   

832. obxvixdata['obxvix_lagged'] = 

obxvixdata['obxvix_prices'].shift(1) 

833.   

834. obxvixdata['VIXpos'] = 

obxvixdata.obxvix_returns.where(obxvixdata.obxvix_returns

>=0,0).shift(1) 

835. obxvixdata['VIXneg'] = 

obxvixdata.obxvix_returns.where(obxvixdata.obxvix_returns

<0,0).shift(1) 

836.   

837. obxvixdata = obxvixdata.dropna() 

838.   

839. #Split data into quantiles based on obxvix_prices 

840. q = obxvixdata.quantile([0.0, 0.1, 0.2, 0.3, 0.4, 

0.5, 0.6, 0.7, 0.8, 0.9, 1]) 

841.   

842. quantilerule = 'obxvix_returns'    

843.   

844. q1 = 

obxvixdata[((obxvixdata[quantilerule]>=q[quantilerule][0.

0]) & (obxvixdata[quantilerule]<q[quantilerule][0.1]))] 

845. q2 = 

obxvixdata[((obxvixdata[quantilerule]>=q[quantilerule][0.

1]) & (obxvixdata[quantilerule]<q[quantilerule][0.2]))] 

846. q3 = 

obxvixdata[((obxvixdata[quantilerule]>=q[quantilerule][0.

2]) & (obxvixdata[quantilerule]<q[quantilerule][0.3]))] 
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847. q4 = 

obxvixdata[((obxvixdata[quantilerule]>=q[quantilerule][0.

3]) & (obxvixdata[quantilerule]<q[quantilerule][0.4]))] 

848. q5 = 

obxvixdata[((obxvixdata[quantilerule]>=q[quantilerule][0.

4]) & (obxvixdata[quantilerule]<q[quantilerule][0.5]))] 

849. q6 = 

obxvixdata[((obxvixdata[quantilerule]>=q[quantilerule][0.

5]) & (obxvixdata[quantilerule]<q[quantilerule][0.6]))] 

850. q7 = 

obxvixdata[((obxvixdata[quantilerule]>=q[quantilerule][0.

6]) & (obxvixdata[quantilerule]<q[quantilerule][0.7]))] 

851. q8 = 

obxvixdata[((obxvixdata[quantilerule]>=q[quantilerule][0.

7]) & (obxvixdata[quantilerule]<q[quantilerule][0.8]))] 

852. q9 = 

obxvixdata[((obxvixdata[quantilerule]>=q[quantilerule][0.

8]) & (obxvixdata[quantilerule]<q[quantilerule][0.9]))] 

853. q10 = 

obxvixdata[((obxvixdata[quantilerule]>=q[quantilerule][0.

9]) & (obxvixdata[quantilerule]<q[quantilerule][1]))] 

854.   

855.   

856. #Calculate positive and negative OBX returns for 

each quantile 

857.   

858. print('obx max:') 

859. print(q10['obxvix_returns'].max()) 

860.   

861. print(q10['obxvix_returns'].min()) 

862. #Regression 

863. X = q10[['VIXpos', 'VIXneg']] 

864. y = q10['obx_returns'] 

865.   

866. xx = sm.add_constant(X) 

867. model_mult = sm.OLS(y,xx).fit() 

868. model_mult.summary() 

869. print(model_mult.summary()) 
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