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Abstract 

We apply different shrinkage techniques to the covariance and concentration matrices used 

for the minimum variance currency risk hedging of a globally diversified portfolio. The 

techniques are applied with the aim to induce sparsity in the estimator and by that to reduce 

the multicollinearity and the noise, resulting in a more robust estimator and decreased out-

of-sample portfolio risk. We show that the application of such techniques leads to a 

worsening of the risk characteristics of the portfolio. We argue that this is likely due to the 

structure of the minimum variance hedge as well as to the shrinkage methods which seem 

to disturb the balance and optimality of the minimum variance hedge. 
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1. Introduction 

In 1952 in his paper “Portfolio Selection”, the economist Harry Markowitz presented a 

rigorous mathematical framework that laid the foundations for modern portfolio theory and 

portfolio optimization. His work on portfolio selection earned him the Nobel Prize in 

Economic Sciences in 1990. The paper presented the theory referred to as mean-variance 

portfolio analysis (MVA) and proposed optimizing portfolios based on the risk and the 

return of their individual assets holdings while balancing the expected return and the 

variance of the portfolio. Furthermore, it was shown that for a well-diversified portfolio 

(when N is large enough), the risk will depend mainly on the pairwise covariances of the 

assets included in the portfolio rather than their individual variances. In other words, the 

portfolio risk will be based on the off-diagonal elements of the portfolio´s covariance 

matrix. 

 

Furthermore, diversification is an essential element in the framework as well as thought to 

be the only free lunch in finance. There is a large idiosyncratic risk characterizing 

investments in individual asset classes, industries, as well as countries. The mean-variance 

framework shows that unsystematic (individual assets) risk can be reduced significantly by 

simply increasing the variety and number of assets in the portfolio. There are several ways 

that investors can diversify their portfolios, but one of the most effective is to simply 

increase the geographical spread of the investments and to diversify globally. Although 

international markets are connected to some degree and the most significant financial 

shocks are usually resonating worldwide, correlations between countries are on average 

lower than correlations within countries (Roll, 1992). For instance, Solnik (1974) shows 

that the variability of return of an internationally well-diversified portfolio would be one-

tenth as risky as typical security and half as risky as a well-diversified portfolio of U.S. 

stocks (with the same number of holdings). More recent studies, however, such as Eiling 

& Gerard (2015) find that correlations between emerging and developed equity markets, 

as well as between emerging market regions, are exhibiting significant upward time trends. 

Increasing cross country correlations suggest that the benefits of international 

diversification may be decreasing over time.  
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Moreover, the reduction of the risk achieved through diversification, does not come at the 

cost of a reduction of the return as it would if an investor chose to reduce her risk by other 

means such as investing in short-term government debt (Khoury et al., 1996).  However, 

as De Santis & Gérard (1998) point out, an investment in a foreign asset is a combination 

of an investment in the performance of the foreign asset and an investment in the 

performance of the domestic currency relative to the foreign currency.  While the reduction 

of the idiosyncratic risk by international diversification is a well-established fact, the 

international diversification benefit comes at the cost of introducing additional risk in the 

portfolio in the form of currency risk. This additional risk is an important element to 

consider since variations in exchange rates can be large and may have unpredictable effects 

on the returns of international equities, particularly for countries with unstable monetary 

policies. Consequently, diversifying internationally may complicate decision-making in 

portfolio management since it requires making choices on more variables than just the 

underlying assets. Particularly, investors should make allocation choices based on two 

factors – the underlying stocks (indexes) and the hedging portfolio of the corresponding 

currencies.  

 

In theory, the choice of equity selection cannot be done independently of the currency 

decision (Khoury & Jorion, 1996). However, since many asset managers today lack 

expertise in currencies, there is a trend in the industry for delegating the currency part of 

the portfolio over managers specialized in currencies or the so-called “overlay” managers. 

This allows the “core” asset managers to focus on the equity portfolio where they regularly 

communicate the core positions to the currency manager. (Khoury & Jorion, 1996) 

 

In this paper we take the position of a currency manager who is handling the currency risk 

of an internationally diversified portfolio. For simplicity, we use the equally weighted 

portfolio, but we also test the same models on the minimum variance portfolio, and we 

achieve similar results. Our aim is to reduce the total risk of the portfolio by optimizing the 

currency exposure: which currencies and how much of those currencies our internationally 

diversified investor should hedge in order to optimally minimize the risk of her portfolio.   
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2. Literature Review 

2.1. The mathematical background of the minimum variance hedge 

When considering a multivariate portfolio consisting of both foreign and domestic indexes 

and currencies, the optimal MV portfolio is: 

[
𝑤𝑁

𝑤𝑁+1
] =  𝜆 [

Σ−1𝜇

1 − 1´Σ−1𝜇
] + (1 − 𝜆) [

0
1

] 

Where:  

𝑤𝑁 - positions in N risky assets, both equity indexes and foreign currency bills, 

𝑤𝑁+1 - position in the riskless asset (the domestic currency bill), 

λ - investor's risk tolerance, 

Σ−1 - the covariance matrix between the indexes and currencies, 

μ - the vector of returns of the risky assets. 

 

The equation is standard in the international finance literature and currency positions are 

contained in both the foreign equity indexes and short-term bills. The domestic bill is the 

only risk-free asset since it does not contain currency risk as with the foreign bills (Khoury 

& Jorion, 1996). 

 

However, if we want to evaluate the currency positions individually, we can replace the 

foreign bills with forward contracts since those can be replicated using foreign and 

domestic bills (Khoury & Jorion, 1996). Forwards are customizable derivative contracts 

which makes them particularly useful for hedging. Moreover, they are costless at t = 0 as 

entering a forward contract involves zero investment and the settlement is done first at the 

maturity of the contract. Further in the discussion, hedging is referring to entering in a 

forward contract, which can be done by both short and long positions. 

Furthermore, we partition the μ and Σ−1 in such a way that they are clearly separated and 

defined individually: 

𝜇 =  [
𝜇𝐸

𝜇𝐶
]  Σ =  [

Σ𝐸𝐸 Σ𝐸𝐶

Σ𝐶𝐸 Σ𝐶𝐶
] 
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Where: 

Σ – the covariance matrix of the entire portfolio consisting of equities and currencies, 

Σ𝐸𝐸 - covariance matrix of equity indexes only, 

Σ𝐸𝐶 and Σ𝐶𝐸 - covariance matrices of equities and currencies, 

Σ𝐶𝐶 - covariance matrix of the currencies only. 

 

Importantly, if we consider the optimally currency hedged positions of the equity indexes, 

we can run a regression of the underlying assets on those hedges (Khoury & Jorion, 1996, 

287). The slope coefficient of that regression is defined as β and Σ𝐸𝐶 as the covariance 

matrix of the underlying asset returns conditional on the hedges. Importantly, the beta 

coefficient corresponds to the position in forward contracts that provide the minimum 

variance hedge against currency risk, and it can be estimated as:  

𝛽 =  Σ𝐶𝐶
−1Σ𝐸𝐶 

Σ𝐸𝐶 =  Σ𝐸𝐸 − 𝛽´Σ𝐶𝐶𝛽 

This a result of the fact that the variance of the portfolio with a fixed positions in stocks is 

defined as 𝜎𝑃𝑜𝑟𝑡𝑓𝑜𝑙𝑖𝑜
2 = 𝑤𝐸 ´Σ𝐸𝐸𝑤𝐸 + 𝑤𝐶 ´Σ𝐶𝐶𝑤𝐶 − 2𝑤𝐶´Σ𝐶𝐸𝑤𝐶  and then minimum 

𝜎𝑃𝑜𝑟𝑡𝑓𝑜𝑙𝑖𝑜
2  is obtained when 2Σ𝐶𝐶𝑤𝐶 − 2Σ𝐶𝐸𝑤𝐸 = 0  or when 𝑤𝐸 =  Σ𝐶𝐶

−1Σ𝐶𝐸𝑤𝐶 =  𝛽𝑤𝐸  

(Khoury & Jorion, 1996). 

 

The optimal portfolio positions can be therefore extracted from the inverse of the 

abovementioned, partitioned covariance Σ matrix:  

Σ−1 =  [
Σ𝐸𝐶

−1 −Σ𝐸𝐶
−1𝛽´

−βΣ𝐸𝐶
−1 Σ𝐶𝐶

−1−βΣ𝐸𝐶
−1𝛽´

] 

Then by simply rewriting we can obtain the formulas for the optimal equity and currency 

positions: 

[
𝑤𝐸 = Σ𝐸𝐶

−1𝜇𝐸 − Σ𝐸𝐶
−1𝛽´𝜇𝐶  

𝑤𝐶 = Σ𝐶𝐶
−1𝜇𝐶 −  𝛽𝑤𝐸

] 

This representation of the optimal minimum variance portfolio gives us the opportunity to 

consider the currencies positions individually and evaluate their two components 
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separately. The first element, Σ𝐶𝐶
−1𝜇𝐶 is the speculative component which is present in the 

case when currency returns are different from zero. Interestingly, Glen & Jorion (1993) 

evaluate both the hedging and the speculative positions and find that the improvements in 

the risk-adjusted returns are mainly due to the hedging component. However, their results 

are likely to be significantly biased as they test their model in-sample.  

 

In this paper, our focus is on the second element 𝛽𝑤𝐸  which is the hedging component, 

reducing the variance of our internationally diversified portfolio. By choosing to ignore the 

speculative demand, we implicitly make the assumption that the currency risk is not priced 

in the financial markets. We see that as plausible since the focus of this paper is the 

currency hedging and the risk management perspective of the portfolio. In other words, we 

consider the currencies as purely hedging instruments and instead we focus on the 

improvement of the optimization and the reduction of the total portfolio risk. Looking at 

the hedging demand independently should help us better understand and evaluate the risk 

reduction effect of the portfolio by looking also at the distribution characteristics and the 

implications of the applied methods on those. 

 

2.2. Optimal hedges under different assumptions  

The implementation of the currency hedge is a subject of dispute among practitioners and 

academia. The optimality condition depends largely on the assumptions, the assets 

correlation, and the goals of the investors.  

 

If we assume no correlation, the optimal currency hedging is the simple unitary hedge  

𝑤𝐶 = −𝑤𝐸  ,  which will remove the variance of the currency from the portfolio returns 

(Solnik, 1974). Academic supporters of the unitary hedge argue that the long-term currency 

returns are zero and thus, they are contributing to the reduction in volatility without 

affecting returns. For example, Perold & Schulman (1988) show empirically that US 

investors can reduce the risk by applying full unitary hedges. At the same time, they argue 

that the premiums for currency holders are not far from zero and can be explained by time-

varying premiums rather than stationary premiums. However, later studies, such as De 

Roon et al. (2012) argue that currency hedging is no free lunch since there is increasing 
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evidence for currency premium and in the presence of such, currency risk hedging may 

affect the expected return on the portfolio in addition to its volatility.  

 

Furthermore, the portfolio asset class composition and exposure also play a role in the 

choice of the hedge. For example, Campbell et al. (2010) find that in bond portfolios, the 

optimal hedge is close to a unitary hedge due to the low correlation between bond returns 

and currency returns. On the other hand, they also find that the minimum variance hedging 

portfolio differs from a unitary hedge, particularly for equities and that it significantly 

reduces the portfolio volatility. This is due to the presence of a significant correlation (both 

positive and negative) between equities and currencies. However, it is worth mentioning 

that their analysis is based on in-sample data. As they test their model on the data that was 

used to estimate it and this guarantees that the hedged portfolio will display lower volatility 

than the unhedged portfolio. Out-of-sample testing mimics a realistic implementation of 

the hedge and provides a better assessment of its economic benefits.  

 

Moreover, there is increasing empirical evidence suggesting that the currency risk is priced 

in the international markets (Dumas & Solnik, 1995). According to De Santis & Gérard 

(1998), the currency risk premium is large, economically significant, and varies over time.  

If currency risk is priced in the securities, then hedging will also affect the return of the 

portfolio in addition to the volatility. This will also mean that fully hedging the entire 

currency risk of a portfolio can also have a negative effect on portfolio returns since it fails 

to account for the expected returns of the currency exposure. Bearing some degree of 

exchange rate risk may actually improve the performance of international portfolios (De 

Roon et al., 2012). In addition, if currency risk is varying over time this implies that 

investors may be more or less exposed than their individual risk preferences, and therefore 

when constructing their optimal portfolio, they need to take into account their risk exposure 

when rebalancing their portfolios.  

 

When considering a portfolio of foreign currency and the corresponding equities whose 

returns are correlated to varying degrees, the optimal weights become the weights of the 

minimum variance hedged portfolio. Therefore, the optimal hedge becomes the minimum 
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variance hedge (MVH) which we choose to present as gamma and involves an optimization 

problem (De Roon et al., 2012, p.5).    

𝑤ℎ𝑒𝑑𝑔𝑒 = − 𝛽𝑤𝐸 =  − Γ 𝑤𝐸 =  − Σ𝐶𝐶
−1Σ𝐸𝐶𝑤𝐸   (1) 

Γ =  Σ𝐶𝐶
−1Σ𝐸𝐶 

We can see that the hedge depends on the covariance matrix between the currencies and 

equities and the inverse of the covariance matrix of the currencies. As mentioned above, 

the optimal hedge is also the beta in the OLS regression of the unhedged portfolio returns 

on a constant and the currency returns (De Roon et al., 2012). This means that when the 

unhedged equity returns are positively correlated with the corresponding currency returns, 

the currency exposure is hedged by imposing a negative weight in the hedging portfolio. 

 

The covariance matrix, which we can see is the key to the optimal currency hedge, is prone 

to estimation errors, and those are further amplified by the estimation of its inverse and the 

increase of the number of assets included in the portfolio. Since financial data is usually 

noisy, heavily skewed, and characterized by fat tails, estimators tend to contain significant 

amounts of noise. This noise creates problems in portfolio construction, resulting in 

estimation errors and poor portfolio performance. The problem becomes particularly severe 

for estimation involving a large number of parameters and low numbers of historical 

observations, which is usually the case in portfolio construction. 

 

For example, DeMiguel et al. (2009) evaluate the performance of the sample-based mean-

variance model against naive diversification. In their evaluation of 14 models across seven 

empirical datasets, they find that the gain from optimal diversification is more than offset 

by estimation errors. The paper discusses that the reason for the poor performance is largely 

due to the high sensitivity of the means and covariance estimates, where small changes to 

these inputs result in extremely different portfolios. 

 

Furthermore, in another paper named “The Markowitz Optimization Enigma: Is 

'Optimized' Optimal?” Michaud (1989) describes the mean-variance portfolio optimization 

as error maximization since the framework tends to maximize the effects of errors in the 
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input assumptions. Nevertheless, Michaud underscores that the framework is superior to 

many ad hoc techniques and its performance may be enhanced by the sophisticated 

adjustment of inputs and the imposition of constraints based on fundamental investment 

considerations and the importance of priors. 

 

The research suggests that reduction of the noise and adjustments of the inputs may lead to 

improvement of the financial estimators and therefore to more stable and better-performing 

portfolios, both with respect to risk and returns.  

 

As we saw above, the optimization problem of the minimum variance currency hedge for 

an internationally diversified portfolio is multidimensional and involves estimation of the 

covariance matrix of the assets and the currencies and its inverse. In order to deal with the 

problems arising in high dimensional regimes, statisticians often apply the so-called 

sparsity or regularization methods which impose a penalty on the estimated parameters to 

control the magnitude of those. One of the first to propose such a method is Dempster 

(1972) as he suggests reducing the elements of the inverse covariance matrix to zero. 

Subsequently, numerous approaches for sparse matrix estimators have been developed and 

proposed and some of those have been found to significantly improve the estimates and 

reduce the portfolio risk (Goto & Xu, 2015; Millington & Niranjan, 2017). 

 

We hypothesize that the application of penalization in the hedging element of the portfolio 

will lead to a reduction of the estimation errors and improvement of the portfolio risk. We 

apply and test the performance of several methods for the penalization of the covariance 

matrix and its inverse including, Ledoit & Wolf (2004) penalization, as well as the 

graphical lasso (glasso) estimator, proposed and evaluated by Friedman et al. (2008) and 

applied by Goto & Xu (2015). By including shrinkage in the estimation, we aim to 

minimize the impact of the data noise and multicollinearity to reduce the volatility of our 

portfolio. We discuss and compare different maximization techniques and evaluate 

penalization parameters to solve the problem of finding the best estimator. 
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As mentioned above, some regularized approaches achieve significant out-of-sample risk 

reduction and improve certainty equivalent returns after transaction costs when applied to 

an entire portfolio. For instance, Goto & Xu (2015) argues that gains in the portfolio risk 

reduction from glasso estimator are particularly strong for portfolios where the hedging 

relations tend to be more difficult to estimate (as is the case of portfolios of individual 

stocks). Moreover Millington & Niranjan, (2017) argue that the portfolios constructed 

using the graphical lasso have a lower variance of risks and returns than those constructed 

using the empirical covariance, particularly when applied out-of-sample.  

 

However, to our knowledge, those approaches have not been tested in portfolio 

construction involving a hedging element. Our aim is therefore to apply the penalization 

methods, particularly with the aim to minimize the noise effect in the optimal currency 

hedge and to decrease the risk of the portfolio. We compare the risk reduction of our 

internationally diversified equally weighted portfolio, hedged with the minimum variance 

hedge, and then apply the penalization on it with the aim to reduce the estimation error. 

For comparison, we also evaluate the performance of the unitary hedge and Black´s 

universal hedge.  
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3. Data 

We focus on developed countries with floating exchange rates, mostly driven by supply 

and demand and with little Central bank interventions. Our dataset consists of monthly data 

for Norway, as a domestic investment, and the G10 countries' local indexes as our foreign 

investment and the corresponding foreign currency exchange rates. The list can be found 

in Appendix Table 1. As we are considering the investments from the perspective of a 

Norwegian investor, we estimate the returns of the foreign equities with the following 

formulas: 

𝑅𝐸,𝑡+1 = ( 
𝑃𝑡+1 + 𝐷𝑡+1

𝑃𝑡
 −  𝐼𝑡+1

𝐶𝑜𝑢𝑛𝑡𝑟𝑦
) (

𝑋𝑡+1

𝑋𝑡
) − 1 

𝑅𝐶,𝑡+1 =  
𝑋𝑡+1(1 + 𝐼𝑡+1

𝐶𝑜𝑢𝑛𝑡𝑟𝑦
)

𝑋𝑡
 −  (1 + 𝐼𝑡+1

𝑁𝑜𝑟𝑤𝑒𝑔𝑖𝑎𝑛
) 

Where: 

𝑅𝐸 –  is the equity index return at the corresponding time-period, 

𝑅𝐶 –  is the currency return at the corresponding time-period, 

𝑋𝑡 and 𝑋𝑡+1 - is the exchange rate between foreign currency and Norwegian krone at the 

corresponding time-period, 

𝑃𝑡 and 𝑃𝑡+1 – is the price of the index in the local currency at the corresponding time-

period, 

𝐷𝑡 and 𝐷𝑡+1 – is the index's dividends at the corresponding time-period, 

𝐼𝑡+1
𝐶𝑜𝑢𝑛𝑡𝑟𝑦

 –  is the local risk-free interest rate at the corresponding time-period, 

𝐼𝑡+1
𝑁𝑜𝑟𝑤𝑒𝑔𝑖𝑎𝑛

 – is the domestic risk-free interest rate at the corresponding time-period. 

 

The data for the equity indexes is retrieved from Refinitiv Eikon and we chose to use the 

corresponding MSCI Country Price Index for each individual country since using the same 

provider for the indexes makes those comparable with each other. For the currencies we 

use Norges Bank exchange rates database where we use end of month values to match the 

data frequency from Eikon. The Norwegian krone is our domestic, quote currency, and the 

other currencies are base currencies since they represent the number of NOK the 

Norwegian investor needs to buy 1 unit of the foreign currency. For the risk-free interest 
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rates, we use 1-month interbank deposit rates for the corresponding currency. We also 

consider the interest rate differentials to remove the effect of high vs. low-interest rates 

countries. The fact that domestic currency appreciates when domestic nominal interest 

rates exceed foreign interest rates, is also known as the forward premium puzzle or the 

Fama puzzle in currency markets. We used nominal returns as taxes, investment fees, and 

inflation is not factored into those. Hence, they give a better indication of how the 

investment will perform in the future and not in the past. 

 

Our sample covers the period between February 1986 and April 2022, a total of 435 

monthly observations. We choose to use monthly frequency in order to have as little data 

noise as possible. The daily and weekly observations are much more noisy and full of 

random shocks than the monthly data. Other papers focused on hedging use also monthly, 

and some even prefer quarterly observations. However, as we also want to have a good 

number of observations, we find the monthly frequency optimal. Since our analysis is 

focused on currency hedging, we assume that hedging transactions take place once a 

month.   

 

We divide our sample into training and testing periods with a 70/30 proportion. For the 

initial covariance matrix estimation, we use the data from February 1986 till February 

2011. Moreover, for out-of-sample testing of the optimizer, we use the data period from 

March 2011 to April 2022. We rebalance our out-of-sample portfolio every month by 

adding the past month to our training data set in a recursive manner and we reestimate the 

weights of the portfolio for the following month. 

 

3.1. Descriptive Statistics 

The descriptive statistics for the entire dataset are presented in Table 3.1. The average 

monthly returns from the perspective of a Norwegian investor for the Swiss franc, the 

Japanese yen, the Canadian dollar, the Swedish krona, the Euro, and the US dollar are all 

negative and close to 0. The returns for the British pound are positive but still 

insignificantly small. However, one could argue that the median is the most proper measure 

for estimating expected returns in financial data as it is not influenced by extreme 
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observations. Looking at the medians of the currency distribution we can see that all those 

except for the Canadian dollar are negative and close to zero. 

 

Table 3.1. Descriptive statistics 

 

3.2. Correlations  

The correlations are undisputedly more interesting to look at when we discuss hedging. 

Table 3.2. report the correlation matrix estimated over the entire sample. We can confirm 

the lower correlation across countries confirming the discussion about the benefits of 

international diversification. Since the idea of diversification is mathematically based on 

the correlation between the holdings, investors aiming to reduce the risk of their portfolios 

should aim to combine assets that are low to negatively correlated. As Roll (1992) points 

out, the intercorrelation among markets is surprisingly low given the global financial 

integration. To some degree, we can say that European markets are more correlated with 

each other, which is also another reason to globally spread our Norwegian portfolio.  

 

With respect to the individual currencies, all indexes are positively correlated with their 

corresponding local currencies. This means that when the indexes are increasing, the 

currencies are as well and vice versa. This implies that without hedging in bull markets the 
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returns of the portfolio from the domestic perspective will be higher and in bear markets 

they will be lower. Therefore, due to the positive correlations, we expect to obtain mostly 

negative weights in the considered below hedging portfolios, implying that most of the 

currencies must be short-selled. However, in a portfolio consisting of multiple assets the 

cross correlations are very important for deciding the correct hedging position and 

therefore we cannot draw direct conclusions by simply looking at the correlation matrix.  
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Table 3.2 Correlation matrix
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4. Methodology 

4.1. Important characteristics of the covariance and concentration matrices 

The covariance matrix and its inverse are heavily used in portfolio construction and are 

central for portfolio risk minimization. Since the minimum variance portfolio does not 

consider returns but rather relies only on the covariance matrix estimation. The inverse 

covariance matrix, also known as the concentration matrix, contains information about the 

partial correlation between variables or put differently it shows how correlated are two 

assets given the presence of other assets in the portfolio. According to Stevens (1998) it 

determines the optimal holding of a given risky asset, the slope of the risk-return efficiency, 

and the pricing of risky assets in the Capital Asset Pricing Model (CAPM). Stevens also 

points out that the i-th row (or column) of the concentration matrix is proportional to the 

stock's minimum variance hedge portfolio. The hedge portfolio consists of a long position 

in the i-th stock, and a short position in the "tracking portfolio" of the other stocks to hedge 

the i-th stock.  

 

While diagonal elements of the covariance matrix are the individual asset variances (the 

covariance of each asset with itself), the off-diagonal elements are the covariances between 

those. Importantly, higher than 0 off-diagonal elements, or in other words, covariances 

between assets higher than 0, are resulting in extreme values when inverting the covariance 

matrix. Those extreme values could produce unstable and often unreasonable portfolio 

weights and result in poor portfolio performance and higher risk.  

 

4.2. Hedging techniques  

We consider several hedging approaches and apply it to our internationally diversified 

portfolio to hedge it against currency risk: 

1) Unitary hedge 

When the unitary hedge approach is applied, the full-face value of the foreign investment 

is hedged in the forward market on one-to-one basis (Khoury & Jorion, 1996, 298). This 

hedging technique does not consider the interdependencies between the assets in the 

portfolio and thus, can lead to over hedging and poor performance when correlations 
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between currencies and equities are high. Hence, the weights of the hedging portfolio are 

defined as following: 

𝑤𝐶 = −𝑤𝐸 

2) Black´s universal hedge 

We also apply the universal hedge which was first proposed by Fischer Black. In his paper 

Black (1989) argues that, given no barriers to international investment, all the investors 

want to hold a share of a fully diversified world equity portfolio. Since some investors must 

lend when others borrow, in equilibrium they both need to hedge equally, in proportion to 

their stock holdings. Based on these assumptions, he derived the formula for the universal 

hedge: 

𝜇𝑒 − 𝜎𝑒
2

𝜇𝑒 − 0.5𝜎𝑒𝑟
2

 

Where:  

𝜇𝑒 - the average of the expected excess returns on the equity portfolio 

𝜎𝑒 - the average volatility of the equity portfolio 

𝜎𝑒𝑟 - the average exchange rate volatility across all pairs of countries 

 

Hence, the hedge is applied as: 

𝑤𝐶 = −
𝜇𝑒 − 𝜎𝑒

2

𝜇𝑒 − 0.5𝜎𝑒𝑟
2

𝑤𝐸  

In other words, the Black's universal hedge concept is very similar to the unitary hedge, 

however, the index exposure hedge ratio is not 100%, but the optimal one, which could be 

estimated with the formula above. 

 

3) Minimum variance hedge (MVH)  

In this paper we give most attention to the minimum variance hedge, as is the only one that 

takes into account the interdependencies in the portfolio. We focus only on the hedging 

portfolio part, and we assume zero currency returns, hence the formula of equation (1), 

presented in the literature review, is used to estimate the currency portfolio weights: 
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𝑤𝐶 = −𝛴𝐶𝐶
−1𝛴𝐶𝐸𝑤𝐸   

Where:  

𝑤𝐶  - is the minimum variance optimal position in currencies, 

𝛴𝐶𝐶
−1 - is the currency concentration matrix, 

𝛴𝐶𝐸 - is the covariance matrix between indexes and currencies, 

𝑤𝐸  - are the weights of the indexes’ portfolio. 

 

We intend to improve the MVH by applying shrinkage techniques to the currency 

concentration matrix  𝛴𝐶𝐶
−1 as well as to the entire covariance matrix. 

 

4.3. The estimators for the MVH 

As was mentioned before the practice to estimate the covariance matrix on historical data 

makes the estimates uncertain and prone to estimation errors. Furthermore, since the equity 

markets are correlated to varying degrees, the data is characterized by multicollinearity. 

Multicollinearity means also that the off-diagonal elements of the covariance matrix and 

its inverse are susceptible to large estimation errors (Goto & Xu, 2015).  Shrinkage methods 

are often applied to approach the issue of such errors and are particularly useful in the 

mitigation of extreme values resulting in the inversion of the covariance matrix described 

above.  

 

There is an ongoing discussion if the shrinkage is best applied to the covariance matrix or 

its inverse. As Goto & Xu (2015) point out, the relative performance of the portfolios may 

depend on datasets, estimation windows, and performance measures as well as testing 

methodologies. This means that the performance of the different methodologies may be 

different across different data sets and time frame windows. Moreover, Bien & Tibshirani 

(2011) state that while the zeros in the inverse covariance matrix correspond to conditional 

independencies between variables, zeros in the covariance matrix correspond to marginal 

interdependencies between variables.  
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Therefore, we choose to test both approaches by applying shrinkage of the inverse currency 

partition of the covariance matrix which is used in the optimal hedge using the approach of 

Goto & Xu (2015), Yuan & Lin (2007), and Friedman et al., (2008), as well as the approach 

of Ledoit & Wolf (2004) for shrinkage of the entire covariance matrix, which is then 

partitioned and inverted. The aim of both is to achieve an estimator which is sparse, or with 

other words, an estimator whose less important off-diagonal elements will be shrunk 

towards zero.  

 

4.3.1. Shrinkage on the inverse covariance matrix 

The methodology we apply to shrink the concentration matrix has been used in several 

other papers such as Friedman et al., (2008), Goto & Xu (2015), Millington & Niranjan 

(2017), and others, however, we are the first in our knowledge to apply it in the context of 

currency risk hedging.  

 

Given the observations of the currency portfolio returns, which are i.i.d and assumed to 

come from N-dimensional multivariate normal distribution, we aim to estimate the inverse 

covariance matrix for currencies by quasi maximum likelihood (QML) estimator. 

Particularly, instead of applying lasso to each hedge regression to estimate each 

row/column of the concentration matrix' estimator, we want it to be estimated jointly to 

restrict the estimator to be positive, definite, and symmetric. This approach is expected to 

result in a portfolio with more stable weights and therefore - significantly improve portfolio 

performance. 

 

Similar to Friedman et al. (2008) and Millington & Niranjan (2017), we use log-likelihood 

with a penalty 𝜌 ≥ 0 on the overall size of the hedge trades to estimate all elements of the 

concentration matrix estimator 𝛹 with the following formula: 

               max
Ψ

ln det (Ψ) − 𝑡𝑟𝑎𝑐𝑒(Σ̂Ψ) − ρ ∑ ∑ |𝜓𝑖𝑗|𝑁
𝑗=1,𝑖≠𝑗

𝑁
𝑖=1   (3) 

In their paper Goto & Xu (2015) use a slightly different formula to estimate the 

concentration matrix: 
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max
Ψ

𝑇

2
ln det (Ψ) −

𝑇

2
𝑡𝑟𝑎𝑐𝑒(Σ̂Ψ) − ρ ∑ ∑ |𝜓𝑖𝑗|𝑁

𝑗=1,𝑖≠𝑗
𝑁
𝑖=1   (4) 

For both formulas:  

�̂� - the estimated sample covariance matrix 

𝛹 - the estimator of the concentration matrix 

N – number of assets, 

T – number of the data points.  

 

The only difference between the two approaches is the way they are discarding the 

constant. For simplicity, the following discussion will be based on formula (3). Moreover, 

the degree of the penalization is driven by the penalization factor 𝜌. Larger values of 𝜌 

promote more sparsity and shrinkage of the estimator, whereas zero penalization makes the 

solution identical to the unpenalized concentration matrix. There are different ways to 

evaluate the optimal penalization parameter. We choose to use the grid search and Bayesian 

information criterion (BIC) criteria to search for the value that optimizes the predictive 

likelihood for our training period. According to Goto & Xu (2015) the estimator can deliver 

consistent performance when the optimal value of 𝜌 remains stable over time.  

 

There are several ways to find the solution to the QML estimation problem. In this paper, 

we will consider two of them, specifically the lasso (glasso) algorithm proposed by 

Friedman et al. (2008) as well as the application of standard maximization techniques. 

 

Friedman et al. (2008) state that the QML estimation problem looks like N-coupled Lasso 

least-squares problem. They use the block-wise coordinate descent approach proposed by 

Banerjee et al. (2008) as a starting point and propose a new recursive algorithm for this 

problem. The proposed of them glasso sweeps across each row, solving the individual lasso 

problems while keeping the others fixed, and then repeats until all the coefficients 

converge. Importantly, the algorithm computes the estimator for the inverse covariance 

matrix after convergence, as it works on the estimated sample covariance matrix �̂�  and 

then recover relatively cheaply the estimator 𝛹  (Friedman et al., 2008). 
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We also apply standard maximization techniques to the QML problem to test their 

performance. When it comes to those, there are two main types - derivative-based and 

stochastic-based maximizations. In both cases, the large number of parameters 

significantly complicates the problem since the function can be multimodal. The 

optimization is particularly problematic in the case of the derivative-based methods when 

the maximization search may stop at a local maximum point instead of the global max. The 

problem can be mitigated by choosing a sensible starting point and the appropriate 

algorithm depending on the problem. As an initial starting point for the QML maximization 

problem, we will use our sample concentration matrix. To evaluate the robustness of the 

estimator, we applied several maximization algorithms which are presented in Table 4.1. 

Method Description 

Sequential quadratic programming (SQP) Deterministic, uses derivatives.  

If the problem is unconstrained, then the 

method reduces to Newton–Raphson 

method. 

Active-set (AS) Deterministic, uses derivatives. 

Nelder-Mead Deterministic, derivative-free. 

Table 4.1. Tested maximization methods 

 The SQP and AS performances are similar, but the SQP proves to perform slightly better. 

The Nelder-Mead method performs poorly, and we discard it. Therefore, we chose to base 

our analysis on the SQP maximization method, which is regarded as one of the most 

successful methods for the numerical solution of constrained nonlinear optimization 

problems.  

 

The above estimators (glasso and SQP) will be used instead of the sample concentration 

matrix 𝛴𝐶𝐶
−1 to estimate the currency hedge weights. However, we are unable to penalize 

the entire hedge using the glasso estimator due to the structure of the minimum variance 

hedge. The application of glasso algorithms requires a NxN square matrix in order to 
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estimate the determinant of the matrix as a part of the equation (3). As described above, the 

minimum variance hedge is estimated as: 

𝛤 =  𝛴𝐶𝐶
−1𝛴𝐶𝐸 

While our inverse matrix of the currencies 𝛴𝐶𝐶
−1  is square (7x7), the matrix of the currencies 

and equities 𝛴𝐶𝐸 is not (in our case it is 13x7), making it impossible to apply the 

optimization algorithm on the entire hedge.  We provide further discussion of the problem 

in the results section.  

 

4.3.2. Shrinkage on the covariance matrix 

The methodology we apply to shrink the covariance matrix was first proposed by Olivier 

Ledoit in his Ph.D. thesis Essays on Risk and Return in the Stock Market (1995). Later it 

was further discussed by him and Michael Wolf in their paper A Well-Conditioned 

Estimator for Large-Dimensional Covariance Matrices (Ledoit & Wolf, 2004). To get a 

well-conditioned structured estimator they assumed that all variances are the same and all 

covariances are zero. Hence, the shrinkage target is to keep the covariance matrix 

diagonal, and shrinkage intensity influences only the off-diagonal elements. In other 

words, we again shrink only the off-diagonal elements of the covariance matrix. After the 

application of the shrinkage, we partition the covariance matrix to extract the elements 

𝛴𝐶𝐶 and 𝛴𝐶𝐸  needed for the minimum variance hedge. We then take the inverse of the 

already shrank  𝛴𝐶𝐶 and apply it to estimate the hedge. This means that in this approach 

both elements of the hedge are equally shrunk. 
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5. Results and Analysis 

We choose to present the applied estimators' results separately for our hedging portfolio 

and for our total portfolio in order to evaluate their performance both on an individual basis 

and on the total portfolio risk profile. The presented results are estimated on our out-of-

sample monthly data for the period from March 2011 till April 2022. The results of the out-

of-sample data are calculated in a recursive manner by monthly rebalancing and gradual 

expansion of the training period. As mentioned above, we used grid search and Bayesian 

information criterion (BIC) to estimate the value of the optimal penalization parameter. 

The optimal values for 𝜌 which we obtained are 0.1 the SQP method and 0.0001 for the 

glasso algorithm. 

 

We evaluate the risk reduction by measuring three dimensions of the out-of-sample 

portfolio risk profile: the volatility, the kurtosis, and the skewness. Including higher 

moments of the portfolio, distribution to evaluate the risk is important since the reduction 

of volatility itself does not guarantee the reduction of the total portfolio risk. A portfolio 

may have lower volatility but also higher kurtosis which in combination with negative 

skew, implies that the tail risk of the portfolio is higher indicating that a “black swan” event 

has a higher chance of occurring.  

  

5.1. Currency Hedge results 

 Looking exclusively at our currency minimum variance optimal hedge portfolio (MVOH), 

presented in Table 5.1., we can see that we obtain positive returns, skewness close to zero, 

and low kurtosis. In fact, as an individual portfolio, it has the highest return and SR of all 

the applied techniques, proving it difficult to improve further. Moreover, all the other 

applied hedging adjustments deliver negative returns except for the Ledoit-Wolf (LW) 

estimator. The worst performing is the QML SQP maximization, which increases the 

standard deviation by threefold. 

 

In terms of standard deviation, surprisingly, the Black´s Universal hedge proves to be the 

lowest. However, this comes at the cost of a significant increase in tail risk and negative 

skewness, meaning that the hedge portfolio is more susceptible to market crashes. The 
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unitary hedge performs similarly with a slightly higher standard deviation and similar 

distribution characteristics.  

 

While the minimum variance hedge proves its optimality on an individual basis, we need 

to look at the overall portfolio to draw further conclusions. 

 

Table 5.1. Currency hedge portfolio results 

 

5.2. Total portfolio results 

Examining the total portfolio results, reported in Table 5.2., we can see that the minimum 

variance hedge delivers the results it promised, by both increasing the returns and 

decreasing the volatility of our currency-hedged portfolio. However, it also contributes to 

a slightly higher kurtosis, which means that it increases the tail risk making the portfolio 

more susceptible to sudden market crashes. 

 

Table 5.2. Portfolio results 

Contrary to our initial hypothesis, we do not find any significant improvements in the risk 

characteristics of the total portfolio by applying penalization techniques to our hedging 

element. Furthermore, the unitary and the universal hedges prove to be suboptimal when 

applied to equity portfolios as they not only decrease the expected returns but also 

significantly increase the standard deviation. As mentioned above, the unitary and the 

universal hedge are quite similar. We can see that the universal hedge performs slightly 

better than the unitary due to its structure since the application of the optimal hedge ratio 
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in a way decreases the over hedging of the unitary hedge. However, the results are still 

worse than with the optimal hedge.  

 

Moreover, we can see that by applying the unitary and universal hedges to our portfolio, 

the tail risk is increased drastically, and the returns distribution becomes more negatively 

skewed. This can be explained by the presence of significant correlation between both the 

equity indexes and their corresponding currencies, which neither of the two hedging 

techniques take into account. For instance, Glen & Jorion (1993) points out, the unitary 

hedge ratio is suboptimal since it ignores correlations between exchange rates and local 

returns as well as speculative motives for taking currency positions. Solnik (1974) argues 

similarly, that a unitary hedge is optimal only when currencies and equities are 

uncorrelated, and the risk management demands for foreign currencies are zero. 

 

With respect to the SQP maximization, the results are even more dramatically aggravated 

although we applied the grid search method to estimate the best penalization parameter. In 

fact, the SQP presents the worst results with respect to risk increase by doubling the risk, 

heavily negatively skewing the returns, and significantly increasing the tail risk of our 

portfolio. The SQP maximization performance can be explained due to the nature of the 

problem that is intended to solve. As Bien & Tibshirani (2011) discuss, the minimization 

of equation (3) is a formidable challenge since the objective function is non-convex and 

therefore may have many local minima. This is also their main motivation for developing 

the glasso algorithm.  

 

Of all the applied penalization methods, Ledoit-Wolf is the only which delivers some 

improvement to the risk characteristics of our portfolio, although they are statistically and 

economically insignificant. The decrease of the volatility is coming at the cost of the 

returns, resulting in the same Sharpe Ratio as with the optimal hedge achieving therefore a 

zero risk-adjusted benefit for the investor. As mentioned above, the method is also the only 

method that is applied to the entire sample covariance matrix where the matrix is penalized, 

before being partitioned and used in the estimation for the hedge, resulting in the entirely 
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penalized hedge. We could argue that the penalization of the entire hedge is therefore 

preferable, however, as the results are not significant, this will be a speculation.  

 

In order to evaluate the reasons for the rather surprising results we decided to present the 

covariance and the concentration matrices used in the construction of the hedge, the 

statistics for the determinant of the estimator 𝜓𝑪𝑪 and the trace of the 𝛴𝐶�̂�𝜓𝐶𝐶, as well as 

the currency weights at the end of our testing period (30.04.22).    

 

Table 5.3. Concentration matrices estimators 𝜓𝑪𝑪 as of 30.04.22 
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The inverse currency covariance matrix Σ𝐶𝐶 per 30.04.22 and its corresponding estimators, 

are presented in Table 5.3. We can see that the SQP minimization shrinks the concentration 

matrix of the currencies and as expected reduces the off-diagonal elements. However, it 

does not seem to find the optimal solution, leading to an increase in the risk of our currency 

hedge portfolio and of the corresponding total portfolio.  

 

Furthermore, we can also observe that it changes the sign of some of the covariances. If the 

regressors (the currencies) are orthonormal, the lasso is shrinking them toward zero, but it 

never crosses zero or alternates the sign. However, as in today's global markets, we cannot 

talk about independence and uncorrelated indices, particularly not for country indices and 

their currencies, meaning that those are not orthonormal. The lack of orthogonality 

requires, therefore, the application of an iterative solution (Goto & Xu, 2013). 

 

Such a solution is proposed by Friedman et al. (2008) whose algorithm proves to be 

remarkably fast and efficient. We can also notice that the performance of the glasso is 

superior to the simple minimization techniques. In Table 5.3 and 5.4 we observe that the 

approach shrinks efficiently the off-diagonal elements of the covariance matrix without 

affecting the diagonal and after convergence computes the inverse covariance matrix 

(Friedman et al., 2008). The glasso is however also exacerbating the results of the optimal 

hedge by increasing volatility, skewness, and tail risk for our overall portfolio.  

 

As mentioned above, we also choose to present the currency covariance matrices 𝛴𝐶�̂� for 

the MOVH, the glasso and the LW as we find it useful to present and evaluate the effects 

of the shrinkage techniques on the covariance matrices, for those where shrinkage is 

applied to. This means that we do not present the covariance for the SQP as is the only 

method that works directly and exclusively on the inverse matrix 𝛴𝐶𝐶
−1. In the Table 5.4 

sample and shrinked covariance matrices we can clearly see the effect of the glasso 

shrinkage on the off-diagonal elements while the diagonal elements are preserved as in the 

original matrix, confirming that the algorithm is performing as expected. Importantly, the 

shrinkage for the glasso algorithm is significant while the off-diagonal elements are only 

very mildly shrinked by applying the LW approach.   
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Table 5.4. Covariance matrices estimators 𝛴𝐶�̂� as of 30.04.22 

Moreover, we can notice an important change in the magnitude of the diagonal elements 

of the inverse covariance matrix in Table 5.3 which is caused by the shrinkage. This is due 

to the construction of the glasso algorithm, where the shrinkage is applied on the off-

diagonal elements of the covariance matrix, while the diagonal elements remain 

unchanged. Consequently, the inverse is recovered through the algorithm (Friedman et al., 

2008). However, this results in slightly different diagonal elements of the inverse and to 

changed order of magnitude of those. This is inevitable in the case of the glasso algorithm 

as it was developed by Friedman et al. (2008). The lasso SQP shrinkage seems to have 

lesser effect on the diagonal, however, it still affects the values and the magnitude for some 

of the currencies. This implies that shrinkage techniques change the order of magnitude 
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and influence the interdependencies of the variables in the matrices used in the estimation 

of the minimum variance hedging portfolio in such a way that it leads to decrease of its 

efficiency. Importantly, for Ledoit-Wolf approach, as the only that does not exacerbate the 

results, the shrinkage is minimal, the diagonal is preserved and the order of magnitude in 

the inverse estimate is unchanged. Those results are again supporting the hypothesis that 

even small interference in the matrix is likely redundant and the more shrinkage is applied 

on the matrix, the worse the portfolio performance becomes. 

 

We can also argue that the worsened results of the applied shrinkage methods may be due 

to the nature of the minimum variance hedge structure. The structures of both the QML 

problem and the glasso penalization algo make it appropriate only for problems involving 

NxN matrices. This means that one could only apply the method on our entire portfolio, as 

Goto & Xu (2013), or eventually on the entire hedging element of a portfolio with an equal 

number of currencies and equities since only then the covariance of those will result in a 

square matrix allowing penalization. Since the NxN currencies and equity portfolio is an 

unreasonable constraint and assumption, we choose to apply the penalization only on the 

inverted partition of the currencies 𝛴𝐶𝐶
−1 with the aim to minimize the noise in currencies 

data. However, we can see that the results prove to be suboptimal. 

 

In order to further evaluate the results, we included the statistics for the determinant of the 

𝜓𝑪𝑪 and the trace of the 𝛴𝐶�̂�𝜓𝐶𝐶 presented in Table 5.5 and 5.6. Since shrinkage influences 

the values of those and both are part of the equation (3), the two elements can provide some 

insight on why the shrinkage does not improve the optimal hedge. In mathematics, both the 

determinant and the trace can indicate the characteristics of the changes in a given matrix. 

The statistics are estimated out-of-sample.  

 

Table 5.5 Determinant of the 𝜓𝑪𝑪  
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Table 5.6. Trace of the 𝛴𝑪�̂�𝝍𝑪𝑪 

We can see that the determinant for the MVOH and the determinant of the LW optimized 

hedge are quite close to each other, with the LW being slightly lower. However, for the 

SQP and the glasso the determinants are driven in the opposite directions where the SQP 

has a drastic increase and the glasso a drastic decrease of the value of the determinant. We 

argue that the results suggest that shrinkage causes large deviations away from the 

optimality of the hedge, which leads to worse performance. This is further supported by 

the fact that the increase of the penalization leads to poorer performance.  

 

The trace statistics for the 𝛴𝐶�̂�𝜓𝐶𝐶 confirm further the similarity between the MVOH and 

the LW shrinkage. The means of those are equal and the standard deviation of those is 

essentially equal to zero. The reason for that can be explained by the fact that in LW the 

entire covariance matrix Σ is shrank and then partitioned. However, for the SQP method, 

the shrinkage is directly applied on the concentration matrix of the currencies 𝛴𝐶𝐶
−1, while 

with the glasso the shrinkage is applied first on the covariance matrix of those Σ𝐶𝐶 and then 

the inverse 𝛴𝐶𝐶
−1 is recovered by the algorithm. This leads to different mean, median and 

volatility of the 𝛴𝐶�̂�𝜓𝐶𝐶, supporting the former discussion about the bad performance being 

mainly due to disturbance in the minimum variance hedge structure.  

 

Another way to explain the results is by looking at the simplified calculations involved in 

the estimation of the covariance matrix. We know that we can represent the volatility of 

the equity and currency portfolio with the following formula: 

𝜎𝑃𝑇𝐹 = √(𝑤𝐸𝜎𝐸)2 +  2𝑤𝐸𝑤𝐶𝑐𝑜𝑣𝐸,𝐶 + (𝑤𝐶𝜎𝐶)22
 

Where:  

𝜎𝑃𝑇𝐹 – is the standard deviation of the constructed portfolio, 
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𝑤𝐸  – is the total weight of the equity index portfolio, 

𝑤𝐶  – is the total weight of the currency portfolio, 

𝜎𝐸and 𝜎𝐶 – are the corresponding volatilities of the portfolios 

𝑐𝑜𝑣𝐸,𝐶 – is the covariance between the portfolios.  

 

While our equity portfolio is fixed, the currency portfolio’ weights, standard deviation, and 

covariance with the indexes’ portfolio depend on the estimator. The reduction of the 

currency portfolio risk through the shrinkage of the covariance and concentration matrixes, 

in theory, should lead to a decrease in the currency weights and therefore to a decrease of 

(𝑤𝐶𝜎𝐶)2 and 𝜎𝑃𝑇𝐹 . However, if the covariance between equities and indexes is negative, 

the decrease of 𝑤𝐶  will lead to a lower diversification benefit, which can be crucial and 

even drive the increase of the total portfolio risk. Moreover, such a modification of the 

currency portfolio could change its performance and therefore the covariance between 

currencies and indexes, which can lead to both positive and negative results. As we can 

see, the dependence is not linear, hence just the risk reduction of the currency portfolio 

itself cannot guarantee the reduction of the combined portfolio. 

 

This hypothesis could be also supported by the hedging portfolio weights presented in 

Table 5.7. The change is significant and sharp for some estimators, particularly for the SQP. 

  

Table 5.7. Hedging weights as of 30.04.22 

The SQP maximization increases drastically the absolute values of the hedging weights. 

This is a surprising result, given the fact that shrinkage is expected to achieve the opposite 

- to shrink the trade sizes. The glasso estimator and the Ledoit-Wolf estimator perform as 
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expected and achieve the desired position shrinkage. The hedging weights for the glasso 

estimator are reduced significantly while for LW the reduction is low to none for some of 

the currencies. However, the total sum of the hedges is lower only for the LW method.  

Furthermore, while the shrinkage of the glasso and LW seem to perform as expected on the 

individual hedging sizes, it still does not improve the risk profile of the portfolio, including 

tail risk. This again suggests that as less shrinkage is applied on the hedge, the better the 

hedging performance is. 

 

While the shrinkage methods have proven to enhance the performance of the optimizers 

and reduce the risk when applied to the entire portfolio estimator, their application to the 

hedging element of the portfolio seems to be superfluous and even detrimental to the 

portfolio risk characteristics. We can therefore conclude that the application of shrinkage 

techniques does not provide any meaningful economical or statistical benefits to the 

investors. Some academics also support that hypothesis and argue against improvement of 

the MVOH. For instance, Lence (1995) states that his results suggest that the hedging 

research's recent emphasis on "better" MVHs has been a waste of resources. In another 

more recent paper, Dark (2005) argues that the literature should focus more on the 

assumptions underlying the conventional minimum variance hedge ratio (MVHR), rather 

than improving the techniques used to estimate it. While in those examples the researchers 

use different approaches for the improvement of the hedging ratios, they still support the 

hypothesis that the use of sophisticated techniques on the MVH proves to be redundant and 

unnecessary. 
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6. Conclusion 

Appealed by the superior out-of-sample performance of different shrinkage methods for 

covariance and concentration matrix, both in portfolio construction and risk management, 

we applied those in the setting of the portfolio currency risk hedging.  

 

The out-of-sample performance of the proposed estimators was not as expected when 

applied to the hedging element of our internationally diversified portfolio. We show that 

while the glasso and the Ledoit-Wolf estimators performed as expected on the individual 

elements of the hedge, shrinking the matrices and the corresponding hedge sizes, this did 

not result in total portfolio risk reduction or improvement of the out-of-sample portfolio 

risk profiles, including tail risk.  

 

We hypothesize that this is mainly due to the structure of the minimum variance hedge 

which involves the currency concentration matrix and the currencies and equity covariance 

matrix. While shrinkage may be decreasing the estimation error, it also seems to disturb 

the balance and optimality of the minimum variance hedge. Furthermore, the structure 

itself, involving non-square matrices, complicates further the proper application of the 

presented shrinkage methods.  

 

In conclusion, we do not find any substantial economical or statistical benefits in the 

application of shrinkage methods on the minimum variance hedge and believe the 

application should be avoided.
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Appendix 

Table 1: Data description 

Asset Currency N Time period 

MSCI Italy Price Index  EUR Train:  

300 

 

Out-of-sample 

test: 

135 

02.1986 - 04.2022 

 

Train: 

02.1987 - 01.2011 

  

Out-of-sample 

test: 

02.2011 - 04.2022 

 

MSCI France Price Index EUR 

MSCI Germany Price Index EUR 

MSCI Japan Price Index JPY 

MSCI Netherlands Price Index EUR 

MSCI Norway Price Index NOK - quote 

currency 

MSCI Belgium Price Index EUR 

MSCI Sweden Price Index SEK 

MSCI Switzerland Price Index CHF 

MSCI UK Price Index GBP 

MSCI USA Price Index USD 

MSCI Canada Price Index CAD 

EUR EUR/NOK 

JPY JPY/NOK 

SEK SEK/NOK 

CHF CHF/NOK 

GBP GBP/NOK 

CAD CAD/NOK 

USD USD/NOK 
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