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Abstract 

The objective of this master's thesis is to explore if a machine learning model can 

predict sale outcomes from the metadata generated by potential leads as they navigate 

the company’s website. Additionally, the research aims to identify if this model can be 

used to create value by improving their commercial process. 

The data used to answer the research question in this thesis was obtained by 

Universidad Insurgentes during the period between January 2020 to March 2022. The 

initial dataset contained more than 0.5 million samples and 41 attributes. The data 

preparation consisted of several techniques to address challenges such as high 

cardinality, missing values, and feature engineering. The final dataset used for training 

and testing consisted of ~250,000 samples with 56 features. 

We train and evaluate the performance of three machine learning models: eXtreme 

Gradient Boosting (XGBoost), CatBoost, and Light Gradient Boosting Machine 

(LightGBM), which were all compared and evaluated against a simple logistic 

regression and the default model profit.  

Our study concludes that there is a theoretical potential for profit gain when using 

machine learning to predict sales on CRM metadata. LightGBM is identified as the 

best-performing algorithm in the context of this thesis. We recommend a heuristic 

approach for profit and enrollment maximization and include a nuanced discussion 

about the implied costs of implementing machine learning to predict sales. 

 

Keywords – Machine Learning, Sales prediction, Metadata, Commercial process, BI 
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Definitions 

Lead – In the context of this thesis, a lead is a potential new student that has shown 

interest in one of the Universidad Insurgentes (UIN) programs by interacting with any 

of UIN’s digital assets such as websites social media and/or digital ads. In this sense, a 

lead can be considered a potential new customer.  

CRM – Customer Relationship Management. CRM systems allow an organization to 

manage its interactions with its customers, aggregate the data from multiple 

communication channels, and use data analysis to study large amounts of information 

to learn more about their target audiences and how to best cater to their needs. 

lead contacting (awareness), lead convincing (intention), sales appointment (desire), 

and enrollment (action) 

Lead Contacting – The attempt of a business to establish direct one-to-one 

communication with a lead, usually through telephone, SMS, or WhatsApp. 

Lead convincing – Conversation and interaction between Universities (business) and 

leads intending to convince the lead to take an early step into getting to know more 

about a product. 

Sales Appointment – One-to-one interaction made physically at the sales point or 

university with a lead to showcase the product with the ultimate goal of enrolling the 

lead. 

Enroll / Enrollment - If a lead enters one of UIN’s programs, this lead is now 

considered to be enrolled. It can be used as a synonym for “Sale.”  The goal is to 

maximize the number of enrolled leads, generating revenue. 

Imbalanced data – Imbalanced data refers to a dataset consisting of two or more 

classes where the classes are unevenly distributed. For example, in our thesis, a class 

represents the action of enrolling into an education program, which translates into a 

binary action of “yes” or “no.” Our data consists of a vast number of leads with the 

class label “no” and relatively few leads with the class label “yes.”  
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Asymmetric cost – relates to the cost associated with wrongly classifying the 

minority class, compared to incorrectly classifying the majority class. In our thesis, 

the cost associated with misclassification of the majority class is substantially lower 

than a misclassification of the minority class, which makes a misclassification of the 

minority class more costly.  
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1 Introduction 

1.1 Area of study 

Predictive analytics using machine learning has become one of the most relevant 

technologies in recent years, quickly embraced for its capacity to consume vast 

amounts of data and extract non-linear relations that allow to forecast or predict the 

desired outcome and outperform other models. As a result, this approach is quickly 

becoming a mainstream technology that more and more businesses seek to harness and 

leverage to improve their decision-making. 

1.2 Motivation for research 

In many countries globally, but particularly in Brazil and Mexico, the private education 

industry has been undergoing a significant digital transformation, leading the industry 

to question and redesign its processes to adapt to the new realities, consumer 

preferences, and technologies and to enable and become scalable companies with 

considerable growth potential (Mahsood Shah, 2016).   

This trend, undergoing over the last twenty years, has been particularly accelerated due 

to the COVID pandemic and a market undergoing consolidation into conglomerates of 

what once was a small fragmented market (Marinoni, G. et al., 2020 and Mahsood 

Shah, 2016). 

Scaling becomes an imperative, which forces them to transform their models into 

purely digital or hybrid education platforms to operate and sell their products. As a 

result, their commercial processes tend to be among the first parts of the company they 

need to digitize to ensure a scalable platform that allows them to grow their revenue 

and fund the capital-intensive digital transformation process (Mahsood Shah, 2016). 

The main players in the market and best-performing companies have a similar 

structured approach to sales and commercial efforts (new student enrollment). Their 

commercial process is carefully structured and managed through Customer Relations 

Management (CRM) systems (Daradoumis, 2010; Guy-Emmanuel et al., 2016) and 

team efforts that process high volumes of leads and take them through an aggressive 

push-approach sales effort to sort and convince students to enroll in their universities. 
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This commercial approach is highly dependent on the input of leads and the efficiency 

in each process step to guarantee the planned conversion rates (Tanner, Ahearne, 2005). 

The process is inspired by a consumer disposition model proposed initially by Elias St. 

Elmo Lewis, known as the AIDA (awareness/attention, interest, desire, action) model 

(Lewis, 1899, 1903).  

Figure 1 The awareness/attention, interest, desire, action (AIDA) model which graphicly explains how a 

consumer moves from an unaware situation, through all the phases in the customer funnel and eventually ends up 

with an action. 

 

The process is typically structured in the same manner across the most relevant players 

in the market; lead acquisition, lead contacting (awareness), lead convincing 

(intention), sales appointment (desire), and enrollment (action) (Michaelson, D., & 

Stacks, D. W. 2011; Vieira & Claro, 2020). The commercial actions in each step are 

carefully designed and managed to ensure a high conversion rate, measured as the 

percentage of leads that transfer from one step into the next. Therefore, a single 

percentage point of improvement in the conversion rates of earlier steps of the process 

can translate into substantial gains in later stages, directly impacting and improving the 

commercial performance of the companies (Vieira & Claro, 2020). 

It is no surprise that the companies try to improve as much as possible in the initial 

steps, particularly in lead acquisition and initial contact. Companies then develop 

different lead acquisition strategies. E.g., direct prospecting, digital channel lead 

purchasing, referrals, etc. Previous years’ leads, which have not yet enrolled, are also 

carried over to the current year if the leads are recognised as likely to enroll. These 

different sourcing strategies come with different costs, constraints, or implications; 
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some are more time and resource-intensive, some have essential time window 

constraints.  

The acquisition of leads via digital sources is known in the industry as the "digital 

origin." The digital origin has been gaining traction and becoming one of the most 

relevant sources of lead volume, and overall sales as these leads tend to have higher 

conversion rates and faster conversion time from lead generation to sale 

(Constantinides, 2012). The way companies source their digital leads varies greatly, 

but most tend to rely on at least two of the leading players in the market: Facebook and 

Google (Vieira & Claro, 2020). 

These players sell leads to companies via different services. Most depend on contests 

where competitors can bid on keywords to be advertised as interested consumers search 

for these. The price of each lead then becomes variable. It is then critical for companies 

to extract as much value from this origin and convert each lead quickly. (Dempster, C., 

& Lee, J. 2015).  

In this industry, conversion rates from lead generation to sale tend to be in the low 

single-digits. Consequently (Lazarin & Urduain, April 2022), these education 

companies acquire large amounts of leads, ranging from hundreds of thousands to 

millions, to obtain their expected sales objectives. And rely on Customer Relationship 

Management systems (CRM) to process all this data, execute, and monitor their digital 

campaigns.  

1.3 Research question - The business problem 

Predicting a lead's probability of conversion could mean a substantial competitive 

advantage to companies in the industry, and particularly to our research subject. 

Understanding the probability of sale at the moment of lead generation allows them to 

develop their strategies and allocate resources to maximize the return on the 

investment. The key question at hand is then 

Can we leverage machine learning to predict the conversion probability using the 

available data at the moment of lead generation?  
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If so, how does this compare with their current process, and what business 

efficiencies could this provide? 

 

1.4 Value of research 

Companies often spend substantial budgets on the earlier steps as they try to contact 

and follow up on each of the purchased leads. Their contact efforts are executed 

through means such as email, SMS, telephone, and WhatsApp. Even though messaging 

services are gaining relevance, the nature of the education purchase makes telephone 

and one-to-one conversation the preferred method of communication for the leads, and 

companies expect it will continue to be a highly important communication channel 

(Vieira & Claro, 2020). 

Predicting which leads have the highest probability of conversion before the contact 

attempts would allow allocating special attention to accelerate the conversion to those 

leads, increasing efficiency in the process, which would free resources to be allocated 

to those other leads who may need more work. Additionally, it could help explain why 

and what paths and touchpoints in the lead creation increase the probability of 

conversion and develop commercial strategies to leverage those. Finally, being able to 

rate or grade a lead quality from this perspective may provide the company with tools 

to negotiate costs and raise the expected quality of each lead before even attempting to 

start contacting. 

1.5 Literature review 

Our problem at hand can be considered as a classification problem on imbalanced data 

with asymmetric cost, which is the topic within the machine learning community that 

is primarily explored. Somasundaram and Srinivasulu (2016) have investigated the 

process of classification on large and highly imbalanced data. They argue that the topic 

of imbalanced data is especially relevant for real-life data, as the probability for certain 

real time events tends to produce skewed data. This imbalance is often coherent with 

asymmetric cost, as the cost of misclassification is higher for the false negatives.  

Within the literature focusing on the classification of imbalanced data with asymmetric 

cost, there is an extensive collection on the financial topics of credit default and fraud 
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prediction. These two topics are naturally imbalanced, as very few instances of the 

positive target variable (default or fraud) are represented in the data. However, the cost 

of not recognizing these instances soon enough is relatively high (Calabrese, 2014, p. 

1). Calabrese (2014) proposes a method to determine the optimal cut-off for 

imbalanced data and shows that the cost-sensitive unweighted accuracy can outperform 

the iso-performance line method.  

Another instance of default prediction is done by Zhou J. et al. (2019) in peer-to-peer 

(P2P) lending. They propose a decision tree model-based heterogeneous ensemble 

default prediction model to predict customers defaulting in the P2P lending platform 

accurately. Their model is compared with benchmark models to show that the model 

can achieve decent predictions on the high-dimensional and imbalanced data.  

Furthermore, Ahmed Mohammed, R. et al. (2018) explores scalable machine learning 

techniques for highly imbalanced credit card fraud detection. Comparing several 

popular machine learning techniques, they observe that many detection algorithms 

perform well under medium-sized datasets while struggling to maintain the same level 

of precision when the dataset becomes massive.  

Another area of study that shows similarities with the imbalanced data and asymmetric 

cost that we face is the prediction of click-through rates (CTR). The CTR is the binary 

classification of whether an online advertisement is clicked by the target or not and has 

gained a lot of attention lately (Zhang, S. et al., 2018, p. 1). Zhang et al. (2018) propose 

a combination of extreme learning machines to increase the performance of the binary 

classification problem compared to related algorithms. In another study, Gupta and Pal 

(2018) use a tree-based model to classify the successful and unsuccessful clicks, 

showing that a tree model can attain high accuracy.  

Based on this research on different topics and industries, but with the same 

characteristics as our problem having highly imbalanced classes and asymmetric costs. 

We want to explore if machine learning algorithms can be used as an approach to 

predict a lead’s probability of conversion before being contacted by the recruitment 

team, solely based on the meta data generated by a lead. Given the large operation and 

costs implied by treating every lead the same, correctly classifying the low probability 
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conversion leads from the high probability of conversion leads can result in significant 

cost reductions and effectiveness of the sales and recruitment team. 

2 Data 

In this chapter, we explain the data collection process of Universidad Insurgentes (UIN) 

CRM provider and briefly describe the raw data generated between 2019 to 2022, 

consisting of 41 columns and 549,754 rows. Then, we do a thorough exploratory 

analysis of the raw data before proceeding with data cleaning and pre-processing. The 

final dataset used in the empirical analysis includes 628 columns and 249,468 rows 

related to four different sales cycles.  

2.1 Data collection 

The data we use for our research is provided to us by UIN. The datasets contain the 

metadata of each lead UIN has had over the last two years and is extracted from 

HubSpot.  

HubSpot is a commercial management software that serves as a CRM, digital 

marketing campaign manager, inbound and outbound sales, and customer service 

platform. This software tracks each lead’s journey from a specified interaction which 

would trigger the tracking of a lead, now defined as a lead. E.g., an interaction that 

would initiate tracking of a lead could be the lead searching for ‘higher education’ on 

Google, within a relevant geographical location. From this point on, the data and 

interactions with the company is recorded as metadata related to the interactions with 

UIN, from that specific lead. 

HubSpot defines metadata as “data that describes other data within a database or a data 

warehouse”. Therefore, traditional data is the information of each lead, such as contact 

data, personal data, interests, and any item filled by the lead in any form from the 

company displayed in their digital platforms and campaigns. Metadata is the 

information that describes the behaviour or activity of each lead in terms of how said 

lead engaged with the digital platforms. 
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While "data" contains specific answers to direct questions that the lead answers, the 

"metadata" describe the lead's behaviour as the lead engages with the platform to 

answer those questions.  

For example, if the lead visits a website that asks the lead which product, he is 

interested in knowing more about. The data would be the product that the lead selected. 

Metadata is the time it took for the lead to choose, the hour of the day at which the 

engagement happened, or the number of different pages the lead visited while the 

session was active. 

The relevance of the metadata over data is that with very little data, we can collect far 

more metadata that describe the user's behaviour, potentially discovering trends or 

traits that better predict the leads tendency to enroll. For example, UIN collects only 

four data points for contacting purposes and initiating its sales cycle. Name, Email, 

Phone, Program of interest. While at the same time, UIN collects more than 50 

metadata points by simply accessing its website.  

This volume of data increases the probability that crucial informative value for 

predictive purposes may be discovered and, in turn, enables us to predict purchase 

before the contact phase begins. 

Figure 2 Timeline of Metadata generation moments 

 

HubSpot collects the metadata automatically as the aggregator of leads provided by 

different sources and origins. The origins of these leads are the initial sources that led 

each lead to get involved with the company. For example, some leads may reach 

through organic search, others may reach through paid advertisements, and others may 

be sourced through specialized companies that develop complex methods to identify 
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and acquire them. As a result, these different sources may impact the scope and breadth 

of available metadata. 

2.2 Raw data description 

The raw data is described in the data dictionary presented in Table 5. The dataset 

contains data types representing time, boolean, categorical and numerical, segmented 

into different categories describing the types of interaction that the lead has with the 

platform.  

o Active data sent: number of forms filled in by the user 

o Call to actions responded:  Capturing the dates when the lead responded 

to a prompted action (e.g., “click here for…”). 

o Lead’s interaction with the company’s websites: This kind of data 

marks the moment in time when the lead met an important milestone in 

its digital engagement with the company. E.g., the date of first or last 

visit to a website, the time last visit session lasted, the first time the lead 

responded to a call for action in a website.  

o Email engagement: This category reflects the interaction with the 

company’s emails. The date the first marketing email was sent or the 

date the lead clicked an email marketing, the number of emails sent to 

the lead or similar. 

o Location: Location of the IP used by the lead from continent level to 

city level. 

o Source of data: origin or source through which the lead reached the 

website. E.g., a lead can reach through typing directly the URL, 

searching for a keyword in a search engine, social media, following a 

blog, or through paid advertisement. 

Given the nature of metadata and the different sources of leads, some origins may not 

generate all the metadata fields. For example, suppose a lead was bought from a 

specialized source but has never actively been engaged in a website. In that case, the 

company will have contact information and metadata of contact attempts but no 
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metadata that presents the interaction of said lead on their website, as the lead has never 

been actively navigating the site.  

This missing metadata (Appendix A) is presented as incomplete columns and will pose 

a challenge as we pre-process the data. However, missing data may have informative 

value for the algorithms; it is fair to assume that a lead who has been navigating the 

website and is familiar with the products offered may be more inclined to purchase 

than those who have no previous knowledge of the company and whose only 

knowledge of the company stems from being cold-called.  

2.3 Exploratory analysis 

The dataset used for training consisted of a merge of two datasets. The first dataset 

contained the metadata of approximately 0.55 million leads obtained between 2019 and 

2022. This data, as described previously, represents the interaction of the lead with the 

company’s CRM platform. The unprocessed dataset contained 41.3% missing values 

and 41 variables to each lead.  

We use the Python (Python version 3.9. documentation available at 

https://docs.python.org/3/) library pandas_profiling (pandas-profiling version 

3.2.0 documentation available at https://pypi.org/project/pandas-profiling/), and the 

function profile_report() to create a report of the raw data for explanatory data 

analysis (Appendix G). We could assess data completeness (Appendix H), distinct 

values, and histograms, and we were able to identify trends and patterns in data 

completion. In addition, the dendrograms (Appendix I) and heatmaps of missing value 

correlations allowed us to understand that missing URL values had information and 

should not be ignored or deleted.  

A second dataset contained descriptive information about the sales process, whether 

the lead enrolled, if it was contacted, the different steps in the funnel each lead got 

through, and the sales cycle each lead got enrolled to. For the most part, this was a 

descriptive dataset, containing information related to a later stage of the sales funnel. 

Most of the variables in the second dataset posed the threat of target leakage, as the 

data being present for a specific lead, indicates that the lead is close to enrollment. For 

https://docs.python.org/3/
https://pypi.org/project/pandas-profiling/
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this reason, only the class label of enrollment “yes/no” and the information to which 

sales cycle the lead related to were kept. 

This second dataset contained ~250,000 leads from the sales periods of 2021 and 2022. 

This dataset became the reference for segmenting and selecting the leads and data to 

be considered in the training stage. By recommendation of UIN, given the covid 

pandemic, focusing on these two years would factor out the pandemic's effect on the 

company sales. The dataset was complete without missing values and contained mostly 

binary attributes with one categorical variable (enrollment cycle). The only relevant 

attributes considered from this dataset were the target feature “enrolled” and the cycle 

of interest of enrollment, which is known at the time of lead generation. 

2.4 Data cleaning & pre-processing 

The performance of a machine learning algorithm is only as good as the data used to 

train it; therefore, predictive modelling is mostly data preparation (Brownlee, 2020b, 

p. 13). Data quality is one of the most critical problems in any predictive modelling 

project since dirty data often leads to inaccurate results and bad business decisions 

(Ihab F. Ilyas, Xu Chu, 2019, p. xiii). We have spent a considerable amount of time 

ensuring that our raw data is prepared for our chosen algorithms. A detailed description 

of pre-processing operations made to the raw data is attached in the appendix, under 

Data Cleaning and Pre-processing (Appendix C). In short, the data cleaning operations 

relate to missing values and categorical variables with high cardinality. We also 

identified the need for some feature engineering, described in the appendix.  

After cleaning and pre-processing, the data no longer have missing values, while 

maintaining the number of instances. The cleaned data does not have any high 

cardinality categorical variables, and the skew and kurtosis of the numerical features 

are reduced. All categorical variables are one-hot encoded, since this provides us with 

a dataset that consists of only numerical features which enables us to train most 

machine learning model on the same dataset. 

No normalization or standardization preparations were made during the data cleaning 

and pre-processing. This is to ensure that we do not risk data leakage, as applying data 
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preparation to the entire dataset before splitting the data for training and test purposes 

increase the chance for data leakage (Brownlee, 2020b, p. 27).  

The data cleaning and pre-processing resulted in a dataset that contains 56 columns and 

249,468 rows, before one-hot encoding the categorical variables. The one-hot encoded 

dataset has the same number of rows, with 628 variables. The size of the final dataset 

is greatly reduced which lowers the hardware requirements needed to train a machine 

learning classifier.  

3 Empirical analysis 

The profit of UIN’s current operation is compared with the maximized profit when 

predicting which leads are most likely to enroll using three machine learning classifiers 

and a simple logistic regression model. The data was first partitioned into a training 

and holdout dataset, where we used the cycles of enrollment to separate the training 

and testing dataset. We maintain the chronological order of the data and train all three 

classifiers on past data to evaluate the performance of the models on future data.  

After training all classifiers and evaluating the models on the holdout data, LightGBM 

was selected as the best performing model when it comes to distinguishing the two 

classes according to the profit performance. The results obtained in this empirical 

analysis lay the ground for our more pragmatical recommendation and discussion in 

the next chapter.  

3.1 Supervised learning 

Our problem is a classification problem, where the output variable is the confidence of 

enrollment for each lead based on the available data related to the lead. This confidence 

representation is then converted into a binary variable {0,1}, based on the optimal 

threshold for when it is profitable to pursue the specific lead. This problem falls under 

the supervised learning category. We have input variables X and an output variable Y, 

and we use an algorithm to learn the mapping function from the input to the output. 

𝑓(𝑋, 𝜀) 

The goal is to approximate this mapping function so that new input data (X) can predict 

the unseen output variables. It is called supervised learning because the output variable 
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of the data used to train the model is known, while the goal is to generalize the model 

to correctly predict the output variable when running the model on input variables 

where the output variable is not known (Brownlee, 2016a, p. 16).  

3.2 Data partitioning 

The data that UIN receives can be assigned to a specific sales cycle, as UIN operates 

with three cycles per year. Before every cycle begins, UIN receives data on potential 

enrolling leads, which UIN then contacts in an effort to enroll the lead in one of UIN’s 

programs. This creates a time hierarchy, e.g., “2021 cycle 3” comes before “2022 cycle 

1”. We want to use the knowledge of which leads that enrolled in a previous cycle to 

predict the leads most likely to convert into an enrolling lead in the current cycle.  

Figure 3 Data partitioning strategy based on the time chronology of cycles. 

 

Based on the chronological order of the data and UIN’s business model, the chosen 

method to minimize the risk of overfitting the model is a 3-fold partitioning strategy. 

The full dataset is split into a training dataset consisting of the first two sales cycles, 

and a holdout dataset consisting of the last two sales cycles. The model is trained on 

70% of the training data and validated on the remaining 30% of the training data, now 

named the validation data. A final hold-out dataset is then used to test the models. This 
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strategy is considered to be the favourable, as it is generalizable to new cycles. As the 

dataset of UIN expands into more cycles, the dataset used for training and validation 

can grow as long as the data related to past cycles stay relevant when predicting the 

outcome of new data. 

Our choice in a 3-fold cross-validation strategy relates to the size of each cycle. The 

number of observations within each cycle varies and splitting the training and 

validation data based on cycles would provide us with an unfavourable ratio of data to 

train, validate and test. Overall, the chosen data partitioning strategy gives us 130,804 

observations in the training data with 3.6% enrollment, 56,059 observations with 3.6% 

enrollment in the validation set, and 62,606 observations in the holdout data with 4.8% 

enrollment. 

3.3 Metrics for measuring model performance 

The literature on model evaluation metrics consists of multiple performance metrics 

used to evaluate and quantify the performance of a classifier. Because a classifier is 

only as good as the metric used to evaluate it, choosing the correct metric for the task 

at hand is crucial. This is particularly important for imbalanced classification problems. 

Some evaluation metrics are optimized by a high ratio of correct predictions and will 

therefore only predict the majority class (Brownlee, 2020a p. 39). Below we go through 

our chosen performance metrics that we will use to evaluate the classifiers on the 

imbalanced dataset.  

3.3.1 Confusion matrix 

A confusion matrix separates the classification made by the classifier, distinguishing 

how one class is being confused for another. This way, we separate the different errors, 

making it easy to deal with them separately (Provost & Fawcet, 2013, p. 189).  
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Figure 4 Confusion Matrix 

 

 

Figure 4 displays how the binary classification problem is divided into four instances 

that can be used to calculate a variety of performance metrics. The True Negative (TN) 

represents all leads that have not enrolled as students and are correctly classified as not 

enrolled by the model. The False Negative (FN) are the leads that have enrolled as 

students but were classified as not enrolled. The False Positive (FP) are the leads falsely 

classified as enrolling, and the True Positive (TP) are the leads correctly classified as 

enrolled. Performance metrics are summaries of the confusion matrix, referring to the 

counts in the matrix (Provost & Fawcett, 2013, p. 203). For this project, we want to 

optimize the classifier to have a high ratio of TP because of the asymmetric cost related 

to misclassifying the minority class, which we will explain in the next section. 

3.3.2 Profit matrix 

To compare models, we need to attribute a cost and revenue to each decision depending 

on the confusion matrix quadrant. We have assumed a theoretical action (treatment to 

lead conditional on predicted values) and later recommend a practical action based on 

a realistic approach to current industry practices. Throughout the thesis, we assume that 

a lead not contacted by UIN’s sales team will not enroll. Therefore, the probability of 

enrolling for a lead that has not been contacted will always be 0. 
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Table 1 Costs and revenue per lead. The variable cost elements are made into an average of the total variable cost, 

not to reveal the cost ratio each cost item contributes with. For our research, this has no effect on the results as we 

only use the variable cost per lead.  

Variable costs per lead 

Talent NOK              38.40 

Telco NOK              38.40 

Software NOK              38.40 

Marketing NOK              38.40 

Hardware NOK              38.40 

Total NOK           192.63 

  

Revenue per enrolled lead 

Total NOK           33,273 

 

Figure 5 The profit matrix used to evaluate the performance of the different approaches throughout our research. 

 

 

3.3.3 Threshold selection 

Our goal is to maximize the profit, where profit is defined as the difference between 

revenue and cost. The maximum profit is obtained by the output level q, where the 

difference between revenue and cost is greatest (Pindyck & Rubinfeld, 2017, p. 295). 
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Revenue and cost are determined by how many leads that are classified as either true 

or false. 

The classification models will predict a probability-like score of the model's confidence 

in the lead to enroll in one of UIN’s programs. This probability-like score will then be 

converted into the binary class label, based on a determined threshold for when it is 

profitable to pursue engagement with a lead based on the probability-like score. We 

therefore need to identify which threshold to use when converting the classifiers 

probability-like score into a class label.  

Changing the classification threshold is called threshold-moving and is a common 

strategy for problems with severe class imbalance (Brownlee, 2020b p. 245). Since we 

know the cost associated with a contacted lead and the profit associated with an 

enrolling lead, we can calculate the profit-maximizing threshold, which we will name 

the theoretical threshold. The theoretical threshold will be used to define the class label 

of a lead. E.g., we assume the optimal threshold for profit-maximization is t. If our 

classifier gives a lead a probability p<t, the lead will receive the class label of 0, which 

indicates a negative profit expectation.  

For each lead, we want to make the decision that maximizes profit in expectation. The 

decision is made based on the predicted confidence for each lead to enroll, where a 

profit maximizing threshold is determining the decision. We find this profit 

maximizing threshold based on the profit and costs associated with each decision. Let 

X be a binary random variable with a success probability of enrollment p = P(X = 1). 

Considering a bet with payoff π if X = 1 and –c otherwise. The expected value of the 

bet is, therefore 

𝐸[𝜋1[𝑋  =  1] − 𝑐1[𝑋  =  0]] = 𝜋𝑝 − 𝑐(1 − 𝑝) 

We should take the bet if the expected value is greater than 0, i.e., πp - c (1 – p) > 0. 

This gives us the theoretical threshold, which will yield the highest profit. 

𝑝 >
𝑐

(𝜋 + 𝑐)
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Since we have the cost and profit associated with the different class labels, explained 

in more detail in chapter 3.3.2 Profit Matrix, we can calculate the theoretically 

optimal threshold: 

𝑝  =  
192.63

33,080.37 + 192.63
= 0.0058 

Implying that any lead with a probability score greater or equal to 0.0058 will have an 

expected positive profit and therefore receive the class label of 1. This theoretically 

optimal threshold assumes that the classifiers predictions, reflect the true conditional 

probability. That is, the predicted class probability needs to be well-calibrated. To be 

well-calibrated, the probabilities must effectively reflect the true likelihood of the 

event of interest (Kuhn & Johnson, 2013, p. 249).  

3.3.4 ROC AUC 

We will use an evaluation method that enables us to visualize the performance of a 

classifier over the entire operating range and all possible imbalance ratios. The area 

under the Receiver Operating Characteristic Curve (ROC AUC) is one evaluation 

metric concerned with how effective the classifier is at separating classes.  

The ROC curve is a diagnostic plot for summarizing the behaviour of a classifier by 

looking at the relationship between the false positive rate and true positive rate under 

different thresholds (Brownlee, 2020a, p. 41). The true positive rate measures the 

number of correct positive predictions made from all correct positive predictions that 

the classifier could have obtained. In this way, the true positive rate provides coverage 

of the positive class and is often used as a performance measure of imbalanced learning 

(Brownlee, 2020a, p. 61). Conversely, the false-positive rate shows the number of FP 

divided by all negatives present in the training data. 

𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑅𝑎𝑡𝑒  =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

𝐹𝑎𝑙𝑠𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑅𝑎𝑡𝑒 =  
𝐹𝑃

𝐹𝑃  +  𝑇𝑁
 

Plotting the fraction of correct predictions for the positive class on the y-axis against 

the fraction of errors in the negative class on the x-axis gives us the ROC curve. This 
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curve can be understood as the relationship between the two classes, where we can 

improve one of the ratios at the expense of the other and vice versa. Figure 26 in the 

appendix gives a visual representation of how to interpret the ROC curve.  

Comparing three or more models against each other based on their curves can become 

a challenge. So instead, the Area Under Curve (AUC) is used to give a single score for 

the classifier comparable across models. This approach gives us the ROC AUC metric, 

a value between 0 and 1, where 1 indicates a perfect classifier (Brownlee, 2020a, p. 

72). We will use the ROC AUC metric as a supplementary measurement when 

comparing multiple classifiers.  

3.4 Model Calibration 

The machine learning classifiers we will use predict a probability-like score for class 

memberships. We want to interpret these probability-like scores as the true conditional 

probabilities, which requires that the model under evaluation is well-calibrated.   

To validate the assumption that our models are well-calibrated, we will evaluate each 

of our selected machine learning algorithms under the theoretical optimal threshold 

against the empirical (calculated) optimal threshold. If the machine learning models 

are well-calibrated, the theoretical optimal threshold should be close or equal to the 

empirical optimal threshold. 

As mentioned in chapter 3.3.3, Threshold Selection, our theoretical optimal threshold 

should match the calculated optimal threshold when evaluating the model's 

performance. If this holds, and the two thresholds are similar, we can assume that the 

performance of the model represents the true conditional probabilities and give the 

predicted probability score an interpretation. However, suppose these two thresholds 

do not match within a reasonable interval. In that case, we must assume that the model 

is not well enough calibrated for the predicted probabilities to receive a realistic 

interpretation.  

3.5 Default model 

The default model is the status quo of the commercial operation at UIN. Under the 

default model, UIN assumes every single lead has the same conversion probability and 

predicts y = 1 for every lead. Every lead is integrated into the commercial process and 
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receives the same treatment; it enters the conversion attempt process and receives a 

series of phone calls, WhatsApp messages, and emails to attempt contact. 

The confusion matrix for the hold out data, which will be used to measure performance 

throughout our research, is as follows: 

Figure 6 Default Model Confusion Matrix.  

 

The key takeaway from the confusion matrix with the default model is that all leads are 

classified to enroll, and pursued by the commercial process.  

 

3.5.1 Profit of the default model 

The profit of the default model is defined by adding the count values of each of the 

default model’s confusion matrix cells weighted by the cost or revenue of its 

corresponding cost-matrix cell. 
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This profit is estimated for the hold-out data since this will be used to evaluate the 

performance of the logistic regression and machine learning models.  

Figure 7 Default model confusion matrix on hold out data with profit calculation. 

 

 

3.6 Selection of algorithms to train 

When deciding on which machine learning algorithms should be considered for 

training and evaluation, we had to consider that our dataset consists of both numerical 

and categorical variables. This led us to proceed with decision tree algorithms as they 

have many beneficial properties for our dataset. Decision trees are simple to 

understand, interpret and visualize, which is essential when applying the finalized 

algorithm to the business problem we are trying to solve. Furthermore, the tree 

algorithms do not get affected by nonlinear relationships in the data, which is another 

crucial strength. Another favourable trait of decision trees is that they require less data 
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preparation relative to other machine learning algorithms and implicitly perform 

variable screening and feature selection (Gupta, P. 2017). 

Decision trees provide the foundation for more advanced methods such as boosting 

(Brownlee 2016, p. 91). Boosting algorithms seek to improve the prediction power by 

training multiple weak models, where each consecutive weak learner compensates for 

the weaknesses of its predecessors. This is a particularly good feature when the data is 

imbalanced, as the iterative process of focusing on its predecessors' weaknesses and 

assigning different weights to the trees, depending on how well its performing. 

Boosting is, therefore, not a specific model but rather a generic algorithm that can be 

utilized by multiple machine learning algorithms (Zhang, Z 2019). Based on these 

reflections, we have chosen the three algorithms LightBMG, XGBoost, and CatBoost 

to evaluate for answering the research question. Additionally, we train a simple logistic 

regression model as a baseline model, to give us a perspective of how well performing 

the boosting algorithms perform.  

In the following sections, we evaluate the classifiers based on the theoretical optimal 

threshold and compare it with the calculated optimal threshold based on predictions 

made on the hold-out data. Finally, we compare the results from all four classifiers to 

identify which classifier we suggest as the best one.  

3.6.1 Logistic Regression  

In addition to the default model, we compare the machine learning models against a 

logistic regression model to evaluate how well the machine learning models perform. 

The logistic regression model is a simple machine learning model that estimates 

𝑃(𝑌𝑖 = 1|𝑋𝑖). Where 𝑋𝑖 is a vector with 𝑋𝑖,𝑗  as elements 

𝑃(𝑌𝑖 = 1|𝑋𝑖) =
1

1 + 𝑒−(𝛽0+𝛽1𝑋𝑖,1+ …+ 𝛽𝑡𝑋𝑖,𝑡)
 

The model predicts each leads class probability and returns a value in (0,1) which is 

the estimated probability of enrollment for each lead (Provost & Fawcett, 2013, p. 

96). We use sklearn (Pedregosa et al., 2011) and the LogisticRegression 

function with the default parameters, when we train the logistic regression model 

(Sklearn.Linear_model.LogisticRegression – Scikit-Learn 1.1.1 documentation). 
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A histogram of the predicted probabilities on the validation data with the logistic 

regression classifier, reveals how the model's predicted probabilities are mostly 

distributed with values < 0.1. We know from the theoretical threshold of 0.0058, that 

it is the predicted probabilities in the lower range of the probability distribution that are 

most crucial for the profit estimate of the model.   

Figure 8 Histogram of the predicted probabilities on the validation data, using the logistic regression model. 

 

To validate the relationship between the predictions made by the classifier and the true 

posterior probabilities, we use the Python library sklearn and the 

calibration_curve function to plot the predicted probabilities against the 

perfectly calibrated black dotted line as a reference (Niculescu-Mizil & Caruana, 

2005). The x-axis of Figure 9 represent the predicted probability, while the y-axis 

represents the true conditional probability. We do this in the prediction interval of 0-

0.1, as this is the range, we have shown that the logistic regression classifies most of 

the leads.  The method discretizes the [0, 1] interval into bins, so examining whether 

the logistic regression model is well-calibrated for predicted values >0.1 provides 

almost pure noise, since the number of observations in this range is vanishingly small.  
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For the logistic regression model, we observe that the predicted probabilities deviate 

from the perfectly calibrated line. This observation indications that the predicted 

probabilities from the logistic regression model can’t be interpret as the true conditional 

probability.  

Figure 9 Plot of the probability curve with the logistic regression model on the validation data. The dotted diagonal 

line represents a perfectly calibrated model. 

 

Using the trained logistic regression model, we calculate the profit obtained over all 

different classification thresholds used to predict the class label on the validation data. 

We then find the threshold at which the model provides the largest profit, which is 

nicely visualized in Figure 10. The profit maximizing threshold obtained for the logistic 

regression is 0.002, which will be used to evaluate the performance of the model on the 

hold out data. The threshold of 0.002, represents the empirical optimal threshold, 

mentioned in 3.4 Model Calibration, for the logistic regression model.  



   

 

32 

 

Figure 10 Obtained profit over different threshold levels obtained with the logistic regression model with 

predictions on the validation data. 

 

After calculating the empirical optimal threshold, we apply the theoretical- and 

calculated thresholds to the logistic regression model and make predictions on the hold-

out data. As we can see from the confusion matrix, the logistic regression model 

performs worse than the default model for both the theoretical and empirical threshold. 

The logistic regression model yields a negative profit in both cases, compared to the 

default model. 

In chapter 3.4 Model Calibration, we mentioned that for a well calibrated model, the 

theoretical and empirical thresholds should match. For the logistic regression model, 

we argue that the thresholds are not sufficiently similar to assume that the predictions 

of the model can be interpreted as the true conditional probability. Based on this 

conclusion, we will not go any further into examining the predicted probabilities of the 

logistic regression model. 

The potential monetary gain from the model is determined by the difference between 

the profit obtained from the default model and the logistic regression model. The 

potential monetary gain is calculated by subtracting the missed income from the 

avoided loss. 
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𝐴𝑣𝑜𝑖𝑑𝑒𝑑 𝐿𝑜𝑠𝑠  −  𝑀𝑖𝑠𝑠𝑒𝑑 𝐼𝑛𝑐𝑜𝑚𝑒  =  𝐺𝑎𝑖𝑛  

Figure 11 The profit matrix for the hold-out data, using the logistic regression classifier with theoretical threshold 

and optimal threshold. 

  

 

3.6.2 LightGBM 

Light Gradient Boosting Machine (LightGBM) is a gradient boosting framework for 

machine learning developed by Microsoft in 2016. This algorithm tackles the challenge 

of increasing computational complexity with the number of features and data points 

with two techniques: Gradient-Based One-Sided Sampling and Exclusive Feature 

Bundling. With this, LightGBM reduces the training speed, lowers memory usage, 

provides better accuracy, and scales better on large datasets than conventional gradient 

boosting decision trees (Ekanayake, N. 2021, September 17). We use lightgbm and 

the LGBMClassifier function with the default parameters, when we train the model 

(lightgbm.LGBMClassifier – LightGBM 3.3.2.99 documentation). 

We follow the same logic we used to evaluate the performance of the logistic regression 

model, on the LightGBM and the other machine learning models. The histogram of the 

predicted probabilities on the validation data with the LightGBM classifier (Figure 17), 

shows that the model's predicted probabilities are mostly distributed with values < 0.1.    
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Plotting the probability curve (Figure 20) in the same chart, with the perfectly 

calibrated black dotted line as a reference, shows that the LightGBM classifier is well 

calibrated in the identified critical probability range. Especially in the lower range of 0 

– 0.1, we see that the calibrated probabilities fit the perfectly calibrated line well. This 

indicates that the predicted probabilities, in the identified range, can be given an 

interpretation as if it's true conditional probability.   

With the LightGBM model, we calculate the optimal empirical threshold with 

classifications on the validation data (Figure 23). The optimal threshold is found at 

0.006. We argue that its close enough to the theoretical threshold for us to conclude 

that the LightGBM model is well calibrated in the range from 0-0.1. We can therefore 

give the models predicted probabilities an interpretation as the true conditional 

probabilities.  

The optimal empirical and theoretical thresholds are used to evaluate the performance 

of the LightGBM classifier. Both thresholds perform better than the default model, 

when evaluated on the hold out data. Based on the conclusion that the LightGBM 

model is well calibrated, we can work with the theoretical threshold when evaluating 

the LightGBM classifier.  

Using the LightGBM classifier provides profit improvements in the range of NOK 

383,071 – 435,272 on the hold out data, compared to the default model.  
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Figure 12 The profit matrix for the hold-out data, using the LightGBM classifier with theoretical threshold and 

optimal threshold. 

   

3.6.3 XGBoost 

eXtreme Gradient Boosting (XGBoost) is a scalable, portable, distributed gradient 

boosting algorithm that provides fast and accurate parallel tree boosting. One of the 

unique features of XGBoost is how it handles sparsity in the data, which is common in 

most large datasets, ours included. Furthermore, XGBoost is built to avoid building 

complex trees that can cause the model to memorize patterns instead of learning, which 

will be necessary for this project as we aim to train a model on past data to predict the 

outcome of future unseen data (Ekanayake, N. 2021, September 17). We use xgboost 

and the XGBClassifier function with the default parameters, when we train the 

model (xgboost.XGBClassifier – XGBoost 1.6.1 documentation). 

The histogram of the XGBoost model predicted probabilities (Figure 18), shows that 

most of the leads receive a probability score <0.1, similar to the other models.  

A plot of the probability curve for the XGBoost classifier (Figure 21), on the validation 

data, reveals larger deviations from the perfectly calibrated line, compared to the 

LightGBM model. It indicates that the XGBoost model is not well calibrated.  

We calculate the profit obtained over all different thresholds used to predict the class 

label on the validation data. Plotting the obtained profit over the range of thresholds 

reveals a maximum value at the threshold of 0.003 (Figure 24Figure 21). The deviation 
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between the optimal empirical and theoretical threshold for the XGBoost classifier, 

leads us to the conclusion that the model is not well calibrated. Therefore, we will not 

give XGBoost’s predicted probabilities any further interpretations. 

The trained XGBoost model is evaluated on the holdout data, using both the optimal 

empirical and theoretical threshold. Both thresholds yield a positive profit when 

compared to the default model. The results obtained by the XGBoost model 

differentiates from the other classifiers, as it is the theoretical threshold that delivers 

the largest gain in profit. Because of the difference in the optimal empirical and 

theoretical threshold, we evaluate the XGBoost model not to be well calibrated. 

Therefore, we will not go any further into the examination of the predicted probabilities 

of the XGBoost model.  

Figure 13 The profit matrix for the hold-out data, using the calibrated XGBoost classifier with theoretical threshold 

and optimal threshold. 

   

3.6.4 CatBoost  

The last algorithm we have chosen to evaluate for our problem is the CatBoost 

algorithm. It was developed by Yandex in 2017 and is based on gradient boosting. 

CatBoost provides a scalable, fast, and open-source algorithm. We use catboost and 

the CatBoostClassifier function with the default parameters, when we train the 

model (catboost.CatBoostClassifier – CatBoost documentation).  
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Similar results are obtained with the predicted probabilities of CatBoost, ass the other 

models. The histogram shows that most of the leads are predicted a probability score 

<0.1 (Figure 19). 

CatBoost’s predictions deviates slightly from the diagonal line, in for predicted values 

>0.05 (Figure 22Figure 22). In the lowest range <0.5, the model fits the diagonal line 

well. This indicates that the predicted probabilities of the CatBoost classifier is well 

calibrated in the lower range of the probability distribution, which we will further 

evaluate with the threshold selection. 

The profit maximizing threshold obtained from the validation data, when using the 

trained CatBoost classifier is located at 0.007 (Figure 25Figure 22). The optimal 

empirical threshold is close to the theoretical threshold, but we argue it is not similar 

enough to conclude that the CatBoost classifier is well calibrated. We would therefore 

warrant the use of the optimal empirical threshold when working with the CatBoost 

classifier, with the disadvantage that we can't interpret the predicted probabilities as if 

they were the true conditional probabilities. 

Both thresholds are applied to the model and make predictions on the hold out data. 

Both thresholds improve the profit from the default model, where the empirical 

threshold is the one that yields the highest expected profit.  

Figure 14 The profit matrix for the hold-out data, using the calibrated CatBoost classifier with theoretical threshold 

and optimal threshold. 
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3.6.5 Model comparison & reflections 

All results obtained from the algorithms are displayed in Table 2. These results are all 

obtained from classifications made on the hold-out data and compared with the default 

process profit performance. We can see from the results that the best performing model 

is LightGBM, which obtains the highest expected profit improvement when using the 

empirical optimal threshold. 

The ROC AUC score, which we use as a supplementary measure, demonstrate that for 

our problem it does not coincide with the model that produces the highest expected 

profit improvement. Therefore, the ROC AUC score will not be part of the decision to 

which model is the best performer in our context.  

Table 2 Model performance metrics used to evaluate the three classifiers. 

  Threshold Profit improvement ROC AUC 

Logistic 

Regression 

Theoretical 0.0058 -85,433 0.7894 

Calculated 0.002 -22,870 

CatBoost Theoretical 0.0058 261,393 0.8164 

Calculated 0.007 317,179 

XGBoost Theoretical 0.0058 402,952 0.8097 

Calculated 0.003 92,925 

LightGBM Theoretical 0.0058 383,071 0.8128 

Calculated 0.006 435,272 

Default   0  

 

All three boosting models manage to beat the default models profit performance, 

whereas the logistic regression performed worse than the default process. Based on this 

observation, we argue that the simple logistic regression model is not able to capture 

predictive features in the current data, which would enable it to more precisely predict 

the two classes. The more advanced boosting algorithms, on the other hand are all able 

to outperform the default model. 

Only one of the three boosting algorithms obtain a calculated optimal threshold that is 

reasonable equal to the theoretical threshold for us to argue that the predicted 
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probabilities can be given a true conditional probability interpretation. This classifier, 

LightGBM, is both well calibrated and obtains the highest expected profit improvement 

overall. It is also the model that experiences the smallest deviation in expected profit 

from the three boosting models, and it has the highest average expected profit 

considering both threshold levels. 

All three models manage to beat the default models profit performance, so we consider 

them all to be evaluated for operational use. That said, the best performing model in 

the current context is LightGBM, which we will examine further and consider in 

chapter 4 Discussion & recommendations. 

3.7 Detailed examination of LightGBM 

This chapter further examines the results obtained with our chosen classifier, 

LightGBM. It obtained the largest gain in profit from the default process of the three 

boosting models in evaluation. We provide insightful information about which 

variables are most important when correctly predicting the class label and lay the 

grounds for our recommendations and conclusion. 

3.7.1 Variable importance 

The variables of the trained LightGBM model are evaluated using the Shapley values.  

Shapley additive explanations values (SHAP) are derived from the importance of each 

feature to the overall predictive result (Lundberg & Lee, 2017). The top 20 most 

important variables for predicting the minority class can be seen from the graph below, 

while the importance of the top 50 features can be found in the appendix. In Table 5 in 

the appendix, a table with descriprion of the the raw data features is included.  
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Figure 15 Top 20 variables for the overall predictive result of the minority class. 

  

The features are ordered by how much they influence the model's predictions overall, 

where the absolute SHAP value is on the x-axis. This means that for any lead in our 

dataset, the importance of each feature can vary. For example, the model might evaluate 

the feature ‘avg_page_view’ as the most important feature when predicting the 

outcome for lead i. In contrast, the model can evaluate the same feature as not 

particularly important when predicting the outcome for a different lead j. It is, therefore, 

difficult to give an unambiguous interpretation of the significance of the features that 

can be extrapolated across all leads in the dataset. 

A prediction can be explained by assuming that each feature value of the instance is a 

‘player’ in a game where the prediction is the payout. The Shapley value is the average 

marginal contribution of a feature value across all possible coalitions (Molnar, C. 2022, 

p. 215-216). This makes it possible to explain what each feature value contributes to 

the predicted probability of each individual lead. This is not a topic we will discuss 

further, as it becomes too granular for our thesis but can be used to gain further 

knowledge of the most important features on an individual level. 

3.7.2 LightGBM ROC AUC 

The Area under the receiver operator characteristic curve is a performance metric that 

visually displays the trade-off between the true positive rate and the false positive rate 
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at different thresholds. In Figure 16, we have plotted the ROC AUC curve for the 

LightGBM model on the validation data. It significantly improves the dotted diagonal 

line, which represents random guessing.  

Figure 16 The Receiver Operating Characteristic curve for the LightGBM classifier, which has an Area Under 

Curve score of 0.817 on the validation data. 

 

As is evident from the default model, the costs associated with the different classes are 

asymmetric. For example, enrolling a lead yields a substantial profit, while 

misclassifying a potential lead incurs a sizeable potential profit loss. On the other hand, 

a misclassified observation from the majority class will only inflict a small cost, and 

correctly classifying an observation from the majority class will save us a small cost.  

The asymmetric cost associated with the two classes is highly decisive for the precision 

we want from the model. We know that we want to capture as many of the minority 

class as possible, not caring if this results in a false positive rate closer to 1. The ROC 

AUC plot above shows that the optimal threshold will be the threshold where the true 

positive rate is close to or equal to 1, which provides us with a false positive rate of 
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~0.9. Isolated, this does not sound impressive, as it is close to the default model, but 

this will, in fact, provide us with the highest profit, which is what we are after.  

4 Discussion & recommendations 

4.1 Verdict of machine learning approach on metadata for predicting lead 

conversion. 

Our analytics approach has proven to be feasible, with reasonable performance, and is 

theoretically financially profitable. In addition, the metadata used has informative 

value for predicting conversion and could streamline the contact process to increase 

the business model's profitability.  

Using the algorithm with the proposed set of actions: ignoring the lead, or contacting 

the lead, yields a theoretical expected profit increase of NOK ~400 thousand on the 

hold out data. Furthermore, this approach serves as the baseline for further iterations 

and exploring additional data sources to improve the model's performance. 

4.2 Practical application of the solution – An enrollment maximization approach. 

Given the financial value that a successful conversion brings to the organization, I’s 

not a surprise the extent to which the company will put an effort to contact and try to 

convert all possible leads. Additionally, given the relatively low costs of a miss-

classified false-positive, our model’s profit-maximizing threshold favours the 

classification of the positive class, regardless of its precision or accuracy.  

As a result, our initial suggested approach, which recommends ignoring ~5% of the 

leads, may not seem at first sight a convincing strategy for improving performance. 

Additionally, the idea of ignoring leads that may contain potential enrollers may seem 

naive. Such a shift in strategy and operation schemes may be unfeasible or have a 

considerable delay in being put into action.  

Besides the lost revenue for leads not contacted, the reduced number in enrollment may 

have business consequences that are not clear to us, such as missing shareholders’ 

mandates, expectations or legal requirements set by the ministry of education. 

Therefore, we present a heuristic approach as an alternative to capture the value from 

the false negative class. 
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As presented in Table 3, instead of two actions (contact/ignore), the heuristic approach 

considers three sets of actions based on model output, applying two cut-off thresholds. 

The first cut-off is the threshold that outputs a ~20% precision performance. In other 

words, a threshold that leaves us with a list of leads, where 20% are expected to enroll, 

compared to 3.9% in the full dataset. Effectively, this increases the current conversion 

rate five-fold. The second cut-off is the recall maximizing threshold of 0.0025 to ensure 

all true positives are captured. 

Table 3 Heuristic approach of treatments for the leads based on two cut-offs 

 Predicted labels 

0 1 

Threshold cut-off 

(range) 

0 to 0.0025 0.0025 to 

0.08 

0.08 to 1  

True 

labels 

0 
Ignore and do 

not purchase 

the lead 

External low-

cost contacting 

process 

Internal High 

efficiency 

contacting 

process 

1 

 

Based on these two cut-offs, the company could engage with the highest probability 

leads itself to ensure a fast conversion with a highly effective experience-driven 

process. Moreover, an external contractor to extract the maximum value from the rest 

of the leads. A pay-on-conversion approach could be financially profitable if the 

individual cost of the solution does not exceed our estimated contacting costs for the 

amount in Table 5. 

This approach's expected counts and potential financial value are presented in Table 4, 

where the thresholds are extracted from the validation data and applied to the hold out 

data. 55,063 leads with 2,002 false negatives at a hypothetical cost of conversion of 

NOK 3,500. A cost paid out only for successful conversions allows us to determine the 

potential incremental cost of working on these lower probability leads through an 

external at NOK ~7 million. 
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Table 4 Expected observation counts and financial profit from each action, 

 Predicted labels 

0 1 

Threshold cut-

off (range) 

0 to 0.0025 0.0025 to 0.08 0.08 to 1  

True 

labels 

0 403 leads 

Profit: 0 

 

 

 

55,063 leads 

Cost: 0 NOK 

Revenue: 0 NOK 

Profit: 0 NOK 

4,138 leads 

 

Profit: -193 NOK 

 

1 

0 leads 

Profit: 0  

2,002 leads 

 

Cost: 3,500 NOK  

Revenue: 33,273 

NOK 

Profit: 29,773 NOK 

1,000 leads 

 

Profit: 33,083 NOK 

 

Total  

 

403 leads 57,065 Leads 

 

TN profit: 0 

FN profit: 

59,605,546 NOK 

5,138 leads 

 

FP profit: -797,102 

TP profit: 32,080,000 

Total: 32,282,898 NOK 

 

We want to stress the fact that this is purely an example to showcase how our 

suggested heuristically approach could perform. The values in Table 4 are 

calculated under the assumption that the performance of the external contracting 

team that works on a pay-per-lead salary scheme are able to successfully contact 

and enroll all expected enrolling leads in the second dataset with a lower 

proportion of profitable leads. This assumption is of course a stretch. Supposed 

the external sales team possesses less knowledge on UIN’s different programs, 

which would probably decrease the success rate of enrolment within this team. 
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Therefore, the expected profit obtained by the external sales team in Table 4 is 

the maximum obtainable profit from the heuristic approach with the current 

model. An interval where we assume that the external sales team manages to 

enroll 40%-80% of the leads, is therefore more plausible. 

Another assumption made in the above example is that the implementation cost 

of operationalizing and managing the machine learning model is zero. 

Considering the expenses incurred from e.g., employing a data scientist, setting 

up the required technical infrastructure, fetching data and the time it would take 

to reorganize the internal sales team, the cost of operationalizing our suggested 

machine learning model to predict profitable leads would be greater than zero. 

In a short-term perspective, this will involve an increased cost. Over a longer 

horizon, when the initial costs of setting up the required internal structure is paid 

and the maintenance costs are reduced, we could see that most of the expected 

profit from our approach is acquired.  

Considering the requirements of operationalizing our heuristical approach and 

the uncertainties it brings, we cannot say for certain that it would leave the 

company with a higher profit. We definitely see the value this research can 

generate. More uncertain is how much of this increased value that can be 

captured in real life.  

5 Limitations & further research 

Throughout this paper, we have made assumptions that affect how we can interpret the 

results. this chapter, these weaknesses and questions are given more attention and 

detail. 

5.1 Limitations 

5.1.1 Optimal action 

All the data we have worked with when evaluating the models and results is related to 

leads that have been in contact with UIN’s sales team. Therefore, we have assumed 

that any lead not contacted by the sales team, or an individual outside of the dataset, 
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would have a probability of enrolling equal to 0. This assumption holds in an isolated 

research scenario, while in a real-world scenario, leads can, of course, enroll in one of 

UIN’s programs without ever being in contact with the sales team. Thus, our theoretical 

optimal threshold is a simplification.  

One could expand on the current information and let there also be a probability p for 

the probability of enrollment without being in contact with the sales team. If we also 

include the two actions, a = ‘contact lead’ and b = ‘do nothing,’ we get the equation 

𝑝𝑖𝑎𝑢(𝑋𝑖𝑎  =  1) + (1 − 𝑝𝑖𝑎)𝑢(𝑋𝑖𝑎 = 0)  > 𝑝𝑖𝑏𝑢(𝑋𝑖𝑏  =  1) + (1 − 𝑝𝑖𝑏)𝑢(𝑋𝑖𝑏 = 0) 

Here, a lead would be contacted if the expected profit from being contacted is greater 

than the expected profit from not being contacted. This model further improves our 

current theoretical threshold, with the assumption that leads can enroll without being 

contacted by the sales team. 

5.1.2 Data 

As explained, the original raw dataset consisted of 550K leads. However, due to our 

choice to merge the dataset with the corresponding cycle to which each lead 

belonged, we ended up with half of the original leads. The reason for this is that we 

found it correct to train on a full cycle and evaluate the models on the next, with the 

drawdown of losing data to train on. We cannot rule out the possibility of obtaining a 

more fine-tuned model, had we had more data to train on.  

Additionally, most of the data we used for training and evaluating purposes relates to 

the cycles 2022 cycle 1 and 2. 2021 cycle 1 and 2022 cycle 3 were severely decreased 

in size when we merged the data with the corresponding cycle information. We see it 

as a potential weakness that the models were only trained and evaluated on two full 

cycles. This problem could have been solved by including data from additional full 

cycles, which we did not have the luxury of.  

We identified two limitations of URL attributes. First, given the nature of the 

attributes, each URL address contains information that we could not explore given the 

limited time. For example, the kind of site each URL corresponded to could 

potentially open the opportunity for more feature manufacturing. The second 
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limitation is that if a URL has a change in the address, the algorithm will not 

recognize it anymore. This should be expected given the nature of URL websites and 

their constant updates. 

Finally, the data was provided by the research subject (UIN) after a careful 

specification and review to avoid a target leak. However, we cannot guarantee that no 

target leak can be found in these attributes because of our lack of ownership, 

expertise, and knowledge of UIN’s systems and data generation operations. This 

issue, however, can be explored and learned with a sandbox deployment to test the 

model with live data and iterate further.  

5.1.3 Calibration 

In our empirical analysis, we evaluate if the models are well calibrated with two 

methods. First, we visually explore if the model matches the perfectly calibrated line, 

over the most critical probability range. The disadvantage of visually evaluating if the 

model is well calibrated is the way the calibration curve is calculated. The method to 

calculate the calibration line, bins together observations with close probability 

predictions, which smooths out the predictions. This can hide deviations in the 

model's performance and only shows if the model is on average well calibrated. 

With the second test, where we check if the theoretical threshold matches the optimal 

empirical threshold, we are able to determine if the model is well calibrated within 

that specific range. Here we observe that one of the models is well calibrated. For 

most of the models, the profit-maximizing threshold did not match the theoretical 

threshold. We acknowledge that for the most part, the calibrated probabilities cannot 

be given a true conditional interpretation, which we see as a limitation in our work.  

5.1.4 The model 

In the 4 Discussion & recommendations, we strive to develop a practical and 

pragmatic approach to operationalizing the findings in our research. We experiment 

with how a higher threshold for a lead to be assigned to the ‘enrolling’ class label can 

be used as a tool to obtain a list of leads with a high conviction rate. By increasing the 

classification threshold, the goal is to obtain a list of almost purely enrollers. On the 

contrary, we observe that even when we increase the classification threshold to a 
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level where only a fraction of the total population is labelled with the positive class 

label, the precision obtained does not meet the desired precision.  

This lack of distinction between the two classes can relate to a homogenous dataset. 

After all, the dataset consists of leads that have somehow shown interest in one of 

UIN’s programs. It can also relate to our models not being tuned with the optimal 

hyperparameters for the specific dataset and classification problem.  

6 Conclusion 

We have proven that predicting conversion using machine learning on meta-data is 

possible. All machine learning models explored, performs better than a simple logistic 

regression model when predicting conversion of leads and outperforms the default 

process of UIN’s current customer acquisition process. The results are derived from 

metadata related to UIN’s leads, so we do not suggest that these results are 

generalizable to other situations where customer metadata is available.  

Financially, predicting lead conversion provides a positive profit expectation compared 

with the default model. The expected profit improvement is however modest, and we 

argue that the increased profit is only attainable in theory. This reflection is based on 

the consideration of expenses incurred if machine learning were to be implemented in 

the commercial process.  

We therefore suggest a pragmatic approach that considers additional actions, with the 

machine learning model as a tool in the process, rather than a decision maker. This is 

preferred for strategically important decisions such as this, which impact revenue and 

sales volume. 
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Appendix 

Appendix A Missing values per attribute 

 

 

Table 5 Raw data dictionary and missing values management. Categorical features are one-hot encoded with the 

category included in the column name, in the cleaned data. 

Original 

column name 

Renamed column name 

Description of the attribute Data Type 

How we 

managed 

Missing 

values 

Número de 

envíos de 

formularios 

number_of_forms_sent 

How many data request forms have 

been sent to or from this user number no missing 

Número de 

formularios 

únicos enviados 

number_of_unique_forms_sent 

Number of unique data request 

forms have been sent to this user number no missing 

Fecha de primera 

de conversión 

first_conversion_date First date this user had any 

conversion, that is, moved into the 

funnel stages datetime median 

Primera 

conversión 

first_conversion_action First action where the lead engaged 

and executed the promped action categorical 

replaced with 

’missing’ 

Conversión 

reciente 

recent_conversion Most recent action where the lead 

engaged and executed a promped 

action categorical 

replaced with 

’missing’ 
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Canceló 

suscripción a 

todos los correos 

cancel_subscription_to_all_emails 

If the user unsuscribed to the 

emailing list- bool no missing 

Primer clic en 

correo de 

marketing 

click_on_marketing_mail 

First date this user clicked on a 

marketing email datetime (median) 

Primera apertura 

de correo de 

marketing 

first_marketing_mail_open 

First date this user opened an email datetime (median) 

Primer envío de 

correo de 

marketing 

first_marketing_mail_shipping 

First date the company sent an 

email to this user datetime (median) 

Fecha de último 

clic en correo de 

marketing 

date_of_last_click_on_marketing_mail 

Last date this user clicked on a 

marketing email datetime (median) 

Fecha de última 

apertura de 

correo de 

marketing 

date_of_last_marketing_mail_open 

Last date this user opened a 

marketing email datetime (median) 

Correos de 

marketing con 

clic 

marketing_emails_clicked 

Number of emails that have 

received a click from the user number replace with 0 

Correos de 

marketing 

entregados 

marketing_emails_delivered Number of emails that have been 

succesfully delivered to this user's 

email number replace with 0 

Correos de 

marketing 

abiertos 

marketing_emails_opened 

Number of marketing emails that 

his user has opened number replace with 0 

Fecha de primera 

vista 

first_view Date when the user visited the 

websites for the first time datetime (median) 

Hora de la 

primera sesión 

time_of_first_session Hour (Time) of the first session the 

user visited the webite datetime (median) 

Fecha de última 

vista 

last_view Last time (date) the user visited the 

website datetime (median) 

Hora de la última 

sesión 

time_of_last_session Hour (Time) of the last time the 

user visited the webite datetime (median) 

Fecha de 

creación 

creation_date Date the lead was created in the 

system datetime (median) 

Fecha de la 

última 

interacción 

date_of_last_interaction Last date the user had any kind of 

interaction with the company's 

content datetime (median) 
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Fecha en que se 

convirtió en 

cliente 

date_when_it_became_client 

Date when the user became a lead, 

a leadmeans _____ ??? datetime (median) 

Fecha de la 

última actividad 

date_of_last_activity Date of the last activity this user 

had in the CRM datetime (median) 

Fecha de 

conversión 

reciente 

recent_conversion_date Last date this user had any 

conversion, that is, moved into the 

funnel stages datetime (median) 

Promedio de 

vistas de página 

avg_page_view Average pages this lead visits within 

the website number no missing 

Número de vistas 

de página 

number_of_page_views Number of pages this lead has 

visited in the website number no missing 

Cantidad de 

sesiones 

number_of_sessions Number of sessions this user has 

accumulated in the website number no missing 

Primer sitio de 

referencia 

first_reference_site 

First site this user got refered to categorical 

replaced with 

’missing’ 

Primera página 

vista 

first_page_view First page this user saw within the 

website categorical 

replaced with 

’missing’ 

Último sitio de 

referencia 

last_reference_site 

Last site this user got refered to categorical 

replaced with 

’missing’ 

Última página 

vista 

last_page_view Last page this user saw within the 

website categorical 

replaced with 

’missing’ 

Contactado por 

última vez 

last_contact 

Last time the lead was contacted datetime (median) 

Zona horaria de 

la IP 

time_zone_of_ip 

Time zone of the lead's IP address categorical 

replaced with 

’missing’ 

Ciudad de la IP 

ip_city 

City of the IP for the lead categorical 

replaced with 

’missing’ 

País de la IP 

ip_country 

Countrye of the lead's IP address categorical 

replaced with 

’missing’ 

Estado/región de 

la IP 

ip_state_region State / Region of the lead's IP 

address categorical 

replaced with 

’missing’ 

Fuente original 

original_source Source this lead was generated 

from enumeration no missing 

Desglose de 

fuente original 1 

original_source_breakdown_1 Level 1 Breakdown of the lead 

source categorical 

replaced with 

’missing’ 

Desglose de 

fuente original 2 

original_source_breakdown_2 Level 2 Breakdown of the lead 

source categorical 

replaced with 

’missing’ 

Análisis 

exhaustivo de 

exhaustive_analysis_of_most_recent_source_1 Level 3 Breakdown of the lead 

source categorical 

replaced with 

’missing’ 
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fuente más 

reciente 1 

Análisis 

exhaustivo de 

fuente más 

reciente 2 

exhaustive_analysis_of_most_recent_source_2 

Level 4 Breakdown of the lead 

source categorical 

replaced with 

'missing’ 

Fuente original 

web service 

original_source_web_service Original source if the lead was 

generated by web service categorical no missing 

 

Figure 17 Histogram of the predicted probabilities on the validation data, using the LightGBM model. 
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Figure 18 Histogram of the predicted probabilities on the validation data, using the XGBoost model. 

 

Figure 19 Histogram of the predicted probabilities on the validation data, using the CatBoost model.  
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Figure 20 Plot of the probability curve with LightGBM model on the validation data. The dotted diagonal line 

represents a perfectly calibrated model. 

 

Figure 21 Plot of the probability curve with the XGBoost model on the validation data. The dotted diagonal line 

represents a perfectly calibrated model. 
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Figure 22 Plot of the probability curve with the CatBoost model on the validation data. The dotted diagonal line 

represents a perfectly calibrated model. 

 

Figure 23 Obtained profit over different threshold levels obtained with the LightGBM model with predictions on 

the validation data. 
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Figure 24 Obtained profit over different threshold levels using the XGBoost model with predictions on the validation 

data. 

 

Figure 25 Obtained profit over different threshold levels using the CatBoost model with predictions on the validation 

data. 
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Figure 26 Depiction of a ROC Curve (Brownlee, 2020a, p. 42) 

 

Appendix B Top 50 variable importance graph explained by LightGBM algorithm, for the minority class.  
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Figure 27 Predicted scores over full range of x-axis. 



   

 

65 

 

 

Appendix C Data Cleaning and pre-processing 

Data Cleaning and Pre-processing 

Detailed Description of raw data features 

Boolean 

In our raw tabular dataset, there is only one variable that contains a Boolean datatype. 

This variable contains the TRUE value if the lead has cancelled its subscription to all 

emails and is represented with a missing value where there is no information about the 

cancellation action. In our thesis we will assume that a missing value in this column 

can be replaced by the Boolean value FALSE. 

Time 

The dataset contains multiple variables that represent the point in time of a specific 

action, related to the behaviour of the lead which introduces a chronological time-

hierarchy. As each of these logged time variables are related to a specific action, there 

are missing values where a lead has not yet finalized the full journey to the last tracked 

interaction. The first point of contact is always available, because the lead generation 

is always initiated by a specific action of that lead. The subsequent variables in the 

time-hierarchy have increasingly more missing values as the number of leads that reach 

all the way to the end of the journey is decreasing. Appendix D shows a dendrogram 
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of the datetime variables. The dendrogram is a visual representation of the correlation 

between variable completion, which also gives a visual impression of the chronological 

order of the datetime variables. 

Categorical 

A categorical feature is a type of variable that can have two or more groups. In our 

dataset we have multiple categorical variables that hold information related to 

geography, name, URL, origin, and conversion. Some of these categorical features 

represent an action that is again tied to a logged time. Because of this relationship 

between an action and the logged time of that action, there is a similar chronological 

hierarchy of these actions and consequently also missing values where a lead has not 

yet reached that phase of the tracked journey.  

Not all the categorical variables are linked to a point in time, some hold information 

related to the lead and others are aggregations of the journey of the lead. Where the 

data provider, HubSpot is not able to capture the categorical feature, that variable 

contains a missing value.  

Another important characteristic of the categorical variables in the dataset is the high 

cardinality of the data. High cardinality is defined as the number of unique values a 

variable can have, where a high cardinality feature describes a variable that can take 

the number of n values where n is large. Names are a common high cardinality feature, 

as names can come in many different variations. In our dataset we have high cardinality 

in the name, URL, geography, origin, and conversion variables. 

Numerical 

Numerical features represent the last type of variables in the dataset. These variables 

describe information about how many emails or forms a lead has received, page views 

and sessions. This information is represented in integers in the raw data. As some of 

the leads have not yet reached the stage where they receive marketing emails, the values 

here are missing rather than having a value of zero.  

Another important feature of the numerical variables is that their distributions are all 

right skewed and leptokurtic. 
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Detailed Description of data cleaning and pre-processing 

 

Appendix E Detailed description of data cleaning and pre-processing 

Numerical Variables 

Missing values is a frequent problem in real-world data and is often caused by corrupt 

data or failure to record data. The handling of missing values is a particularly crucial 

step in the pre-processing of data, as many machine learning algorithms do not handle 

missing values. Another aspect when dealing with missing values is that it needs to be 

handled in a way where it does not add features that were not originally in the dataset, 

where under other circumstances the missing values represent some information that 

needs to be included.  

The numerical variables in our dataset mostly consist of variables with no missing 

values, except for three columns related to marketing email activity. These columns 

have missing values when no marketing email activity is recorded. We therefore 

assume that no marketing email activity can be considered as a value of 0, replacing all 

missing values with 0. In the dataset we also have a Boolean variable, where only the 

variable for TRUE is recorded. We therefore assume that missing values in this column 

can be replaced with the value FALSE. The boolean variable is then converted into a 

binary variable [1,0]. 

The main task of any machine learning model is to minimize the loss function. Some 

machine learning models assume normally distributed features, while others are not 

affected by skewed distributions. Since our numerical features are both right skewed 

and leptokurtic, we want to reduce the variance of the data and make it more normally 

distributed for algorithms to give equal importance to all samples. We obtain this by 

utilizing a power transformation, where we have chosen the log +1 transformation of 

our numerical features. Log transformation is an example of transformations known as 

power transformations, that in statistical terms are known to be variance-stabilizing 

transformation (Cesari, 2018, p. 23).  
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Time Delta  

Our dataset consists of rows, where every row represents a lead and the journey of that 

lead from the point of generation. As the datetimes related to each lead represent a 

journey in time from the point of generation, they do not relate to the datetimes of other 

leads and their journey in time after generation. We therefore need to generalize the 

time features of the dataset so that they convey time as a value from generation.  

We do this by calculating the time difference from time a until time b, and so forth. For 

each lead, we will now, instead of having variables containing datetime features, get 

new variables that tell the time difference from generation to the next interaction of 

that lead. Converting the datetime features of the dataset enables us to compare the 

dime difference in minutes from one interaction to the next across the leads, unrelated 

to when the lead was generated. 

Appendix F displays the time hierarchy of the interactions of a lead and can be 

interpreted as actions after generation by reading from left to right and top to bottom. 

In the processing of the new time-delta variables we use the first interaction of a lead 

as the base to calculate the time differences as this variable is complete, without 

missing values. This way we manage to maintain more of the information as many of 

the datetime variables contain a high percentage of missing values and measuring the 

time-delta between each action would lead to more missing values as both datetimes 

must be present for the time-delta to be calculated.  

As a further step we convert the time delta features from seconds to minutes and 

convert them to absolute values. The reason we take the absolute values of the time 

deltas is that we have outliers that are negative, meaning that a lead has somehow been 

generated before its first interaction, for instance. Because the time delta still represents 

a time difference, we use the absolute value, not to get outliers on the left tail of the 

distribution. The time features are then log +1 transformed.  

Categorical variables  

Categorical variables can be divided into two categories, nominal, and ordinal. A 

nominal categorical variable means that there is no inherent order in the categories, 
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while an ordinal categorical variable is a set of variables where there is an inherent 

order between the values. In our dataset there are multiple categorical features and all 

of them belong to the nominal group of categorical variables.  

The next distinction for the categorical variables is whether they have a high or low 

degree of cardinality. Depending on the degree of cardinality determines how one must 

deal with the variable in the cleaning and pre-processing of the data and in our dataset, 

we have variables of both high and low degrees of cardinality. 

Low cardinality variables 

There are two variables in our dataset that we consider to be nominal low cardinality 

features and they both relate to the origin of how a lead was generated. One consists of 

9 unique categories with no missing values and the other, 7 unique categories with 

missing values. As explained previously, the missing values in our dataset relate to one 

of two categories, that lead has not yet reached that stage in the tracked journey, or the 

data provider was not able to capture the desired feature. Either way, a missing value 

represents information that we want to pass on in the cleaned dataset. The low 

cardinality features are left untouched in the cleaning and pre-processing stage.  

High cardinality variables 

Many learning algorithms require categorical data to be transformed into real vectors 

before it can be used as input. Often, categorical variables are encoded as one-hot or 

dummy vectors. However, this mode of representation creates sparsity in the dataset 

with many low signal regressors, especially when the number of unique categories is 

large (Athey et al. 2021). Another problem with converting high cardinality features 

into a binary representation is that as the number of features in the dataset grows, the 

amount of data we need to accurately distinguish between features and to generalize 

the model grows exponentially. This is popularly mentioned as the curse of 

dimensionality. As most datasets contain a combination of numerical and categorical 

features, the challenge of high cardinality is not new, so a lot of research is done on the 

topic. The answer to dealing with high cardinality is ambiguous, but many proposed 

solutions to several types of cardinality challenges are available. We have explored 

some of them to deal with high cardinality in our dataset. 
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Gender classification 

Included in our tabular dataset we have two columns representing the name of each 

lead. One column with the first name, and one column with the last name. The name 

information is in string format and represents a high cardinality data, also referred to 

as a dirty variable problem. Many machine learning algorithms cannot handle 

categorical information and in those who do, high cardinality is a problem when the 

number of categories increases. An important task in the data cleaning process is 

therefore to simplify the name information and at the same time keep valuable 

information that holds predictive properties.  

As gender information is not necessarily a mandatory information input when 

registering for online accounts and not typically an information property that is 

captured by data providers operating with metadata capturing, a lot of research is made 

on how to infer gender from known data, as the gender information is assessed to have 

predictive properties. Brown (2017) proposes to use features from the first name, as 

this is believed to be the most telling indicator of a person's gender. The described 

features are first/last letter, count of letters and suffixes (last 2, 3, 4, first 2, 3, etc.) of a 

name. The features are then used to train a NLTK Naïve Bayes classifier. Hu Y et al. 

(2021) goes a step further by proposing a character-based machine learning model that 

utilizes both first and last names to improve classification accuracy, as the first names 

may have different gender connotations across cultures. They also show how content 

information (page view, search, clicks etc.) could be a complementary feature to the 

first name for improved accuracy, as the disclosed name might not be the true name of 

an individual.  

In our thesis we have chosen Brown’s suggested approach, as it proves to have high 

accuracy compared to the simplicity of the model. Our first name column consists of 

131,332 unique names, counting combinations of multiple first names as well. There 

are also 5.7% of the first names that are missing in the dataset, which results in no 

predicted gender for our chosen approach.  

To prepare the first name column for the Naïve Bayes classifier we separate the column 

on any spaces and keep only the first of the words included. This leaves out any middle 
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names so that we are left only with the first names. The next step of the classification 

is to define the features that we want to use from the first name to train the classifier. 

After some testing we ended up with the highest accuracy score with the last letter, last 

2 and 3 letters and the first 3 letters as our features. The classification model shows an 

83% accuracy on the test data, which we find substantial enough.  

After the gender classification exercise on the first name column, we are left with the 

last name column unused. This column has 8.7% missing values, which is an increase 

from the first name column. To maintain the richness of our dataset we chose to convert 

the last name column into a dummy variable column, where 1 indicates a present last 

name and 0 indicates a missing last name, as we believe there is a chance that this 

information can improve the model.  

Geographical variables 

There are four variables in the dataset related to the geographical location of the lead, 

at lead generation. They can all be categorized as high cardinality features because they 

contain many unique values in the form of time-zone, country, city, and region. These 

variables are all highly concentrated on a few values related to the geographical 

location of Mexico, much expected since this is where the business operates. They also 

have a high percentage of missing values which is not negligible since this information 

potentially has predictive properties as well.  

We perform two operations on geographical variables to reduce cardinality. Firstly, we 

extract the continent from the time-zone variable which in its original form was a 

concatenation of continent and city. Next, we merge low frequency categories and 

replace them with “other”, to create a new value that contains all low frequency values. 

The threshold we use for this operation is any variable that occurs less than 0,2%. After 

these two operations we are left with a significantly reduced cardinality in the 

geographical variables, while maintaining most of the information in the dataset.  

URL’s 

Uniform Resource Locator’s (URL) are string components that represent an address on 

the web. These strings are built up by addressing scheme, network location, path etc. 
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As these strings represent a unique location on the web, the variety of unique URLs 

related to a single webpage can grow large. Our tabular dataset has four variables that 

hold URL strings, and these variables are by far the features with the highest cardinality 

in our data with number of unique observations counting above 100,000.  

As URL’s consists of a universal structure of components, we want to split the full 

URLs into its different components to reduce the cardinality. For this we use one of the 

standard libraries in Python named urllib. In this library there is a parse function that 

effectively splits the URL into its components scheme, netloc, path, parameters, query, 

and fragment. We choose to keep only the netloc and path of the URLs as we evaluate 

these to include the most amount of information related to the lead’s activity, and they 

are also the features in the URLs that have the highest degree of completion. These two 

features from the original URL are then split up into separate columns.  

To further reduce the cardinality of the URL-related variables we perform the same 

threshold reduction on low frequency occurrences, with the same threshold of 0.2%. 

These low frequency occurrences are replaced with "other”. After these two operations 

on the URL variables, we have managed to reduce the cardinality down to the range of 

10 – 30 unique values, while maintaining a high degree of information.  

Conversion 

Conversion represents the last high cardinality variables in our dataset. These variables 

are a concatenation of up to five actions that describe the leads customer journey so 

far, where each action is separated with “ | “. To reduce the dimensionality of these 

features we have chosen to use the separator as a split criteria and include each action 

as a separate variable. Some of the leads have all five actions in place, while others 

have fewer or none. To further reduce the dimensionality of the categorical variables 

we perform a frequency threshold reduction, using the same frequency of 0.2% of the 

total observations as before. 

Merging of datasets 

The two datasets are merged on the unique leads id to obtain a full dataset that includes 

all available features on each lead from the two different data sources. All observations 
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that miss information regarding which cycle that lead belongs to are removed. The 

reason we do not have cycle information on all leads is related to a change in how UIN 

stores information on leads, which also results in the lack of enrollment information 

related to the leads that are missing cycle information. It also helps us partition our 

dataset into a training and holdout dataset, where we ensure that we do not train the 

model on future leads, to predict past leads, which would be the opposite of how this 

process would be operationalized. 
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Pandas Profiling Report 

Appendix G Pandas profiling report summary of metadata dataset 

 

Appendix H Pandas profiling report for categorical variable "Fuente Original" 

 

Appendix I Pandas Profile Report missing values dendrogram 
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