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In [22] we established axiomatic parametrised Cohen-Macau-
lay approximation which in particular was applied to pairs 
consisting of a finite type flat family of Cohen-Macaulay rings 
and modules. In this sequel we study the induced maps of 
deformation functors and deduce properties like smoothness 
and injectivity under general, mainly cohomological conditions 
on the module.
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1. Introduction

In this article we study local properties of flat families of Cohen-Macaulay approxi-
mations by homological methods.

Let A be a Cohen-Macaulay ring of finite Krull dimension with a canonical module 
ωA. Let MCMA and FIDA denote the categories of maximal Cohen-Macaulay modules 
and of finite modules with finite injective dimension, respectively. M. Auslander and 
R.-O. Buchweitz proved in [3] that for any finite A-module N there exists short exact 
sequences
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0 → L −→ M −→ N → 0 and 0 → N −→ L′ −→ M ′ → 0 (1.0.1)

with M and M ′ in MCMA and L and L′ in FIDA. The maps M → N and N → L′ in 
(1.0.1) are called a maximal Cohen-Macaulay approximation and a hull of finite injective 
dimension, respectively, of the module N .

In [22] we noted some of the developments since [3], as the study of new invariants, e.g. 
[8,4,18,37] and various characterisations and applications [29,45,30,20,32,9]. In his book 
[17] M. Hashimoto gave several new examples of the axiomatic Cohen-Macaulay approx-
imation in [3]. However, the ‘relative’ and continuous aspects have received surprisingly 
little attention. It seems only [17, IV 1.4.12] and [44] touch upon this.

In [22, 5.1] we proved the following result. Let h : S → A be a Cohen-Macaulay map 
and N an S-flat finite A-module. Then there exists short exact sequences of S-flat finite 
A-modules

0 → L −→ M −→ N → 0 and 0 → N −→ L′ −→ M′ → 0 (1.0.2)

such that the fibres give sequences as in (1.0.1) and any base change gives short ex-
act sequences of the same kind. In the local case there are minimal sequences (1.0.2)
which are unique up to non-canonical isomorphisms [22, 6.2]. There are induced maps 
of deformation functors of pairs (algebra, module)

σX : Def(A,N) −→ Def(A,X) for X = M,M ′, L and L′. (1.0.3)

There are also corresponding maps DefAN → DefAX of the more classical deformation 
functors of the modules, where the algebra A only deforms trivially. To our knowledge 
these maps have not been defined before. They are the principal objects of study in this 
article.

The main results are:

Theorem A. If Ext1A(N, M ′) = 0 then σL′ : Def(A,N) −→ Def(A,L′) is formally smooth. If 
in addition Def(A,N) has a versal element then so has Def(A,L′) and σL′ is smooth.

Theorem B. If Ext1A(L, N) = 0 then σM : Def(A,N) −→ Def(A,M) is formally smooth. If 
in addition Def(A,N) has a versal element then so has Def(A,M) and σM is smooth.

See Theorems 5.5 and 5.7 for more comprehensive statements. The proofs of the second 
halves of the results use Artin’s Approximation Theorem. There are analogous results 
for DefAN ; see Corollaries 5.8 and 5.9.

The following is a rather surprising consequence.

Corollary A (cf. 5.11). Each Cohen-Macaulay algebraic k-algebra A with A/mA
∼= k

and dimA � 2 has a finite A-module Q of finite projective dimension with a universal 
deformation in DefAQ(A).
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Different sets of restrictions imply the main condition Ext1A(L, N) = 0 in Theorem B, 
like in the following corollary.

Corollary B (cf. 5.12). Assume there is a closed subscheme Z in SpecA containing the 
singular locus and with complement U such that Ñ|U = 0 and depthZ N � 2. Then 
σM : Def(A,N) → Def(A,M) is formally smooth.

In Proposition 5.14 we note that σM : Def(A,N) −→ Def(A,M) is smooth if A is Goren-
stein and depthN = dimA − 1, extending A. Ishii’s [26, 3.2] to deformations of the 
pair.

Consider a quotient ring B = A/I defined by a regular sequence I = (f1, . . . , fn)
and an MCM B-module N . Then N is also an A-module with an MCM-approximation 
M → N . Our third main result is the following (cf. Theorem 6.6):

Theorem C. Suppose RN and RM are minimal versal (or formally versal) base rings for 
DefBN and DefAM . If N has a lifting to A/I2, then RN ∼= RM/J for an ideal J generated 
by linear forms.

The proof of Theorem C is not invoking Theorems 5.5 or 5.7 and applies two results 
which might have some independent interest. A general result applying a lifting argument 
gives the ideal J generated by linear forms; see Lemma 6.5 (which seems to need a 
separability condition). Proposition 6.10 says that the lifting condition is equivalent to 
the splitting of B⊗AM → N . This generalises [4, 4.5] by Auslander, S. Ding, and Ø. 
Solberg. The final argument shows how this splitting implies the essential conditions in 
Lemma 6.5.

Theorem 6.6 is illustrated by an application to hypersurface singularities where MCM-
approximation is given by a functor of H. Knörrer; see Corollary 6.12.

The broader context of these results is the study of singularities in terms of the rep-
resentation theory. In recent years M. Wemyss and collaborators have given many inter-
esting results concerning the geometric McKay-Wunram correspondence where (certain) 
indecomposable MCM-modules correspond to irreducible components of the minimal 
resolution of a rational surface singularity; e.g. [27,28,42]. M. Van den Bergh’s use in 
[39] of endomorphism rings to prove derived equivalences for flops created a lot of activ-
ity; see Wemyss [43] for results and references. A general hypersurface section of certain 
3-dimensional flops gives 1-parameter deformations of pairs (RDP-singularity, partial 
resolution). In [16] we study deformation theory of pairs (rational surface singularity, 
MCM-module) and show that the flops are obtained by blowing up the parametrised 
singularity in a parametrised module. This is applied to prove several conjectures of C. 
Curto and D. Morrison [7] regarding flops. The results in this article and the companion 
[24] contribute to the versatility of the deformation theory of pairs (algebra, module).

The content is ordered as follows. In Section 2 we define the cofibred categories and in 
Section 3 the maps σX . We give some relevant obstruction theory for deforming modules 
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in Section 4. The main results about the maps σX with some general consequences are 
found in Section 5. Section 6 concludes after several auxiliary technical results with the 
proof of Theorem 6.6.

Many results have analogous parts with similar arguments and the policy has been to 
give a fairly detailed proof of one case and leave the other cases to the reader. All rings 
are commutative with 1-element. Subcategories are usually full and essential.
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2. Preliminaries

2.1. The base category

Fix a finite ring map Λ → k where Λ is assumed to be excellent (in particular noethe-
rian) [38, Tag 07QS] and k a field. The kernel of Λ → k is denoted mΛ. Put k0 = Λ/mΛ. 
Define ΛHk to be the category of surjective maps of Λ-algebras S → k where S is a 
noetherian, henselian, local ring [38, Tag 04GE]. A morphism is a local ring map of 
Λ-algebras S1 → S2 commuting with the given maps to k.

2.2. Cofibred categories

A map h : S → A of local henselian rings is algebraic if h factors as S → Aft → A
where the first map is of finite type and the second is the henselisation in a maximal 
ideal. Define Alg to be the category where an object is an object S → k in ΛHk together 
with a map of local henselian rings S → A which is flat and algebraic. A morphism 
(S1 → A1) → (S2 → A2) is a morphism g : S1 → S2 in ΛHk together with a local 
S1-algebra map f : A1 → A2 such that the resulting commutative square is cocartesian. 
The fibre sum is given by the henselisation of the tensor product A = A1⊗S1S2 in 
the maximal ideal mA1A + mS2A, denoted by A1⊗̃S1S2 or by (A1)S2 . It has the same 
closed fibre as S1 → A1 and it follows that the forgetful Alg → ΛHk is a cofibred 
category1 cofibred in groupoids; cf. [38, Tag 06GA]. In general a flat and local ring map 
S → A will be called Cohen-Macaulay if A ⊗SS/mS is a Cohen-Macaulay ring. There 
is a subcategory CM of objects in Alg which are Cohen-Macaulay maps. The forgetful 
CM → ΛHk is a cofibred category.

Let mod denote the category of pairs (h : S → A, N ) with h in Alg and N a finite 
A-module. A morphism (h1 : S1 → A1, N1) → (h2 : S2 → A2, N2) in mod is a morphism 

1 A fibred category mimics pull-backs. We work with rings instead of (affine) schemes. A cofibred category 
is a functor p : F → C such that the functor of opposite categories pop : Fop → Cop is a fibred category as 
defined in A. Vistoli’s [40].
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(g : S1 → S2, f : A1 → A2) in Alg and an f -linear map of modules α : N1 → N2. Let 
(N1)S2 denote the base change A2⊗A1N1. The forgetful functor mod → ΛHk is a cofibred 
category. There is a cofibred subcategory modfl ⊆ mod of modules flat over the base and 
a cofibred subcategory MCM ⊆ modfl where S → A is in CM and N⊗Sk is a maximal 
Cohen-Macaulay A ⊗Sk-module.

Any object h : S → A in CM has a dualising module ωh obtained by base change from 
the dualising module ωhft as defined in [6, Sec. 3.5] where hft is a finite type representative 
for h. In particular, (h, ωh) is an object in MCM. Two finite type representatives for h
factor through a common étale neighbourhood which is Cohen-Macaulay relative to S. 
The dualising module commutes with base change for finite type CM maps and so does 
ωh. Let D denote the subcategory of MCM of objects (h, D) with D in Add{ωh} and D̂fl

the subcategory of modfl of objects (h : S → A, N ) such that h is in CM and N has a 
finite resolution by modules in Add{ωh}. The forgetful maps make D and D̂fl cofibred 
categories over ΛHk.

There is also a version for a fixed flat algebra. With Λ → k as above, fix a flat ring 
map Λ → A which is the composition of two ring maps Λ → Aft → A where the first is 
of finite type and the second is the henselisation at a maximal ideal. We call such an A
a flat and algebraic Λ-algebra. There is a section ΛHk → Alg given by S �→ (S → AS)
where AS = A⊗̃ΛS. Let AlgA denote the resulting cofibred subcategory of Alg and modA, 
respectively modfl

A, the restriction of the cofibred categories mod and modfl to AlgA. Put 
A = A ⊗Λk. If A is Cohen-Macaulay then the section ΛHk → Alg factors through CM. 
Let MCMA denote the induced cofibred subcategory of MCM.

2.3. Deformation functors

If Λ → S → k is an object in ΛHk we define ΛHS as the comma category ΛHk/ S of maps 
to S in ΛHk. If h : S → A is an element in Alg we define DefA/S as the comma category 
Alg/(S → A), i.e. the objects are maps (S′ → A′) → (S → A) in Alg and morphism are 
morphisms in Alg commuting with the maps to S → A. The objects in DefA/S are called 
deformations of A. If a = (h : S → A, N ) is an object in modfl, we define a deformation 
of a as a cocartesian map a′ → a in modfl, i.e. commutative diagram

a′ : S′ h′

g

A′

f

N ′

α

a : S
h A N

(2.0.1)

where (g, f) is an object in DefA/S (in particular A′
S
∼= A) and α is an f -linear map 

of finite modules which are flat over the bases S′ and S, respectively, with N ′
S
∼= N . 

A map of deformations of a is a cocartesian map in modfl commuting with the maps 
to a. Let Def(A/S,N ) denote the resulting category of deformations of a. The forgetful 
functors make DefA/S and Def(A/S,N ) categories cofibred in groupoids over ΛHS . There 
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is also a forgetful map of cofibred categories Def(A/S,N ) → DefA/S . Similarly, fix a flat 
and algebraic Λ-algebra A as in the previous subsection, an object S → k in ΛHk and 
an S-flat, finite AS-module N . Then DefAN/S denotes the restriction of Def(AS/S,N ) to 

AlgA/(S → AS). A deformation of a = (S → AS , N ) is a diagram like (2.0.1) with h′

given as (Λ → A)S′ = (S′ → AS′). The only possible variation is in N ′.
Let the deformation functors DefA/S , Def(A/S,N ) and DefAN/S from ΛHS to Sets be the 

functors corresponding to the associated groupoids of sets obtained by identifying all 
isomorphic objects in the fibre categories and identifying arrows accordingly. If S = k

with A = A and N = N we write DefA for DefA/k and Def(A,N) for Def(A/k,N). They 
are functors from ΛHk to Sets. But with a fixed flat and algebraic Λ-algebra A we write 
DefAN for DefAN/k : ΛHk → Sets. In the case Λ = k this is the classical DefAN .

2.4. Linear approximation

A proof of the following known result is provided in [22, 6.1].

Lemma 2.1. Let S → A be a homomorphism of noetherian rings and a an ideal in S
such that I = aA is contained in the Jacobson radical of A. Let M and N be finite 
A-modules. Let An = A/In+1, Mn = An⊗M and Nn = An⊗N . Suppose there exists a 
tower of surjections {ϕn : Mn → Nn}. Fix any non-negative integer n0. Then there exists 
an A-linear surjection ψ : M → N such that An0⊗ψ = ϕn0 . If the ϕn are isomorphisms 
and N is S-flat then ψ is an isomorphism.

3. Cohen-Macaulay approximation of deformations

We extend the Cohen-Macaulay approximation over henselian local base rings given 
in [22, 5.7] to deformations.

For each object av = (hv : Sv → Av, Nv) in modfl with hv in CM we fix a minimal 
MCM-approximation and a minimal D̂fl-hull

πv : 0 → Lv → Mv
πv−→ Nv → 0 and ιv : 0 → Nv

ιv−→ L′
v → M′

v → 0 (3.0.1)

which exist by [22, 5.7, 6.3]. We fix one a = (h : S → A, N ) in modfl with h in CM, with 
minimal MCM-approximation π and minimal D̂fl-hull ι. For each deformation av → a, 
see (2.0.1), we choose extensions to commutative diagrams of deformations (which are 
all over the same deformation of algebras hv → h)

Lv

λ

Mv

πv

μ

Nv

ν

L M π N

and Nv

ιv

ν

L′
v

λ′

M′
v

μ′

N ι L′ M′

(3.0.2)
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as follows: By [22, 6.3] a base change of πv by Sv → S gives a minimal MCM-
approximation (Mv)S → (Nv)S ∼= N . By minimality it is isomorphic to π. Choose 
an isomorphism. Let μ be the composition Mv → (Mv)S ∼= M. It is cocartesian. Do 
similarly for the D̂fl-hull. Let these choices be fixed.

Lemma 3.1. There are four maps

σX : Def(A/S,N ) −→ Def(A/S,X) of functors ΛHS −→ Sets

where X can be M, L, L′ and M′ given by [(hv → h, ν)] �→ [(hv → h, x)] for x equal to 
μ, λ, λ′ and μ′ in (3.0.2) respectively.

For a flat and algebraic Λ-algebra A the same formulas induce well-defined maps of 
deformation functors of A-modules

σA
X : DefAN −→ DefAX .

The following lemma implies that these maps are well defined and independent of 
choices and thus proves Lemma 3.1.

Lemma 3.2. Given two deformations

((gj , fj), νj) : (hvj : Svj → Avj ,Nvj ) → (hj : Sj → Aj ,Nj), j = 1, 2,

in modfl over CM. Consider the minimal MCM-approximations πvj and πj (respectively 
the D̂fl-hulls ιvj and ιj) defined in (3.0.1) and the corresponding maps of short exact 
sequences πvj → πj (respectively ιvj → ιj) which extends νj defined in (3.0.2). Given

• a map (g, f) : h1 → h2 in CM and an f -linear map α : N1 → N2,
• maps of short exact sequences π1 → π2 and ι1 → ι2 which extends α,
• a map (g̃, f̃) : hv1 → hv2 in CM which lifts (g, f), and
• an f̃ -linear map α̃ : Nv1 → Nv2 which lifts α.

In particular the following two diagrams of solid arrows are commutative:

Lv2

λ2

Mv2

πv2

μ2

Nv2

ν2

Lv1

λ1

Mv1

γ

πv1

μ1

Nv1

α̃

ν1

L2 M2
π2 N2

L1 M1

β

π1 N1

α

Nv2

ιv2

ν2

L′
v2

λ′
2

M′
v2

μ′
2

Nv1

α̃

ιv1

ν1

L′
v1

γ′

λ′
1

M′
v1

μ′
1

N2
ι2 L′

2 M′
2

N1

α

ι1 L′
1

β′

M′
1
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Then there exists f̃-linear maps γ : Mv1 → Mv2 and γ′ : L′
v1

→ L′
v2

such that the induced 
diagrams are commutative. If α̃ is cocartesian, so are γ and γ′.

Proof. Consider the MCM-approximation case. By applying base changes to the front 
diagram, we can reduce the problem to the case hv1 → h1 equals hv2 → h2. Then, by 
[22, 5.7], there is a lifting γ1 : Mv1 → Mv2 of α̃. We would like to adjust γ1 so that 
it lifts β too. We have that μ2γ1 − βμ1 factors through L2 by a map τ : Mv1 → L2. 
It induces a unique map τ : M1 → L2 since μ1 is cocartesian. If D∗ � Lv2 is a finite 
D-resolution, then base change gives a finite D-resolution D∗⊗Sv2

S2 � L2 and τ factors 
through a σ : M1 → D0⊗Sv2

S2 by [22, 5.7]. Since Hom(Mv1 , D0) is a deformation of 
Hom(M1, D0⊗Sv2

S2) (cf. [22, 2.4]) there is a σ : Mv1 → D0 lifting σ. Subtracting the 
induced map Mv1 → Mv2 from γ1 gives our desired γ. If α̃ is an isomorphism so is γ by 
minimality of the approximations πvj . The argument for the D̂fl-case is similar. �
4. Obstructions

We summarise some obstruction theory for deformations of modules which will be 
used to study the maps in Lemma 3.1.

Suppose β : 0 → J
i−→ B′ q−→ B → 0 is an extension of rings where i denotes the 

inclusion of the ideal J . Assume J2 = 0. If N ′ is a B′-module, N ′⊗B′− applied to β gives 
the exact sequence 0 → TorB

′

1 (N ′, B) → N ′⊗B′J
id⊗i−−−→ N ′ → N ′⊗B′B → 0. Note that 

J is a B-module as B′-module since J2 = 0. It follows that N ′⊗B′J ∼= (N ′⊗B′B) ⊗BJ .

Definition 4.1. Given an extension β with J2 = 0 as above and suppose N is a B-
module. Then a B′-module N ′ with a surjection of B′-modules α : N ′ → N is called a 
lifting of N along q (or to B′) if the natural B′-linear map j : N⊗BJ → N ′ defined by 
j(n ⊗u) = u · ñ for any ñ ∈ N ′ with α(ñ) = n gives an isomorphism N⊗BJ ∼= ker(α). 
Two liftings αi : N ′

i → N (i = 1, 2) along q are equivalent if there is an isomorphism 
ϕ : N ′

1 → N ′
2 of B′-modules with α1 = α2ϕ.

For a lifting α it follows that N ′⊗B′B ∼= N and TorB
′

1 (N ′, B) = 0, and vice versa, 
a surjection α is a lifting if these two conditions hold. Moreover, α gives a B′-module 

extension ν : 0 → N⊗J
j−→ N ′ α−−→ N → 0. Two liftings along q are equivalent if and 

only if the corresponding extensions are isomorphic. There is an obstruction theory for 
liftings of modules in terms of Ext groups.

Proposition 4.2. Given an extension β and a B-module N as in Definition 4.1.

(i) There is an element ob(q, N) ∈ Ext2B(N, N⊗BJ) such that ob(q, N) = 0 if and 
only if there exists a lifting of N along q.

(ii) If ob(q, N) = 0 then the set of equivalence classes of liftings of N along q is a 
torsor for Ext1B(N, N⊗BJ).
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(iii) The set of automorphisms of a given lifting is canonically isomorphic to HomB(N,

N⊗BJ).

Proof. (i) Pick a B-free resolution of N : · · ·F2
d2−→ F1

d1−→ F0
ε−→ N → 0. Lift the differ-

entials to maps d̃n : F̃n → F̃n−1 of B′-free modules of the same rank. Denote the map 
F̃ → F by π. Then d̃1d̃2 is induced by a map η2 : F2 → F0⊗J and η2 := (ε ⊗ id)η2
is a 2-cocycle in the complex HomB(F, N⊗J) since η2d3 equals (d1⊗ idJ)η3 where 
η3 : F3 → F1⊗J is inducing d̃2d̃3. The class of η2 defines ob(q, N). It is independent 
of the chosen resolution and liftings.

If there is a lifting N ′ of N along q we can choose a B′-free resolution F ′ of N ′ first. 
Then H0(B⊗F ′) ∼= N and H1(B⊗F ′) = 0. A B-free resolution F of N is obtained by 
adding terms in degree � 3. It follows that ob(q, N) = 0.

Suppose ob(q, N) = 0. Then there is a ξ : F1 → N⊗J with η2 = ξπ. Let ξ1 : F1 →
F0⊗J be a lifting of ξ and let ι denote the inclusion ι : F⊗J → F̃ . Let ξ2 : F2 → F1⊗J

be a lifting of η2 − ξ1d2. Then (d̃1 − ιξ1π)(d̃2 − ιξ2π) = 0 which implies that N ′ :=
coker(d̃1 − ιξ1π) with its natural map to N gives a lifting of N along q.

(ii) Given two liftings N ′
1 and N ′

2 of N along q. By what we did above there are maps 
d′i,1, d

′
i,2 : F ′

i → F ′
i−1 for i = 1, 2 such that B⊗B′d′i,j = di. Then di,2 − di,1 equals ιξiπ

for some ξi. One calculates

ι(ξ1d2 + (d1⊗ id)ξ2)π = (ιξ1π)d2,2 + d1,1(ιξ2π) = 0 (4.2.1)

which implies that ξ1d2 + (d1⊗ id)ξ2 = 0. Then ξ := (ε ⊗ id)ξ1 defines a class in 
Ext1B(N, N⊗J). Conversely, given a lifting N ′ with differential d′, such a class can be 
lifted to maps ξ1 and ξ2 with ξ1d2+(d1⊗ id)ξ2 = 0. Then coker(d′1+ιξ1π) defines another 
lifting.

(iii) follows since automorphisms of the lifting α equals automorphisms of the corre-
sponding extension ν and idN ′ corresponds to 0 in HomB(N, N⊗J). �

The element ob(q, N) is called the obstruction of (q, N). If N ′ → N is a lifting and 
ξ an element in Ext1B(N, N⊗J) we write (N ′ + ξ) → N for the new lifting obtained by 
the torsor action.

Lemma 4.3. Given a commutative diagram

R′

r

S′

s

R S

in ΛHk where r and s are surjective. Put H = ker(r) and I = ker(s) and assume H2 =
0 = I2. Let R′ → B′ be an object in Alg, let R → B = B′

R denote the base change to R
and let q : B′ → B denote the induced map. Suppose N is an R-flat B-module. Then:
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(i) Base change of q to S′ gives the extension 0 → BS⊗SI → B′
S′ → BS → 0.

(ii) There is a natural isomorphism

ExtnBS
(NS , NS⊗BS

(BS⊗SI)) ∼= ExtnB(N,NS⊗SI) for all n.

(iii) The obstruction element ob(q, N) maps to ob(qS′ , NS) along the map

τ2
∗ : Ext2B(N,N⊗RH) −→ Ext2B(N,NS⊗SI)

induced by the natural map τ : N⊗RH → NS⊗SI.
(iv) The torsor action commutes with base change: If N ′ → N is a lifting of N along q

and ξ ∈ Ext1B(N, N⊗RH) then the base change to S′ of the lifting (N ′ + ξ) → N

is equivalent to (N ′
S′ + τ1

∗ (ξ)) → NS .

Proof. (i) Base change of ker(q) → B′ → B to S′ equals B′
S′⊗S′(I → S′ → S) which 

gives a short exact sequence. Moreover, B′
S′⊗S′I ∼= BS⊗SI. (ii) follows by a change of 

rings spectral sequence (cf. [22, 2.3.1]).
(iii) If (F, d) � N is a B-free resolution of N , then the base change (FS, dS) � NS is 

a BS-free resolution of NS . Then the base change d̃S′ of a lifting d̃ of the differential d is 
a lifting of the differential dS′ . The obstruction ob(qS′ , NS) is induced by (d̃S′)2 which 
equals (d̃ 2)S′ , i.e. the base change of the map which induces ob(q, N). The map in (ii) 
then takes ob(qS′ , NS) to τ2

∗ ob(q, N). (iv) is similar. �
If mRH = 0 (i.e. R′ → R is small) then by (ii)

ExtnB(N,N⊗RH) ∼= ExtnB⊗Rk(N⊗Rk,N⊗Rk)⊗kH , (4.3.1)

so in this case there are fixed k-vector spaces which classify obstruction and give the 
torsor action.

If, in the setting of Lemma 4.3, N is also finite (so (B, N) is a deformation of 
(B⊗Rk, N⊗Rk)) with ob(q, N) = 0, then a lifting N ′ can be chosen to be finite by 
the proof of Proposition 4.2. Moreover, a B′-free resolution ε : F � N ′ is also an R′-flat 
resolution of N ′. Then 0 = TorB

′

1 (B, N ′) ∼= H1(B⊗B′F ) ∼= H1(R⊗R′F ) ∼= TorR
′

1 (R, N ′)
which implies that TorR

′

1 (k, N ′) ∼= H1(k⊗R′F ) ∼= H1(k⊗RR⊗R′F ) ∼= TorR1 (k, N) = 0. 
By the local criterion of flatness, N ′ is R′-flat and so (B′, N ′) is a deformation of (B, N). 
For brevity we will also simply say that N ′ is a deformation of N .

Lemma 4.4. Given an extension β and a B-module N as in Definition 4.1. Suppose 
ε : (F, d) � N is a B′-free resolution of N . Put N ′

1 = ker ε, N ′
1 = B⊗B′N ′

1 and F =
B⊗B′F . Applying B⊗B′− to the short exact sequence 0 → N ′

1 → F0 → N → 0 gives a 
4-term exact sequence

0 → N⊗BJ −→ N ′
1 −→ F0 −→ N → 0
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which represents ob(q, N) in Ext2B(N, N⊗J).

Proof. The 4-term exact sequence is obtained since TorB
′

1 (N, B) ∼= N⊗BJ . Choose a 
surjection γ : E → J where E is B′-free. Since NJ = 0, the composition with the 
multiplication map F0⊗E → F0⊗J → F0 factors through a B′-linear map ψ : F0⊗E →
F1. Then

F0⊗E

⊕
N F0

ε
F1

d1
F2

(ψ , d2)

(4.4.1)

gives a B-free 2-presentation of N ; cf. [21, Lemma 3]. Following the proof of Propo-
sition 4.2, η2 can be given by ε⊗γ : F0⊗E → N⊗J . Since the upper row in the 
commutative diagram

F0⊗E

⊕
F0 F1

d1
F2

(ε⊗γ , 0)

(ψ , d2) · · ·

0 N F0
ε

N ′
1 N⊗J 0

(4.4.2)

is the beginning of a B-free resolution of N , ε⊗γ also defines the image of the 4-term 
exact sequence in Ext2B(N, N⊗J). �
Lemma 4.5. Let k be a field and A a local algebraic k-algebra. Given a small surjection 
p : R → S in ΛHk and a deformation R → A of k → A. Put q = id⊗1: A → A ⊗RS = AS

and I = ker p. Given commutative diagrams

0 N ι L′ η
M′ 0

and
0 L

ρ
M π N 0

0 N
ι

L′ η
M ′ 0 0 L

ρ
M

π
N 0

with short exact horizontal sequences, the upper of AS-modules and the lower of A-
modules, where the vertical maps are deformations. Then:

(i) ι∗ ob(q, N ) = ι∗ ob(q, L′) in Ext2A(N, L′) ⊗kI

(ii) π∗ ob(q, N ) = π∗ ob(q, M) in Ext2A(M, N) ⊗kI

Furthermore, assume we have short exact sequences of A-modules

0 Ñi

ιi L̃′
i

ηi M̃′
i 0 and 0 L̃i

ρi M̃i

πi Ñi 0
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for i = 1, 2 with maps to the corresponding upper sequences above which form commuta-
tive diagrams of deformations. Let δ, ζ and ξ denote the differences of the deformations 
Ñi → N , the L̃′

i → L′ and the M̃i → M, respectively (cf. Proposition 4.2). Then:

(iii) ι∗δ = ι∗ζ in Ext1A(N, L′) ⊗kI and π∗δ = π∗ξ in Ext1A(M, N) ⊗kI

Proof. (i) Let (F , d) be an AS-free resolution of N and put F := F⊗Sk which is an 
A-free resolution of N :

0 N An0
S

ε An1
S

d1 An2
S

d2
. . .

d3

0 N An0
ε

An1
d1

An2
d2

. . .
d3

(4.5.1)

Similarly, let (G, d′) be a free resolution of M′ and put G = G⊗Sk. Then one can make 
F⊕G a free resolution of L′ with a differential of the form 

(
d′ 0
e d

)
. To find the obstruction 

we lift the differentials to maps of free A-modules: d̃1 : An1 → An0 lifts d1 and so on. Then 
the obstruction for lifting N to A is induced by d̃2 which factors through a degree two 
cocycle a : F → F⊗kI in the Yoneda complex End·A(F ) ⊗kI which represents ob(q, N ). 
In the case of L′ the obstruction is induced by 

(
d̃′ 0
ẽ d̃

)2 which factors through a degree 

two cocycle 
(
b 0
c a

)
in End·A(G⊕ F ) ⊗kI which represents ob(q, L′). Since ι is represented 

by the inclusion of resolutions F → G ⊕ F we find that ι∗a =
( 0
a

)
= ι∗

(
b 0
c a

)
which in 

cohomology gives ι∗ ob(q, N ) = ι∗ ob(q, L′). A similar argument gives (ii).
(iii), first part: We can assume that L̃′

i has a resolution with differential 
( d̃′

i 0
ẽi d̃i

)
for 

i = 1, 2 lifting the resolution of L′ given above. Then the difference of the two differentials 
factors through a degree one cocycle 

(
s 0
t r

)
in End·A(G⊕ F ) ⊗kI which represents ζ. Then 

the rest is analogous to (ii). The second part is similar. �
5. Maps of deformation functors induced by Cohen-Macaulay approximation

After two lemmas relating to the Schlessinger-Rim conditions in Artin’s [2] we state 
several results about various maps of deformation functors induced by Cohen-Macaulay 
approximation.

For any cofibred category F over ΛHk (or over the subcategory ΛAk of Artin rings) we 
will in the following assume that the fibre category F(k) is equivalent to a one-object, 
one-morphism category. Furthermore, for all maps f : R → S in ΛHk and for all objects a
in F(R) we choose a push forward f∗a in F(S). Let F = F̄ denote the functor associated 
to F.

Definition 5.1. Assume that F and G are cofibred categories over ΛHk which are locally of 
finite presentation (‘limit preserving’ in [2, p. 167]). A map ϕ : F → G is smooth (formally 
smooth) if, for all surjections f : S′ → S in ΛHk (respectively in ΛAk), the natural map



R. Ile / Journal of Algebra 568 (2021) 437–466 449
(f∗, ϕ(S′)) : F (S′) → F (S) ×G(S) G(S′) (5.1.1)

is surjective. Put hR = Hom
ΛHk

(R, −). Let v be an object in F(R) and let cv : hR → F

denote the corresponding Yoneda map. If R is algebraic as Λ-algebra and cv is smooth 
(an isomorphism) then v is versal (respectively universal). Moreover, v (or a formal 
element v = {vn} in lim←−−F(R/mn+1

R )) is formally versal if cv restricted to ΛAk is formally 
smooth.

Definition 5.2. Suppose F → ΛHk is a cofibred category satisfying the Schlessinger-Rim 
condition (S1’) in [2, 2.2] with associated functor F . Let a be an object in F(S) and I a 
finite S-module. Put S⊕I = SymS(I)/(Sym2

S(I)). Let Fa(S⊕I) denote the groupoid of 
maps a′ → a above the projection p : S⊕I → S and let DF

a (I) denote the S-module of 
isomorphism classes in Fa(S⊕I); [36, 2.10]. Define the condition on F:

(S2) DF
a (I) is a finite S-module

for all reduced S in ΛHk, objects a and finite S-modules I; [2, 2.5].

If A is a local algebraic k-algebra and N a finite A-module then by standard arguments 
Def(A,N) is locally of finite presentation and satisfies (S1’); cf. [24, 4.1], and likewise for 
DefAN where A is a flat and algebraic Λ-algebra.

Lemma 5.3. Suppose F satisfies (S1’) and has a versal object v in F(R). Then F satisfies
(S2).

Proof. We use the assumptions in Definition 5.2. By versality there is a g in hR(S)
with g∗v ∼= a in F(S). If a′ is a lifting of a along p then there is a g′ lifting g with 
g′∗v

∼= a′ by versality. I.e. the S-linear map DhR
g (I) → DF

a (I) is surjective. Now DhR
g (I) ∼=

HomR(ΩR/Λ, I). Since R is algebraic, ΩR/Λ is a finite R-module and so is DF
a (I). �

Let A be a Cohen-Macaulay local algebraic k-algebra and N a finite A-module. Fix 
a minimal MCMA-approximation 0 → L → M

π−→ N → 0 and a minimal D̂A-hull 
0 → N

ι−→ L′ → M ′ → 0.

Lemma 5.4. Suppose (S2) holds for Def(A,N).

(i) If Ext1A(N, M ′) = 0 then (S2) holds for Def(A,L′).
(ii) If Ext1A(L, N) = 0 then (S2) holds for Def(A,M).

Proof. (i) We use the assumptions in Definition 5.2. Let a = (S → A, N ) ∈ Def(A,N)(S), 
and consider the bottom short exact sequence to the right in (3.0.2). Let a0 = (S → A) ∈
DefA(S) be the image of a by the forgetful map. Suppose r > 0. As ExtrA(M ′, L′) = 0, 
base change theory implies that ExtrA(M′, L′⊗I) = 0; cf. [33, 5.1]. Then the natural map 
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(ιN )∗ : ExtrA(L′, L′⊗I) → ExtrA(N , L′⊗I) is an isomorphism. Composing the surjection 
(ιN )∗ : ExtrA(N , N⊗I) → ExtrA(N , L′⊗I) with the inverse of (ιN )∗ gives a natural map

ηr : ExtrA(N ,N⊗I) → ExtrA(L′,L′⊗I) . (5.4.1)

Base change theory and the assumption implies as above that Ext1A(N , M′⊗I) = 0. 
From the long exact sequence it follows that η1 is surjective and η2 is injective.

Put Da0(I) = DefA/S(S⊕I) and b = (S → A, L′). To the ring maps S → A →
A⊕N there is a natural Jacobi-Zariski long-exact sequence of (graded) André-Quillen 
cohomology obtained from [25, Chap. IV, 2.3] which maps to the corresponding sequence 
for k → A → A⊕N , see [24, 2.10]. Low-degree terms give the commutative diagram of 
A-modules

Ext1A(N ,N⊗I)
η1

Da(I)
δ

Da0(I) Ext2A(N ,N⊗I)
η2

Ext1A(L′,L′⊗I) Db(I) Da0(I) Ext2A(L′,L′⊗I)

(5.4.2)

where the middle terms are canonically isomorphic to the degree one André-Quillen 
cohomology, see [25, III 2.1.2.3], cf. [24, 2.5]. By a diagram chase it follows that δ is 
surjective and (S2) holds for Def(A,L′). Similarly for (ii). �
Theorem 5.5. Consider the map σL′ : Def(A,N) → Def(A,L′) in Lemma 3.1.

(i) If HomA(N, M ′) = 0 then σL′ is injective.
(ii) If Ext1A(N, M ′) = 0 then σL′ is formally smooth.
(iii) Suppose Def(A,N) has a versal element v = (R → vA, vN ) and Ext1A(N, M ′) = 0. 

Then (R → vA, σL′( vN )) is a versal element for Def(A,L′) and σL′ is smooth.

Analogous statements hold for σL : Def(A,N) → Def(A,L) with Ext1A(N, M) = 0 in (i) and 
Ext2A(N, M) = 0 in (ii-iii).

Example 5.6. If gradeN � n + 1 then ExtiA(N, M) = 0 for all i � n and any M in 
MCMA.

Proof. (i) Suppose S is an object in ΛHk and (ih : S → iA, iN ) are deformations of (A, N)
to S for i = 1, 2. Assume that the images (ih, iL′) under σL′ are isomorphic, identify 
1h : S → 1A with h = 2h : S → 2A = A, and let β : 1L′ → 2L′ denote the isomorphism. 
Let Sn = S/mn+1

S , An = A ⊗Sn etc. We construct a tower of isomorphisms {αn : 1Nn
∼=

2Nn} which commute with the tower {βn : 1L′
n → 2L′

n} obtained from β and conclude 
by Lemma 2.1 that the deformations 1N and 2N are isomorphic. The case n = 0 is 
trivial. Given αn−1 and use it to identify the iNn−1 and denote them by Nn−1. Let 
I = ker{Sn → Sn−1}. The ‘difference’ of the iNn is an element γ in Ext1A(N, N) ⊗kI by 
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Lemma 4.5 which ι∗ maps to 0 in Ext1A(N, L′) ⊗kI. Since ι∗ is injective by assumption, 
γ = 0. By Proposition 4.2 the iNn are isomorphic by an isomorphism �αn compatible with 
αn−1. Then βn

1ιn−2ιn
�αn by the induction hypothesis factors through a δn : N → L′⊗kI

which (since HomA(N, M ′) = 0) factors through a map η : N → N⊗I. Adding the map 
induced from η to �αn gives αn which commutes with βn.

(ii) Let S → S in ΛAk be surjective with kernel I, b = (h : S → A, L′) a deformation 
of (A, L′) to S and let b̄ = (h: S → A,L′) denote the base change of b to S. Suppose 
there is a deformation (h� : S → A�,N) of (A, N) which σL′ maps to b̄. As above 
we can assume that h� = h. By induction on the length of S we can assume that 
I ·mS = 0. By Lemma 4.5, ob(q : A → A,N) maps to ob(q,L′) under Ext2A(N, N) ⊗I →
Ext2A(L′, L′) ⊗I which by the assumption is injective. Since L′ lifts L′ to A, ob(q,L′) = 0. 
By Proposition 4.2 there exists a lifting �N of N to A. Put �L′ = σL′(�N ). The difference of 
�L′ and L′ gives a θ ∈ Ext1A(L′, L′) ⊗I. By assumption Ext1A(N, N) ⊗I maps surjectively 
to Ext1A(L′, L′) ⊗I and a lifting of θ perturbs �N to a lifting N of N with σL′(N ) = L′

by Lemma 4.5.
(iii) By Lemma 5.3, the versality of v implies (S2) for Def(A,N). Then (S2) follows 

for Def(A,L′) by Lemma 5.4. Put vL′ = σL′( vN ) and v′ = (R → vA, vL′). By (ii), v′ is 
formally versal. To test v′ for versality, let S → S0 in ΛHk be surjective with kernel I
and b0 = (h0 : S0 → A0, L′

0) a deformation of (A, L′) to S0 induced from v′ by a map 
f0 : R → S0. Let b = (h : S → A, L′) be a lifting of b0 to S. Put Sn = S/In+1 and 
bn = bSn

. As noted by H. van Essen [41, p. 416], H. Flenner’s [11, 3.2] (where (S2) 
is needed) implies that a lifting f : R → S of f0 with f∗v′ ∼= b above b0 exists in the 
case I is nilpotent; cf. [24, 3.3]. This implies that we can find a projective system of 
maps {fn : R → Sn} and isomorphisms {(fn)∗v′ ∼= bn}. Let f̂ : R → lim←−−Sn =: SÎ denote 
the induced map. The isomorphism lim←−−

vASn
∼= lim←−−ASn

implies that the completions in 
maximal ideals are isomorphic too; vÂ ∼= A ̂.

Any S in ΛHk is a direct limit of a filtering system of algebraic Λ-algebras in ΛHk. 
Since Def(A,L′) is locally of finite presentation it is sufficient to prove the lifting property 
for S algebraic. Since Λ is excellent, so is S by [13, 7.8.3] and [14, 18.7.6]. By Artin’s 
Approximation Theorem [1, 2.6] (and [34, 1.3], [35]) there is an isomorphism vASÎ

∼= ASÎ

over vAS0
∼= A0. By Lemma 2.1 there is a corresponding isomorphism of the modules 

vL′
SÎ

∼= L′
SÎ

compatible with vL′
S0

∼= L′
0. Hence we have an isomorphism of deformations 

f∗v
′ ∼= bSÎ

above b0. By using Artin’s Approximation Theorem [1, 1.12] one shows that 
there is a map g : R → S lifting f0 and an isomorphism of deformations g∗v′ ∼= b above 
b0. Smoothness of σL′ is equivalent to the versality. The last part is similar. �

An analogous proof gives:

Theorem 5.7. Consider the map σM : Def(A,N) −→ Def(A,M) in Lemma 3.1.

(i) If HomA(L, N) = 0 then σM is injective.
(ii) If Ext1A(L, N) = 0 then σM is formally smooth.
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(iii) Suppose Def(A,N) has a versal element (R → vA, vN ) and Ext1A(L, N) = 0. Then 
(R → vA, σM ( vN )) is a versal element for Def(A,M) and σM is smooth.

The analogous statements hold for σM ′ : Def(A,N) → Def(A,M ′) with Ext1A(L′, N) = 0 in
(i) and Ext2A(L′, N) = 0 in (ii-iii).

The following two results have very similar proofs to Theorems 5.5 and 5.7.

Corollary 5.8. Consider the map σA
L′ : DefAN → DefAL′ in Lemma 3.1.

(i) If HomA(N, M ′) = 0 then σA
L′ is injective.

(ii) If Ext1A(N, M ′) = 0 then σA
L′ is formally smooth.

(iii) Suppose DefAN has a versal element (R, vN ) and Ext1A(N, M ′) = 0. Then 
(R, σA

L′( vN )) is a versal element for DefAL′ and σA
L′ is smooth.

The analogous statements hold for σA
L : DefAN → DefAL with Ext1A(N, M) = 0 in (i) and 

Ext2A(N, M) = 0 in (ii) and (iii).

Corollary 5.9. Consider the map σA
M : DefAN → DefAM in Lemma 3.1.

(i) If HomA(L, N) = 0 then σA
M is injective.

(ii) If Ext1A(L, N) = 0 then σA
M is formally smooth.

(iii) Suppose DefAN has a versal element (R → AR, vN ) and Ext1A(L, N) = 0. Then 
(R → AR, σA

M ( vN )) is a versal element for Def(A,M) and σA
M is smooth.

The analogous statements hold for σA
M ′ : DefAN → DefAM ′ with Ext1A(L′, N) = 0 in (i) and 

Ext2A(L′, N) = 0 in (ii) and (iii).

Proposition 5.10. Put Q′ = HomA(ωA, L′) and Q = HomA(ωA, L). Then:

(i) Q′ and Q have finite projective dimension.
(ii) Def(A,L′)

∼= Def(A,Q′) and Def(A,L)
∼= Def(A,Q).

(iii) There are natural maps

s : Def(A,M) −→ Def(A,M ′) and t : Def(A,L′) −→ Def(A,L)

commuting with the maps σX : Def(A,N) → Def(A,X) for X equal to M and M ′, 
and to L′ and L, respectively. If A is a Gorenstein ring, then s is an isomorphism.

If A is a flat and algebraic Λ-algebra with A ⊗Λk ∼= A, the analogous statements hold 
for the deformation functors DefAX .
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Proof. (i) Applying HomA(ωA, −) to a finite D-resolution of L′ gives a finite projective 
resolution of Q′, see [22, 6.10] which also gives (ii).

(iii) There is a short exact sequence 0 → M → ω⊕n
A → M ′ → 0 such that the 

last map is without a common ωA-summand, corresponding (through ω-dualisation) 
to a short exact sequence 0 ← M∨ ← A⊕n ← (M ′)∨ ← 0 where n is minimal. The 
map s is the composition Def(A,M)

∼= Def(A,M∨) → Def(A,(M ′)∨)
∼= Def(A,M ′) where the 

first and the last map are given by ω-dualisation. The middle map is given by lifting 
the surjection A⊕n → M∨ to a free cover of a deformation of M∨ and taking the 
kernel to get the (minimal) syzygy as a deformation of (M ′)∨. This is a well-defined 
map of deformation functors. Then s maps a deformation M → M to the deformation 
(Syz(M∨))∨ → (M ′)∨∨ ∼= M ′. If A is a Gorenstein ring then ωA

∼= A and s has an 
inverse Def(A,M ′) → Def(A,M) given by the syzygy map.

Note that the pushout of M → ω⊕n
A with M → N gives N → L′. Consider the 

induced short exact sequence 0 → L → ω⊕n
A

μ−−→ L′ → 0. For a deformation (h, L′) in 
Def(A,L′) with structure map λ′ : L′ → L′ there is a lifting of μ to a map μ̃ : ω⊕n

h → L′. 
If L denotes the kernel of μ̃ then there is a cocartesian map λ : L → L commuting with 
ω⊕n
h → ω⊕n

A . By Lemma 3.2, (h, λ′) �→ (h, λ) gives a well defined map of deformation 
functors t : Def(A,L′) → Def(A,L).

Given a deformation (h, N ) in Def(A,N), let 0 → L → M → N → 0 and 0 → N →
L′ → M′ → 0 be the minimal sequences in (3.0.1). There is a commutative diagram of 
short exact sequences with (co)cartesian square (cf. [3])

0 0

0 L M
�

N 0

0 L ω⊕n
h L′ 0

M′ M′

0 0

(5.10.1)

where ω⊕n
h → L′ is given as above. The stated commutativity of maps of deformation 

functors follows. �
Corollary 5.11. Suppose A has residue field k and dimA � 2. Then there exists finite 
A-modules L′ and Q′ with inj.dimL′ = dimA = pdimQ′ and universal deformations 
L′ ∈ DefAL′(A) and Q′ ∈ DefAQ′(A).

Proof. Let h = 1 ⊗ id : A → A⊗̃kA = A and N = A be the cyclic A-module defined 
through the multiplication map. Then A ⊗Ak ∼= A and N⊗Ak ∼= k and this gives a 
deformation N → k of the residue field of A which is universal. If L′ is the minimal D̂A-
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hull of the residue field k then L′ = σL′(N ) ∈ DefAL′(A) is universal by Corollary 5.8. If 
Q′ = HomA(ωA, L′) then HomA(ωA, L′) ∈ DefAQ′(A) is universal by Proposition 5.10. �
Corollary 5.12. Put X = SpecA. Let Z be a closed subscheme of X such that the com-
plement U is contained in the regular locus. Assume Ñ|U is locally free, depthZ N � 2
and H2

Z(HomA(L, N)) = 0. Then Ext1A(L, N) = 0 and so

σM : Def(A,N) −→ Def(A,M) and σA
M : DefAN −→ DefAM are formally smooth.

Proof. We show that Ext1A(L, N) = 0 and apply Theorem 5.7 and Corollary 5.9. By 
Theorem 1.6 in [12, Exposé VI] there is a cohomological spectral sequence

Ep,q
2 = ExtqA(L,Hp

Z(N)) ⇒ Extp+q
Z (X;L,N) . (5.12.1)

Since Hi
Z(N) = 0 for i = 0, 1 the restriction map Ext1A(L, N) → Ext1U (X;L, N) in the 

long exact sequence is injective. Since U is contained in the regular locus, M̃|U and hence 
L̃|U are locally free. It follows that Ext1U (X;L, N) is isomorphic to

Ext1OU
(L̃|U , Ñ|U ) ∼= H1(U,HomOX

(L̃, Ñ)) ∼= H2
Z(HomA(L,N)) (5.12.2)

which is zero by assumption. �
Example 5.13. The condition H2

Z(HomA(L, N)) = 0 is implied by Ñ|U = 0 and also by 
depthZ(HomA(L, N)) � 3.

The following result extends A. Ishii’s [26, 3.2] to deformations of the pair.

Proposition 5.14. Assume A is Gorenstein. If depthN = dimA − 1 then

σM : Def(A,N) −→ Def(A,M) and σA
M : DefAN −→ DefAM are smooth.

Proof. Let S2 → S1 be a surjection in ΛHk and (h2 : S2 → B2, M2) an element in 
Def(A,M)(S2) which maps to (h1 : S1 → B1, M1) in Def(A,M)(S1). Suppose σM maps 
(h′, N1) in Def(A,N)(S) to (h1, M1). By the depth lemma, depthL = depthN + 1 =
dimA, so L is a MCM-module of finite injective dimension, hence L ∼= A⊕r for some 
r since A is Gorenstein (see [3, 3.7] for a more general statement). We can assume 
that h′ = h1 and that the minimal MCM-approximation of N is 0 → L1

ρ1−→ M1 →
N1 → 0 where L1 ∼= B⊕r

1 . Put L2 := B⊕r
2 and choose a lifting ρ2 : L2 → M2 of ρ1. 

Put N2 := coker ρ2 with its natural map to N1. Then N2 is S2-flat (ρ2⊗S1 = ρ1) and 
σM (h2, N2) = (h2, M2). �
Remark 5.15. If A is a Gorenstein domain and M is an MCM A-module there is a short 
exact sequence 0 → A⊕r → M → N → 0 with N a codimension one Cohen-Macaulay 



R. Ile / Journal of Algebra 568 (2021) 437–466 455
module; cf. [5, 1.4.3]. This sequence is an MCMA-approximation and Proposition 5.14 ap-
plies. However, it is not always possible to continue this reduction. Assume A is a normal 
Gorenstein complete local ring. Then all MCM A-modules are MCMA-approximations 
of codimension 2 Cohen-Macaulay modules up to stable isomorphism if and only if A is 
a unique factorisation domain; see [45,30].

Let A be a Gorenstein normal domain of dimension 2 and 0 → A⊕r−1 → M → I → 0
the minimal MCM approximation of a torsion-free rank 1 module I. Let U denote the 
regular locus in X = SpecA. If A = A⊗̃kS for S in kHk there is a natural section A → A. 
Let UA denote U×X SpecA. Consider the subfunctor DefA,∧

M ⊆ DefAM of deformations 
M such that ∧rM|UA

∼= OUA . Note that H0(U, ∧rM) is isomorphic to the MCM A-
module I := H0(U, I). Proposition 5.14 implies that the resulting map from the (local) 
functor of quotients QuotII⊆I → DefA,∧

M is smooth; cf. [26, 3.2]. In particular, if EA is the 

fundamental module (see (5.16.3) below) and A/mA
∼= k then hA

∼= QuotAmA⊆A
∼= DefAk

gives a versal family for DefA,∧
EA

by the MCM approximation in [22, 7.4]; see [26, 3.4].

Example 5.16. Assume A/mA
∼= k and let M denote the minimal MCM approximation 

of k. It is given as M ∼= HomA(SyzAd (k∨), ωA) where d = dimA; cf. [22, 5.6]. One 
has k∨ = ExtdA(k, ωA) ∼= k. We apply HomA(−, ωA) to the short exact sequence 0 →
SyzA(mA) → A⊕β1

(x)−−→ mA → 0. Assume dimA = 2. Since Ext1A(mA, ωA) ∼= k we obtain 
the MCM approximation of k from the exact sequence

0 → ωA
(x)tr−−−→ ω⊕β1

A −→ M −→ k → 0 . (5.16.1)

In particular rk(M) = β1 − 1. Put μ(M) = dimM/mAM and let t(A) denote the type 
of A; cf. [5, 1.2.15]. Then μ(M) = t(A) · β1 + 1; cf. [5, 3.3.11].

If k = k̄ and A = A(m) = k[um, um−1v, . . . , vm]h, the vertex of the cone over the 
rational normal curve of degree m, the indecomposable MCM A-modules are Mi =
(ui, ui−1v, . . . , vi) for i = 0, . . . , m−1 (an argument independent of characteristic is given 
in [15, Lemma 1]). In particular ωA = Mm−2 (cf. [15, p. 616]) so that μ(M) = m2 and 
from this M = M⊕m

m−1 follows. Then

dimk DefAM (k[ε]) = dimk Ext1A(M,M) = (m− 1) ·m2 (5.16.2)

by applying a result of Ishii; cf. equation (12) and calculations on p. 616 in [15]. Moreover, 
applying HomA(−, k) to 0 → m → A → k → 0 gives dimk DefAk (k[ε]) = β1 = m +1. Even 
in the Gorenstein case (m = 2) the tangent map is not surjective and so Proposition 5.14
cannot in general be extended to depthN = dimA −2. See [15] for a detailed description 
of the strata of the reduced versal deformation space of M defined by Ishii in [26].

If dimA = 2 the MCMA-approximation of mA is a short exact sequence

0 → ωA −→ EA −→ mA → 0 (5.16.3)
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where EA is called the fundamental module; cf. [22, 7.1.1]. Applying HomA(k, −) to 
0 → mA → A → k → 0 gives an exact sequence

0 → Ext1A(k, k) −→ DefAmA
(k[ε]) −→ k⊕t(A) −→ Ext2A(k, k) (5.16.4)

since Ext1A(mA, mA) ∼= Ext2A(k, mA) and dimA = 2. If A = A(m) then EA is isomorphic 
to M⊕2

m−1 with dimk DefAEA
(k[ε]) = 4(m − 1). Hence the conclusion in Proposition 5.14

cannot hold in the non-Gorenstein case m > 2.

6. Deforming maximal Cohen-Macaulay approximations of Cohen-Macaulay modules

Several definitions and results are given to prepare the statement of Theorem 6.6 and 
then to prove it.

Definition 6.1. A functor F : ΛAk → Sets has an obstruction theory if there is a k-linear 
functor H2

F : modk → modk and for each small surjection p : R → S in ΛAk (i.e. with 
kernel I such that mR·I = 0) and each a ∈ F (S) there is an element o(p, a) ∈ H2

F (I)
which is zero if and only if there exists a b ∈ F (R) mapping to a. The obstruction should 
be functorial with respect to such lifting situations. Cf. [2, 2.6].

Example 6.2. Consider the functor F = DefAN : ΛHk → Sets defined in Section 2.3 where 
N is an A = A ⊗Λk-module. For a small surjection p : R → S with kernel I, let J
denote the kernel of the induced q : AR → AS . If N is a deformation of N to S, there 
is an obstruction element ob(q, N ) in Ext2AS

(N , N⊗J) ∼= Ext2A(N, N) ⊗kI which is 
natural for the lifting situation by Proposition 4.2 and Lemma 4.3. Then H2

F (−) :=
Ext2A(N, N) ⊗k(−) with the obstruction o(p, N ) := ob(q, N ) gives an obstruction theory 
for DefAN .

Lemma 6.3. Given a map f : R → S in ΛHk with both rings being algebraic over Λ (or 
complete) such that the induced map

mR/(m2
R + immΛ·R) −→ mS/(m2

S + immΛ·S)

is surjective. Then f is a surjection.

Proof. Let tR/Λ denote the relative Zariski tangent space [mR/(m2
R +immΛ·R)]∗. There 

is a Λ-algebra map flc : Rlc → Slc which is the Zariski localisation in k-points of a map of 
finite type Λ-algebras such that the henselisation of flc is f . The induced map t∗Rlc/Λ

→
t∗R/Λ is an isomorphism, and likewise for S. Then t∗Rlc/Λ

→ t∗Slc/Λ
surjective implies 

mRlc/(mRlc)2 → mSlc/m
2
Slc

surjective; cf. [38, Tag 06GB]. Then immRlc·Slc = mSlc by 
Nakayama’s lemma. In particular, Slc is the Zariski localisation of a finite Rlc-algebra 
S1 by [38, Tag 052V]. Since R̂lc → Ŝlc ∼= Ŝ1 is surjective by [38, Tag 00M9], Rlc → S1 is 
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surjective by faithfully flatness of completion. Since henselisation preserves surjections 
f is surjective. �
Example 6.4. Suppose F : ΛHk → Sets is a functor with versal elements in F (R) and F (S)
such that the induced maps hR(k[ε]) → F (k[ε]) ← hS(k[ε]) are bijective. Then R ∼= S. 
Indeed, by versality there are maps f : R → S and g : S → R which are surjections by 
Lemma 6.3. Then gf is an automorphism since R is noetherian.

Put tF/Λ = F (k[ε]). In the case k0 → k is a separable field extension, we will call a 
base ring R of a (formally) versal (formal) element in F for minimal if the induced map 
hR(k[ε]) → tF/Λ is bijective; cf. [38, Tag 06IL].

Lemma 6.5. Suppose k0 → k is a separable field extension and ϕ : F → G is a map of 
set-valued functors on ΛAk which have minimal formally versal formal families with base 
rings RF and RG which are algebraic over Λ (or complete). Put V = ker{t∗G/Λ → t∗F/Λ}. 
Assume:

(i) The map tF/Λ → tG/Λ is injective.
(ii) There are obstruction theories for F and G such that oG(p, ϕS(ζ)) = 0 implies 

oF (p, ζ) = 0 for any small surjection p : R → S in ΛAk and element ζ ∈ F (S).

Then every f : RG → RF in ΛHk lifting ϕ is surjective and the ideal kerf is generated 
by a lifting of a k-basis for V . In particular kerf is generated by ‘linear forms’ modulo 
immΛ·RG.

Proof. The Jacobi-Zariski-sequence of an object Λ → R → k in ΛHk gives the exact 
sequence (cf. [38, Tag 06S9])

(mΛ/m
2
Λ)⊗k0k mR/m

2
R

d ΩR/Λ⊗Rk Ωk/Λ 0 (6.5.1)

where Ωk/Λ
∼= Ωk/k0 which equals 0 by separability. Then

ΩR/Λ⊗Rk ∼= mR/(m2
R + immΛ·R) = t∗R/Λ (6.5.2)

Hence

hR(k[ε]) ∼= DerΛ(R, k) ∼= Homk(ΩR/Λ⊗Rk, k) ∼= tR/Λ. (6.5.3)

Then the surjective map ϕ(k[ε])∗ : t∗G/Λ → t∗F/Λ by minimality (cf. [38, Tag 06IL]) is 
canonically isomorphic to the map t∗RG/Λ → t∗RF /Λ induced by f so f is surjective by 
Lemma 6.3. Moreover, kerf maps surjectively to V inducing the natural surjective k-
linear map
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g : (kerf)/(mRG · ker f + immΛ·RG ∩ kerf) −→ V . (6.5.4)

Lift a k-basis for V to elements in kerf and let J be the ideal in RG generated by 
these elements. Then g is an isomorphism if and only if J = kerf . Put R = RG/J , 
Rn = R/(mn+1

R
+ immΛ ·mn−1

R
). Let ζn ∈ G(Rn) for n = 1, 2, . . . denote the images of a 

formal versal family (ζn) for G. Similarly, put RF
n := R/(mn+1

RF + immΛ ·mn−1
RF ) and let 

(ξn), ξn ∈ F (RF
n ), denote a formal versal family for F . We prove that the maps Rn → RF

n

are isomorphisms by induction on n. Surjectivity and isomorphic completions imply that 
R→ RF is an isomorphism also in the algebraic case. Put K1 = ker{RG

1 → R1}. Then K1
is contained in V , but since J → V is surjective and factors through K1 we have K1 = V . 
This is equivalent to t∗

R/Λ
∼= t∗F/Λ and to R1 ∼= RF

1 . Let fn : Rn → RF
n be the map induced 

from f . Assume fn−1 : Rn−1 ∼= RF
n−1. Then Rn → RF

n−1 is a small surjection in ΛAk and 
by (ii) there is an element η ∈ F (Rn) lifting ξn−1. By formal versality there is a map 
h′ : RF

n → Rn above RF
n−1 such that F (h′)(ξn) = η. Then fnh′ is an automorphism of 

RF
n lifting the identity on RF

n−1. Precomposing h′ with the inverse of this automorphism 
gives a section h to fn. Then h is surjective too and fn is an isomorphism. �

Let h : S → A be a flat and local map of noetherian rings. An h-sequence is a sequence 
J = (f1, . . . , fn) in A such that the image J in A = A ⊗SS/mS is an A-sequence. By 
[23, 2.5] J is an h-sequence if and only if J is an A-sequence and A/ J is S-flat. I.e. J
is a transversally A-regular sequence relative to S as defined in [14, 19.2.1].

Theorem 6.6. Suppose k0 → k is a separable field extension. Let h : Λ → A denote the 
henselisation of a flat and finite type ring map at a maximal ideal (cf. Section 2.2). 
Assume A = A ⊗Λk is Cohen-Macaulay and J = (f1, . . . , fn) is an h-sequence. Put 
B = A/ J , B = B⊗Λk and let J be the image of J in A. Let N be a maximal Cohen-
Macaulay B-module and

0 → L −→ M −→ N → 0

a minimal MCMA-approximation of N .
Suppose DefBN and DefAM have formally versal formal families (versal families) for 

minimal base rings RN and RM which are complete (respectively algebraic over Λ). If 
ob (A/J2 → B, N) = 0 then

RN ∼= RM/J

where J is generated by elements lifting a k-basis of the kernel of the map of dual Zariski 
vector spaces (cf. Lemma 6.5). In particular J is generated by ‘linear forms’ modulo 
immΛ·RM .

Example 6.7. The existence of a splitting of q : A/J2 → B implies that ob (q, N) = 0 for 
all B-modules N since A/J2⊗BN gives a lifting of N to A/J2.
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Let C be a category. Then ArrC denotes the category with objects being arrows in C
and arrows being commutative diagrams of arrows in C. An endo-functor F on C induces 
an endo-functor ArrF on ArrC. Let B be a noetherian local ring and PB the additive 
subcategory of projective modules in modB . Let HomB(N, M) denote the homomor-
phisms from N to M in the quotient category modB = modB/PB i.e. B-homomorphisms 
modulo the ones factoring through an object in PB. For each N in modB we fix a minimal 
B-free resolution and use it to define the syzygy modules of N . For each i the associ-
ation N �→ SyzBi N induces an endo-functor on modB defined by A. Heller [19]. Define 
ExtiB(N, M) as HomB(SyzBi N, M) which turns out to be isomorphic to ExtiB(N, M) for 
all i > 0.

Lemma 6.8. Let A be a noetherian local ring and J = (f1, . . . , fn) a regular sequence. 
Put B = A/J and suppose N and Nj (j = 1, 2) are finite B-modules. Let MN denote 
B⊗ASyzAnN .

(i) There is an injective map uN : N → MN of B-modules which induces a functor 
u : modB → ArrmodB .

(ii) The functor u commutes with the B-syzygy functor :

Arr SyzBi (uN ) = uSyzBi N

(iii) Put Mj = MNj
. The endo-functor B⊗ASyzAn (−) induces a natural map

ExtiB(N1, N2) → ExtiB(M1, M2)

which makes the following diagram commutative for all i:

ExtiB(N1, N2)

(uN2 )∗

ExtiB(M1, M2)

(uN1 )∗

ExtiB(N1, M2)

(iv) The inclusion uN : N ↪→ B⊗ASyzAnN splits ⇐⇒ ob(A/J2 → B, N) = 0.

Remark 6.9. Lemma 6.8 (iv) strengthens [4, 3.6] (in the commutative case).

Proof. (i) Suppose F∗ → N is the fixed minimal A-free resolution of N . Tensoring the 
short exact sequence 0 → SyzAnN

ι−→ Fn−1 → SyzAn−1N → 0 with B gives the exact 
sequence

0 → TorA1 (B,SyzAn−1N) → MN → B⊗AFn−1 → B⊗SyzAn−1N → 0 . (6.9.1)
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We have TorA1 (B, SyzAn−1N) ∼= TorAn (B, N) ∼= N (use the Koszul complex K(f) to resolve 
B). Let uN be the composition N ∼= ker(B⊗Aι) ⊆ MN . Then N �→ uN gives a functor 
of quotient categories.

(ii) Let p : Q → N be the minimal B-free cover and P∗ → SyzBN the minimal A-free 
resolution of the B-syzygy ker(p). Then there is an A-free resolution H∗ → Q which is 
an extension of F∗ by P∗. Since SyzAnB ∼= A, tensoring the short exact sequence of A-free 
resolutions 0 → P∗ → H∗ → F∗ → 0 by B we obtain by (i) a commutative diagram with 
exact rows

0 SyzBN
uSyzN

Q N

uN

0

0 B ⊗ SyzAn (SyzBN) Br⊕Q B ⊗ SyzAnN 0

(6.9.2)

which proves the claim.
(iii) By (ii) it is enough to prove this for i = 0. The case i = 0 follows from the 

functoriality in (i).
(iv,⇐) For the case n = 1 see the proof of [4, 3.2]. Assume n � 2. We follow the proof 

of [4, 3.6] closely. Let A1 = A/(f1). Then F (1)
∗ = A1⊗F∗�1[1] gives a minimal A1-free 

resolution of A1⊗SyzAN . We have ob(A/J2 → B, N) = 0 ⇒ ob(A/(f1)2 → A1, N) = 0
and hence N is a direct summand of A1⊗SyzAN . Let G∗ → N be a minimal A1-free 
resolution of N . Then G∗ is a direct summand of F (1)

∗ and hence SyzA1
n−1N is a direct 

summand of SyzA1
n−1(A1⊗SyzAN) = A1⊗SyzAnN . Tensoring this situation with B (and 

let F = B⊗F ) gives a commutative diagram:

N
u

B⊗SyzAnN ῑ
Fn−1 . . . F1 F0 N

N
u1

B⊗SyzA1
n−1N

ῑ1
Gn−2 . . . G0 N

(6.9.3)

Since ob(A/J2 → B, N) = 0 ⇒ ob(A1/(f2, . . . , fn)2 → B, N) = 0 the map u1 splits by 
induction on n. So u splits. The other direction follows from [4, 3.6]. �
Proposition 6.10. Suppose h : S → A is a local Cohen-Macaulay map, J = (f1, . . . , fn)
an h-sequence, h: S → B = A/J the local Cohen-Macaulay map induced from h, and 
(h, N ) an object in MCM. Let

ξ : 0 → L −→ M π−−→ N → 0

be the minimal MCM-approximation of N over h. Then tensoring ξ by B gives a 4-term 
exact sequence

0 → N⊗J /J 2 −→ L −→ M π−−→ N → 0
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which represents the obstruction class ob(q : A/J 2 → B, N ) ∈ Ext2B(N , N⊗J /J 2).
Moreover,

ob(q,N ) = 0 ⇐⇒ ob(q,N∨) = 0 ⇐⇒ π splits

where N∨ = ExtnA(N , ωh).

Proof. If K(f) denotes the Koszul complex then TorAi (B, M) = Hi(K(f) ⊗M) = 0 for 
i > 0 by [33, 5.1-2]; cf. [23, Sec. 2.2]. There is a map from the defining short exact 
sequence 0 → SyzAN → F0 → N → 0 to ξ extending idN . Tensoring with B gives 
a map of 4-term exact sequences with outer terms canonically identified. Hence they 
represent the same element ob(q, N ) in Ext2B(N , N⊗J /J 2).

By the argument in [22, 5.6] we can assume that ξ is given as 0 → im(d∨n) →
(SyzAnN∨)∨ → N∨∨ → 0 where (F∗, d∗) is a minimal A-free resolution of N∨. By 
Lemma 6.8, ob(q, N∨) = 0 if and only if u : N∨ → B⊗SyzAnN∨ splits. But applying 
HomB(−, ωh) to u gives π since N ∼= ExtnA(N∨, ωh) ∼= HomB(N∨, ωh) (use 3.3.10 and 
the bottom of p. 114 in [5] combined with base change theory; cf. [22, 2.4]). �
Remark 6.11. In the absolute Gorenstein case with n = 1 this is given in [4, 4.5].

Proof of Theorem 6.6. Let ϕ denote the composition

F := DefBN −→ DefAN
σM−−−→ DefAM =: G (6.11.1)

Formal versality in the complete case and versality in the algebraic case implies that 
there is a lifting f : RM → RN of ϕ. The theorem follows from Lemma 6.5 once the 
conditions (i) and (ii) are verified.

(i) By Proposition 4.2, tF/Λ ∼= Ext1B(N, N) and tG/Λ ∼= Ext1A(M, M). Let π : M → N

denote the MCMA-approximation and π : M → N the B-quotient of π. Then π splits by 
Proposition 6.10. Let ν : N → M denote a splitting and τ : M → M the quotient map. 
Then π∗ : ExtnB(N, N) → ExtnB(M, N) splits for any n. Since J is an M -regular sequence, 
τ∗ : ExtnB(M, N) ∼= ExtnA(M, N). Since ExtiA(M, L) = 0 for i > 0, π∗ : ExtnA(M, M) ∼=
ExtnA(M, N) for n > 0. A diagram ensues:

ExtnA(M,N) ExtnA(M,M)
∼=
π∗

τ∗τ∗

ExtnB(N,N)
π∗

ExtnB(M,N)

∼=τ∗

ν∗

ν∗
ExtnB(M,M)

π∗

(6.11.2)

Since ϕk[ε] : tF/Λ → tG/Λ corresponds to the composition of injective maps (π∗)−1τ∗π∗ in 
(6.11.2) for n = 1, ϕk[ε] is injective.
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(ii) Suppose p : R → S is a small surjection in ΛHk, put q = id⊗̃p : AR → AS , 
q = B⊗q : BR → BS , and so on. Suppose N is in DefBN (S), consider N as AS-module 
and put M = σM (N ) → N ; cf. (3.0.1). There is a fixed map to π given in (3.0.2). Then 
ob(q, M) is contained in Ext2A(M, M) ⊗I by Lemma 4.5 and we prove that it maps to 
ob(q, N ) in Ext2B(N, N) ⊗I along the maps in (6.11.2).

Consider the short exact sequences of AR-modules

0 → SyzAR(M) −→ G′ −→ M → 0 (6.11.3)

where G′ is free. Apply − ⊗RS and obtain the 4-term exact sequence of AS-modules

0 → M⊗kI −→ SyzAR(M)⊗RS −→ G −→ M → 0 (6.11.4)

which represents ob(q, M) ∈ Ext2AS
(M, M⊗I) by Lemma 4.4. It splits into two short 

exact sequences along SyzAS (M) which is S-flat. Applying − ⊗Sk to (6.11.4) gives a 
4-term exact sequence of A-modules

0 → M⊗kI −→ SyzAR(M)⊗Rk −→ G −→ M → 0 (6.11.5)

which represents ob(q, M) ∈ Ext2A(M, M⊗I), cf. Lemma 4.5. Since M is MCM and J
is a regular sequence, applying B⊗A− to (6.11.5) gives another 4-term exact sequence 
of B-modules

0 → M⊗kI −→ B⊗A SyzAR(M)⊗Rk −→ G −→ M → 0 (6.11.6)

which represents τ∗τ∗ ob(q, M) in Ext2B(M, M⊗I). Pushout by π⊗ id : M⊗I → N⊗I

and pullback by ν : N → M gives the image of ob(q, M) in Ext2B(N, N⊗I) (cf. (6.11.2)):

0 → N⊗kI −→ E −→ Q −→ N → 0 (6.11.7)

With a BR-free cover F ′ → N , a similar argument gives a 4-term sequence of B-modules

0 → N⊗kI −→ SyzBR(N )⊗Rk −→ F −→ N → 0 (6.11.8)

which represents ob(q, N ). Since M ∼= N⊕X for some B-module X, we may lift a sum 
of free covers to a free cover of M and assume that G′ = G′

1⊕G′
2 with F ′ = BR⊗G′

1. 
Then Q ∼= F ⊕ SyzB(X) and SyzB(M) ∼= SyzB(N) ⊕ SyzB(X). Lifting π gives a map 
from (6.11.6) to (6.11.8). In particular there is a surjection B⊗A SyzAR(M) ⊗Rk →
SyzBR(N ) ⊗Rk which restricts to the composition M⊗I → N⊗I → SyzBR(N ) ⊗Rk. 
The induced map from E to SyzBR(N ) ⊗Rk together with the projection from Q to F
gives a map from (6.11.7) to (6.11.8) which is the identity at the end terms. Thus they 
represent the same class in cohomology. �
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Assume Q = k[x1, . . . , xm]h, f ∈ m2
Q and put B = Q/(f). Assume N is a MCM 

B-module. Then there are endomorphisms ϕ and ψ of Q⊕n where n = dimk N/mN =
e(B) · rk(N) with ϕψ = f · id = ψϕ and cokerϕ ∼= N . The pair (ϕ, ψ) is called a matrix 
factorisation of f which defines N . Put P = Q[t]h, F = f + t2 ∈ P and A = P/(F ). 
Define G(ϕ, ψ) = (Φ, Ψ) where

Φ =
(

ϕ t
−t ψ

)
and Ψ =

(
ψ −t
t ϕ

)
(6.11.9)

are endomorphisms of P⊕2n in block-matrix notation. Then (Φ, Ψ) is a matrix factori-
sation of F and thus defines an MCM A-module cokerΦ which we denote by G(N). 
Indeed, G defines a functor of stable categories G : modB → modA and was intro-
duced by H. Knörrer in [31]. If M a Cohen-Macaulay A-module of codimension c, put 
M∨ = ExtcA(M, A). Note that N∨ ∼= HomB(N, B) for any MCM B-module; cf. the 
bottom of p. 114 in [5].

Corollary 6.12. For any N in MCMB there is an MCMA-approximation

0 → A⊕2n −→ G(N∨)∨ −→ N → 0.

Put M = G(N∨)∨. Suppose DefBN and DefAM have formally versal formal families (or 
versal families). Then the minimal base rings RN and RM for DefBN and DefAM satisfy

RN ∼= RM/J

where J is generated by elements lifting a k-basis of the kernel of the map of dual Zariski 
tangent vector spaces ϕ∗

k[ε] : Ext1A(M, M)∗ → Ext1B(N, N)∗; cf. Lemma 6.5.

Proof. Note first that a minimal P -free resolution of N together with a homotopy for 
the multiplication with F on the resolution is constructed from a minimal matrix fac-
torisation (ϕ, ψ) for N :

N

0

Pn

[
t
ψ

]
·F

Pn ⊕ Pn[ t ϕ ]

[ψ −t ]·F

Pn
[ ϕ
−t

]

·F

0

N Pn Pn ⊕ Pn[ t ϕ ] Pn
[ ϕ
−t

]
0

(6.12.1)

The Eisenbud construction [10] of an A-free resolution from these data gives:

N An A2n[ t ϕ ]
A2nΦ

A2nΨ
. . .

Φ (6.12.2)

In particular there is a short exact sequence 0 ← N ← An ← G(N) ← 0. Applying 
HomA(−, A) gives another short exact sequence 0 → An → G(N)∨ → N∨ → 0. This 



464 R. Ile / Journal of Algebra 568 (2021) 437–466
is then the MCMA-approximation of N∨. By local duality theory there is a canonical 
isomorphism N∨∨ ∼= N ; cf. [5, 3.3.10]. Thus the above construction applied to the MCM 
B-module N∨ gives the MCMA-approximation of N .

For the second part, note that t is a non-zero divisor in A and A/(t)2 ∼= B[t]/(t2), 
hence q : A/(t)2 � B splits and ob (q, −) = 0. Then Theorem 6.6 applies. �
Example 6.13. Put M = B⊗M . By Proposition 6.10, ob (A/(t)2 → B, N) = 0 gives 
a splitting M ∼= N⊕X where X is stably isomorphic to SyzB(N∨)∨ which (in the 
hypersurface case) is isomorphic to SyzB(N). Since Ext1B(SyzB(N), N) ∼= Ext2B(N, N), 
(6.11.2) gives

Ext1A(M,M) ∼= Ext1B(N,N) ⊕ Ext2B(N,N). (6.13.1)

Hence if dimk ExtiB(N, N) < ∞ for i = 1, 2 then DefBN and DefAM have formally versal 
formal families for complete base rings; cf. Proposition 4.2 and [36, 2.11].

If SpecB is an isolated singularity and char k �= 2 then SpecA is an isolated singularity. 
Then DefBN and DefAM have versal elements over algebraic base rings; cf. [41, 2.4] and 
[24, 4.5].
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