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Abstract

We investigate the relationship between China’s macroeconomic performance

and the world oil market over the past two decades. Unlike existing studies, we

allow for possible regime changes by utilizing a class of Markov-switching vector

autoregression (MS-VAR) models. The model identifies key regime changes in the

structural shocks when the oil market experiences low and high volatility. We find

that demand shocks from China and the rest of the world have a larger impact

on the real price of crude oil during periods of high volatility. Supply shocks, in

contrast, have a large effect on the price in the low volatility regime. A simi-

lar state-dependent phenomenon is observed for the impact of oil price shocks on

China economic activity, however the size of these responses is relatively small.

Thus, despite China being a major player in international oil markets, we conclude

that oil market shocks tend to have little impact on China’s real GDP growth.
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1 Introduction

Over the past three decades, China has risen from being the 9th largest economy by

world share of GDP to the second-largest economy in 2017. This rapid macroeconomic

expansion has resulted in the country becoming the world’s largest energy consumer since

2011, the biggest net importer of petroleum and other liquid fuels since 2013 and the top

crude oil importer since 2017. Despite these facts, the existing literature on the effect of

China’s macroeconomic growth on the world price of crude oil has provided conflicting

results. For instance, Liu et al. (2016) finds that China specific demand accounted for

half of the real oil price variation between 2000 and 2014, while many others report that

China’s demand had little or zero impact in the same period (Mu and Ye, 2011; Wu and

Zhang, 2014; Lin and Li, 2015; Cross and Nguyen, 2017).

A possible reason for these conflicting results is that most studies utilize linear models.

This is surprising for at least two reasons. First, the growth from China has been unex-

pectedly large over the past few decades (Kilian and Hicks, 2013), suggesting a possible

regime change in the demand for crude oil over this period. Second, multiple scholars

have shown that world energy market dynamics are best modeled by Markov-switching

models (Raymond and Rich, 1997; Clements and Krolzig, 2002; Fong and See, 2002; Vo,

2009; Bjørnland et al., 2018; Basher et al., 2016; Holm-Hadulla and Hubrich, 2017; Hou

and Nguyen, 2018), suggesting that linear models may be misspecified.

This paper breaks ground in this area by estimating a class of Markov-switching vector

autoregression (MS-VAR) models to study the relationship between China’s economic

growth and the world market for crude oil. The importance of specifying this class of

models is demonstrated both statistically and economically. Statistically, we find that

the MS-VAR provides superior in-sample fit compared to a linear VAR as well as a class

of time-varying latent-parameter VARs. We find clear evidence of regime changes in the

size and frequency of exogenous shocks, and that the price of oil responds differently to

the shocks in low and high volatility states. Demand shocks from both China and the

rest of world have a larger impact on the real price of oil during times of high oil market

volatility compared to low volatility. In contrast, supply shocks tend to have a larger

impact during the low volatility state. A similar state-dependent phenomenon was also

observed for the impact of oil price shocks on China economic activity. In that case we

observed that China’s real GDP growth responds more to economic activity shocks from

the rest of the world in the high volatility state, but is less responsive to supply shocks.

That being said, the size of the responses are relatively small. Thus, despite China being

a major player in international oil markets, we conclude that oil market shocks tend to

have little impact on China’s real GDP growth.
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Our results contribute to the growing literature on the relationship between China

and the world market for crude oil. Interest in this relationship started when multiple

researchers suggested that oil price dynamics since the turn of the century have been

largely driven by growth in emerging markets, including China (Hamilton, 2009; Kilian,

2009; Baumeister and Peersman, 2013). Empirical evidence in support of these claims

was then provided in Kilian and Hicks (2013) and Aastveit et al. (2015). For instance,

Aastveit et al. (2015) find that approximately 40% of the 1-2 year variation in the oil price

is explained by demand shocks from emerging markets (including China), while demand

shocks from developed countries explain approximately 15%. Despite this result, direct

evidence on the role of China specifically, has not been clear. Liu et al. (2016) found

that China specific demand was an important driver of the oil price between 2000 and

2014, however others have suggested that China’s oil demand has little or zero impact

on the global oil price (Mu and Ye, 2011; Wu and Zhang, 2014; Lin and Li, 2015; Cross

and Nguyen, 2017). Our results contribute towards this disagreement by noting that the

effect is state-dependent, with demand shocks from both China having a larger impact on

the real price of oil during times of high oil market volatility compared to low volatility.

A similar disagreement also exists among researchers who have examined the effects

of oil market shocks on China’s macroeconomic growth. Tang et al. (2010) and Zhao

et al. (2016) find that unanticipated oil price increases negatively impact China’s output.

In contrast, Du et al. (2010) and Herwartz and Plödt (2016) find that such shocks elicit

positive growth. More recently, Cross and Nguyen (2017) estimate a time-varying latent-

parameter VAR model, and suggest that such shocks may elicit either positive or negative

movements, depending on the type of shock and the period in which they occurred.

Our results contribute towards this literature by first showing that the class of Markov-

switching models is better suited to modeling the effects of oil market shocks on China’s

macroeconomic growth relative to linear or time-varying latent-parameter VAR models.

Moreover, we find that while China’s real GDP growth response is state dependent, the

effects of supply shocks and economic activity related demand shocks tend to be positive

in either state, while the residual demand component elicits a negative response. That

being said, the size of the responses are relatively small, which leads us to conclude that

oil market shocks tend to have little impact on China’s real GDP growth.

The rest of the paper is organized as follows. In Section 2 we present the data

and Section 3 discuss the methodology, including the MS-VAR, model selection and

identification but defer technical details on estimation to the Appendix. In Section 4

we present the empirical results, followed by various robustness checks in Section 5. We

conclude in Section 6.
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2 Data

We use quarterly data between 1992Q1 and 2019Q2 on four variables of interest: oil

production, the real price of oil, real global economic activity and real economic activity

from China. The particular sample period is chosen mainly due to the availability of the

time-series data of China’s GDP.

In line with existing literature, we consider three alternative measures of the oil price:

the US refiners’ acquisition cost (RAC) for imported crude oil, the West Texas Interme-

diate (WTI) and the Brent price of crude oil. Since it is generally considered to be the

best proxy for the free global oil price market (Kilian and Zhou, 2020), we use RAC for

the benchmark model and the the WIT and the Brent price as a robustness check. The

real oil price is obtained by deflating the nominal price by the US Consumer Price Index.

Next, oil production is measured by the amount of world crude oil production (thousand

barrels per day) as provided by the US Energy Information Administration (EIA). We

measure world real economic activity by using the OECD+6 industrial production index

provided by Baumeister and Hamilton (2019).1 Finally, as in Cross and Nguyen (2017),

real economic activity in China is measured by quarterly real GDP published by the Cen-

ter of Quantitative Economic Research of Federal Reserve Bank of Atlanta. The reason

for using China’s real quarterly GDP, instead of the IP index, is that this data is un-

available. Instead, China’s government officials only report real value added in industry,

which is defined as gross output in industry minus the costs of factor inputs.2 All series

are converted to quarter-on-quarter rates of growth by taking the first difference of the

natural logarithm.

The series used in this paper are plotted in Figure 1. As can be seen from the figure,

both of the global oil market and Chinese economy behave differently between good and

bad times. We see that, during bad times, e.g. the Asian Financial Crisis in 1997 and the

Global Financial Crisis in 2008-09, the volatility of all series are significantly larger than

good times. However, the responses of the real price were different. The oil price is seen

to increase during the former event while it is found to fall over the latter one. These

features are suggestive of possible regime changes in the structural shocks. We will refer

1The choice of an appropriate measure of global economic activity has recently received much atten-

tion; see Kilian and Zhou (2018) for a survey of this literature. The two most commonly used proxies for

this activity are the global real economic activity (REA) index constructed by Kilian (2009) and global

industrial production (IP). For our analysis, we prefer the latter measure for two reasons: First, recent

evidence reported in Kalouptsidi (2017) shows that China has intervened and reduced shipyard costs

by 13-20%. Since it relies on international shipping costs, the REA index may not fully reflect the true

costs in China. Second, Baumeister et al. (2020) and Hamilton (2019) has recently highlighted that the

REA index has not captured well real economic activity in recent years, while world IP (IP) does.
2See Kilian and Zhou (2018) for a discussion.
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to these periods when discussing the main results.
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Figure 1: Historical evolution of the series (1992Q2-2019Q4).

Note: The raw data of crude oil production and prices are collected from EIA. China’s GDP

is sourced from Fed of Atlanta. All series are expressed in quarter-on-quarter percent changes.

3 Empirical Methodology

To identify the relevant modeling features of the observed data, we first compare the

in-sample fit of the well known constant parameter VAR (CVAR) with the more flexible

MS-VAR models. A complete list of the considered models is provided in Table 1. We

estimate each of these models using MCMC methods, details of which are provided in

Appendix B.

Table 1: A list of competing models.

Model Description

CVAR A VAR with constant coefficients & constant error covariance

MS-VAR-C A VAR with regime-dependent coefficients & constant error covariance

C-VAR-MS A VAR with constant coefficients & regime-dependent error covariance

MS-VAR A VAR with joint regime-dependence in both coefficients & error covariance

In each case, we set p = 4 and M = 2. The former is in line with the BIC, while

setting the number of regimes to be two provides the natural interpretation of high and
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low volatility regimes.3

3.1 Markov Switching VAR

We consider a broad class of MS-VAR models that allow for regime changes in either, or

both of, the VAR coefficients and the structural shocks. To conserve space, we discuss

the most general model and note how other models arise as restricted versions.

The reduced form M -state Markov-Switching VAR (MS-VAR) is given by:

yt = cst + A1,styt−1 + · · ·+ Ap,styt−p + εt, εt ∼ N (0,Σst), (1)

where st ∈ {1, . . . ,M} denotes a regime indicator variable at date t, which is assumed to

follow a M -state Markov process with transition probabilities Pr(st = j|st−1 = i) = pij,

i, j = 1, . . . ,M . The well known constant parameter VAR (CVAR) can be viewed as a

MS-VAR without any regime dependence. The MS-VAR-C is a restricted version of the

MS-VAR model in which the error covariance matrix is restricted to be constant across

regimes, and the C-VAR-MS makes the restriction that the coefficients are constant across

regimes.

To complete the model specification, we assume the following independent priors:

βi ∼ N (β0,V0), Σi ∼ IW(S0, ν0), (pi1, . . . , piM) ∼ D(αi1, . . . , αiM), for i = 1, . . . ,M.

where IW(S, ν) denotes the Inverse Wishart distribution with scale matrix S and the

degree of freedom ν, and D(a1, . . . , aM) denotes the Dirichlet distribution with concen-

tration parameters (a1, . . . , aM). The choice of these distributions is motivated by the

support of the parameter space and conjugacy. For example, we use a Gaussian prior

distribution for the BVAR coefficients since they can exist anywhere on the real line

and result in a Gaussian (conditional) posterior distribution when combined with the

likelihood function. Similarly, a Dirichlet prior distribution is used for the transition

probabilities because they exist in the unit interval and result in a Dirichlet (conditional)

posterior distribution when combined with the likelihood function.

Since the time series of interest exhibit high persistence, frequent switching among

regimes over time is empirically implausible. To incorporate this fact, we implement an

informative prior on the regime transition probability in which the concentration matrix

3In the robustness section we also show that setting the number of regimes to be two is also in line

with marginal likelihood computations.

6



is constrained such that αij = 1 for i 6= j and αij = ρ > 0 for i = j, i.e.
α11 α12 . . . α1M

α21 α22 . . . α2M

...
...

. . .
...

αM1 αM2 . . . αMM

 = 1M + ρIM ,

where 1M is a M ×M matrix with its entries all equal to one and ρ > 0 governs the

degree of regime persistence. For instance, it is easily verified that the expected value

of probability for two subsequent periods belonging in the same regime is E(pii) = 1+ρ
ρ+M

,

which implies that a higher value of ρ indicates a high regime persistence.

The hyperparameters for these distributions are set as follows. First, we utilize a

Minnesota prior for β in which β0 = 0 and V0 = diag(v1, . . . , vkβ), where the entries in

(v1, . . . , vk) correspond to those in vec((c0,A10, , . . . ,Ap0)
′). We distinguish between the

intercepts and VAR coefficients by setting the vi associated with the former to be 100

and those with the latter as

vi =


λ21
r2

for coefficients on own lags,

λ21λ2
r2

σi
σj

for coefficients on cross lags,

where σj is set equal to the standard deviation of the residual from AR(p) model for the

variable i = 1, . . . , n and r = 1, . . . , p. A detailed discussion of the Minnesota prior can

be found in Doan et al. (1984); Koop and Korobilis (2010); Karlsson (2013).

Following Carriero et al. (2019), we set the hyperparameters in the Minnesota prior as

λ1 = 0.04 and λ2 = 0.042. This specification allows us to capture a number of economic

ideas. For instance, the fact that recent lags are more important than older ones is

captured by the geometric rate of decay on the term r2. Also, by setting λ2 < 1 we

incorporate the belief that own lags are likely to be more important than cross lags.

Next, for the covariance matrix, we set ν0 = n + 4 and S0 = (ν0 − n − 1) × In. Finally,

for the transition probabilities, we set ρ = 50 implying that the prior probability of

transitioning between two states is approximately 0.02.

3.2 Model Selection

To determine which of these reduced form models best represents the data, we conduct a

formal Bayesian model comparison exercise. For concreteness, suppose we are interested

in comparing the in-sample fit of two distinct models Mi and Mj. In a Bayesian frame-

work, each model is formally defined by a likelihood function, denoted by p (y|θk,Mk),

k = i, j, and a prior probability distribution on the model-specific parameter vector θk,
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denoted by p (θk|Mk). Given this information, a formal method of model comparison is

the Bayes factor of Mi against Mj, which is defined as:

BFij =
p (y|Mi)

p (y|Mj)
, (2)

where

p (y|Mk) =

∫
p (y|Mk,θk) p (θk|Mk) dθk, (3)

is the marginal likelihood of Mk , k = i, j.

The marginal likelihood values for the general class of MS-VAR models listed in

Table 1 are computed with the importance sampling based algorithm proposed in Chan

and Eisenstat (2018) and the corresponding results are presented in Table 2. Similar

to the estimation of the structure model we will discuss in the following section, the

estimation results in this exercise are all based on 10000 posterior samples obtained after

a burn-in period of 5000. Following standard practice, we set the lag length to p = 4.

For interpretation purposes, note that the marginal likelihood value will be relatively

large for models in which the observed data are more likely, and vice versa. Thus, if the

observed data are more likely under Mi as compared to Mj, then BFij > 1. In this case,

posterior inference would then be conducted with Mi. More generally, given a set of m

models, M = {M1, . . . ,Mm}, the model with the largest marginal likelihood value will

be used to generate posterior inference.

Table 2: Log marginal likelihoods for the class of MS-VAR models

CVAR C-VAR-MS MS-VAR-C MS-VAR

-883.52 -879.39 -883.07 -885.83

Note: Log marginal likelihood for the best model is in bold.

Two lessons are learned. First, the preferred model is the C-VAR-MS. This means

that allowing for a non-linear volatility process is crucial when examining the relation-

ship between China’s economy and world oil markets. It also provides some evidence

to existing claims that unexpectedly substantial growth from China over the past two

decades may have generated a possible regime change in China’s effect on the price of

crude oil (Kilian and Hicks, 2013; Aastveit et al., 2015). Second, the general class of

MS-VAR models do not always outperform the CVAR. In particular, allowing for regime

switching in the VAR coefficients does not improve upon the CVAR. This highlights the

importance of conducting a formal model comparison procedure when choosing the best

model to address our research question. In particular, the use of either a CVAR model or
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a MS-VAR-C model would lead to biased estimated of the underlying structural process.

Specifically, there may be positive bias during the low volatility regime and a negative

bias during the high volatility regime. While concrete evidence of this claim requires the

identification of the underlying structural shocks, suggestive evidence is found in Fig-

ure 2, which presents the posterior means and 68 percent credible sets for the respective

elements in the reduced form covariance matrix.
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Figure 2: Reduced Form Covariance Matrix

Note: The figure plots time-varying reduced form covariance matrix of the C-VAR-MS model

along with the 68% credible intervals. The shaded region shows recessions as defined by the

NBER.

Since the credible sets of the variance terms (those elements on the main diagonal) do

not contain zero, they are each statistically significant over the sample period. Hence the

above claim seems to hold. However, the same can not be said for the covariance terms.

In those cases, the credible sets contain zero in the low volatility regime (i.e., the entire

sample excluding the periods 2000-04 and 2007-09). This suggests that while own shocks

are likely to be of primary importance during normal economic conditions, contempora-

neous interactions become extremely important during global economic downturns, when

the oil market is likely highly volatile. We return to this point when discussing the main

results in Section 4.

To provide a more nuanced picture of regime clustering over the sample period, we

follow Song (2014) and Hou (2017) plot the estimates of P (si = sj|y1:T ) as a heat map in

Figure 3. The heatmap can be viewed as a table in which the colors represent different

9



probabilities over time. More precisely, the clustering of regimes is presented through a

T × T matrix in which i = 1, . . . , T and j = 1, . . . , T ; therefore the figure is symmetric

against the 450 line. For interpretation purposes, the light color on the main diagonal of

the figure indicates a regime that occurs in the period i = j. Set in this manner, lighter

colors off the main diagonal indicate regime recurrence, while darker colors represent

regime change. Presented in this manner, we clearly observe periods of regime change,

especially around the early 2000s and the Great Recession, which further supports the

existence of structural changes in the oil market.
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1995

2000
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2015

Figure 3: Heat map

Note: The figure plots the heat map for regime clustering based on the estimation of P (si =

sj |y1:T ) .

3.3 Identification

To identify the structural VAR model we adopt the same set of agnostic sign restrictions

used in Cross and Nguyen (2017) and restrictions on the demand and supply elasticities

used in Kilian and Murphy (2012, 2014).4 The sign restrictions summarized in Table 3 are

based on the comparative statics of a simple supply and demand model for the global oil

market, in which the quantity is measured by world oil production and the price is given

by the real international price of crude oil. The directional signs for these restrictions of

4See Kilian (2013) for a general overview of various identification strategies in VAR models; including

the sign restriction method used in this paper. For a critical review of sign restrictions, we refer the

reader to Fry and Pagan (2011).
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the impact matrix are summarized in Table 3 and are implemented with the algorithm

in Rubio-Ramirez et al. (2010).

In the first instance, a supply shock, denoted by εQ,t, represents an exogenous disrup-

tion of global oil production. Such disruptions may be caused by, for example, geopolitical

turmoil in the middle east (Hamilton, 1983). Under this interpretation, positive oil sup-

ply shocks simultaneously cause positive responses of global oil production and world

economic activities but reduces the real oil price. The second type of shock arises from

the fact that increases in aggregate global economic activity tends to generate higher oil

prices, and are therefore called rest of world (ROW) aggregate demand shocks, εYW ,t. The

third type of shocks originates from specific factor generated demand and are therefore

called oil specific demand shocks or residual shocks, εP,t. Such shocks induce a positive

correlation between the oil production and its real price but reduces global economic

activity. Notice that we have not specified any directional responses of China economic

activity to each of these shocks. This is because a key objective of this paper is to study

the effects of global oil market shocks on China’s GDP growth. Instead, we remain ag-

nostic and allow the reactions of these variables to be completely determined by the data.

The final type of shock that we consider is a China specific aggregate demand shock, εYC ,t.

Since the primary purpose of this paper is to study the effects of such shocks on the world

oil market, we do not impose any sign restrictions on the market response. By doing this,

the direction and magnitude of the responses are purely determined by the data.

Table 3: Sign restrictions

εQ,t εYW ,t εP,t εYC ,t

Oil production + + + ×
World economic activity + + − ×

Real oil price − + + ×
China economic activity × × × +

Note: + and − respectively indicate positive and negative responses, while × leaves the

effect unrestricted. To ensure that the China shock is well identified we also impose

a magnitude restriction in which a China specific aggregate demand shock is assumed

to yield a greater contemporaneous response in China’s economic growth compared to

alternative shocks.

The cost of providing such an agnostic identification procedure is that the structural

shocks may be not be identified. For instance, if a China specific demand shock elic-

its a positive response in all of the variables in the system, and the aggregate demand
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shocks has a positive impact on China specific demand, then these two shocks are indis-

tinguishable. To overcome this issue we add an additional elasticity restriction in which

we assume that own shocks yield a greater contemporaneous responsive than alternative

shocks. E.g. to identify a China specific demand shock we impose that the response

of China’s economic growth is greater (in absolute value) than world economic activ-

ity. Similar assumptions have been adopted in a range of papers, e.g. Peersman (2005);

Aastveit et al. (2015) and Cross and Nguyen (2017). In Section 5 we provide estimation

results with no such restrictions and find that they are robust.

As a sensitivity analysis, following Kilian and Murphy (2012, 2014), we combine these

sign restrictions with empirically plausible bounds on the magnitude of the short-run oil

demand and supply elasticities. In particular, we assume upper bounds on the monthly

elasticities of the demand and supply curves to respectively be −0.8 and 0.0258. In our

model, these monthly values are normalized as quarterly elasticities to be in line with our

data frequency.

4 Estimation Results

For expository purposes we focus on the oil price response to the structural shocks and

evaluate the China factor. The supply shock is normalized as a negative shock implying

a reduction in world oil production that would lead to increase the oil price. We then

examine the impact of oil market shock on China’s GDP. In each case, the shock size is

one standard deviation. It is worth mentioning that our MS-VAR model allows for regime

recurrence, which is distinguished from other non-linear VAR models, and hence the two

regimes are frequently observed over the sample period. To examine the characteristics

of these regimes and the corresponding impulse responses, we therefore report median

impulse responses at two selected dates. One impulse response represents for periods that

the oil market experiences low volatility and the other associates with periods of high

volatility.

4.1 Oil Price Responses and the China Factor

In this section we quantify the overall sensitivity of the real price and production to

the structural shocks and access the impact of the China factor. We first focus on the

response of the oil price displayed in Figure 4. The figure plots the cumulative impulse

response of the oil price and oil quantity to different types of oil market shocks in the

two identified regimes. Consistent with the empirical evidence found in the oil literature,

the oil price increases immediately after an unexpected oil supply disruption. The results
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further show clear evidence that the price reacts differently across the two states. We

observe the oil price becomes more sensitive to shocks to oil supply when the oil market

in the state of low volatility. Quantitatively, the magnitude of the price response in the

low volatility regime is consistently larger than that of the corresponding response in

the high volatility regime. A similar impact pattern is also found when examining the

reaction of oil price to the residual shock although the degree of market volatility does

not matter much to this type of shock.
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Figure 4: Responses of the oil price to the structural shocks

Turing to responses of the oil price to shocks in oil demand from China and the

rest of the world, or non-China demand. As expected, the two demand shocks exert

increasing pressure on the oil price. More importantly, the results strongly indicate that

the responses depend on the level of oil volatility. We find that under a high-volatility

environment, the impact of the two demand shocks is relatively larger than that of the

same shocks hitting in times of low volatility. With respect to our research question, the

responses show that the China factor has a significant positive impact on the oil price,

however this impact is relatively smaller than the impact of a demand shock from the

rest of the world. The influence of oil demand shocks from China is also found to be

more pronounced during periods when the oil market experiences high volatility. Our

finding is new to the literature and therefore contrasts those in Mu and Ye (2011); Wu

and Zhang (2014) and Cross and Nguyen (2017) who each find little evidence to support

the hypothesis that China’s demand for oil has impacted the world price. Part of the

explanation could be that, different from non-switching regime models, our model are
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able to gauge the state-dependent impulse responses, which explicitly distinguishes high

and low volatility regime.

4.2 The Effect of Oil Market Shocks on China

In this section we investigative the effects of oil market shocks on China’s output by

considering the propagation of the identified structural shocks. The supply shock is

normalized as a negative shock implying a reduction in world oil production that would

lead to increase the oil price, while reducing world economic growth. In what follows, we

discuss two broad conclusions.
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Figure 5: China’s GDP response to the oil market shocks

First, we observe that negative oil supply and non-China demand shocks have positive

effects, while positive oil-specific demand shocks have negative effects. More importantly,

the magnitude of these responses are different across the two identified regimes and

China’s GDP is likely less sensitive to the oil market shocks during the times of high

volatility. For example, after controlling demand and supply shocks, an unexpected

increase in the oil price (a residual shock) lead to China’s GDP to fall about 0.15 percent

after a year if the shock hits the economy in high volatility regime. In normal times, the

same shock elicits a relative larger effect, which is about 0.3 percent. The same impact

pattern is also found for the supply and non-China demand shock.

The finding that negative oil supply shocks can have positive effects complements

those in Zhao et al. (2016), but is in contrast to those in Herwartz and Plödt (2016) and
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Cross and Nguyen (2017), who find that such shocks tend to have no impact. We also find

that such shocks elicit an almost zero response on China’s real GDP growth during the

2000 recession when the oil market experienced greatly volatility. The result that positive

oil demand shocks tend to have a negative effect on China’s growth is also consistent with

those in Tang et al. (2010) and Zhao et al. (2016) but in contrast with those in Du et al.

(2010) and Herwartz and Plödt (2016). The responses are mostly consistent with Cross

and Nguyen (2017) who also provide evidence that demand shocks had negative impacts

in the 1990s and positive effects in the 2007/08 GFC, however they find no evidence of

the earlier switch during the 2000 recession. Instead, their result is that China had no

impact during this period. This suggests that the Markov-switching model used in this

study is better capable of capturing this abrupt event as compared to the autorgeressive

models used in that paper.

Second, although the responses of China’s GDP to the oil market shocks are found

to be regime dependent, the magnitude response these shocks are found to be small and

economically insignificant. This result is consistent with evidence in Herwartz and Plödt

(2016) and Cross and Nguyen (2017, 2018) who independently observe that the reaction

of Chinese real GDP to different global oil price shocks is relatively flat. As discussed in

Hamilton (2009); Aastveit et al. (2015) and Cross and Nguyen (2018), a likely reason for

these small effects is the structure of China’s energy expenditure. More specifically, Cross

and Nguyen (2018) document that coal provides the dominant proportion of China’s total

energy expenditure share, with oil expenditure contributing between 24% and 35% of this

total. The main takeaway from this point is that despite China being a major player in

international oil markets, oil market shocks have historically had little impact on China’s

real GDP growth.

5 Robustness Checks

In this section we discuss the results from three robustness checks that were performed

in addition to our main analysis. To conserved space, we defer the figures and table to

Appendix A.

First, to assess the necessity of imposing elasticity assumptions on the various model

relations we simply re-estimate the model without them. The results from this exercise

are provided in Figures A1—A2. It suffices to note that they are almost identical to

those in our main analysis. This suggests that partial identification is not an issue in this

study.

Second, we test for robustness of the results when using either the WTI or Brent oil

price. The results are provided in Figures A3—A6. The results are almost identical. The
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only difference is that the oil supply shocks now have an even smaller impact on China’s

real GDP growth during both the recession of the 2000s and 2007/08. Otherwise, our

findings are robust across the two data sets.

Third, to examine the appropriateness of our MS-VAR methodology over the TVP-

VAR-SV methodology employed in Cross and Nguyen (2017), we compute the log-

marginal likelihood for their class of models using the importance sampling based al-

gorithm proposed in Chan and Eisenstat (2018).5 We find that the class of MS-VARs

generally outperforms this class of TVP-VAR-SV models. This result suggests that using

MS-VARs is critical to properly understanding the dynamics of the relationship between

China and the world market for crude oil.

Table 4: Log marginal likelihoods for the class of TVP-VAR-SV models

C-VAR-SV TVP-VAR-C TVP-VAR-SV

-1037,9 -2069.50 -1148.90

Finally, we investigate whether our assumption of two regimes is a reasonable one. To

this end, we compute the marginal likelihood for various C-VAR-MS models which differ

in the number of possible regimes. The results contained in Table 5 show that the two

regime C-VAR-MS is the best model.

Table 5: Log marginal likelihoods for C-VAR-MS with various regimes

No. of regimes 2 3 4 5

Log-ML -879.39 -882.25 -881.38 -883.12

Note: Log marginal likelihood for the best model is in bold.

6 Conclusion

We have examined the relationship between China’s macroeconomic growth and the world

market for crude oil since the mid-1990s. In light of a potential non-linearity in this

relationship, we began our analysis by showing that a class of flexible Markov-switching

VARs is more appropriate than a constant VAR framework. We found that a Markov-

switching VAR with a regime dependent covariance matrix (C-VAR-MS) was preferred to

all other models. In the robustness section, we also found that this model outperformed

5The model set-up and priors used to estimate these these models is identical to those in Cross and

Nguyen (2017).
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a popular class of time-varying latent-parameter VARs that have been previously used

in the literature.

The Markov-switching model identified key regime changes in oil market volatility,

which a traditional constant parameter VAR model would be unable to detect. We found

that the price of oil is more responsive to demand shocks from both China and the rest

of the world in the high volatility state, while less responsive to supply shocks. In this

sense, our results provide empirical support to the conjectured claims that China has

been influential in driving oil price dynamics over the past two decades.

A similar state-dependent phenomenon was also observed for the impact of oil price

shocks on China economic activity. In that case we observed that China’s real GDP

growth responds more to economic activity shocks from the rest of the world in the high

volatility state, but is less responsive to supply shocks. That being said, the size of the

responses was relatively small. Thus, despite China being a major player in international

oil markets, we conclude that oil market shocks tend to have little impact on China’s real

GDP growth.
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Appendix A Robustness Results
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Figure A1: Robustness: Oil price response to supply and demand shocks with elasticity

constraints.
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Figure A2: Robustness: China’s GDP response to supply and demand shocks with elas-

ticity constraints.
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Figure A3: Robustness: Oil price response to supply and demand shocks with WTI oil

price data.
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Figure A4: Robustness: China’s GDP response to supply and demand shocks with WTI

oil price data.
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Figure A5: Robustness: Oil price response to supply and demand shocks with Brent oil

price data.
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Figure A6: Robustness: China’s GDP response to supply and demand shocks with Brent

oil price data.
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Appendix B Bayesian Estimation

We estimate the MS-VAR model using a Gibbs Sampling algorithm that successively

samples from the following full conditional distributions:

1. p(s|Θ,y),

2. p(Θ|s,y),

3. p(P|s),

where s = (s1, . . . , sT )′ is a vector of regime indicators, Θ = {(βi,Σi)}Mi=1 denotes the

collection of model parameters across the M regimes, and P be the M × M Markov

transition matrix, i.e., Pij = pij. In our empirical analysis we obtain 15, 000 posterior

draws, discarding the first 5, 000 as a burn-in. To simplify the notation, in what follows

we define xt1:t2 = (xt1 , . . . , xt2) for a general variable x.

To implement Step 1 we apply the forward-backward algorithm of Chib (1996). To

be specific, given p(st−1|y1:t−1,θ) we compute p(st|y1:t,θ) by

p(st|y1:t, θ) =
p(yt|st,Θ)p(st|y1:t−1,Θ)∑
st
p(yt|st,Θ)p(st|y1:t−1,Θ)

,

=
p(yt|st,Θ)

∑
st−1

p(st, st−1|y1:t−1,Θ)∑
st
p(yt|st,Θ)p(st|y1:t−1,Θ)

,

=
p(yt|st,Θ)

∑
st−1

p(st|st−1)p(st−1|y1:t−1,Θ)∑
st
p(yt|st,Θ)p(st|y1:t−1,Θ)

.

until we get p(sT |y1:T ,Θ). Then we implement the backward sampling by first sample

sT from p(sT |y1:T ,Θ), then we sample st given st+1 from

p(st|st+1:T ,y1:T ,Θ) =
p(st|y1:t,Θ)p(st+1|st)∑
st
p(st|y1:t,Θ)p(st+1|st)

.

To implement Step 2, first note that given s1:T we can regroup data into M distinct

regimes. That is, for i = 1, . . . ,M , the model in a regime i can be written as

yi = Xiβi + εi εi ∼ N (0, ITi ⊗Σi),

where yi and Xi collect the observations belonging to regime i, and Ti is the number of

observations in regime i. Following the standard results for the linear regression model,

we have

βi ∼ N (β̂i, K̂
−1
i ), Σi ∼ IW(Ŝi, ν̂i),
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where K̂i = Xi
′
(ITi ⊗Σi)

−1 Xi + V−10 , β̂i = K̂−1i

(
Xi
′
(ITi ⊗Σi)

−1 yi + V−10 β0

)
, ν̂i =

Ti + ν0 and Ŝi = (yi −Xi) (yi −Xi)
′ + S0.

To implement Step 3, we draw the jth row of P for j = 1, . . . ,M , given s1:T , according

to

(pj1, . . . , pjM) ∼ D(αj1 + nj1, . . . , αjM + njM),

where nkl =
∑T−1

j=1 1 ({sj = l, sj+1 = k}) and 1(A) is the indicator function that is equal

to one if statement A is true and zero otherwise.

Appendix C Identification by sign restrictions

The identification procedure discussed in Section 3.3 is implemented with the algorithm

in Rubio-Ramirez et al. (2010), which is outlined as follows:

1. Take the eigenvalue-eigenvector decomposition of the reduced form covariance ma-

trix: Σst , so that Σst = PstDstP
′
st where Dst is a diagonal matrix of eigenvalues

and Pst is a matrix of corresponding (right) eigenvectors.

2. Draw a random n × n matrix K with its entries following standard normal distri-

bution.

3. Take the QR decomposition of K so that K = QR where Q is an orthogonal

matrix and R is an upper triangular matrix.

4. Compute the time varying impact matrix Ast := PstD
1
2
stQ

′.

5. Check that the proposed matrix satisfies the restrictions outlined in Section ??. If

yes, keep it. Otherwise, discard it and redraw K.
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