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Abstract
Meta-analysis, the statistical analysis of results from separate studies, is a funda-
mental building block of science. But the assumptions of classical meta-analysis 
models are not satisfied whenever publication bias is present, which causes incon-
sistent parameter estimates. Hedges’ selection function model takes publication bias 
into account, but estimating and inferring with this model is tough for some data-
sets. Using a generalized Gleser–Hwang theorem, we show there is no confidence 
set of guaranteed finite diameter for the parameters of Hedges’ selection model. This 
result provides a partial explanation for why inference with Hedges’ selection model 
is fraught with difficulties.

Keywords  Meta-analysis · Confidence intervals · File-drawer problem · Publication 
bias · Selection models · Weight function models

1  Introduction

A meta-analysis is a statistical analysis that quantitatively combines results from 
separate scientific studies. When the studies measure the same phenomenon, pool-
ing of information allows us to predict the common effect size with larger precision 
than we could have done with one study alone. Meta-analyses are ubiquitous in the 
empirical sciences and forms a key component of most systematic reviews such as 
Cochrane reviews (Higgins et al., 2019).

Most meta-analytic techniques assume honest and unbiased reporting of results. 
But there is ample evidence that the scientific literature is not unbiased, as studies 
with significant p-values tend to be published with a greater probability than other 
studies (Easterbrook et al., 1991), a phenomenon called publication bias by Sterling 
(1959) and the file-drawer problem by Rosenthal (1979). When publication bias is 
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present, there is no reason to trust the results of meta-analytic methods that do not 
account for it, as the parameter estimates will be inconsistent (Carter et al., 2019).

Hedges’ (1992) publication bias model takes publication bias explicitly into 
account using a selection model, and is arguably the most appropriate model for 
publication bias (Carter et al., 2019). Despite there being an � (R Core Team, 2020) 
package for maximum likelihood estimation of this model, called ������� (Coburn 
et  al., 2019), the model has not yet taken off. Its maximum likelihood estimation 
methods are numerically unstable and its estimates can be off even when they con-
verge (Coburn et al., 2019; Stanley, 2005). The estimate of the mean effect size may 
be negative and of unrealistically large magnitude, and the estimated heterogeneity 
parameter might be improbably large. It turns out there are ridges in the likelihood 
function that can be linked to this behavior (McShane et al., 2016), but it has not 
been stated in clear terms exactly what the consequences are for inferential proce-
dures. The purpose of this note is to explain why Hedges’ publication bias performs 
poorly, by showing there is no confidence set for the mean effect size that has infi-
nite diameter with probability zero.

2 � Hedges’ publication bias model

The most popular and well-known meta-analysis method is the random effects 
model with normal likelihoods (Hedges and Vevea, 1998). Written in hierarchical 
notation, it equals

Here xi is the effect size and �i is the standard deviation of the ith study, i = 1,… ,N . 
Following the convention in meta-analysis, we assume all �i s to be known. The 
mean parameter �0 is the population effect size, N(�0, �) is the effect size distribu-
tion, and � is the heterogeneity parameter. The purpose of the effect size distribution 
is to model the fact that most effect size estimates plugged into a meta-analysis do 
not appear to measure the same phenomenon. By integrating out �i , we find the den-
sity of xi,

where � is the density of a normal random variable.
We will assume that the random effects meta-analysis model is true in the 

absence of publication bias. The mechanisms that cause publication bias modify 
the density in a suitable way. Consider the case when only significant studies at 
some specified level � are published. Assuming one-sided tests, the p-values are 
ui = Φ(−xi∕�i) , or normal one-sided p-values. We will only deal with with one-
sided p-values in this paper, as there is usually, but not always, just one direc-
tion that is interesting to researchers, reviewers, and editors. A one-sided p-value 

�i ∼ N(�0, �),

xi ∣ �i, �i ∼ N(�i, �i).

f (xi;�0, �, �i) = �(xi;�0, (�
2 + �2

i
)1∕2),
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can also be used if the researchers reported a two-sided value, since p = 0.05 for 
a two-sided hypothesis corresponds to p = 0.025 for a one-sided hypothesis, et 
cetera.

Define c� = Φ−1(1 − �) , the cutoff for significance at level � . The basic publica-
tion bias model is a truncated normal model with density

where 1[A] is the characteristic function of A. This model for publication bias was 
introduced by Hedges (1984) in the context of F-distributions.

The basic publication bias model is unrealistic. It requires that no non-significant 
studies are published. But even in the fields most severely affected by publication 
bias, such as psychology, a non-negligible number of non-significant studies are 
published (Motyl et al., 2017). Moreover, the basic publication bias model does not 
allow for different cutoffs for significance. It is likely that some editors will accept 
studies reaching a significance at � = 0.025 , corresponding to xi∕𝜎i > 1.96 but not 
at � = 0.05 , corresponding to xi∕𝜎i > 1.64.

These problems can be rectified by adopting the selection model for publication 
bias of Iyengar and Greenhouse (1988), which models the following scenario.

Publication bias scenario. Alice the editor receives a study with the p-value 
u. Her publication decision is a random function of this p-value. That is, she 
will publish the study with some probability w(u) and reject it with probability 
1 − w(u) . Every study you will ever read in Alice’s journal has survived this 
selection mechanism, the rest are lost forever.

Let w(ui) be a function of the p-value ui = Φ(−xi∕�i) taking values in [0, 1]. Then 
w(ui) is a probability for every ui , and the selection model

models the publication bias scenario exactly. This model can be viewed as a rejec-
tion sampling procedure (Flury, 1990; von Neumann, 1951), where � serves as pro-
posal distribution for f. Variants of this model, with and without covariates, has been 
studied by e.g. Dear and Begg (1992), Vevea and Hedges (1995), Vevea and Woods 
(2005), Citkowicz and Vevea (2017).

Hedges (1992) studies the selection model when w is a step function with fixed 
steps. Let � be a vector with elements 0 = 𝛼0 < 𝛼1 < ⋯ < 𝛼K = 1 and � be a K-ary 
non-negative, non-increasing vector having its first element equal to �1 = 1 for iden-
tifiability. Define the step function w based on � and � as

We call the selection model with a step function Hedges’ publication bias model. Its 
density is

(2.1)f (xi;𝜃0, 𝜎i) = Φ

(
𝜃0 − c𝛼

(𝜎2
i
+ 𝜏2)1∕2

)−1

𝜙(x;𝜃0, (𝜎
2
i
+ 𝜏2)1∕2)1(xi∕𝜎i > c𝛼],

(2.2)f (xi;�0, (�
2
i
+ �2)1∕2) ∝ �(xi;�0, (�

2 + �2
i
)1∕2)w(u)

(2.3)w(u;�, �) =

K∑

k=1

�k1(�k−1,�k](u).
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Interpreting Hedges’ publication bias model is easy. When the editor receives a 
study with p-value u, she finds the k such that u ∈ (�k−1, �k] and accepts with prob-
ability �k . Since �1 = 1 , she always accepts when u ∈ [0, �1] . The vector � is non-
increasing since a publication decision based solely on p-values should always act 
favorably towards lower p-values. The parameters (�0, �, �) of the model are identi-
fied when � is fixed (Moss and De Bin, 2021, Web Appendix A).

It is probably not possible to generalize the results of this paper to selection mod-
els that do no follow the step function model. Lemma 5, about the truncated nor-
mal, is crucial in the proof of our main result, Theorem 8. Truncated densities only 
appear in step function models, not models with continuous selection functions, 
such as the Probit selection function of Copas (2013) or the one-parameter selection 
functions of Preston et al. (2004).

Hedges’ publication bias model allows both for non-significant studies to be 
published and allows the editor to act differently towards different cutoffs such as 
� = 0.025 and � = 0.05 . In addition, the model can approximate any non-increasing 
selection function w by increasing the number of steps. In applications, the param-
eters � , � , and � are estimated from the data, while � is fixed by the researcher, for 
instance at � = (0.025, 0.05, 1) . We recommend using these cutoffs, as it is well 
known that applied journals frequently demand statistical significance at this level. 
Since both two-sided and one-sided p-values occur, we need to include 0.025 in 
addition to 0.05.

We can write Hedges’ model as a mixture model on the form

where f k, k ≤ K are normal densities truncated to (Φ−1(1 − �k−1),Φ
−1(1 − �k)] , 

and �k are mixture probabilities, i.e., 𝜋k > 0 for each k and 
∑K

k=1
�k = 1 . The mix-

ture probabilities �k are functions of (�0, �, �i, �) , see the appendix (p. 10) for their 
formula.

The main benefit of Hedges’ publication bias model (2.4) is how it models 
p-values based publication bias directly, there is no approximation involved. If you 
believe in the random effects meta-analysis model and the p-value based publica-
tion bias scenario, Hedges’ publication bias model is simply the correct model. Most 
statistical methods correcting for publication bias in the literature either do not make 
use of an explicit statistical model or do not estimate the parameters �0 and � . For 
instance, the funnel plot of Egger et al. (1997) is a graphical method, while the trim-
and-fill method of Duval and Tweedie (2000) is a non-parametric method based on 
making the funnel plot symmetric. Stanley (2005); Stanley and Doucouliagos (2014) 
discuss various misspecified regression-based estimators of the corrected effect size 
� based on the fixed effect Hedges’ publication bias model. The estimating p-curve 
method of Simonsohn et al. (2014) and p-uniform of van Assen et al. (2015); van 

(2.4)f (xi;�0, (�
2 + �2

i
)1∕2) ∝

K∑

k=1

�k�(xi;�0, (�
2 + �2

i
)1∕2)1(�k−1, �k](ui).

(2.5)f (xi;�0, (�
2 + �2

i
)1∕2) =

K∑

k=1

�kf k(xi;�0, (�
2 + �2

i
)1∕2).



1 3

Journal of the Korean Statistical Society	

Aert et  al. (2016) are two methods for dealing with publication bias hailing from 
psychology. Both are based on a variant of the basic publication bias model, but 
with fixed instead of random effects, and both employ somewhat unusual estimation 
methods (McShane et al., 2016). Since there is ample evidence of heterogeneity in 
meta-analysis, restricting oneself to the fixed effects meta-analysis is a mistake.

Hedges’ model has some downsides. It models only bias due to selection of 
p-values, not every source of bias, such as language bias (Egger and Smith, 1998). 
Second, it may not be best model for biases with other causes than the publication 
process, such as p-hacking (Simmons et al., 2011). Moss and De Bin (2021) propose 
a related model that may be more successful at correcting for p-hacking.

Hedges’ model can be hard to estimate, especially if the data is unfavourable. 
Stanley (2005, Sect. 6.3) discusses three problematic cases in economics when max-
imum likelihood was used to estimate Hedges’ publication bias model. McShane 
et al. (2016, Appendix A) notes that while estimation of the basic publication bias 
model is hard, introducing the heterogeneity parameter exacerbates the problem. 
The likelihood function has contours following approximately � ∝ |�|1∕2.

Figure  1 shows the contour lines for the meta-analysis of Cuddy et  al. 
(2018) where the selection probabilities of the step function (2.3) are fixed at 
� = (1, 0.6, 0.1) and � = (0, 0.025, 0.05, 1) . Only just around the maximum at 
𝜃̂0 = 0.55 and 𝜎̂ = 5 ⋅ 10−7 can the likelihood be approximated with a quadratic 
function.

Likelihood of Hedges’ publication bias model
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Fig. 1   Contour lines for the log-likelihood for the simple publication model using power posing data of 
Cuddy et al. (2018)
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Estimation of Hedges’ model is especially hard when almost all observations lie 
close to the the cutoffs. In our experience, estimation works well when the data is 
sufficiently well spread, for instance when some observations are far away from the 
cutoffs and there are observations that have failed to reach significance. As a sim-
ple example of a case when estimation fails to work, consider the observation vector 
x = (1.96, 1.96, 1.96, 1.96, 1.96, 1.64, 1.64, 1.64, 1.64, 1.64,−1) when the standard 
deviation of each observation is �i = 1 . We employ � = (0, 0.025, 0.05, 1) , which 
implies cutoffs at Φ−1(0.975) and Φ−1(0.95) . In this case, 10 out of 11 observations are 
very close to the cutoffs. When we run the Hedges selection model on this data, using 
the ��� function of the � package ������� Viechtbauer (2010), the model does not 
converge. If the last observation is changed to 0 instead of −1 , the model converges, but 
the Hessian cannot be inverted, and the parameter estimate for �0 equals −1.8 . Situa-
tions similar to this one are most common when n is small.

3 � Confidence sets of infinite diameter

Fix some measurable space (Ømega,F) , let P be a family of dominated probability 
measures defined on this measurable space, and Π a partition of P . Recall that a parti-
tion of P is a collection of disjoint non-empty subsets � of P such that 

⋃
�∈Π � = P . 

When p is a density associated with a P ∈ P , we will use the standard notation [p] 
to denote the unique part � containing P. Instead of partitions, we could have used a 
formulation with main parameters � and nuisance parameters � , and defined the rejec-
tion set for � as sup� sup� P�,�(R(�)) ≤ � . We have decided to use partitions for two 
reasons: First, there are no unambiguous nuisance and main parameters in our appli-
cations, making notation using nuisance parameters confusing. Second, the upcoming 
Theorem 4 can be applied in purely non-parametric situations, where the mention of 
nuisance and main parameters is even more confusing.

Definition 1  A confidence set of level � is a family of rejection sets {R(�)},� ∈ Π 
such that

If the inequality is an equality, the confidence set has size �.

This definition of confidence sets might look slightly unfamiliar, but it is a straight-
forward generalization of the definitions in Casella and Berger (2002, Definition 9.1.5) 
and Lehmann and Romano (2005, Sect. 3.5). Usually, a confidence is defined as a set C 
adhering to the relation

That is, �0 ∈ C if and only if we accept the null-hypothesis H0 ∶ � = �0 , but we will 
only need the formulation using rejection sets in this paper. When confidence sets 
are defined in terms of rejection sets, there is sometimes no partition Π to take the 

sup
�∈Π

sup
P∈�

P(R(�)) ≤ �.

(3.1)�0 ∈ C ⟺ � ∉ R(�0).
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supremum over, and the definition reduces to supP∈P P(R(P)) ≤ � . The term confi-
dence interval is far more common than confidence set, but this requires that the C 
in equation 3.1 is an interval, which we will not require here.

The following example should make Definition 1 clearer.

Example 2  Consider the usual t-confidence interval with n observations. In this case, 
P contains all measures Pn

�,�
 , where P�,� is the probability measure of a normal with 

mean � and standard deviation � . Here Qn denotes the n-fold product measure of 
Q, corresponding to n independent samples from Q when Q is a probability meas-
ure. The t-confidence interval is an exact confidence interval for � no matter what 
𝜎 > 0 , the nuisance parameter, is. Since the test is exact, rejection sets R(�) satisfy 
Pn
�,�

(R(�)) = � for all �,� . We can formulate the confidence set in terms of parti-
tions too. Let 𝜋(𝜇) = {Pn

𝜇,𝜎
∣ 𝜎 > 0} contain all normal probability measures with 

mean � and some positive standard deviation. Then {�(�)},� ∈ ℝ defines a parti-
tion of P . Then the two-sided t-confidence interval is a confidence set of size � with 
partition Π = {�(�)},� ∈ ℝ according to Definition 1.

Now we must find out how to measure the size of confidence sets. To make our 
results as general as possible, we will let the size function be any non-negative 
function ‖⋅‖ ∶ Π → [0,∞) . In most cases, the size function will be a norm, but 
any non-negative function is a valid size function. For instance, in the t-confi-
dence interval example above, ‖⋅‖ can be taken to be ‖�‖ = ��� for the unique � 
associated with each �.

The diameter of a confidence set is the random variable

The diameter tells you the size of the largest accepted � . We will assume that D is 
Borel measurable.

Definition 3  A confidence set has infinite diameter with P-positive probability if 
P(D = ∞) > 0 . It has infinite diameter with positive probability if P(D = ∞) > 0 
for all P ∈ P.

The original Gleser–Hwang theorem (Gleser and Hwang, 1987, Theorem 1) is 
defined for pairs of parameters �1, �2 , where �2 is a nuisance parameter and the 
confidence set is constructed for a functional �(�1) . The following generalization 
does not require any nuisance parameters. Using partitions, it can be used both 
with and without nuisance parameters, as well as in non-parametric settings. Its 
proof is in the appendix (p. 9).

Theorem 4  (Gleser–Hwang theorem) Suppose there is a sequence {pn} of densities 
derived from P satisfying the following: 

(3.2)D(�) = sup
�∈Π

{‖�‖ ∣ � ∉ R(�)}.
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	 (i)	 There is a density p⋆ such that pn converges to p⋆ pointwise,
	 (ii)	 supp p ⊇ supp p⋆ for all densities p derived from P,
	 (iii)	 the size of the equivalence class [pn] goes to infinity as n increases, ‖‖[pn]‖‖ → ∞

.

Then every confidence set with level 𝛼 > 0 has infinite diameter with positive 
probability.

Following the terminology of Berger et  al. (1999), we will say that families P 
of probabilities satisfying the conclusion of Theorem  4 for a suitable partition Π 
belong to the Gleser–Hwang class. To make the Gleser–Hwang class more familiar, 
we will present two examples. More examples can be found in the papers of Gleser 
and Hwang (1987) and Berger et al. (1999).

Fieller’s problem is the best known case of a badly behaved confidence set. 
Let (X, Y) be an observation from a bivariate normal N([�1,�2], I�

2) , where �2 is 
known. We want to form a confidence set for the ratio �2∕�1 . The most famous con-
fidence set is due to Fieller (1940). His confidence set can be finite, the whole real 
line, or the union of two disjoint semi-infinite intervals, all with positive probability 
(Koschat, 1987).

But it is not only Fieller’s confidence set that might be infinitely long. The 
Gleser–Hwang theorem can be used to show that every confidence set for E(Y)/E(X) 
must be infinitely long with positive probability. This result is almost independent of 
the distribution of X and Y. To state this result in our notation, let P be a family of 
bivariate distributions over (X, Y). All of these distributions have the same support, 
and all of them have finite means Ep(X) and Ep(Y) . Moreover, assume Ep(X) = 0 
is attainable for some p ∈ P . Define the partition Π by p, q ∈ � if and only if 
Ep(X)∕Ep(Y) = Eq(X)∕Eq(Y) , and let ‖[p]‖ = �Eq(X)∕Eq(Y)� , i.e., the ratio of means. 
Choose a sequence pn(x, y) = p(x, y) , where p(x, y) is density with means EpX > 0 
and EpY = 0 . Then ‖[p]‖ = ∞ , the conditions of Theorem 4 are satisfied, and every 
confidence set with level 𝛼 > 0 has infinite diameter with positive probability.

Another example is due to Bahadur and Savage (1956), who studies non-paramet-
ric testing of the mean, and concludes the mean cannot be meaningfully tested. They 
are working with a family P of densities over ℝ that covers all finite means, has 
finite variances, and is closed under convex combinations. Similar problems were 
considered by Romano (2004) and Donoho (1988).

Using the Gleser–Hwang theorem, it is easy to verify that every confidence set 
has infinite diameter with positive probability. Define the partition Π by p, q ∈ � if 
and only if Ep(X) = Eq(X) , and let ‖[p]‖ = �Ep(X)� . Let

where q0 has mean 0 and qn2 has mean n2 . Then ‖‖[pn]‖‖ = n , the conditions of Theo-
rem 4 are satisfied, and every confidence set with level 𝛼 > 0 has infinite diameter 
with positive probability.

There are several natural candidates for Π when working with Hedges’ selec-
tion function model (2.4). We will work with three of them. First, consider the 

pn(x) =
(
1 −

1

n

)
q0(x) +

1

n
qn2(x),
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partition where p, q ∈ � if and only if p, q have the same mean effect size param-
eter �0 . We will equip this partition with the size function ‖�‖ = ��0� , and it corre-
sponds to a confidence set for �0 . Second, consider the partition where all p, q ∈ � 
have the same heterogeneity parameter � , equipped with ‖�‖ = � . Finally, we will 
work with the partition where all p, q ∈ � have the same heterogeneity parameter 
� and population effect size �0 , and equip it with ‖�‖ = (�2

0
+ �2)1∕2 . This infor-

mation is summarized in Table 1 for convenience.
Let us take a look at the basic publication bias model (2.1) again. To use Theo-

rem 4 we need a witnessing sequence of functions pn → p satisfying the condi-
tions (ii) and (iii) . The next lemma shows how to make such a witness for the 
truncated normal. Its proof is in the appendix (p. 9).

Lemma 5  Let fn be a normal density truncated to [a, b), where b = ∞ is allowed, 
with underlying mean �n = −n and standard deviation �2

n
= n + c for some c ∈ ℝ . 

Then fn converges pointwise to exp(−x)∕[exp(−a) − exp(−b)] , the distribution of an 
exponential variable truncated to [a, b).

Using Lemma  5 it is not hard to show that the basic publication bias model 
(2.1) is a member of the Gleser–Hwang class.

Theorem 6  Assume we have N independent samples from the basic publication bias 
model (2.1). Then any confidence set for �0, � , or (�0, �) with level 𝛼 > 0 will have 
infinite diameter with positive probability.

Proof  Let Π be the partition of P where p, q ∈ � if and only if they share the same 
�0 , and let ||[p]|| = |�0| . We are dealing with products of densities of the form (2.1), 
that is,

where �i are known parameters. From Lemma 5, pn converges to a product of trun-
cated exponentials when �n = −n and �2

n
= n . Since ||[pn]|| = n , the three conditions 

of Theorem 4 are satisfied. The proofs for ||[p]|| = � and ||[p]|| = (�2 + �2
0
)1∕2 are 

similar and omitted. 	�  ◻

p(x) =

N∏

i=1

Φ

(
�0 − c�

(�i + �)1∕2

)−1

�(xi;�0, (�
2
i
+ �2)1∕2),

Table 1   The three partitions Π for the selection function model

Symbol Size ‖⋅‖ Confidence set

Mean effect size �0 ‖�‖ = ��0� Confidence set for �0
Heterogeneity parameter � ‖�‖ = � Confidence set for �
Both parameters (�0, �) ‖�‖ = (�2

0
+ �2)1∕2 Joint confidence set for (�, �)
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Proving the analogue of Theorem 6 for Hedges’ publication is only somewhat 
more involved. We will use the mixture representation of (2.5) and a lemma gen-
eralizing Theorem 4 to a certain kind of mixtures.

Let f 1, f 2,… , f K be a sequence of densities, � = (�1,�2,… ,�K) be a probabil-
ity vector, and p =

∑
k≤K �kf k be a mixture distribution. We will assume that the 

size of [p] equals the size of any of its mixture components [f k] for some size ‖⋅‖ , 
i.e., ‖[p]‖ = ��[f k]�� for all k. Why we do this will be clear in the proof of Theo-
rem 8, but think of it this way: If all of ps mixture components have the same 
mean, the mean of p equals the mean of any f k.

Lemma 7  Let P be a class of K-ary mixture distributions and ||[p]|| be as assumed 
above. Assume there is a sequence pn =

∑
k≤K �k

n
f k
n
 and a subset K′ such that 

	 (i)	 For all k ∈ K� , there is a density f k⋆ such that f k
n
 converges to f k⋆ pointwise.

	 (ii)	 For all mixtures p, supp p ⊇ supp f k⋆ for all k ∈ K�.
	 (iii)	 For all k ∈ K� , the size of [f k

n
] goes to infinity, ‖‖[f kn ]‖‖ → ∞.

	 (iv)	 The density concentrates on the components indexed by K′ , 
limn→∞

∑
k∈K� �

k
n
= 1.

Then every confidence set with level 𝛼 > 0 has infinite diameter with positive 
probability.
Proof  We employ Theorem 4. By (i) and (iv), pn converges pointwise to the density

That supp p ⊇ p⋆ follows from (ii) and (iv). Finally, from the assumption 
that‖‖[pn]‖‖ = ‖‖[f kn ]‖‖ , we get that ‖‖[pn]‖‖ → ∞ too. 	�  ◻

Theorem 8  Assume we have N independent samples from the publication bias model 
(2.1), where the selection probability � is unknown and � is known. Then any confi-
dence set for �0, � , or (�0, �) will have infinite diameter with positive probability.

Proof  Let n = 1 and consider confidence sets for �0 . Let Π be the partition of P 
where p, q ∈ � if and only if they share the same �0 , and let ||[p]|| = |�0| . Then 
||f k|| = |�0| from the mixture representation (2.5). Using Lemma  5, we see that 
f k, k < K converges pointwise to truncated exponentials when �0 = −n and �2

n
= n , 

so that (i), (iii) of Proposition  7 are satisfied with the set K� = {1, 2,… ,K − 1} . 
Moreover, since we assume that � is decreasing, (ii) is satisfied as well. The mixture 
probabilities for k ≠ K can be fixed at e.g. � = 1∕(K − 1) , and (iv) is satisfied as 
well. The proofs for ||[p]|| = � and ||[p]|| = (�2 + �2

0
)1∕2 are similar and omitted.

When N > 1 , expand the expression 
∏N

i=1

∑
k<K 𝜋k

i
(𝜎i)f

k
i
(𝜎i), and use the same 

reasoning as in the first part of this proof. 	�  ◻

∑

k∈K�

𝜋k⋆
n
f k⋆
n

= p⋆.
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4 � Remarks

Well-behaved confidence sets for Hedges publication bias model do not exist, but 
well-behaved credibility sets do. Bayesian estimation of Hedges’ model can be 
made routine, as it is easy to find uncontroversial priors for �0 and � . In practi-
cal meta-analyses we know that �0 cannot be large, and is likely to be close to 0. 
Moreover, since it is common effects in meta-analyses to be interpreted as the 
aggregation of many small effects, the central limit theorem justifies using a nor-
mal prior. As we want to remove prior mass from negative �0 s of large magnitude, 
N(0, 1) is a decent standard prior. Similarly, a half-normal is a reasonable prior 
for the heterogeneity parameter � . Moss and De Bin (2021) employed these priors 
on several examples.

Appendix

The following sandwich convergence theorem is used in the proof of the 
Gleser–Hwang theorem.

Lemma 9  (Billingsley (1995,  Exercise 16.4(a))) Suppose the functions an, bn, fn 
converge pointwise to a,  b,  f and an ≤ fn ≤ bn for all n. If ∫ and� → ∫ ad� and 
∫ bnd� → ∫ bd� , then ∫ fnd� → ∫ fd� for any measure �.

The proof of Theorem  4 closely follows the proof of Gleser and Hwang 
(1987, Theorem 1).

Proof of Theorem 4  We can assume without loss of generality that ‖‖[pn]‖‖ ≥ n , as we 
can choose a suitable sub-sequence if we have to. By definition of the diameter D 
(3.2) we see that

It follows that, if ||[pn]|| ≥ n , then Rc([pn]) ⊆ {D ≥ n} . Since we assume that 
‖‖[pn]‖‖ ≥ n and

by definition of a confidence set, we have that

for all n. Since pn and p⋆ are densities,

{D ≥ n} = {� ∈ Ømega ∣ there is a � such that‖�‖ ≥ n and � ∈ Rc(�)}.

1 − � ≤ Pn(R
c([pn])) = �Rc([pn])

pnd�

(4.1)0 < 1 − 𝛼 ≤ �Rc([pn])

pnd𝜇 ≤ �D≥n
pnd𝜇
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This allows us to use Lemma 9 with an = 0 , bn = pn , and fn = 1D≥npn and conclude 
that

Combining equations (4.1) and (4.2), we get

Let P ∈ P be arbitrary, p be its density, and consider

Since ∫
D=∞

p⋆d𝜇 > 0 and p∕p⋆ > 0 on supp p⋆ (since supp p ⊇ supp p⋆ by assump-
tion), we see that ∫

D=∞∩ supp p⋆
(p∕p⋆)p⋆d𝜇 > 0 too. It follows that P(D = ∞) > 0 , 

and, since P is arbitrary, D has infinite diameter with positive probability. 	�  ◻

Now we prove Lemma 5.

Proof of Lemma (5)  Let n > −c , so that 𝜎2
n
> 0 . Recall the well-known formula for 

the normal truncated to [a, b], and substitute �n = −n and �2
n
= n + c,

The normal density part equals

When n is large compared to x, the term x2∕2(n + c) is negligible, hence

From Equation 5 of Borjesson and Sundberg (1979), we know that Φ(−x) ≈ �(x)∕x 
as x grows. Then

lim
n→∞∫ pnd𝜇 = 1 = ∫ p⋆d𝜇 = ∫ lim

n→∞
pnd𝜇.

(4.2)�D≥n
pnd𝜇 → �D=∞

p⋆d𝜇.

0 < 1 − 𝛼 ≤ �D=∞

p⋆d𝜇.

P(D = ∞) = �D=∞

pd𝜇 ≥ �D=∞∩ supp p⋆

(
p

p⋆

)
p⋆d𝜇.

(4.3)

fn(x) =
1

Φ
(

b−�n

�n

)
− Φ

(
a−�n

�n

)�(x;�n, �n)1[a, b](x),

=
�(x; − n, (n + c)1∕2)1[a, b](x)

Φ[−(a + n)(n + c)−1∕2] − Φ[−(b + n)(n + c)−1∕2]
.

�(x; − n, (n + c)1∕2) = (2�)−1∕2(n + c)−1∕2 exp

(
−
x2 + 2nx + n2

2(n + c)

)
.

�(x; − n, (n + c)1∕2) ≈(2�)−1∕2(n + c)−1∕2 exp(−n2∕2(n + c)) exp(−x),

=(n + c)−1∕2�(n∕(n + c)1∕2) exp(−x).
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and using the same reasoning as above, we find that 
�[−(a + n)(n + c)−1∕2] ≈ �((n + c)1∕2) exp(−a) as n increase. Therefore,

Since this reasoning applies to b as well, we get that f approaches

Here the third line follows from �(n∕(n + c)1∕2)∕�((n + c)1∕2) → 1 . 	�  ◻

These are the formula for the mixture probabilities �i , see (2.5). Let 
ck = Φ−1(1 − �k) and define

Then
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Φ[−(a + n)(n + c)−1∕2] ≈
(n + c)1∕2

n + a
�[−(a + n)(n + c)−1∕2],

Φ[−(a + n)(n + c)−1∕2] →
(n + c)1∕2�((n + c)1∕2) exp(−a)

a + n
.

(n + c)−1∕2�(n∕(n + c)1∕2) exp(−x)

Φ[−(a + n)n−1∕2] − Φ[−(b + n)n−1∕2]
,

≈
(n + c)−1∕2�(n∕(n + c)1∕2) exp(−x)

(n + c)1∕2�((n + c)1∕2)
[
exp(−a)

a+n
−

exp(−b)

b+n

] ,

=
�(−n2∕2(n + c)) exp(−x)

�((n + c)1∕2)
[
exp(−a)

a+n
−

exp(−b)

b+n

] ,

≈ exp(−x)n−1
[
exp(−a)

a + n
−

exp(−b)

b + n

]−1
,

→ exp(−x)
[
exp(−a) − exp(−b)

]−1
.

c =

K∑

k=1

�k[Φ(ck−1;�0, (�
2 + �2

i
)1∕2) − Φ(ck;�0, (�

2 + �2
i
)1∕2)].

�k = c−1�k[Φ(ck−1;�0, (�
2 + �2

i
)1∕2) − Φ(ck;�0, (�

2 + �2
i
)1∕2)].
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