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Van Oest (2019) developed a framework to assess interrater agreement for nominal categories
and complete data. We generalize this framework to all four situations of nominal or ordi-
nal categories and complete or incomplete data. The mathematical solution yields a chance-
corrected agreement coefficient that accommodates any weighting scheme for penalizing rater
disagreements and any number of raters and categories. By incorporating Bayesian estimates
of the category proportions, the generalized coefficient also captures situations in which raters
classify only subsets of items; that is, incomplete data. Furthermore, this coefficient encom-
passes existing chance-corrected agreement coefficients: the S -coefficient, Scott’s pi, Fleiss’
kappa, and Van Oest’s uniform prior coefficient, all augmented with a weighting scheme and
the option of incomplete data. We use simulation to compare these nested coefficients. The
uniform prior coefficient tends to perform best, in particular, if one category has a much larger
proportion than others. The gap with Scott’s pi and Fleiss’ kappa widens if the weighting
scheme becomes more lenient to small disagreements and often if more item classifications
are missing; missingness biases play a moderating role. The uniform prior coefficient usually
performs much better than the S -coefficient, but the S -coefficient sometimes performs best
for small samples, missing data, and lenient weighting schemes. The generalized framework
implies a new interpretation of chance-corrected weighted agreement coefficients: These coef-
ficients estimate the probability that both raters in a pair assign an item to its correct category
without guessing. Whereas Van Oest showed this interpretation for unweighted agreement, we
generalize to weighted agreement.
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Introduction

In many areas of social science, education, medicine, and
business, a common and critical task is to assign items (e.g.,
individuals, objects, or ideas) to mutually exclusive cate-
gories. Examples include the classification of feelings (e.g.,
positive vs. negative), behaviors (e.g., smile vs. nonsmile),
expertise (e.g., expert vs. novice), and document contents
(e.g., fiction vs. nonfiction). The generated classifications
may be used directly to make important decisions (e.g., to
treat a patient classified as sick or to censor an email clas-
sified as fraudulent) or may be subjected to further analy-
sis (e.g., meta-analytically comparing the results of studies
classified in different groups). In either case, the validity of
the subsequent decisions and analyses will hinge upon the
quality and reproducibility of the categorical data (Stemler
& Tsai, 2008).

A key source of evidence for reproducibility of categori-
cal data comes from the analysis of interrater agreement: the
degree to which different raters assign the same items to the
same categories. As such, it is important to compute and re-
port an appropriate coefficient of interrater agreement in all

work using rater-based classifications (Stemler, 2004).
The literature contains many agreement coefficients to

choose from. Most use the observed proportion of agree-
ment as their basis and then attempt to adjust or “correct” this
quantity by the amount of agreement that would be expected
by chance (e.g., Banerjee, Capozzoli, McSweeney, & Sinha,
1999; Cohen, 1960). A primary difference between the var-
ious coefficients lies in how they approach the estimation of
chance agreement. One popular approach is to assume that
all categories have an equal probability of being selected by
chance (i.e., the category-based approach; Bennett, Alpert,
& Goldstein, 1954; Brennan & Prediger, 1981); another is to
assume that each category’s probability is equal to its relative
frequency in the observed sample (i.e., the distribution-based
approach; Fleiss, 1971; Scott, 1955).

Recently, Van Oest (2019) proposed a Bayesian model-
based approach to correcting for chance agreement that en-
compasses these two approaches and offers a new “hybrid”
approach and a new coefficient, called the uniform prior coef-
ficient. This approach begins with the prior belief that all cat-
egories have equal probabilities and then updates this belief
using the observed data, where the amount of updating in-
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creases with the number of items in the sample (N). Thus, the
uniform prior coefficient is positioned between two extremes,
coinciding with the category-based approach if N = 0 and
converging to the distribution-based approach if N → ∞.
Through simulation, Van Oest showed that the uniform prior
coefficient performs well compared to existing coefficients;
in particular, if one category is much more likely to occur
than others.

Similar to Broemeling (2001), Van Oest (2019) used a
(uniform) Dirichlet distribution to capture uncertainty in the
prior beliefs. However, Van Oest updated category prob-
abilities, whereas Broemeling updated the probabilities of
category combinations obtained from all raters. Further-
more, Broemeling computed interrater agreement if all item
classifications occur by chance, whereas Van Oest consid-
ered chance-corrected agreement if item classifications may
be either deliberate or by chance. Two other studies using
Bayesian principles to estimate chance-corrected agreement
are Basu, Banerjee, and Sen (2000) and Zhang and Cutter
(2009); both studies considered situations with two cate-
gories only. The two-rater model of Basu et al. incorporated
beta distributions and a (conditional) uniform distribution to
capture prior beliefs about the probabilities that the first rater,
the second rater, and both raters assign an item to the second
category; the Dirichlet distribution extends the beta distri-
bution to situations with more than two outcomes. Zhang
and Cutter incorporated prior distributions for the response
coefficients and intra-class correlation coefficient in a hierar-
chical probit model for correlated binary outcomes.

Although Van Oest’s coefficient and many other coeffi-
cients assume unordered (i.e., nominal) categories and com-
plete data, these assumptions are often inappropriate in ap-
plied settings. First, the data are often incomplete, either by
accident (i.e., item classifications get lost or raters skip items)
or by design (i.e., not all raters classify all items to save costs
and minimize the burden placed on raters). Second, the cat-
egories are often ordered. For example, instead of assigning
students to the nominal categories of pass or fail, teachers
might use ordered (i.e., ordinal) categories (e.g., insufficient,
sufficient, good, very good, or excellent). In such cases, two
teachers assigning the same student to similar but not iden-
tical categories should receive “partial credit” towards their
interrater agreement. Weighted agreement coefficients incor-
porate weighting schemes to describe the amount of credit
for every possible rater disagreement, sometimes with exten-
sions to incomplete (i.e., missing) data. The most promi-
nent weighted agreement coefficient is the weighted kappa
(Cohen, 1968). Furthermore, it is easy to extend several
coefficients for nominal categories with a quadratic form in
the chance component, such as the S -coefficient and Fleiss’
kappa, to weighted versions (Gwet, 2014). More complex
agreement coefficients allowing for ordered categories and
possibly incomplete data are Gwet’s AC2 and Krippendorff’s

alpha. Alternatively, Gajewski, Hart, Bergquist-Beringer,
and Dunton (2007) proposed a Bayesian approach for inter-
rater agreement with ordinal data, incorporating a hierarchi-
cal ordinal probit model with prior distributions for the error
variance and intra-class correlation coefficient.

The present study proposes a generalization of Van Oest’s
framework and coefficient. This generalization accommo-
dates unordered and ordered categories (with any weighting
scheme for partial credit), is suitable for complete and in-
complete data, and allows for any number of raters (R) and
categories (C). We make three contributions. First, we ex-
tend Van Oest’s model for dichotomous (unweighted) agree-
ment to weighted agreement. We obtain a chance-corrected
weighted agreement coefficient that estimates the probabil-
ity that both raters in a pair assign an item to its correct
category without guessing. Whereas Van Oest provided a
derivation for two and three raters, without the option of par-
tial credit, we extend this derivation to any number of raters
and any weighting scheme. Second, we use Bayesian up-
dating of the category proportions to obtain a generalized
weighted agreement coefficient that allows for incomplete
data and “nests” or subsumes (i) common category-based
coefficients, (ii) common distribution-based coefficients, and
(iii) the hybrid uniform prior coefficient. The generalized co-
efficient requires only a few lines of programming code and
captures nested coefficients via different values of its input
parameters. Third, we run a simulation to compare the per-
formances of these nested coefficients and extract patterns in
controlled situations with different weighting schemes, miss-
ing data mechanisms, and distributions of the category pro-
portions. We also apply the generalized coefficient to a real-
world data set with ordered categories and incomplete data.

Chance-Corrected Dichotomous Agreement

Extending the original ideas of Perreault and Leigh
(1989), Van Oest (2019) described a model-based approach
to correct for agreement by chance. The obtained coeffi-
cient encompasses several frequently used chance-corrected
agreement coefficients:

Î2
r =

Â −
∑C

c=1 p̂2
c

1 −
∑C

c=1 p̂2
c

. (1)

In Equation 1, Â is the observed proportion of agreement
across all pairs of raters and all items, C is the number of
categories, and p̂c is the estimated proportion of category
c ∈ {1, . . . ,C}. For example, equally large estimated cat-
egory proportions (i.e., p̂c = 1/C, c = 1, . . . ,C) result in
the S -coefficient (Bennett et al., 1954; Brennan & Prediger,
1981). Similarly, defining (p̂1, . . . , p̂C) by the relative fre-
quencies of the categories across all R raters and all N items
results in Scott’s pi for two raters and Fleiss’ kappa for more
than two raters (Fleiss, 1971; Scott, 1955). The assumptions
needed to obtain structure (1) are the following:
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1. When classifying an item, a rater is able to make an
accurate judgment of the item’s correct category with proba-
bility Ir.

2. If the rater’s judgment is not accurate, the rater needs to
guess the item’s category and uses the category proportions
(p1, . . . , pC) as the guessing probabilities.

3. All raters work independently; both accuracies (i.e.,
whether raters are able to provide accurate judgments) and
category guesses (if raters are not accurate) are independent
across raters.

The researcher does not observe probability Ir and cat-
egory proportions (p1, . . . , pC) and therefore needs to infer
these parameters from the observed data (i.e., the item clas-
sifications); we denote model parameters without a hat and
corresponding estimators with a hat.

Van Oest (2019) discussed Assumptions 1–3 that are im-
plicit in many existing agreement coefficients and provided
an overview of agreement coefficients. Assumptions 1–3
imply that the unconditional category probabilities coincide
with the corresponding proportions: Any rater assigns an
item to category c if either (i) the judgment is accurate and
the item’s correct category is c, or (ii) the judgment is not ac-
curate and the rater guesses c for the item, with unconditional
probability Ir pc + (1 − Ir)pc = pc. Furthermore, raters’ item
classifications are correlated if Ir > 0: All raters with accu-
rate judgments choose the same (i.e., the correct) category
for the item.

Chance-Corrected Weighted Agreement

Coefficient (1) counts only full agreements, where both
raters in a pair choose the same category for an item; it as-
signs weight zero to any outcome in which the two raters
do not choose the same category. We extend the dichoto-
mous framework by allowing for weights that are greater
than zero in situations without full pairwise rater agreement.
Let wc,c̃ denote weighted agreement when the first rater in a
pair chooses category c and the second rater chooses cate-
gory c̃. Although full agreements should receive full weight,
that is, wc,c̃ = 1 if c = c̃, disagreements may receive either
reduced weight or no weight at all, that is, 0 ≤ wc,c̃ ≤ 1 if
c , c̃ (Fleiss, Levin, & Paik, 2003). We note that Van Oest’s
framework imposed more restrictive identity weights, with
weight zero for all disagreements: wc,c̃ = 0 if c , c̃.

To generalize agreement coefficient (1) to arbitrary (sym-
metric) weight matrices W = (wc,c̃), we redefine the observed
proportion of dichotomous agreement, Â, into the observed
proportion of weighted agreement, Âw; that is, the number of
weighted pairwise agreements, divided by the correspond-
ing maximum. For R = 2 raters, the maximum number of
(weighted) pairwise agreements for an item is equal to one.
Because the number of raters making accurate judgments
about the item’s correct category is two, one, or zero, we
need to consider the following situations and corresponding

contributions to the expected proportion of weighted agree-
ment, Aw.

Situation 1. Both raters make accurate judgments, which
occurs with probability I2

r . Because this implies one (full)
pairwise agreement, the contribution to Aw becomes I2

r .
Situation 2. One rater makes an accurate judgment and

the other rater needs to guess, which occurs with probability(
2
1

)
Ir(1 − Ir); the binomial coefficient captures that the two

raters are interchangeable. If the item’s correct category is
c, the accurate rater chooses this category c and the guess-
ing rater chooses category c̃ ∈ {1, . . . ,C} with probability
pc̃, which would result in weighted agreement wc,c̃. Thus,
conditional on one accurate rater and the item’s correct cat-
egory being c, expected weighted agreement is

∑C
c̃=1 wc,c̃ pc̃.

By taking the expectation over the probability distribution
of correct categories, (p1, . . . , pC), and combining with the
probability of one out of two raters being accurate, we obtain
the contribution to Aw:(
2
1

)
Ir(1−Ir)

C∑
c=1

pc

 C∑
c̃=1

wc,c̃ pc̃

 = 2Ir(1−Ir)
C∑

c=1

C∑
c̃=1

wc,c̃ pc pc̃.

Situation 3. No rater makes an accurate judgment (i.e.,
both raters need to guess), which occurs with probability
(1 − Ir)2. Conditional on both raters guessing, the first
rater chooses category c ∈ {1, . . . ,C} with probability pc,
and the second rater chooses category c̃ ∈ {1, . . . ,C} with
probability pc̃, resulting in expected weighted agreement∑C

c=1
∑C

c̃=1 wc,c̃ pc pc̃. Thus, the contribution to Aw becomes

(1 − Ir)2
C∑

c=1

C∑
c̃=1

wc,c̃ pc pc̃.

Combining the contributions to Aw from the three possible
situations results in

Aw = I2
r + 2Ir(1 − Ir)

C∑
c=1

C∑
c̃=1

wc,c̃ pc pc̃+

(1 − Ir)2
C∑

c=1

C∑
c̃=1

wc,c̃ pc pc̃

= I2
r + (2Ir(1 − Ir) + (1 − Ir)2)

C∑
c=1

C∑
c̃=1

wc,c̃ pc pc̃

= I2
r + (1 − I2

r )
C∑

c=1

C∑
c̃=1

wc,c̃ pc pc̃.

(2)

Thus, the expected proportion of weighted agreement, Aw,
equals the probability that both raters make accurate judg-
ments, I2

r , plus the probability that at least one rater is in-
accurate, 1 − I2

r , times the expected weighted agreement if
at least one rater is inaccurate,

∑C
c=1

∑C
c̃=1 wc,c̃ pc pc̃. It fol-

lows from Equation 2 that I2
r ≥ 0 if and only if Aw ≥
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c=1

∑C
c̃=1 wc,c̃ pc pc̃. Furthermore, Appendix A shows that

identity (2) does not change when generalizing beyond two
raters.

Theorem. Under Assumptions 1–3, the expected propor-
tion of weighted agreement across all rater pairs equals

Aw = I2
r + (1 − I2

r )
C∑

c=1

C∑
c̃=1

wc,c̃ pc pc̃

for any number of raters R ≥ 2. For Aw ≥∑C
c=1

∑C
c̃=1 wc,c̃ pc pc̃, it holds that I2

r ≥ 0, with

I2
r =

Aw −
∑C

c=1
∑C

c̃=1 wc,c̃ pc pc̃

1 −
∑C

c=1
∑C

c̃=1 wc,c̃ pc pc̃
.

By replacing Aw, (p1, . . . , pC), and I2
r in the theorem by

their respective estimators Âw, (p̂1, . . . , p̂C), and Î2
w (where

we replaced subscript r by w to reflect the dependence on the
weighting scheme), we obtain

Âw = Î2
w + (1 − Î2

w)
C∑

c=1

C∑
c̃=1

wc,c̃ p̂c p̂c̃, (3)

and

Î2
w =

Âw −
∑C

c=1
∑C

c̃=1 wc,c̃ p̂c p̂c̃

1 −
∑C

c=1
∑C

c̃=1 wc,c̃ p̂c p̂c̃
. (4)

We note that Equation 4 is a chance-corrected weighted
agreement coefficient that reduces to (1) if wc,c̃ = 1 for c = c̃
and wc,c̃ = 0 for all c , c̃. Matrix notation shows the conve-
nient quadratic form in the chance component:

Î2
w =

Âw − p̂′W p̂
1 − p̂′W p̂

, (5)

where p̂ = ( p̂1, . . . , p̂C) is a (C × 1) vector, and ′ denotes the
transpose. Equation 5 captures weighted versions of existing
coefficients with quadratic forms, described in Gwet (2014)
and based on different choices of p̂ = (p̂1, . . . , p̂C). Further-
more, this structure is similar to the weighted kappa coeffi-
cient that assumes two raters (Cohen, 1968; Fleiss, Cohen, &
Everitt, 1969):

κw =
Âw − p̂′Wq̂
1 − p̂′Wq̂

, (6)

where p̂ = ( p̂1, . . . , p̂C) corresponds to the relative category
frequencies based on the item classifications by the first rater,
and q̂ = (q̂1, . . . , q̂C) is analogous for the second rater.

An easy method to obtain standard errors and confidence
intervals for Î2

w in (4) and (5) is bootstrapping (Efron, 1979).
This method constructs the bootstrap sampling distribution
of Î2

w by repeatedly sampling items with replacement from
the original data set (while using the same sample size as in
the original data set) and computing Î2

w for each simulated

data set. Next, it uses this distribution to compute the stan-
dard errors and confidence intervals. The standard deviation
provides the standard error of Î2

w. Furthermore, the upper and
lower quantiles provide easy percentile-based confidence in-
tervals, although bias-corrected and accelerated (BCa) con-
fidence intervals are preferable in both theory and practice
(Efron, 1987; Efron & Tibshirani, 1993); the latter type cor-
rects for bias and skewness in the bootstrap sampling distri-
bution.

Because Î2
w in (4) and (5) corresponds to the square of the

estimated probability of accurate judgment, we obtain an in-
terpretation: Chance-corrected (weighted) agreement coeffi-
cients estimate the probability that both raters in a pair assign
an item to its correct category without guessing. Whereas
Van Oest (2019) showed this result for dichotomous agree-
ment coefficients, we extend it to weighted agreement with
arbitrary weight matrices W = (wc,c̃).

Generalized Bayesian Coefficient

Following Van Oest (2019), we use Bayesian updating to
estimate the unobserved category proportions (p1, . . . , pC).
This approach starts from the beliefs that exist about
(p1, . . . , pC) before observing any data outcomes. A so-
called prior distribution captures these prior beliefs. For
example, the mean of this distribution reflects the a priori
expected category proportions, and the variance reflects the
amount of uncertainty. For N = 0 items, the estimated cat-
egory proportions would coincide with the a priori expected
proportions. The next step is to obtain improved estimates by
incorporating the observed data. Merging the category fre-
quencies from the data with the prior distribution (i.e., prior
beliefs) yields an updated distribution, the so-called poste-
rior distribution. We estimate the category proportions by the
mean of this distribution. As N increases, the estimated cate-
gory proportions will converge to the corresponding relative
frequencies in the data. Bayesian updating exploits the no-
tion that the observed frequencies contain information about
the category proportions but are unstable and potentially mis-
leading for small samples; it relies relatively much on prior
expectations for small samples and increasingly relies on ob-
served frequencies as the sample size increases.

We use the Dirichlet distribution, with shape parameters
(α1, . . . , αC), to describe the prior beliefs about the category
proportions and follow similar steps as Van Oest (2019) to
obtain the following Bayesian estimates of (p1, . . . , pC):

p̂c =
αc +

∑N
i=1 Ri,c∑C

c̃=1 αc̃ +
∑N

i=1 Ri
, c = 1, . . . ,C, (7)

where Ri,c is the number of raters who assigned item i to
category c, and Ri =

∑C
c=1 Ri,c is the number of raters who

classified item i (by assigning it to any of the C categories).
Bayesian updating incorporates all available item classifica-
tions but does not require that all raters classify all items. As
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Figure 1

Discretized representation of the prior distribution
for category proportion p1 with two categories, where
p2 = 1 − p1; the values of the Dirichlet parameters are
α1 = α2 = ∞ for the S -coefficient (left), α1 = α2 = 0 for
Fleiss’ kappa (middle), and α1 = α2 = 1 for the uniform
prior coefficient (right).

reflected by (7), the Bayesian approach allows for missing
data, with Ri ≤ R.

The Dirichlet prior distribution, implying (7), accounts for
the logical property that category proportions need to sum
to one. Furthermore, different values of αc, c = 1, . . . ,C,
allow for different a priori expected category proportions
and different levels of uncertainty. By substituting (7) into
the weighted agreement coefficient (4), we obtain a flexible
structure:

Î2
w,α =

Âw −
∑C

c=1
∑C

c̃=1 wc,c̃ p̂c p̂c̃

1 −
∑C

c=1
∑C

c̃=1 wc,c̃ p̂c p̂c̃

p̂c =
αc +

∑N
i=1 Ri,c∑C

c̃=1 αc̃ +
∑N

i=1 Ri
.

(8)

Structure (8) accommodates any weight matrix W =

(wc,c̃), including the identity matrix for dichotomous agree-
ment, and allows for both complete and incomplete data.
Furthermore, it nests (i) category-based coefficients, (ii)
distribution-based coefficients, and (iii) the hybrid uniform
prior coefficient, which are all obtained via different values of
the Dirichlet parameters (α1, . . . , αC). To obtain “objective”
agreement coefficients, we always begin with prior beliefs in
which all categories are equally likely, with α1 = α2 = · · · =

αC , but these beliefs may be held with different degrees of
uncertainty, implying different coefficients.

Category-Based Coefficients (αc = ∞)

For αc → ∞, c = 1, . . . ,C, there is no uncertainty in
the prior beliefs about the category proportions; the Dirich-
let prior distribution becomes a zero-variance spike at point
pc = 1/C, c = 1, . . . ,C. The left panel in Figure 1 provides a
discretized visualization of this distribution for p1 with two
categories, where p2 = 1 − p1; the principles extend to more
than two categories but become hard to visualize. By letting
all αc in (8) tend to infinity at the same speed, we obtain
a weighted version of the S -coefficient and equivalent co-
efficients (Bennett et al., 1954; Brennan & Prediger, 1981;
Zwick, 1988):

Î2
w,∞ =

Âw −
∑C

c=1
∑C

c̃=1 wc,c̃ p̂c p̂c̃

1 −
∑C

c=1
∑C

c̃=1 wc,c̃ p̂c p̂c̃

p̂c =
1
C
.

(9)

Because the estimated category proportions in (9) are the
same for all categories and depend on only the number of
categories, αc → ∞ represents the class of category-based
coefficients.

Distribution-Based Coefficients (αc = 0)

For αc = 0, c = 1, . . . ,C, there is maximum uncertainty in
the prior beliefs about the category proportions; that is, the
prior distribution becomes multimodal. The middle panel in
Figure 1 shows this distribution for p1 with two categories.
Substituting αc = 0 into (8) yields a weighted version of
Fleiss’ kappa, extended to missing data:

Î2
w,0 =

Âw −
∑C

c=1
∑C

c̃=1 wc,c̃ p̂c p̂c̃

1 −
∑C

c=1
∑C

c̃=1 wc,c̃ p̂c p̂c̃

p̂c =

∑N
i=1 Ri,c∑N
i=1 Ri

,

(10)

where Fleiss’ kappa reduces to Scott’s pi if there are only two
raters, with R = 2 (Fleiss, 1971; Scott, 1955). Because the
observed relative frequencies of the categories represent the
category proportions in (10), αc = 0 corresponds to the class
of distribution-based coefficients.

Hybrid Coefficient (αc = 1)

For αc = 1, c = 1, . . . ,C, all feasible combinations
of category proportions (i.e., satisfying the logical property∑C

c=1 pc = 1) are a priori equally likely, a natural starting
point (Broemeling, 2001; Van Oest, 2019). The right panel
in Figure 1 shows the resulting “flat” uniform distribution
without spike or multimodality. Substituting αc = 1 into (8)
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yields a weighted version of Van Oest’s uniform prior coeffi-
cient, extended to missing data:

Î2
w,1 =

Âw −
∑C

c=1
∑C

c̃=1 wc,c̃ p̂c p̂c̃

1 −
∑C

c=1
∑C

c̃=1 wc,c̃ p̂c p̂c̃

p̂c =
1 +

∑N
i=1 Ri,c

C +
∑N

i=1 Ri
.

(11)

Because (11) reduces to (9) if N = 0, and (11) reduces to (10)
if N → ∞, αc = 1 yields a hybrid form of category-based and
distribution-based coefficients.

Observed Proportion of Weighted Agreement

Implementation of the generalized Bayesian coefficient
(8), and its special cases (9) to (11), requires the observed
proportion of weighted agreement, Âw; that is, the number of
weighted pairwise agreements, divided by the corresponding
maximum. We write this ratio as

Âw =

∑N
i=1

∑C
c=1 Ri,c

(∑C
c̃=1 wc,c̃Ri,c̃ − 1

)
∑N

i=1 Ri(Ri − 1)
. (12)

The denominator in (12) captures that for each of the Ri

raters who classified item i ∈ {1, . . . ,N}, the maximum num-
ber of agreements resulting from the choices by the other
raters is Ri − 1. The numerator in (12) captures that for each
of the Ri,c raters who assigned item i ∈ {1, . . . ,N} to category
c ∈ {1, . . . ,C}, the number of weighted agreements result-
ing from the choices by the other raters is

∑C
c̃=1 wc,c̃Ri,c̃ − 1;

we deduct one point from
∑C

c=1 wc,c̃Ri,c̃ to exclude the rater’s
self-agreement. We note that imposing identity weights and
complete data (i.e., wc,c̃ = 1 if c = c̃, wc,c̃ = 0 if c , c̃, and
Ri = R) reduces (12) to the expression derived by (Fleiss,
1971):

Â =

∑N
i=1

∑C
c=1 Ri,c(Ri,c − 1)

NR(R − 1)

=
1
N

N∑
i=1

 C∑
c=1

Ri,c(Ri,c − 1)
R(R − 1)

 . (13)

We obtain the final coefficient by substituting (12) into (8).
Appendix B provides a short R code containing one general
function returning this coefficient. Using this function, we
computed the S -coefficient (9), Fleiss’ kappa (10), and the
uniform prior coefficient (11), and we did so for dichoto-
mous agreement and two forms of weighted agreement: lin-
ear and quadratic weights. We used a small synthetic data set
in which four raters classified 30 items into one of three cat-
egories; approximately 20 percent of the item classifications
were missing completely at random.

Simulation

Because the generalized Bayesian coefficient follows
from a formal model of rater behavior, we use this underlying
model as the data generating process to compare the perfor-
mances of nested versions of (8), such as the S -coefficient
(i.e., αc → ∞), Fleiss’ kappa (i.e., αc = 0), and the uni-
form prior coefficient (i.e., αc = 1). We follow similar sim-
ulation steps as Van Oest (2019) but consider two new and
important dimensions: weighting schemes and missing data
mechanisms. For each scenario, we simulate many data sets,
compute the various chance-corrected (weighted) agreement
coefficients for each data set and compare these coefficients
with the true value; that is, I2

r , where Ir is the scenario’s
true probability of accurate judgment. Next, we compute the
mean absolute error (MAE) per scenario and coefficient (Van
Oest, 2019). We provide Ox source code as supplementary
material on the journal’s website.

For each simulation scenario, we base the results on one
million simulated data sets to obtain high precision. For the
sample size (i.e., number of items), we take N = 30, 50, or
100, where raters classify fewer items in scenarios with in-
complete data; we remove item classifications simulated as
missing. We vary the number of raters from two to four. For
the scenario’s true chance-corrected agreement, we take ei-
ther a moderate value or a high value: I2

r = .49 (i.e., Ir = .70)
or I2

r = .81 (i.e., Ir = .90). These values for chance-corrected
agreement are the same as in Van Oest (2019) and close to the
values for Cohen’s kappa in a simulation study by De Raadt,
Warrens, Bosker, and Kiers (2019). Following Van Oest’s
strategy to keep the number of scenarios manageable, we
consider only the smallest number of categories given the
type of data. Whereas Van Oest focused on two nominal cat-
egories, we focus on three ordinal categories. Because Van
Oest’s results for two categories and our results for compa-
rable scenarios with three categories are similar, we expect
the obtained patterns to generalize to other numbers of cate-
gories.

We consider seven scenarios for the category proportions:
one scenario with exactly equal proportions and six scenar-
ios with unequal proportions. If the proportions are unequal,
the first category has the largest proportion, either p1 = .50
or p1 = .90, and the third category has the smallest pro-
portion; the second category has the same proportion as the
third category (i.e., p2/p3 = 1), is three times as large (i.e.,
p2/p3 = 3), or is nine times as large (i.e., p2/p3 = 9). Be-
cause the weighting schemes are symmetric, changing the
category proportions from descending to ascending would
not affect the simulation results. Table 1 summarizes the
seven scenarios and shows substantial differences in the con-
sidered category proportions, such as the number of large
versus small categories and variation across categories.
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Table 1

Summary of scenarios for the category proportions

Scenario p1 p2 p3 Remark on proportions

p1 = .3̄ p2/p3 = 1 .333 .333 .333 Exactly equal proportions
p1 = .5 p2/p3 = 1 .500 .250 .250 Relatively equal proportions
p1 = .5 p2/p3 = 3 .500 .375 .125 Moderate variation, one small
p1 = .5 p2/p3 = 9 .500 .450 .050 Two large, one small
p1 = .9 p2/p3 = 1 .900 .050 .050 One large, two equally small
p1 = .9 p2/p3 = 3 .900 .075 .025 One large, unequal small
p1 = .9 p2/p3 = 9 .900 .090 .010 One large, highly unequal small

Weighting Schemes

We consider dichotomous agreement (i.e., identity
weights) and the two most common forms of weighted agree-
ment: linear and quadratic weights. Linear weights start
from weight one for full agreement and then deduct a penalty
factor equal to the relative distance of disagreement (Cic-
chetti & Allison, 1971); quadratic weights use the squared
relative distance as the penalty factor (Fleiss & Cohen, 1973).
For three categories, the weight matrices become

Widentity =

1 0 0
0 1 0
0 0 1

 ,

Wlinear =

1.0 0.5 0.0
0.5 1.0 0.5
0.0 0.5 1.0

 ,
Wquadratic =

1.00 0.75 0.00
0.75 1.00 0.75
0.00 0.75 1.00

 .
Studies involving ordered categories may report coefficient
values for both linear and quadratic weights, containing com-
plementary information about the first and second moments
of the distance of rater disagreement (Vanbelle, 2016). The
literature also provides other interpretations of the weighted
kappa coefficient with linear or quadratic weights (Cohen,
1968; Kvålseth, 2018; Schuster, 2004; Vanbelle & Albert,
2009; Warrens, 2011).

Missing Data Mechanisms

In addition to scenarios with complete data, we consider
three mechanisms to generate incomplete data:

1. Missing classifications occur completely at random.
2. Missing classifications occur in the large category.
3. Missing classifications occur in the small categories.
De Raadt et al. (2019) considered the first two missing-

ness mechanisms in their simulation study for the kappa co-
efficient. However, they did not include weighting schemes,

comparison to other coefficients, and situations with more
than two raters. The first mechanism implies that the proba-
bility of an item classification being missing is independent
of the item’s correct category; that is, item classifications
are missing completely at random (MCAR). Because there
are no systematic patterns for missing data, the relative cat-
egory frequencies remain unbiased. The second and third
mechanisms imply that the likelihood of missing depends on
which category the item belongs to; that is, items are miss-
ing not at random (MNAR). In the second mechanism, raters
always classify items belonging to the two small categories
but may not classify items belonging to the large category.
Thus, raters do not choose the large category often enough
compared to the two small categories, resulting in a bias. In
the third mechanism, missing data occur in the two small
categories, resulting in an opposite bias. For all three mech-
anisms, we hold the overall percentage of missing data con-
stant at 18%, approximately halfway the range considered by
De Raadt et al. (2019). Table 2 summarizes the percentages
of missing data per mechanism and category. We implement
all three missing data mechanisms for scenarios with unequal
category proportions but exclude the MNAR mechanisms if
the category proportions are equal (i.e., if large versus small
categories is not meaningful).

Results

We consider the differences in MAE between Fleiss’
kappa (i.e., αc = 0) and the S -coefficient (i.e., αc → ∞) on
one side and the uniform prior coefficient (i.e., αc = 1) on the
other side; the uniform prior coefficient serves as the bench-
mark. Positive differences in MAE imply that the uniform
prior coefficient performs better (i.e., has lower MAE) than
the other coefficients, whereas negative differences imply the
opposite.

Equal category proportions

The simulation results for equal category proportions mir-
ror those by Van Oest (2019): The three (weighted) coef-
ficients have almost identical performances. Although the
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Table 2

Fraction of missing data (m) for each of the categories and each of the three mechanisms

Missing Data Mechanism Scenario m1 m2 m3

MCAR p1 = .5 p2/p3 = 1 .18 .18 .18
MCAR p1 = .5 p2/p3 = 3 .18 .18 .18
MCAR p1 = .5 p2/p3 = 9 .18 .18 .18
MCAR p1 = .9 p2/p3 = 1 .18 .18 .18
MCAR p1 = .9 p2/p3 = 3 .18 .18 .18
MCAR p1 = .9 p2/p3 = 9 .18 .18 .18
MNAR: large category p1 = .5 p2/p3 = 1 .36 .00 .00
MNAR: large category p1 = .5 p2/p3 = 3 .36 .00 .00
MNAR: large category p1 = .5 p2/p3 = 9 .36 .00 .00
MNAR: large category p1 = .9 p2/p3 = 1 .20 .00 .00
MNAR: large category p1 = .9 p2/p3 = 3 .20 .00 .00
MNAR: large category p1 = .9 p2/p3 = 9 .20 .00 .00
MNAR: small categories p1 = .5 p2/p3 = 1 .00 .36 .36
MNAR: small categories p1 = .5 p2/p3 = 3 .00 .36 .36
MNAR: small categories p1 = .5 p2/p3 = 9 .00 .36 .36
MNAR: small categories p1 = .9 p2/p3 = 1 .16 .36 .36
MNAR: small categories p1 = .9 p2/p3 = 3 .16 .36 .36
MNAR: small categories p1 = .9 p2/p3 = 9 .16 .36 .36

Note. Unequal category proportions. MCAR = Missing Completely at Random; MNAR = Missing Not at Ran-
dom. The overall fraction missing across categories is

∑3
c=1 pcmc = .18 for all missing data mechanisms and

scenarios. If p1 = .90 and the missing data mechanism is MNAR in the small categories, we limit the fraction
of missing data in the two small categories to .36 to avoid that these categories become too rare.

S -coefficient tends to perform best, the differences in MAE
with Fleiss’ kappa and the uniform prior coefficient are small
and do not exceed .003 for the considered sample sizes.
Thus, although the S -coefficient holds its prior belief of
equal category proportions with certainty, consistent with the
scenarios, this strong prior does not result in a substantially
better performance. Table 3 shows the differences in MAE
for all simulation scenarios with equal category proportions.

Unequal category proportions

We start the analysis for unequal category proportions
from 1296 scenarios, based on all combinations in the simu-
lation design. We reiterate the simulation parameters: sam-
ple size (N = 30, 50, or 100), proportion of the large category
(p1 = .50 or .90), proportion of the middle category relative
to the small category (p2/p3 = 1, 3, or 9), weighting scheme
(identity, linear, or quadratic), missingness (none, MCAR,
large category, or small categories), true chance-corrected
agreement (Ir = .70 or .90), and number of raters (R = 2,
3, or 4).

Sample Size and Category Proportions

First, we vary the sample size (N) and the proportion of
the large category (p1), which are the two simulation param-

N = 30 N = 50 N = 100

0.5 0.9 0.5 0.9 0.5 0.9
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−
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Figure 2

Distributions of marginalized simulation results comparing
Fleiss’ kappa (αc = 0) and the uniform prior coefficient
(αc = 1) at different sample sizes and large category
proportions.
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Table 3

Differences in mean absolute error (MAE) for Fleiss’ kappa (αc = 0) and the S -coefficient (αc = ∞) compared with
the uniform prior coefficient (αc = 1); equal category proportions

R = 2 R = 3 R = 4

Compare N Weighting Missing Ir = .70 Ir = .90 Ir = .70 Ir = .90 Ir = .70 Ir = .90

αc = 0 30 Identity None .000 .000 .000 .000 .000 .000
30 Linear None .000 .000 .000 .000 .000 .000
30 Quadratic None .001 .000 .000 .000 .000 .000
30 Identity MCAR .001 .000 .000 .000 .000 .000
30 Linear MCAR .001 .000 .000 .000 .000 .000
30 Quadratic MCAR .001 .001 .001 .000 .000 .000
50 Identity None .000 .000 .000 .000 .000 .000
50 Linear None .000 .000 .000 .000 .000 .000
50 Quadratic None .000 .000 .000 .000 .000 .000
50 Identity MCAR .000 .000 .000 .000 .000 .000
50 Linear MCAR .000 .000 .000 .000 .000 .000
50 Quadratic MCAR .000 .000 .000 .000 .000 .000
100 Identity None .000 .000 .000 .000 .000 .000
100 Linear None .000 .000 .000 .000 .000 .000
100 Quadratic None .000 .000 .000 .000 .000 .000
100 Identity MCAR .000 .000 .000 .000 .000 .000
100 Linear MCAR .000 .000 .000 .000 .000 .000
100 Quadratic MCAR .000 .000 .000 .000 .000 .000

αc = ∞ 30 Identity None −.002 −.002 −.002 −.002 −.002 −.001
30 Linear None −.001 −.002 −.001 −.001 −.001 −.001
30 Quadratic None .000 −.002 .001 −.002 .001 −.002
30 Identity MCAR −.003 −.002 −.002 −.002 −.002 −.002
30 Linear MCAR −.002 −.002 −.001 −.002 −.001 −.002
30 Quadratic MCAR −.001 −.003 .001 −.002 .001 −.002
50 Identity None −.002 −.001 −.001 −.001 −.001 −.001
50 Linear None .000 −.001 .000 −.001 .000 −.001
50 Quadratic None .001 −.001 .001 −.001 .001 −.001
50 Identity MCAR −.001 −.001 −.001 −.001 −.001 −.001
50 Linear MCAR −.001 −.001 .000 −.001 .000 −.001
50 Quadratic MCAR .001 −.001 .001 −.001 .001 −.001
100 Identity None −.001 .000 .000 .000 .000 .000
100 Linear None .000 .000 .000 .000 .000 .000
100 Quadratic None .001 .000 .001 .000 .001 .000
100 Identity MCAR −.001 .000 .000 .000 .000 .000
100 Linear MCAR .000 .000 .000 .000 .000 .000
100 Quadratic MCAR .001 .000 .001 .000 .001 .000

Note. Positive scores indicate that the uniform prior coefficient performs better; negative scores indicate that the alternative coefficient per-
forms better.
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Figure 3

Distributions of marginalized simulation results comparing
the S -coefficient (αc = ∞) and the uniform prior coefficient
(αc = 1) at different sample sizes and large category
proportions.

eters that affect the results most; we aggregate over all other
parameters. The box plots in Figure 2 visualize the distribu-
tions of the differences in MAE between Fleiss’ kappa and
the uniform prior coefficient for different values of N and
p1. Similarly, Figure 3 compares the S -coefficient and the
uniform prior coefficient for different values of N and p1.

Figures 2 and 3 resemble the results reported by Van Oest
(2019). Figure 2 shows that the uniform prior coefficient per-
forms better than Fleiss’ kappa in all scenarios. The differ-
ences are small if no category dominates in terms of propor-
tions (i.e., if p1 = .50) but quite substantial if a dominat-
ing category is present (i.e., if p1 = .90) and the sample is
small (i.e., N = 30 or 50). Furthermore, Figure 3 shows that
the uniform prior coefficient often performs much better than
the S -coefficient if a dominating category is present (i.e., if
p1 = .90), although the S -coefficient sometimes performs
best.

Because sample size N = 50 is the middle option in the
simulation design, and large differences between the three
coefficients tend to occur for p1 = .90, we narrow down to
scenarios with N = 50 and p1 = .90. An advantage is that
the more subtle effects of the other simulation parameters
become more visible without being polluted by the stronger
effects of N and p1. Another advantage is that the number of
scenarios reduces by factor six, from 1296 to 216, making it
feasible to show detailed results for all these scenarios. Fig-
ure 4 shows the distributions of the differences in MAE be-
tween Fleiss’ kappa and the uniform prior coefficient, based
on the 216 scenarios; it varies one simulation parameter at
a time to obtain the corresponding marginalized simulation

results; Table 4 provides the underlying numbers for each of
the 216 scenarios. Similarly, Figure 5 and Table 5 compare
the S -coefficient and the uniform prior coefficient.

A first result, shown in Figures 4 and 5, is that an increase
in the proportion of the middle category relative to the small
category (p2/p3) decreases the relative performance of the
S -coefficient but has no meaningful effect on Fleiss’ kappa.
Thus, the S -coefficient becomes less suitable if one cate-
gory is relatively rare. In line with our finding, Krippendorff
(2004, p. 418) noted that the S -coefficient “becomes inflated
by unused categories.”

Weighting

Figure 4 shows that the uniform prior coefficient becomes
relatively more preferred over Fleiss’ kappa when moving
from dichotomous agreement to forms of weighted agree-
ment, with the largest changes being when moving from lin-
ear to quadratic weights. Thus, compared to Fleiss’ kappa,
the uniform prior coefficient benefits from generous weight-
ing schemes that award relatively much credit to disagree-
ments. However, Figure 5 shows that generous weighting
schemes benefit the S -coefficient most, where again the tran-
sition from linear to quadratic weights triggers the most sub-
stantial changes in relative performance.

Missing

Figure 4 shows that incomplete data improve the per-
formance of the uniform prior coefficient relative to Fleiss’
kappa for two of the three missingness mechanisms, where
missing data occur either completely at random (i.e., the
first mechanism) or in the two small categories (i.e., the
third mechanism). For the remaining (second) mechanism in
which missing data occur in the large category, the relative
performance remains essentially unaffected compared to the
situation of complete data.

Intuitively, missing item classifications decrease the preci-
sion of the relative category frequencies observed in the data,
which makes discounting via a somewhat informative (e.g.,
uniform) prior more important. However, Fleiss’ kappa uses
a prior with the lowest possible information (i.e., maximum
variance) and therefore relies completely on these relative
frequencies; missing data have a particularly undesirable ef-
fect on the performance of Fleiss’ kappa. On the other hand,
missing data in the large category (i.e., the second mech-
anism) helps Fleiss’ kappa via a counter mechanism: The
bias makes the relative frequencies in the data more balanced
than the corresponding category proportions, which benefits
Fleiss’ kappa by triggering a similar effect as the prior ex-
pectation of equal category proportions in the uniform prior
coefficient.

Figure 5 shows that incomplete data improve the perfor-
mance of the S -coefficient relative to the uniform prior co-
efficient. Although missing item classifications reduce the
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Table 4

Differences in mean absolute error (MAE) between Fleiss’ kappa (αc = 0) and the uniform prior coefficient
(αc = 1); unequal category proportions

R = 2 R = 3 R = 4

Weighting Missing p2/p3 Ir = .70 Ir = .90 Ir = .70 Ir = .90 Ir = .70 Ir = .90

Identity None 1 .028 .024 .019 .016 .015 .012
3 .027 .023 .019 .016 .015 .012
9 .027 .024 .019 .016 .015 .012

Linear None 1 .030 .025 .021 .017 .017 .013
3 .031 .028 .023 .019 .019 .015
9 .029 .029 .022 .020 .018 .016

Quadratic None 1 .037 .029 .026 .020 .021 .016
3 .041 .035 .031 .025 .027 .021
9 .029 .035 .024 .026 .022 .022

Identity MCAR 1 .037 .032 .023 .020 .018 .015
3 .037 .032 .023 .020 .018 .015
9 .037 .032 .023 .020 .017 .015

Linear MCAR 1 .040 .033 .025 .021 .019 .016
3 .042 .037 .026 .023 .021 .018
9 .041 .039 .025 .025 .020 .019

Quadratic MCAR 1 .048 .037 .030 .024 .024 .019
3 .052 .043 .033 .030 .028 .024
9 .041 .046 .024 .031 .022 .025

Identity Large 1 .031 .025 .019 .016 .015 .012
3 .031 .025 .019 .016 .015 .012
9 .031 .025 .020 .016 .015 .012

Linear Large 1 .033 .026 .021 .017 .017 .013
3 .035 .030 .023 .020 .019 .015
9 .035 .031 .023 .021 .018 .016

Quadratic Large 1 .040 .031 .026 .020 .020 .016
3 .046 .037 .032 .026 .027 .021
9 .039 .039 .027 .027 .023 .022

Identity Small 1 .046 .043 .026 .025 .020 .018
3 .047 .043 .026 .025 .020 .018
9 .047 .043 .026 .025 .020 .018

Linear Small 1 .050 .043 .028 .026 .022 .020
3 .050 .048 .027 .029 .021 .022
9 .047 .051 .024 .030 .019 .023

Quadratic Small 1 .059 .045 .034 .030 .026 .023
3 .058 .052 .032 .035 .026 .027
9 .041 .056 .017 .035 .015 .028

Note. Positive scores indicate that the uniform prior coefficient performs better; negative scores would indicate that Fleiss’
kappa performs better; N = 50 and p1 = .90 are fixed.
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Table 5

Differences in mean absolute error (MAE) between the S -coefficient (αc = ∞) and the uniform prior
coefficient (αc = 1); unequal category proportions

R = 2 R = 3 R = 4

Weighting Missing p2/p3 Ir = .70 Ir = .90 Ir = .70 Ir = .90 Ir = .70 Ir = .90

Identity None 1 .105 −.019 .152 .002 .173 .013
3 .163 .001 .213 .023 .235 .036
9 .207 .027 .256 .047 .279 .058

Linear None 1 .202 .015 .253 .043 .276 .056
3 .202 .015 .253 .042 .276 .056
9 .201 .015 .253 .043 .276 .056

Quadratic None 1 .180 .003 .233 .032 .257 .047
3 .201 .016 .254 .043 .278 .057
9 .215 .026 .266 .052 .292 .065

Identity MCAR 1 .146 −.016 .205 .016 .232 .031
3 .181 .006 .241 .034 .269 .048
9 .205 .030 .262 .053 .292 .066

Linear MCAR 1 .119 −.024 .177 .002 .204 .015
3 .147 −.010 .204 .016 .232 .029
9 .165 .002 .221 .027 .249 .040

Quadratic MCAR 1 .082 −.038 .144 −.013 .174 −.001
3 .127 −.012 .191 .010 .223 .023
9 .159 .014 .219 .034 .252 .046

Identity Large 1 .130 −.016 .180 .006 .203 .018
3 .130 −.016 .181 .006 .203 .018
9 .130 −.016 .181 .007 .204 .019

Linear Large 1 .101 −.025 .154 −.004 .178 .007
3 .135 −.012 .188 .010 .212 .022
9 .157 .000 .209 .022 .234 .033

Quadratic Large 1 .065 −.039 .120 −.019 .145 −.009
3 .119 −.015 .180 .004 .209 .016
9 .161 .011 .219 .030 .249 .042

Identity Small 1 .156 −.013 .216 .019 .245 .034
3 .155 −.013 .216 .019 .245 .034
9 .155 −.014 .216 .019 .245 .034

Linear Small 1 .133 −.021 .195 .009 .226 .024
3 .153 −.007 .214 .022 .245 .036
9 .166 .004 .225 .031 .256 .045

Quadratic Small 1 .097 −.034 .165 −.006 .198 .009
3 .129 −.007 .195 .016 .230 .030
9 .151 .016 .211 .037 .247 .049

Note. Positive scores indicate that the uniform prior coefficient performs better; negative scores indicate that the S -coefficient
performs better; N = 50 and p1 = .90 are fixed.



WEIGHTING SCHEMES AND INCOMPLETE DATA 13

0.00

0.02

0.04

0.06

1 3 9

p2 p3

M
A

E
(α

=
0)

−
M

A
E

(α
=

1)

Identity Linear Quadratic

Weighting
None MCAR Large Small

Missing
0.7 0.9

True Agreement
2 3 4

Raters

Figure 4

Distributions of marginalized simulation results comparing Fleiss’ kappa (αc = 0) and the uniform prior coefficient
(α = 1) at different small category proportions, weighting schemes, missing data mechanisms, true chance-corrected
agreement levels, and number of raters. N = 50, p1 = .90.
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Distributions of marginalized simulation results comparing the S -coefficient (αc = ∞) and the uniform prior coefficient
(α = 1) at different small category proportions, weighting schemes, missing data mechanisms, true chance-corrected
agreement levels, and number of raters. N = 50, p1 = .90.

sample size and make the relative category frequencies less
precise, the S -coefficient is “immune” because it does not
rely extensively on these relative frequencies. In particular,
the second missingness mechanism reduces the gap between
the S -coefficient and the uniform prior coefficient because
missing data in the large category make the observed cat-
egory frequencies more balanced and the coefficients more
similar.

True Chance-Corrected Agreement

Figures 4 and 5 show that the performance of the uni-
form prior coefficient improves relative to both alternative
coefficients as the true chance-corrected agreement decreases
from high (i.e., Ir = .90 or I2

r = .81) to moderate (i.e.,
Ir = .70 or I2

r = .49). Thus, the uniform prior coefficient ap-
pears particularly useful when it is unclear whether the level
of chance-corrected agreement is high enough to trust the
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rater-based data. Although the true chance-corrected agree-
ment is relatively unimportant when comparing Fleiss’ kappa
and the uniform prior coefficient, moderate levels of chance-
corrected agreement affect the S -coefficient strongly.

Number of Raters

Figures 4 and 5 show that the uniform prior coefficient
improves relative to Fleiss’ kappa as the number of raters de-
creases and improves relative to the S -coefficient as the num-
ber of raters increases. The largest changes occur between
two and three raters. Because both the number of raters (R)
and items (N) increase the number of available item classifi-
cations, their effects are directionally similar.

Real-World Data Example

We illustrate our approach in an application with ordered
categories and incomplete data. The data came from a project
studying the expression of positive and negative emotions
in online photographs of celebrities from different countries.
Furthermore, the study aimed to validate a computer vision
algorithm designed to estimate the positivity and negativity
of facial expressions (McDuff & Girard, 2019).

The study used five participants (R = 5) to rate over one
hundred images (N = 110) on two scales: (i) how positive
is the expression in this image, and (ii) how negative is the
expression in this image. Both scales used six ordered cat-
egorical response options (C = 6), ranging from 0 (very lit-
tle or not at all) to 5 (extremely). The study implemented
a planned missing design, where all five participants rated
10 random images, and two participants rated the other 100
images. Because the design was balanced, each participant
rated 50 images.

Figure 6 shows that the category frequencies differ greatly
between the two rating scales: These frequencies are approx-
imately balanced for the positive emotion rating scale but
quite unbalanced for the negative emotion rating scale. We
use the generalized Bayesian coefficient to compute chance-
corrected agreement for different combinations of weighting
schemes (i.e., identity, linear, and quadratic) and αc values
(i.e., 0 for Fleiss’ kappa, 1 for the uniform prior coefficient,
and α for the S -coefficient).

Table 6 reports the computed coefficient values, boot-
strapped standard errors, and bias-corrected and accelerated
(BCa) confidence intervals, based on 100,000 resamples;
Figure 7 visualizes the coefficient values. The estimated
chance-corrected agreement increases from identity to lin-
ear to quadratic weights and from Fleiss’ kappa to the uni-
form prior coefficient to the S -coefficient. Furthermore, the
differences between the three coefficients become more pro-
nounced as the weighting scheme rewards rater disagree-
ments more by moving from identity to linear to quadratic
weights. The effects are particularly prominent for the unbal-
anced negative emotion rating scale, whereas they are weaker
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Category frequencies for positive and negative emotion
rating scales in real-world data example.
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Chance-corrected agreement for positive and negative
emotion rating scales, computed from the generalized
Bayesian coefficient for different combinations of weighting
schemes (i.e., identity, linear, and quadratic) and αc values
(i.e., 0 for Fleiss’ kappa, 1 for the uniform prior coefficient,
and∞ for the S -coefficient).

for the almost balanced positive emotion rating scale. The
S -coefficient is much higher than the other two coefficients
in the negative emotion rating scale due to the violation of
the coefficient’s assumption that the categories are equally
likely. The differences between the values of Fleiss’ kappa
and the uniform prior coefficient in the negative scale are
.021 for identity weights, .047 for linear weights, and .071



WEIGHTING SCHEMES AND INCOMPLETE DATA 15

Table 6

Bootstrapped standard errors and confidence intervals in real-world data example,
based on 100,000 resamples

Variable Weighting Coefficient Value SE 95% CI

Positive Identity αc = 0 0.158 0.059 [ 0.064, 0.308 ]
Identity αc = 1 0.159 0.059 [ 0.065, 0.307 ]
Identity αc = ∞ 0.172 0.060 [ 0.077, 0.323 ]
Linear αc = 0 0.322 0.075 [ 0.184, 0.478 ]
Linear αc = 1 0.323 0.075 [ 0.187, 0.478 ]
Linear αc = ∞ 0.347 0.064 [ 0.227, 0.479 ]
Quadratic αc = 0 0.459 0.087 [ 0.286, 0.623 ]
Quadratic αc = 1 0.461 0.087 [ 0.287, 0.623 ]
Quadratic αc = ∞ 0.491 0.070 [ 0.343, 0.618 ]

Negative Identity αc = 0 0.195 0.081 [ 0.050, 0.371 ]
Identity αc = 1 0.216 0.080 [ 0.075, 0.389 ]
Identity αc = ∞ 0.496 0.069 [ 0.366, 0.635 ]
Linear αc = 0 0.290 0.081 [ 0.138, 0.454 ]
Linear αc = 1 0.337 0.076 [ 0.191, 0.486 ]
Linear αc = ∞ 0.679 0.052 [ 0.559, 0.767 ]
Quadratic αc = 0 0.379 0.097 [ 0.195, 0.567 ]
Quadratic αc = 1 0.450 0.084 [ 0.278, 0.604 ]
Quadratic αc = ∞ 0.787 0.050 [ 0.661, 0.863 ]

Note. Fleiss’ kappa corresponds to αc = 0; the uniform prior coefficient corresponds to
αc = 1; the S -coefficient corresponds to αc = ∞.

for quadratic weights. In this unbalanced scale, the uni-
form prior coefficient has a lower standard error than Fleiss’
kappa, in particular, for linear and quadratic weights. How-
ever, the S -coefficient tends to have the lowest standard error
of all three coefficients, which we conjecture is because its
chance correction does not depend on the observed data.

The reported coefficient values are often low for both rat-
ing scales. Furthermore, the 95% confidence intervals for
Fleiss’ kappa and the uniform prior coefficient do not contain
values greater than .39 for identity weights, values greater
than .49 for linear weights, and values greater than .63 for
quadratic weights. We conclude that the ratings of a single
randomly-selected participant are not reliable enough to be
used interchangeably for either rating scale. Potential next
steps include better training of participants or studying po-
tential sources of heterogeneity in the ratings (e.g., to see
whether aspects of the participants’ backgrounds explain this
variability).

Discussion

Van Oest (2019) presented a model-based framework for
estimating chance-corrected interrater agreement that en-
compasses existing coefficients and developed a new coef-
ficient based on Bayesian estimation of the category propor-
tions. Whereas this framework focused on unordered (i.e.,

nominal) categories and complete data, the present frame-
work accommodates all four combinations of unordered or
ordered categories and complete or incomplete data. This ex-
tension greatly enhances applicability in real-world settings.
Besides incorporating weighting schemes to allow for partial
credit when raters choose different categories, the general-
ized framework enables item classifications to be missing ei-
ther by circumstance (e.g., technical error or rater attrition)
or by design (i.e., planned missing data; Graham, Taylor, Ol-
chowski, & Cumsille, 2006). In the latter situation, the item-
by-category matrix may have intentional (and random) holes
such that raters classify only subsets of items. Such a design
reduces the rater burden and increases the cost efficiency of
the study. It would flexibly allow some items to be classified
by all raters (for comparison) and other items by different
subsets of raters (for efficiency).

The extended framework resulted in a generalized
Bayesian coefficient that nests both category-based and
distribution-based coefficients, including weighted versions
with possibly incomplete data. Furthermore, it resulted in the
generalized uniform prior coefficient. A simulation showed
that this hybrid coefficient is as good as its “pure” counter-
parts if no dominating category exists and tends to perform
better than these alternatives in the presence of a dominat-
ing category. Compared to Scott’s pi and Fleiss’ kappa (i.e.,
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distribution-based coefficients), the benefit was particularly
prominent for generous (e.g., quadratic) weighting schemes
and missing data; missingness biases either reinforced or at-
tenuated this benefit. However, generous weighting schemes
and missing data reduced the gap with the category-based
S -coefficient. Although the uniform prior coefficient usu-
ally performed much better than the S -coefficient, the S -
coefficient sometimes performed better for small sample
sizes, incomplete data, and generous weighting schemes.

The literature has produced extremely diverse views on
which chance-corrected agreement coefficient is best, and
our study does not pretend to settle the issue. Although the
simulation results provided support for the hybrid uniform
prior coefficient, researchers can also use our framework if
they believe that a pure category-based or distribution-based
coefficient is more appropriate. The function to compute the
generalized Bayesian coefficient consists of only a few lines
of code (see Appendix B for this code in R) and encompasses
the S -coefficient and equivalent coefficients, Scott’s pi, and
Fleiss’ kappa, all augmented with a weighting scheme and
the option of incomplete data. The S -coefficient is strongly
connected with the proportion of observed agreement (via a
linear transformation), and the values of Scott’s pi are usu-
ally similar to Cohen’s kappa, the most common chance-
corrected agreement coefficient (Lombard, Snyder-Duch, &
Bracken, 2002; Stemler & Tsai, 2008), with Fleiss’ kappa
acting as an extension of Cohen’s kappa to more than two
raters (Fleiss, 1971). Additionally, the agreement software
package by Girard (2020) provides a comprehensive suite of
R functions for working with these and other agreement co-
efficients (e.g., tidying data for analysis, generating weight
matrices, constructing bootstrapped confidence intervals, and
visualizing the results).

Besides offering a widely applicable coefficient, our
framework implies a new interpretation of chance-corrected
weighted agreement coefficients. We showed that these co-
efficients estimate the probability that both raters in a pair
assign an item to its correct category without guessing. Be-
cause this result does not depend on the specific weight-
ing scheme, weighted and unweighted agreement coefficients
share the same interpretation. This provides conceptual sup-
port for the idea that “the interpretation of the magnitude of
weighted kappa is like that of unweighted kappa” (Fleiss et
al., 2003, p. 609), implying that researchers can use the same
standard reference tables as a starting point (e.g., Landis &
Koch, 1977). However, usual caution applies. Quadratic
weights are most common to assign partial credit in chance-
corrected agreement (Vanbelle, 2016) but often result in rel-
atively high coefficient values that are sensitive to the num-
ber of categories (Brenner & Kliebsch, 1996; Warrens, 2012,
2013). Because the choice of the weighting scheme is arbi-
trary, we recommend reporting coefficient values for multi-
ple weighting schemes. The proposed framework accommo-

dates any weighting scheme for category-based, distribution-
based, and hybrid coefficients.

References

Banerjee, M., Capozzoli, M., McSweeney, L., & Sinha, D. (1999).
Beyond kappa: A review of interrater agreement measures.
Canadian Journal of Statistics, 27(1), 3–23. doi: 10/cvrgb2

Basu, S., Banerjee, M., & Sen, A. (2000). Bayesian Inference for
Kappa from Single and Multiple Studies. Biometrics, 56(2),
577–582. doi: 10/fsfnw8

Bennett, E. M., Alpert, R., & Goldstein, A. C. (1954). Commu-
nication through limited response questioning. The Public
Opinion Quarterly, 18(3), 303–308. doi: 10/brfm77

Brennan, R. L., & Prediger, D. J. (1981). Coefficient Kappa: Some
uses, misuses, and alternatives. Educational and Psycholog-
ical Measurement, 41(3), 687–699. doi: 10/d22q4b

Brenner, H., & Kliebsch, U. (1996). Dependence of weighted kappa
coefficients on the number of categories. Epidemiology, 7(2),
199–202. doi: 10/b76mgk

Broemeling, L. D. (2001). A Bayesian analysis for inter-rater
agreement. Communications in Statistics - Simulation and
Computation, 30(3), 437–446. doi: 10/ftk2sw

Cicchetti, D. V., & Allison, T. (1971). A new procedure for as-
sessing reliability of scoring EEG sleep recordings. Amer-
ican Journal of EEG Technology, 11(3), 101–110. doi:
10/ggw9hx

Cohen, J. (1960). A coefficient of agreement for nominal scales.
Educational and Psychological Measurement, 20(1), 37–46.
doi: 10/dghsrr

Cohen, J. (1968). Weighted kappa: Nominal scale agreement with
provision for scaled disagreement or partial credit. Psycho-
logical Bulletin, 70(4), 213–220. doi: 10/dpbw5f

De Raadt, A., Warrens, M. J., Bosker, R. J., & Kiers, H. A. L.
(2019). Kappa coefficients for missing data. Educational
and Psychological Measurement, 79(3), 558–576. doi: 10/

ggdf54
Efron, B. (1979). Bootstrap methods: Another look at the jackknife.

Annals of Statistics, 7(1), 1–26. doi: 10/dj84pt
Efron, B. (1987). Better bootstrap confidence intervals. Journal

of the American Statistical Association, 82, 171–185. doi:
10/db5gw5

Efron, B., & Tibshirani, R. J. (1993). An introduction to the boot-
strap. New York, NY: Chapman and Hall.

Fleiss, J. L. (1971). Measuring nominal scale agreement among
many raters. Psychological Bulletin, 76(5), 378–382. doi:
10/bzhdfc

Fleiss, J. L., & Cohen, J. (1973). The equivalence of weighted
kappa and the intraclass correlation coefficient as measures
of reliability. Educational and Psychological Measuremen,
33, 613–619. doi: 10/c29gt3

Fleiss, J. L., Cohen, J., & Everitt, B. S. (1969). Large sample
standard errors of kappa and weighted kappa. Psychological
Bulletin, 72(5), 323–327. doi: 10/cc5hq2

Fleiss, J. L., Levin, B., & Paik, M. C. (2003). Statistical methods for
rates and proportions (3rd ed.). Hoboken, NJ: John Wiley &
Sons.



WEIGHTING SCHEMES AND INCOMPLETE DATA 17

Gajewski, B. J., Hart, S., Bergquist-Beringer, S., & Dunton, N.
(2007). Inter-rater reliability of pressure ulcer staging: Or-
dinal probit Bayesian hierarchical model that allows for un-
certain rater response. Statistics in Medicine, 26(25), 4602–
4618. doi: 10/bkrmmj

Girard, J. M. (2020). Agreement: An R package for the tidy analysis
of agreement and reliability.

Graham, J. W., Taylor, B. J., Olchowski, A. E., & Cumsille, P. E.
(2006). Planned missing data designs in psychological re-
search. Psychological Methods, 11(4), 323–343. doi: 10/

d7v7nv
Gwet, K. L. (2014). Handbook of inter-rater reliability: The defini-

tive guide to measuring the extent of agreement among raters
(Fourth ed.). Gaithersburg, MD: Advanced Analytics.

Krippendorff, K. (2004). Reliability in content analysis: Some com-
mon misconceptions and recommendations. Human Com-
munication Research, 30(3), 411–433. doi: 10/frt2c6

Kvålseth, T. O. (2018). An alternative interpretation of the linearly
weighted kappa coefficients for ordinal data. Psychometrika,
83(3), 618–627. doi: 10/ggw9nf

Landis, J. R., & Koch, G. G. (1977). The measurement of observer
agreement for categorical data. Biometrics, 33(1), 159–174.
doi: 10/dtzfj3

Lombard, M., Snyder-Duch, J., & Bracken, C. C. (2002). Content
analysis in mass communication: Assessment and reporting
of intercoder reliability. Human Communication Research,
28(4), 587–604. doi: 10/fjbch6

McDuff, D., & Girard, J. M. (2019). Democratizing psycholog-
ical insights from analysis of nonverbal behavior. In Pro-
ceedings of the 8th International Conference on Affective
Computing and Intelligent Interaction (ACII) (pp. 220–226).
Cambridge, UK: IEEE. doi: 10/gjr2v4

Perreault, W. D., & Leigh, L. E. (1989). Reliability of nominal
data based on qualitative judgments. Journal of Marketing
Research, 26(2), 135–135. doi: 10/fj4cb3

Schuster, C. (2004). A note on the interpretation of weighted kappa
and its relations to other rater agreement statistics for metric

scales. Educational and Psychological Measurement, 64(2),
243–253. doi: 10/btkb3g

Scott, W. A. (1955). Reliability of content analysis: The case of
nominal scaling. Public Opinion Quarterly, 19(3), 321–325.
doi: 10/bzw9xp

Stemler, S. E. (2004). A comparison of consensus, consistency, and
measurement approaches to estimating interrater reliability.
Practical Assessment, Research & Evaluation, 9(4), 1–11.
doi: 10/ggw9n7

Stemler, S. E., & Tsai, J. (2008). Best practices in estimating
interrater reliability. In J. Osborne (Ed.), Best practices in
quantitative methods (pp. 29–49). Thousand Oaks, CA: Sage
Publications.

Van Oest, R. (2019). A new coefficient of interrater agreement: The
challenge of highly unequal category proportions. Psycho-
logical Methods, 24(4), 439–451. doi: 10/ggbk3f

Vanbelle, S. (2016). A new interpretation of the weighted kappa
coefficients. Psychometrika, 81(2), 399–410. doi: 10/f8rfdt

Vanbelle, S., & Albert, A. (2009). A note on the linearly weighted
kappa coefficient for ordinal scales. Statistical Methodology,
6(2), 157–163. doi: 10/drp7vh

Warrens, M. J. (2011). Cohen’s linearly weighted kappa is a
weighted average of 2×2 kappas. Psychometrika, 76(3),
471–486. doi: 10/dwdcx9

Warrens, M. J. (2012). Cohen’s quadratically weighted kappa is
higher than linearly weighted kappa for tridiagonal agree-
ment tables. Statistical Methodology, 9(3), 440–444. doi:
10/cbq59k

Warrens, M. J. (2013). Conditional inequalities between Cohen’s
kappa and weighted kappas. Statistical Methodology, 10(1),
14–22. doi: 10/gjr2pb

Zhang, X., & Cutter, G. (2009). A Bayesian Method of Estimating
Kappa Coefficient with Application to a Rheumatoid Arthri-
tis Study. Communications in Statistics - Theory and Meth-
ods, 38(18), 3432–3444. doi: 10/bpvr4w

Zwick, R. (1988). Another look at interrater agreement. Psycho-
logical Bulletin, 103(3), 374–378. doi: 10/cjgw9s



18 VAN OEST AND GIRARD

Appendix A

We consider R ≥ 2 raters who assign an item to one of C mutually exclusive categories. The expected proportion of weighted
agreement, Aw, is the expected number of weighted agreements across all rater pairs, divided by the corresponding maximum,(

R
2

)
. The number of raters making accurate judgments about the item’s correct category may vary from zero to R. The

probability that j ∈ {0, . . . ,R} raters make accurate judgments (and thus R − j raters need to guess) immediately follows from
the binomial distribution:

(
R
j

)
I j
r (1 − Ir)R− j.

If j raters make accurate judgments and the item’s correct category is c, the j accurate raters contribute
(

j
2

)
pairwise

agreements, each of j accurate raters (choosing c) paired with each of the R − j inaccurate raters (with guessing probabil-
ities p1, . . . , pC) contributes

∑C
c̃=1 wc,c̃ pc̃, and each of the

(
R− j

2

)
pairs of guessing raters contributes

∑C
c̄=1

∑C
c̃=1 wc̄,c̃ pc̄ pc̃ (not

depending on the correct category c). Thus, conditional on j accurate raters and correct category c, the expected number of
weighted agreements across all rater pairs is

(
j
2

)
+ j(R− j)

∑C
c̃=1 wc,c̃ pc̃ +

(
R− j

2

)∑C
c̄=1

∑C
c̃=1 wc̄,c̃ pc̄ pc̃. Dividing this number by the

corresponding maximum,
(

R
2

)
, yields Aw conditional on j accurate raters and correct category c:

Aw| j, c =

(
j
2

)
+ j(R − j)

∑C
c̃=1 wc,c̃ pc̃ +

(
R− j

2

)∑C
c̄=1

∑C
c̃=1 wc̄,c̃ pc̄ pc̃(

R
2

) ,

where we follow the standard convention for binomial coefficients that
(

n
k

)
= 0 if n < k, where n and k are nonnegative integers.

By taking the expectation over the probability distribution of correct categories, (p1, . . . , pC), and using that∑C
c=1 pc = 1, we obtain

Aw| j =

c∑
c=1

pc


(

j
2

)
+ j(R − j)

∑C
c̃=1 wc,c̃ pc̃ +

(
R− j

2

)∑C
c̄=1

∑C
c̃=1 wc̄,c̃ pc̄ pc̃(

R
2

) 
=

(
j
2

)
+ j(R − j)

∑C
c=1

∑C
c̃=1 wc,c̃ pc pc̃ +

(
R− j

2

)∑C
c̄=1

∑C
c̃=1 wc̄,c̃ pc̄ pc̃(

R
2

)
=

(
j
2

)(
R
2

) +

 j(R − j)(
R
2

) +

(
R− j

2

)(
R
2

)


C∑
c=1

C∑
c̃=1

wc,c̃ pc pc̃.

By taking the expectation over the (binomial) probability distribution of j, we obtain

Aw =

R∑
j=1

(
R
j

)
I j
r (1 − Ir)R− j


(

j
2

)(
R
2

) +

 j(R − j)(
R
2

) +

(
R− j

2

)(
R
2

)


C∑
c=1

C∑
c̃=1

wc,c̃ pc pc̃


=

R∑
j=0


(

R
j

)(
j
2

)
(

R
2

) I j
r (1 − Ir)R− j +


(

R
j

)
j(R − j)(

R
2

) +

(
R
j

)(
R− j

2

)
(

R
2

)
 I j

r (1 − Ir)R− j
C∑

c=1

C∑
c̃=1

wc,c̃ pc pc̃

 .
Breaking up the expression within square brackets, using that j(R − j) = 0 if either j = 0 or j = R, and using that

(
n
k

)
= 0 if

n < k reduces the number of terms in the summations:

AW =

R∑
j=2


(

R
j

)(
j
2

)
(

R
2

) I j
r (1 − Ir)R− j

 +

R−1∑
j=1


(

R
j

)
j(R − j)(

R
2

) I j
r (1 − Ir)R− j

 C∑
c=1

C∑
c̃=1

wc,c̃ pc pc̃+

R−2∑
j=0


(

R
j

)(
R− j

2

)
(

R
2

) I j
r (1 − Ir)R− j

 C∑
c=1

C∑
c̃=1

wc,c̃ pc pc̃.
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Because the fractions containing binomial coefficients simplify into(
R
j

)(
j
2

)
(

R
2

) =

R!
j!(R− j)!

j!
2!( j−2)!

R!
2!(R−2)!

=
(R − 2)!

(R − j)!( j − 2)!
=

(
R − 2
j − 2

)
,(

R
j

)
j(R − j)(

R
2

) =

R! j(R− j)
j!(R− j)!

R!
2!(R−2)!

=
2(R − 2)!

( j − 1)!(R − j − 1)!
= 2

(
R − 2
j − 1

)
,(

R
j

)(
R− j

2

)
(

R
2

) =

R!
j!(R− j)!

(R− j)!
2!(R− j−2)!
R!

2!(R−2)!

=
(R − 2)!

j!(R − j − 2)!
=

(
R − 2

j

)
,

we can rewrite Aw as

Aw =

R∑
j=2

[(
R − 2
j − 2

)
I j
r (1 − Ir)R− j

]
+

R−1∑
j=1

[
2
(
R − 2
j − 1

)
I j
r (1 − Ir)R− j

] C∑
c=1

C∑
c̃=1

wc,c̃ pc pc̃ +

R−2∑
j=0

[(
R − 2

j

)
I j
r (1 − Ir)R− j

] C∑
c=1

C∑
c̃=1

wc,c̃ pc pc̃.

Manipulating the indices j in the first and second summations (without altering the summations themselves) yields

Aw =

R−2∑
j=0

[(
R − 2

j

)
I j+2
r (1 − Ir)R− j−2

]
+

R−2∑
j=0

[
2
(
R − 2

j

)
I j+1
r (1 − Ir)R− j−1

] C∑
c=1

C∑
c̃=1

wc,c̃ pc pc̃+

R−2∑
j=0

[(
R − 2

j

)
I j
r (1 − Ir)R− j

] C∑
c=1

C∑
c̃=1

wc,c̃ pc pc̃,

which we further rewrite as

Aw = I2
r

R−2∑
j=0

[(
R − 2

j

)
I j
r (1 − Ir)R−2− j

]
+ 2Ir(1 − Ir)

R−2∑
j=0

[(
R − 2

j

)
I j
r (1 − Ir)R−2− j

] C∑
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C∑
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[(
R − 2

j

)
I j
r (1 − Ir)R−2− j

] C∑
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C∑
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wc,c̃ pc pc̃.

By recognizing the sum of all probabilities for the binomial distribution with parameters R − 2 and Ir, that is,∑R−2
j=0

[(
R−2

j

)
I j
r (1 − Ir)R−2− j

]
= 1, we obtain

Aw = I2
r + 2Ir(1 − Ir)

C∑
c=1

C∑
c̃=1

wc,c̃ pc pc̃ + (1 − Ir)2
C∑

c=1
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c̃=1

wc,c̃ pc pc̃

= I2
r + (1 − I2

r )
C∑

c=1

C∑
c̃=1

wc,c̃ pc pc̃.

For Aw ≥
∑C

c=1
∑C

c̃=1 wc,c̃ pc pc̃, there is a solution for I2
r that satisfies I2

r ≥ 0:

I2
r =

Aw −
∑C

c=1
∑C

c̃=1 wc,c̃ pc pc̃

1 −
∑C

c=1
∑C

c̃=1 wc,c̃ pc pc̃
.
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Appendix B

The function to compute the generalized Bayesian agreement coefficient, defined by (8) and (12), requires three inputs:
the (N × C) data matrix Rmat, where element (i, c) is the number of raters who assigned item i ∈ {1, . . . ,N} to category
c ∈ {1, . . . ,C}, the (C × C) symmetric weight matrix W, and the (1 × C) vector alpha containing the Dirichlet parameters
describing the prior distribution of the category proportions.

Coefficient <- function( Rmat, W, alpha )
{
Ri <- rowSums( Rmat )
Aw_top <- sum( rowSums( Rmat * ( Rmat %*% W - 1 ) ) )
Aw_bottom <- sum( Ri * ( Ri - 1 ) )
Aw <- Aw_top / Aw_bottom
p <- ( alpha + colSums( Rmat ) ) / ( sum( alpha ) + sum( Ri ) )
pWp <- p %*% W %*% t(p)
coeff <- ( Aw - pWp ) / ( 1 - pWp )
coeff

}

Next, we enter the function’s inputs: (i) the data matrix, (ii) the various weight matrices (i.e., identity, linear, and
quadratic), and (iii) the alpha coefficients corresponding to Fleiss’ kappa, the uniform prior coefficient, and the S -coefficient.

Rmat <- matrix( c( 3, 2, 4, 2, 3, 0, 4, 2, 4, 3, 1, 3, 0, 4, 1,
1, 1, 3, 0, 1, 3, 3, 3, 4, 1, 4, 0, 2, 3, 1,
0, 1, 0, 0, 1, 3, 0, 0, 0, 0, 0, 0, 1, 0, 2,
1, 0, 0, 0, 0, 0, 1, 0, 0, 3, 0, 0, 1, 0, 2,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0,
1, 3, 0, 4, 2, 0, 0, 0, 0, 0, 0, 2, 0, 1, 0 ), ncol=3 )

Rmat
W_identity <- matrix( c( 1.00, 0.00, 0.00, 0.00, 1.00, 0.00, 0.00, 0.00, 1.00 ), ncol=3 )
W_linear <- matrix( c( 1.00, 0.50, 0.00, 0.50, 1.00, 0.50, 0.00, 0.50, 1.00 ), ncol=3 )
W_quadratic <- matrix( c( 1.00, 0.75, 0.00, 0.75, 1.00, 0.75, 0.00, 0.75, 1.00 ), ncol=3 )
alpha_FleissK <- t( c( 0, 0, 0 ) )
alpha_UniPrior <- t( c( 1, 1, 1 ) )
alpha_SCoeff <- t( c( 1000000, 1000000, 1000000 ) )

Finally, we compute and print Fleiss’ kappa, the uniform prior coefficient, and the S -coefficient for the three different
weight matrices (i.e., identity, linear, and quadratic).

( FleissK_identity <- Coefficient( Rmat, W_identity, alpha_FleissK ) ) # 0.4677686
( UniPrior_identity <- Coefficient( Rmat, W_identity, alpha_UniPrior ) ) # 0.4792173
( SCoeff_identity <- Coefficient( Rmat, W_identity, alpha_SCoeff ) ) # 0.6120690
( FleissK_linear <- Coefficient( Rmat, W_linear, alpha_FleissK ) ) # 0.5048103
( UniPrior_linear <- Coefficient( Rmat, W_linear, alpha_UniPrior ) ) # 0.5150104
( SCoeff_linear <- Coefficient( Rmat, W_linear, alpha_SCoeff ) ) # 0.6120705
( FleissK_quadratic <- Coefficient( Rmat, W_quadratic, alpha_FleissK ) ) # 0.5370316
( UniPrior_quadratic <- Coefficient( Rmat, W_quadratic, alpha_UniPrior ) ) # 0.5461999
( SCoeff_quadratic <- Coefficient( Rmat, W_quadratic, alpha_SCoeff ) ) # 0.6120721


