

This file was downloaded from BI Open, the institutional repository (open access) at
BI Norwegian Business School https://biopen.bi.no.

It contains the accepted and peer reviewed manuscript to the article cited below. It
may contain minor differences from the journal's pdf version.

David Kreiberg, Katerina Marcoulides & Ulf Henning Olsson (2021) A Faster

Procedure for Estimating CFA Models Applying Minimum Distance Estimators

with a Fixed Weight Matrix, Structural Equation Modeling: A Multidisciplinary

Journal, 28:5, 725-739, DOI: 10.1080/10705511.2020.1835484

Copyright policy of Taylor & Francis, the publisher of this journal:

'Green' Open Access = deposit of the Accepted Manuscript (after peer review but prior
to publisher formatting) in a repository, with non-commercial reuse rights, with an
Embargo period from date of publication of the final article. The embargo period for
journals within the Social Sciences and the Humanities (SSH) is usually 18 months

http://authorservices.taylorandfrancis.com/journal-list/

https://doi.org/10.1080/10705511.2020.1835484
http://authorservices.taylorandfrancis.com/journal-list/

1

A faster procedure for estimating CFA models applying

Minimum Distance Estimators with a fixed weight

matrix

David Kreiberg1, Katerina Marcoulides2 and Ulf Henning Olsson1

1BI Norwegian Business School

 2University of Minnesota

David Kreiberg is a Lecturer of Statistics

Katerina Marcoulides is Assistant Professor of Quantitative/Psychometric Methods

Ulf Henning Olsson is Professor Statistics

2

Abstract

This paper presents a numerically more efficient implementation of the quadratic form

minimum distance (MD) estimator with fixed weight matrix for confirmatory factor analys is

(CFA) models. In structural equation modeling (SEM) computer software, such as EQS,

lavaan, LISREL and Mplus, various MD estimators are available to the user. Standard

procedures for implementing MD estimators involves a one-step approach applying non-linear

optimization techniques. Our implementation differs from the standard approach by utilizing a

two-step estimation procedure. In the first step, only a subset of the parameters are estimated

using non-linear optimization. In the second step, the remaining parameters are obtained using

numerically efficient Linear Least Squares (LLS) methods. Through examples, it is

demonstrated that the proposed implementation of MD estimators may be considerably faster

than what the standard implementation offer. The proposed procedure will be of particular

interest in computationally intensive applications such as simulation, bootstrapping and other

procedures involving re-sampling.

Key words

CFA, quadratic form fit function, minimum distance estimator, estimation time

3

Introduction

Structural equation modeling (SEM) is a well-established and effective statistical modeling

approach used by researchers in many scientific disciplines for the examination of complex

relationships among observed and latent variables. The modeling approach includes as special

cases path analysis, factor analysis, growth curve modeling, survival analysis, latent class

analysis, and latent transition analysis (Marcoulides & Schumacker, 1996; Muthén &

Asparouhov, 2011). A key element in SEM is parameter estimation. To date, several estimation

procedures have been suggested in the literature. Among the most commonly used procedures

are maximum likelihood (ML), unweighted least squares (ULS) and generalized (weighted)

least squares (GLS) (see e.g., Bollen, 1989).

Although the specific functional form may differ across estimation procedures, almost all of

them can be considered variations of a minimum distance (MD) estimator (Browne, 1982). In

its most general formulation, the MD estimator is written using the quadratic form

 𝐹 = (𝒔 − 𝝈(𝝑))
𝑇
𝑽(𝒔− 𝝈(𝝑)) (1)

where 𝒔 and 𝝈(𝝑) are the vector elements in the observed sample variance-covariance and the

model implied variance-covariance matrices, respectively. The matrix 𝑽 is either a fixed

positive definite weight matrix or a weight matrix that converges in probability to a positive

definite matrix. By appropriately choosing the form of 𝑽, different estimators can be obtained

(for details, see e.g., Jöreskog et al., 2016). For a specific choice of 𝑽, estimation is performed

by minimizing (1) w.r.t. the unknown parameters using non-linear optimization techniques. We

will refer to this estimation procedure as Non-Linear Least Squares (NLLS).

4

Due to a variety of complexities, such as violations of distributional assumptions and small

sample behavior, extensive research over the past few decades has focused on improving the

estimation of SEMs. However, not much research has been done in terms of computationa l

efficiency when applying MD estimators, at least not within the confines of SEM. A faster

implementation of the MD estimator may be of particular value in applications where some

form of simulation or re-sampling is involved. Obvious examples are simulation based

estimation, bootstrapping and, more generally, simulation research. Fast estimation may also

be useful in applied research when the number of observed variables is large and the

implemented model contain a large number of free parameters.

In this study, we introduce a numerically more efficient, but otherwise equivalent, procedure

for how to minimize the MD quadratic form fit function when the model takes the form of a

CFA model. The proposed procedure is based on a study by Golub and Pereyra (1973), who

termed it Separable Non-Linear Least Squares (SNLLS). It is emphasized that we are not

proposing a new estimator, but a faster implementation of existing estimators derived from (1).

Thus, applying SNLLS will yield the exact same estimation results as the ones obtained from

applying NLLS (i.e., the same parameter estimates, standard errors and fit statistics).

Estimating CFA models using NLLS involves numerically searching a solution for the entire

set of free parameters. In contrast, SNLLS is a two-step process where, in the first step, only a

subset of the parameters are estimated applying non-linear optimization techniques. The

remaining parameters are estimated in a second step using LLS. Since the first estimation step

represents a lower dimensional optimization problem, fewer iterations and function evaluat ions

are required before arriving at the solution. As a result, considerable time gains may be realized

when estimating the model. Using the same notation as Golub and Pereyra (1973), Appendix

A provides a brief mathematical description of the SNLLS framework and its justification.

5

Over the years, estimation using SNLLS has become popular in a wide range of scientific

disciplines such as system identification, signal analysis, robotics, telecommunications and

other areas of applied engineering. Golub and Pereyra (2002), alongside a presentation of

various technical aspects, provided an overview of several real world applications applying

SNLLS. More directly related to the current study, Kreiberg et. al. (2016) outlined a CFA

modeling approach to the error-in-variables (EIV) problem. Estimating the CFA-EIV model,

they outlined a SNLLS implementation of the quadratic form fit function. The aim of the

current study is to further generalize the work in Kreiberg et. al. (2016) to include all CFA

models.

Implementing SNLLS requires a modification of the objective function. In the following

sections, we outline the complete analytical framework for how to appropriately modify (1).

Through examples and simulations, we illustrate the potential benefits and some possible

challenges of applying SNLLS. One minor modification to the original framework by Golub

and Pereyra is the introduction of the weight matrix 𝑽. The SNLLS procedure works with

different forms of 𝑽, e.g. when the aim is to handle non-normal or ordinal variables. However,

cases in which 𝑽 is a function of the parameters (i.e., 𝑽 = 𝑽(𝝑)) will pose a problem, since

estimation applying SNLLS requires 𝑽 to be a known matrix. That effectively rules out

estimation using ML. We therefore limit the further presentation to only consider applications

of SNLLS for which 𝑽 is a fixed matrix. Specifically, in the examples, we use the GLS

estimator with weight matrix given by

 𝑽 = 2−1𝑳𝑇(𝑺−𝟏 ⨂ 𝑺−𝟏)𝑳 (2)

where 𝑺 is a (𝑝 × 𝑝) sample covariance matrix, ⨂ denotes the Kronecker product and 𝑳 is the

so-called duplication matrix (see Magnus and Neudecker, 1999).

6

The remainder of the study is organized in the following way. First, to improve overall

readability and establish a general notation, some standard mathematical details describing the

modeling framework are provided. Next, the theoretical background and detailed mathematica l

derivations necessary for the proposed procedure is presented. This section is followed by

illustrations comparing the numerical efficiency of applying NLLS and SNLLS using empirica l

examples and simulations. The first illustration is the well-known Nine Psychological Test

model from the Holzinger and Swineford (1939) study. The second illustration is taken from

Miller et. al. (2018), who used a CFA approach to analyze Multitrait Multimethod Matrices.

The specific model is a 3–Traits by 3–Methods Correlated Traits/Correlated Methods model.

Such models represent a challenge since their estimation often leads to improper solutions (see

e.g. Marsh and Bailey, 1991). The third illustration uses the dependent part (the so-called

democracy part) of Bollen’s (1989) panel model for political democracy and industrializa t ion

in 75 countries. This particular part of Bollen’s (1989) panel model provides the ideal

illustration for examining a repeated measurement model with correlated errors. The fourth

illustration is a brief simulation study. The design allows us to study to what extent numerica l

efficiency of NLLS and SNLLS is affected by model complexity and the relative number of

latent variance-covariance parameters to the number of factor loading parameters.

Analytical Review and Derivations

We begin by considering the common CFA modeling framework. Following this overview, we

then turn our attention to the mathematical details and derivations needed for implementing the

SNLLS procedure.

7

Let 𝒙 be a stochastic (𝑝 × 1) zero mean vector of observed variables, and let 𝚺 denote the

associated (𝑝 × 𝑝) covariance matrix. Due to symmetry, the number of non-duplicated

elements in 𝚺 is equal to ℎ = 2−1𝑝(𝑝 + 1).

Suppose that the underlying process of 𝒙 takes the simple form

 𝒙 = 𝚲𝝃 + 𝜹 (3)

where 𝝃 is an (𝑚 × 1) vector of common factors, 𝜹 is a (𝑝 × 1) vector of unique factors

(sometimes referred to as the errors) and 𝚲 is a (𝑝 × 𝑚) parameter matrix relating the elements

of 𝝃 to the elements of 𝒙. It is generally assumed that the elements of 𝜹 are mutually

uncorrelated with the elements of 𝝃.

If the above model holds, we can express 𝚺 as a matrix function of the parameters

characterizing the process of 𝒙 as

𝚺 = 𝚺(𝝑)

= 𝚲𝚽𝚲𝑇 + 𝚯
(4)

where 𝑇 is the transpose operator, 𝚽 = 𝐸{𝝃𝝃𝑇 } is an (𝑚×𝑚) covariance matrix associated

with the common factors, 𝚯= 𝐸{𝜹𝜹𝑇} is a (𝑝 × 𝑝) covariance matrix associated with the

unique factors, and 𝝑 denotes a (𝑡𝜗 × 1) parameter vector composed of the (free) elements of

𝚲, 𝚽 and 𝚯.

Suppose that a sample of 𝑛 data points, denoted 𝒙𝑖 (for 𝑖 = 1, … , 𝑛), are observed from a

population of interest. Given the observed sample data, the aim is to estimate the true, but

8

unknown, parameter vector 𝝑0. Let 𝐹 = 𝐹(𝑺, 𝚺(𝝑)) be a scalar function that expresses the

distance between 𝑺 and 𝚺(𝝑). An estimate of 𝝑0 is then obtained by

 �̂� = arg min
𝝑

𝐹(𝑺, 𝚺(𝝑)) (5)

where 𝑺, the sample covariance matrix, is obtained from the observed data using

 𝑺 =
1

𝑛
∑𝒙𝑖𝒙𝑖

𝑇

𝑛

𝑖=1

 (6)

As outlined in the introduction, we will be concerned with the quadratic form fit function, given

by

 𝐹 = (𝒔 − 𝝈(𝝑))
𝑇
𝑽(𝒔− 𝝈(𝝑)) (7)

where 𝑽 is an (ℎ × ℎ) symmetric weighting matrix, which is typically computed from the data.

Moreover, 𝒔 and 𝝈(𝝑), which are both of size (ℎ × 1), are vectors composed of the non-

duplicated elements of 𝑺 and 𝚺(𝝑), respectively. Specifically, 𝒔 and 𝝈(𝝑) are respectively

obtained from

𝒔 = vech(𝑺)

= 𝑲𝑇vec(𝑺)
(8)

and

𝝈(𝝑) = vech(𝚺(𝝑))

= 𝑲𝑇vec(𝚺(𝝑))
(9)

9

In (8) and (9), 𝑲 is a (𝑝2 × ℎ) matrix computed from 𝑲 = 𝑳(𝑳𝑇𝑳)−1, where 𝑳 is a (𝑝2 × ℎ)

matrix containing only ones and zeros (see the Appendix for mathematical details concerning

the derivation of 𝑳). Moreover, vec is the operation of vectorising the elements of a matrix and

vech is the operation of vectorising the non-duplicated elements of a symmetric matrix.

For later, it will be useful to express (7) in terms of the Euclidean norm (which is essentia lly

the least squares objective function expressing the sum of the squared residuals)

 𝐹 = ‖𝒔 − 𝝈(𝝑)‖𝑽
2 (10)

The function 𝐹 is minimized by numerically searching the parameter space, using a suitable

algorithm, until some convergence criteria is satisfied.

Modifying the Quadratic Fit Function 𝐹

Next, we outline how to appropriately modify 𝐹 to accommodate the SNLLS estimation

procedure. Before doing so, we first define some new and necessary notation that is needed for

completing the computational processes.

Let 𝝑𝜆 (𝑡𝜗𝜆 × 1) be a partition of 𝝑 containing the free parameters relating the elements of 𝝃

to the elements of 𝒙, and let 𝝑𝜑,𝜃 = (𝝑𝜑
𝑇 𝝑𝜃

𝑇)
𝑇

 (𝑡𝜗𝜑 ,𝜃 × 1) be a partition of 𝝑 containing the

free non-repeated elements of 𝚽 and 𝚯. We then have

 𝝑 = (𝝑𝜆
𝑇 𝝑𝜑,𝜃

𝑇)
𝑇
 (11)

Our approach will be to rewrite 𝐹 in the following way

10

𝐹 = ‖𝒔 − 𝝈(𝝑)‖𝑽
2

 = ‖𝒔 −𝑮(𝝑𝜆)𝝑𝜑,𝜃‖𝑽
2

(12)

where 𝑮(𝝑𝜆) (ℎ × 𝑡𝜗𝜑 ,𝜃) is a tall matrix function (i.e., ℎ > 𝑡𝜗𝜑 ,𝜃) assumed to have full column

rank. We immediately see that for some value of 𝝑𝜆, the solution to the problem of minimizing

𝐹 w.r.t to 𝝑𝜑,𝜃 is an application of LLS, from which the solution immediately follows

 𝝑𝜑,𝜃 = (𝑮
𝑇(𝝑𝜆)𝑽𝑮(𝝑𝜆))

−1
𝑮𝑇(𝝑𝜆)𝑽𝒔 (13)

In order to implement the LLS solution for estimating 𝝑𝜑,𝜃 , it is necessary to obtain 𝑮(𝝑𝜆) for

some estimate of 𝝑𝜆. To do so, two related problems must be solved. The first problem is to

derive the functional form of 𝑮(𝝑𝜆). The second problem is to outline a procedure for how to

estimate 𝝑𝜆 without directly involving 𝝑𝜑,𝜃 .

First, we derive the functional expression for 𝑮(𝝑𝜆). Suppose that there exist matrices 𝑳Φ and

𝑳Θ such that the following expressions hold (details on how to obtain 𝑳Φ and 𝑳Θ are provided

in the Appendix)

 vec(𝚽) = 𝑳Φ𝝑𝜑 (14)

and

 vec(𝚯) = 𝑳Θ𝝑𝜃 (15)

where 𝑳Φ and 𝑳Θ are selection matrices containing zeros and ones. Their exact formulat ion

will depend on the actual structure of 𝚽 and 𝚯. Given the common CFA model, we can write

11

𝝈(𝝑) = 𝑲𝑇vec(𝚺(𝝑))

= 𝑲𝑇vec(𝚲𝚽𝚲𝑇 +𝚯)

= 𝑲𝑇(vec(𝚲𝚽𝚲𝑇)+ vec(𝚯))

= 𝑲𝑇((𝚲𝑇 ⨂ 𝚲)vec(𝚽) + vec(𝚯))

(16)

In this expression, we made use of the matrix identity: vec(𝑨𝑩𝑪) = (𝑪𝑇⨂𝑨)vec(𝑩), where

𝑨, 𝑩 and 𝑪 are matrices of compatible sizes.

Inserting the expressions for vec(𝚽) and vec(𝚯), as stated in (14) and (15), into (16) gives

𝝈(𝝑) = 𝑲𝑇 ((𝚲𝑇 ⨂ 𝚲)𝑳Φ𝝑𝜑 + 𝑳Θ𝝑𝜃)

= 𝑲𝑇((𝚲𝑇 ⨂ 𝚲)𝑳Φ 𝑳Θ) (
𝝑𝜑
𝝑𝜃
)

:= 𝑮(𝝑𝜆)𝝑𝜑,𝜃

(17)

Next, we outline an approach that will allow us to obtain an estimate of 𝝑𝜆. Again, consider

the function 𝐹, which is now written using the alternative formulation

𝐹 = (𝒔 − 𝑮(𝜽𝜆)𝝑𝜑,𝜃)
𝑇
𝑽(𝒔− 𝑮(𝝑𝜆)𝝑𝜑,𝜃)

= 𝒔𝑇𝑽𝒔 − 𝒔𝑇𝑽𝑮(𝝑𝜆)𝝑𝜑,𝜃 − 𝝑𝜑,𝜃
𝑇 𝑮𝑇(𝝑𝜆)𝑽𝒔 +𝝑𝜑,𝜃

𝑇 𝑮𝑇(𝜽𝜆)𝑽𝑮(𝝑𝜆)𝝑𝜑,𝜃

= 𝒔𝑇𝑽𝒔 − 2𝒔𝑇𝑽𝑮(𝝑𝜆)𝝑𝜑,𝜃 + 𝝑𝜑,𝜃
𝑇 𝑮𝑇(𝝑𝜆)𝑽𝑮(𝝑𝜆)𝝑𝜑,𝜃

(18)

Inserting (13) into (18) leads to

12

𝐹 = 𝒔𝑇𝑽𝒔 − 2𝒔𝑇𝑽𝑮(𝝑𝜆)(𝑮
𝑇(𝝑𝜆)𝑽𝑮(𝝑𝜆))

−1
𝑮𝑇(𝝑𝜆)𝑽𝒔

+ ((𝑮𝑇(𝝑𝜆)𝑽𝑮(𝝑𝜆))
−1
𝑮𝑇(𝝑𝜆)𝑽𝒔)

𝑇

𝑮𝑇(𝝑𝜆)𝑽𝑮(𝝑𝜆)

× (𝑮𝑇(𝝑𝜆)𝑽𝑮(𝝑𝜆))
−1
𝑮𝑇(𝝑𝜆)𝑽𝒔

= 𝒔𝑇𝑽𝒔 − 2𝒔𝑇𝑽𝑮(𝝑𝜆)(𝑮
𝑇(𝝑𝜆)𝑽𝑮(𝝑𝜆))

−1
𝑮𝑇(𝝑𝜆)𝑽𝒔

+ 𝒔𝑇𝑽𝑮(𝝑𝜆)(𝑮
𝑇(𝝑𝜆)𝑽𝑮(𝝑𝜆))

−1
𝑮𝑇(𝝑𝜆)𝑽𝑮(𝝑𝜆)

× (𝑮𝑇(𝝑𝜆)𝑽𝑮(𝝑𝜆))
−1
𝑮𝑇(𝝑𝜆)𝑽𝒔

= 𝒔𝑇𝑽𝒔 − 2𝒔𝑇𝑽𝑮(𝝑𝜆)(𝑮
𝑇(𝝑𝜆)𝑽𝑮(𝝑𝜆))

−1
𝑮𝑇(𝝑𝜆)𝑽𝒔

+ 𝒔𝑇𝑽𝑮(𝝑𝜆)(𝑮
𝑇(𝝑𝜆)𝑽𝑮(𝝑𝜆))

−1
𝑮𝑇(𝝑𝜆)𝑽𝒔

= 𝒔𝑇𝑽𝒔 − 𝒔𝑇𝑽𝑮(𝝑𝜆)(𝑮
𝑇(𝝑𝜆)𝑽𝑮(𝝑𝜆))

−1
𝑮𝑇(𝝑𝜆)𝑽𝒔

(19)

Relying on the mathematical results in Golub and Pereyra (1973), minimizing (19) w.r.t 𝝑𝜆

leads to the exact same minimum function value as the one obtained from minimizing (7) w.r.t

𝝑.

Expressing 𝐹 entirely as a function of 𝝑𝜆 is key in reducing the estimation time. To specifica lly

highlight the benefits of rewriting 𝐹, as done in (18) and (19), let us again consider the function

𝐹 = 𝐹(𝝑) written as

 𝐹(𝝑) = (𝒔 − 𝝈(𝝑))
𝑇
𝑽(𝒔− 𝝈(𝝑)) (20)

Given an optimization algorithm and a set of initial values, minimizing 𝐹(𝝑) w.r.t 𝝑 involves

searching the entire parameter space (i.e., the whole space of 𝝑).

13

Next, consider the function 𝐹 = 𝐹(𝝑𝜆) given by

 𝐹(𝝑𝜆) = 𝒔
𝑇𝑽𝒔 − 𝒔𝑇𝑽𝑮(𝝑𝜆)(𝑮

𝑇(𝝑𝜆)𝑽𝑮(𝝑𝜆))
−1
𝑮𝑇(𝝑𝜆)𝑽𝒔 (21)

where 𝝑𝜆 is a parameter vector of lower dimension as compared to the full parameter vector 𝝑.

Minimizing 𝐹(𝝑𝜆) involves searching a reduced parameter space, which is inevitably less

computationally demanding. Thus, it is reasonable to conjecture that a reduction in estimation

time can be realized from applying 𝐹(𝝑𝜆).

When an estimate of 𝝑𝜆 is obtained, the remaining parameters are estimated by a

straightforward, and computationally efficient, application of LLS

 �̂�𝜑,𝜃 = (𝑮
𝑇(�̂�𝜆)𝑽𝑮(�̂�𝜆))

−1

𝑮𝑇(�̂�𝜆)𝑽𝒔 (22)

Depending therefore on the model, it appears that the computational benefits of minimiz ing

𝐹(𝝑𝜆), rather than 𝐹(𝝑), far outweighs the additional step needed to estimate 𝝑𝜑,𝜃 when

applying SNLLS (we present further supporting evidence on this issue in the next section).

As indicated in the previous discussion, the relative performance obtained by applying the two

different formulations of 𝐹 will, to a large extent, depend on the dimension of 𝝑𝜆 relative to

the dimension of 𝝑𝜑,𝜃 . For enhanced precision we express the relative dimension of these two

parameter vectors using the fraction

𝑃𝑅 =
dim(𝝑𝜑,𝜃)

dim(𝝑𝜆)

=
𝑡𝜗𝜑,𝜃
𝑡𝜗𝜆

(23)

14

As will be demonstrated in the next section, when 𝑃𝑅 is large, estimation by SNLLS will

typically be multiple times faster than estimation by NLLS.

Illustrations and Results

In this section, we provide four examples illustrating the difference in numerical efficiency

across the two implementations of the quadratic form fit function 𝐹. As it turns out, it is

surprisingly difficult to measure numerical efficiency. One place to start is simply to count the

number of iterations and function evaluations until the optimizer reaches a satisfactory solution.

However, the end goal is a faster implementation. Thus, our focus will be to evaluate numerica l

efficiency in terms of estimation time (i.e., the time used by the optimizer to reach a solution).

Evaluating estimation time, one has to be aware that the hardware processor is at any time point

busy with ongoing processes. Thus, the allocated resources assigned to the optimizer will vary,

which in turn leads to variation in estimation time. It is therefore recommended to “simula te”

the time by re-estimating the model a large number of times. Measures of computationa l

efficiency are then obtained as the mean (or median) estimation time.

The first three example are pure timing experiments. In each of these examples, the model is

re-estimated 1000 times using the same empirical covariance matrix as input. Thus, the only

source of variation is the time it takes to estimate the model. The fourth example additiona lly

involves simulated multivariate data. At each run in the loop, a new empirical covariance

matrix is generated. The same (default) seed was used for both procedures.

Estimation is performed using Matlab (2019) and the complementary optimization toolbox.

This toolbox contains a number of flexible and robust algorithms, which are well suited for our

15

purpose. Below, we outline the conditions under which the two procedures, SNLLS and NLLS,

are implemented and evaluated:

 Algorithm: As in other SEM software, non-linear optimization is performed using a

Quasi-Newton design. The specific implementation makes use of the BFGS (Broyden–

Fletcher–Goldfarb–Shanno) Hessian update mechanism, which is the default in Matlab.

 Gradient: For ease of implementation, the gradient is computed using numerica l

differentiation. A centered design is applied, which is more time consuming, but helps

prevent potential numerical problems.

 Tolerances: All tolerances are set to their default values (see the Matlab documentat ion

for more details).

 Starting values: The numerical search procedure requires a set of starting values that

are not “too far” away from the optimal solution. There are various ways to obtain such

values. We apply two different types, one labeled “fabin 3” and the other labeled

“simple”. As indicated by the label, when the fabin 3 type starting values are applied,

all non-zero elements of 𝚲 are determined by the non-iterative fabin 3 estimator (see

Hägglund, 1982). When the simple type starting values are used, all non-zero elements

of 𝚲 are set to one. For both types, all elements of 𝚽 and 𝚯 are set to zero, except the

variances of latent variables (set to 0.05), and the unique variances (set to half the

observed variance).

In the first three examples, we report results for both types of starting values. In the

fourth example, we simplify matters by only considering the simple type. Note that

when SNLLS is applied, no starting values for the elements of 𝚽 and 𝚯 are required.

16

The “timing loop” consists of the following steps:

1. The clock starts.

2. Starting values are obtained.

3. Estimation is performed. When SNLLS is applied, two functions are involved. When

NLLS is applied, only one function is involved.

4. The clock stops and the recorded time is stored in a vector for later analysis.

The GLS estimator is used throughout all examples. To ensure that estimation results were

similar across the two procedures, we compared the parameter estimates and function values

at the minimum. For the first three examples, we also compared the estimation results to the

output of established SEM software such as Mplus (Muthén & Muthén, 2017) and lavaan

(Rosseel, 2012). Results were consistent across software packages.

Example 1

In the first example, we use the classic data from the Holzinger and Swineford (1939) study.

The data (𝑛 = 301) is well known among SEM users, and consist of mental ability test scores

of seventh- and eighth-grade children from two different schools in Chicago (see e.g., Jöreskog

et al., 2016). As common in the literature and elsewhere (see e.g., Joreskog, 1969 or Jöreskog

et al., 2016) only a subset of the data is used in this example.

The model is a 9-indicator 3-factor model with three indicators per factor. Indicators 1–3 are

measures of the common factor Visual, indicators 4–6 are measures of the common factor

Textual and indicators 7–9 are measures of the common factor Speed. As illustrated in the path

diagram below, there are no cross loadings, but the unique factors belonging to indicators 7

and 8 are set to correlate (see Sörbom, 1989).

17

Insert Figure 1 About Here

As indicated in the path diagram, for identification purposes, we let 𝑋1, 𝑋4 and 𝑋7 be marker

variables (reference) by setting 𝜆11 = 𝜆42 = 𝜆73 = 1. Appendix D provides an R code for

estimating the model using the SNLLS procedure.

Table 1a and Table 1b below summarize the results obtained from applying the two procedures,

SNLLS and NLLS, in combination with the two types of starting values described above:

Insert Table 1a and 1b About Here

In terms of iterations (It) and function evaluations (Fe), the results indicate that minimizing 𝐹

using SNLLS is numerically more efficient than using NLLS. This pattern of results is recurrent

throughout all the examples.

The timing results show that for the SNLLS procedure, the mean estimation times are 0.0136

sec. and 0.0153 sec., and for the NLLS procedure, the times are 0.0429 sec. and 0.0447 sec.

Thus, when starting values are obtained using the fabin 3 estimator, NLLS takes on average

0.0429/0.0136 ≈ 3.15 times longer to reach the solution. When the simple type starting values

are used, the corresponding number is 0.0447/0.0153 ≈ 2.92.

18

The main conclusion that can be reached from the first illustrative example is that estimation

using SNLLS is numerically more efficient than estimation using NLLS. Moreover, in this

case, estimation times are not much affected by how the starting values are generated.

Example 2

Next, we consider the CFA approach to analyze Multitrait Multimethod Matrices (MTMMs).

Without going too much into the specific details, the CFA approach involves forming a model

based on a set of Trait factors and a set of Method factors (Campbell and Fiske, 1959). The

following path diagram shows the structure of a 3–Traits by 3–Methods Correlated

Traits/Correlated Methods model (a so-called 3 × 3 CTCM).

Insert Figure 2 About Here

When analyzing the MTMM, the CTCM model typically forms the baseline, from which

several nested models are evaluated.

A recent study by Miller et. al. (2018), analyzed student behavior using a 3 × 3 CTCM model

similar in form to the one illustrated in the path diagram given in Figure 2. The analysis was

based on a sample consisting of 831 students. The variables entering the analysis were

Academic Engagement (AE), Disruptive Behavior (DB) and Respectful Behavior (termed RS).

In the model, indicators 1–3 are student self-reported AE, DB and RS, indicators 4–6 are

teacher reported AE, DB and RS, and indicators 7–9 are AE, DB and RS obtained from SDO

(a dedicated observer).

19

As was originally done in the study by Miller et. al. (2018), we let 𝑋1, 𝑋2 and 𝑋3 be marker

variables (reference) for the Traits-factors (using 𝜆11 = 𝜆22 = 𝜆33 = 1) and 𝑋1, 𝑋4 and 𝑋7 be

marker variables (reference) for the Method-factors (using 𝜆14 = 𝜆45 = 𝜆76 = 1). The

structure of 𝚲 in this example prevents us from applying the simple type starting values for the

SNLLS estimator, since 𝚲, and thereby 𝑮(𝝑𝜆), does not have full column rank. We consider

two alternative approaches for how to address this issue:

1. Applying a non-iterative procedure such as the fabin 3 estimator.

2. Applying Ridge regression. Using this approach, the modified fit function takes the

form

 �̃� = 𝒔𝑇𝑽𝒔 − 𝒔𝑇𝑽𝑮(𝝑𝜆)(𝑮
𝑇(𝝑𝜆)𝑽𝑮(𝝑𝜆) + 𝜌𝚰)

−1𝑮𝑇(𝝑𝜆)𝑽𝒔 (24)

where 𝜌 is a small constant and 𝚰 is an (ℎ × ℎ) identity matrix. The values obtained

from implementing �̃�, will serve as the starting values when minimizing

 𝐹 = 𝒔𝑇𝑽𝒔 − 𝒔𝑇𝑽𝑮(𝝑𝜆)(𝑮
𝑇(𝝑𝜆)𝑽𝑮(𝝑𝜆))

−1
𝑮𝑇(𝝑𝜆)𝑽𝒔 (25)

Admittedly, the second approach is somewhat ad-hoc involving some necessary user choices.

First, one has to determine the value of 𝜌, which should be close to zero. We found that any

number between 0.05 and 0.50 works well. Second, when implementing �̃�, it is sufficient to

iterate the model only few times, say 5–10. In this example, we used 𝜌 = 0.1 and iterated the

model 5 times.

The results from applying both procedures in combination with the two types of starting values

are given in Table 2a and Table 2b:

20

--

Insert Table 2a and 2b About Here

Focusing on estimation time, the results show that when starting values are obtained from the

fabin 3 estimator, the mean estimation time for SNLLS is 0.1063 sec. and for NLLS, the time

is 0.1923 sec. If the simple type starting values are applied, the comparable numbers are 0.2021

sec. and 0.4291 sec., respectively. Thus, on average, NLLS use about twice the time to reach

the solution as compared to SNLLS.

As before, the general conclusion is that estimation using SNLLS is faster by some margin. In

contrast to the previous example, for both procedures, it is evident that estimation time is

somewhat sensitive to the choice of starting values.

Example 3

In this next example, data on the topics of industrialization and political democracy are

considered. The data have been used extensively in many books and papers (e.g., Bollen, 1989

and Jöreskog et al., 2016), and is available from various online sources. The data are collected

from 75 developing countries (𝑛 = 75), consisting of four indicators of political democracy,

measured at two time points (1960 and 1965), and three indicators of industrializat ion,

measured at one time point (1960).

Using only the indicators of political democracy, we form an 8-indicator 2-factor model.

Indicators 1–4 are measures of the common factor Political Democracy at time 1 (1960) and

indicators 5–8 are measures of the common factor Political Democracy at time 2 (1965). There

are no cross loadings, but due to the repeated measurement design, each of the unique factor s

21

at time 1 are set to correlate with their equivalents at time 2. Moreover, the unique factors

belonging to indicators 2 and 4 are set to correlate and, correspondingly, the unique factors

belonging to indicators 6 and 8 are set to correlate. Indicators 𝑋1 and 𝑋5 are marker variables

(reference). The path diagram is displayed in Figure 3.

Insert Figure 3 About Here

The results are given in Table 3a and Table 3b:

Insert Table 3a and 3b About Here

The structure of the model in this example commands a slightly higher 𝑃𝑅 (= 2.83). Thus, a

greater difference in estimation time across the two procedures is expected. The timing results

reveal that when the fabin 3 estimator is used, the mean estimation time for SNLLS is 0.0099

sec. and for NLLS, the time is 0.0885 sec. Correspondingly, using the simple type starting

values, the results are 0.0104 sec. and 0.0746 sec. Thus, dependent on the choice of starting

values, average estimation time for NLLS is in this case 7–9 times longer than for SNLLS.

In this example, we find that the time difference is quite substantial in favor of SNLLS. It is

additionally observed that NLLS performs better when the simple type starting values are

employed, whereas SNLLS performs close to the same.

22

Example 4

The purpose of the following example is to compare numerical efficiency between SNLLS and

NLLS along two dimensions. First, we consider efficiency by simply comparing the estimation

time. As the number of elements in 𝝑 increases (decreases), the time it takes to estimate the

model also increases (decreases) accordingly. It is of interest to study how the number of free

parameters affects estimation time across the two procedures. Second, we consider numerica l

efficiency under conditions of changing the number of elements in 𝝑𝜑,𝜃, relative to the number

of elements in 𝝑𝜆. As previously conjectured, SNLLS has a comparable advantage over NLLS

when the number of elements in 𝝑𝜑,𝜃 is large relative to the number of elements in 𝝑𝜆 (i.e.,

when 𝑃𝑅 is large).

In this example, we investigate numerical performance by forming a series of models based on

a repeated measurement design. The idea is to create a general modeling framework that allows

us to gradually increase 𝑡𝜗 by adding indicators, while at the same time systematically altering

𝑃𝑅. The models are simulated 1000 times using normal data (𝑛 = 500). The path diagram

below illustrates the general structure of the simulated models.

Insert Figure 4 About Here

Based on the structure shown in Figure 4, a series of models is obtained by increasing the value

𝑞, which is simply the number of indicators per common factor. Letting 𝑞 = 2, 3, … ,12, we

have

23

 𝑡𝜗 = 4(𝑞 − 1) + 10+ 6𝑞 , 𝑃𝑅 =
10 + 6𝑞

4(𝑞 − 1)
 (26)

A summary describing the characteristics of the simulated models is provided in following

table:

Insert Table 4 About Here

From the table, we see that 𝑞 and 𝑃𝑅 are inversely related. Thus, for low values of 𝑞 (i.e., high

values of 𝑃𝑅), we expect that SNLLS will be relatively fast when compared to NLLS.

Insert Figure 5 About Here

From Figure 5a, as expected, we observe that estimation time increase markedly with the

number of estimated parameters (as given by 𝑡𝜗). The increase is far more dramatic when

estimation is performed using NLLS. For instance, when 𝑞 = 2, the mean estimation time is

0.0064 sec. for SNLLS and 0.1033 sec. for NLLS. At the opposite end of the scale, when 𝑞 =

12, the corresponding numbers are 20.7761 sec. and 45.7718 sec., respectively. If one were to

perform a simulation, for which 𝑞 = 12, estimating the model 1000 times will take a little less

than 6 hours for SNLLS and a little less than 13 hours for NLLS, given similar conditions and

hardware. In such situations, considerable time gains can be realized by applying SNLLS.

Next, we compare the two procedures in terms of relative numerical efficiency for different

values of 𝑃𝑅. Figure 5b shows how many times longer, on average, it takes to estimate the

model using NLLS over SNLLS. For instance, when 𝑞 = 2 (𝑃𝑅 = 5.50), it takes a little more

24

than 16 times longer, whereas when 𝑞 = 12 (𝑃𝑅 = 1.86), it takes a little more than 2 times

longer. These results clearly demonstrate the numerical efficiency of SNLLS when the number

of free parameters in 𝚲 is small relative to the number of free parameters in 𝚽 and 𝚯.

Concluding Remarks and Limitations

In the current study, we outlined an alternative implementation, labelled SNLLS, of the

minimum distance (MD) estimator for estimating CFA models. Through examples and

simulations, we demonstrated the potential benefits in terms of estimation time from applying

SNLLS. Specifically, it was shown that considerable time gains can be realized when the model

is complex and contains a large number of free parameters, or when the number of free

elements in 𝝑𝜑,𝜃 is large compared to the number of free elements in 𝝑𝜆. By construction,

SNLLS allows the researcher to estimate 𝝑𝜑,𝜃 using LLS whenever an estimate of 𝝑𝜆 is

available. A feature that is also useful in connection to single equation estimation techniques,

such as instrumental variables estimation (see, among others, Bollen, 1996 and Hägglund,

1982).

Simulation research, and the conclusions drawn from it, are of course potentially limited by the

choices made when setting up the simulation. The examples and simulations considered in this

study are undoubtedly subject to the same limitation, implying that different choices of

estimators, minimization algorithms (and how they are configured), and hardware may have

some effect on the realized outcomes. However, our experience from applying SNLLS is that

it generally performs consistently under changing conditions.

One major limitation of this study is that we have not considered MD estimators for the case

when the weighting matrix 𝑽 is a function of the free parameters. Estimators of this type

25

includes the all-important ML estimator. Applying SNLLS in such cases is more involved and

entails additional considerations. Another important limitation is that we have focused on

estimating CFA models. At this point, it is unknown to what extend SNLLS can be adapted to

models that extends the common CFA modeling framework. Extensions of particular interest

include the full SEM, multiple group analysis with mean structures and latent growth curve

models. Future research may provide solutions to the limitations outlined here.

Acknowledgments

The authors would like to thank the reviewers for their insightful comments and suggestions in

the course of preparing this text.

26

References

Bollen, K. A. (1989). Structural equations with latent variables. Wiley. New York.

Bollen, K. A. (1996). An alternative two stage least squares (2SLS) estimator for latent variable
equations. Psychometrika, 61(1), 109-121.

Browne, M. W. (1974). Generalized least squares estimators in the analysis of covariance
structures. South African Statistical Journal, 8(1), 1-24.

Browne, M. W. (1977). The analysis of patterned correlation matrices by generalized least
squares. British Journal of Mathematical and Statistical Psychology, 30(1), 113-124.

Browne, M. W. (1982), Covariance structures. In D. M. Hawkins (Ed.), Topics in applied

multivariate analysis (pp. 72–141). Cambridge: Cambridge University Press.

Browne, M. W. (1984). Asymptotically distribution‐free methods for the analysis of covariance

structures. British Journal of Mathematical and Statistical Psychology, 37(1), 62-83.

Campbell, D. T., & Fiske, D. W. (1959). Convergent and discriminant validation by the
multitrait-multimethod matrix. Psychological bulletin, 56(2), 81.

Fuller, W. A. (2009). Measurement error models (Vol. 305). John Wiley & Sons.

Golub, G. H., & Pereyra, V. (1973). The differentiation of pseudo-inverses and nonlinear least

squares problems whose variables separate. SIAM Journal on numerica l
analysis, 10(2), 413-432.

Golub, G. H., & Pereyra, V. (2003). Separable nonlinear least squares: the variable project ion

method and its applications, Inverse Problems, 19(2).

Hägglund, G. (1982). Factor analysis by instrumental variables

methods. Psychometrika, 47(2), 209-222.

Holzinger, K., and Swineford, F. (1939). A study in factor analysis: The stability of a bifacto r
solution. Supplementary Educational Monograph, no. 48. Chicago: University of

Chicago Press.

Joreskog, K. G. (1969). A general approach to confirmatory maximum likelihood factor

analysis. Psychometrika, 34, 183-202.

Jöreskog, K. G., Olsson, U. H., & Wallentin, F. Y. (2016). Multivariate analysis with LISREL.
Basel, Switzerland: Springer.

Kreiberg, D., Söderström, T., Yang-Wallentin, F. (2016). Errors-in-variables system
identification using structural equation modeling. Automatica, 66, 218-230

Magnus, J. R., & Neudecker, H. (1999). Matrix differential calculus with applications in
statistics and econometrics. John Wiley & Sons.

Marcoulides, G. A., & Schumacker, R. E. (Eds.). (1996). Advanced structural equation

modeling: Issues and techniques. Lawrence Erlbaum Associates, Inc.

Marsh, H., & Bailey, M. (1991). Confirmatory factor analysis of multitrait-multimethod data:

A comparison of alternative models. Applied Psychological Measurement, 15, 47-70.

MATLAB. (2019). version R2019b. Natick, Massachusetts: The MathWorks Inc.

27

Muthén, B., & Asparouhov, T. (2011). Beyond multilevel regression modeling: Multileve l

analysis in a general latent variable framework. In Handbook of advanced multileve l
analysis (pp. 23-48). Routledge.

Muthén, L.K., & Muthén, B.O. (2017). Mplus User’s Guide (8th Edition). Los Angeles, CA:

Muthén & Muthén.

R Core Team (2018). R: A language and environment for statistical computing. Vienna,

Austria: R Foundation for Statistical Computing. Retrieved from http://www.R-
project.org/

Rosseel, Y. (2012). lavaan: An R package for structural equation modeling. Journal of

Statistical Software, 48, 1-36.

Sörbom, D. (1989). Model modification. Psychometrika, 54(3), 371-384.

Ye, K., & Lim, L. H. (2016). Every matrix is a product of Toeplitz matrices. Foundations of
Computational Mathematics, 16(3), 577-598.

http://www.r-project.org/
http://www.r-project.org/

28

Appendix

A: Golub and Pereyra (1973)

As mentioned in the introduction, the SNLLS implementation of the quadratic fit function

relies on a mathematical framework developed by Golub and Pereyra (1973). Below, we
provide a summary of this framework.

Given data (𝑡𝑖 ,𝑦𝑖), for 𝑖 = 1,… ,𝑚, Golub and Pereyra consider models in which the objective
function can be written in the form

𝑟(𝐚, 𝛂) =∑(𝑦𝑖 − 𝜂(𝐚, 𝛂, 𝑡𝑖))

2

𝑚

𝑖=1

= ‖𝒚 − 𝛈(𝐚,𝛂)‖𝟐

(A1)

where ‖ . ‖2 denotes the Euclidean norm and 𝛈(𝐚,𝛂) is a non-linear function of the disjoint

parameter sets 𝐚 and 𝛂. The idea of parameter separation is that the function 𝛈(𝐚, 𝛂) can be re-

expressed in a way that allows 𝐚 to enter the objective function in a linear fashion

 𝑟(𝐚,𝛂) = ‖𝒚 −𝚽(𝛂)𝐚‖2 (A2)

Here, 𝚽(𝛂) is a tall matrix function of full column rank. Conditional on 𝛂, an LLS solution for
the minimization of (A2) is given by

 𝐚(𝛂) = (𝚽𝑇(𝛂)𝚽(𝛂))
−1
𝚽𝑇(𝛂)𝒚 (A3)

where 𝑇 is the transpose operator. Inserting (A3) into (A2) gives

 𝑟2(𝛂) = ‖𝒚 − 𝚽(𝛂)(𝚽
𝑇(𝛂)𝚽(𝛂))

−1
𝚽𝑇(𝛂)𝒚‖

2

 (A4)

Now, the objective function is expressed entirely as a function of 𝛂.

Golub and Pereyra (1973) provides the theoretical justification underlying the implementa t ion
of (A3) and (A4). To do so, they state the following theorem:

a. If the point �̂�(�̂�), obtained using (A.3), is a global minimizer of 𝑟2(𝛂), then the point
(�̂�, �̂�) is also a global minimizer of 𝑟(𝐚, 𝛂).

b. If the point (�̂�, �̂�) is a global minimizer of 𝑟(𝐚, 𝛂), then the point �̂� is a global minimizer

of 𝑟2(𝛂), and

1. 𝑟2(�̂�) = 𝑟(�̂�, �̂�)

2. if the point �̂�(�̂�) is unique, it must satisfy (A3)

In practice, the procedure is first to obtain an estimate of 𝛂 by minimizing (A4). Once �̂� is

available, an estimate of 𝐚 follows from the use of (A3).

29

B: Obtaining 𝑳Φ and 𝑳Θ

In this section, we describe how to obtain the matrices 𝑳Φ and 𝑳Θ. For later use, it will be

helpful to outline a framework for how to obtain the matrix 𝑲Σ (𝑝2 × ℎ). The approach taken
here follows the one in Fuller (2009, Ch. 4, Appendix 4.a), which deviates from Browne (1974),
but leads to the same result. As will be demonstrated below, the generality of the presented

framework allows us to handle covariance matrices of various forms.

Let 𝚺 (𝑝 × 𝑝) be a covariance matrix with elements 𝚺(𝑖, 𝑗) = 𝜎𝑖𝑗 for 𝑖, 𝑗 = 1, … , 𝑝. A vector

consisting of the non-duplicated elements of 𝚺 is obtained using the expression

𝝈 = 𝑲Σ

𝑇vec(𝚺)

= (𝜎11 𝜎21 … 𝜎𝑝1 𝜎22 𝜎32 … 𝜎𝑝2 … … 𝜎𝑝𝑝)
𝑇

(B1)

where 𝝈 is a vector with length ℎ.

In order to derive 𝑲Σ , we first introduce the matrix 𝑬𝑖𝑗 (𝑝 × 𝑝), for 𝑖, 𝑗 = 1, … , 𝑝. For every

distinct element in 𝚺, as given by 𝚺(𝑖, 𝑗) = 𝜎𝑖𝑗 for 𝑖 ≥ 𝑗, there exists an associated matrix 𝑬𝑖𝑗

with elements

 𝑬𝑖𝑗(𝑢, 𝑣) = {

 1 if (𝑢, 𝑣) = (𝑖, 𝑗)

 1 if (𝑢, 𝑣) = (𝑗, 𝑖)

 0 Otherwise

 , for 𝑢, 𝑣 = 1, … , 𝑝 (B2)

Next, we form a new matrix, denoted 𝑳Σ (𝑝2 × ℎ), by concatenating a series of vectors based

on 𝑬𝑖𝑗

𝑳Σ = (vec(𝑬

11) vec(𝑬21) … vec(𝑬𝑝1) vec(𝑬22) vec(𝑬32) …

 vec(𝑬𝑝2) … … vec(𝑬𝑝𝑝))
(B3)

This matrix is known as the duplication matrix (see also Magnus and Neudecker, 1999). The

matrix 𝑲Σ is found by the expression

 𝑲Σ = (𝑳Σ
𝑇𝑳Σ)

−1𝑳Σ
𝑇 (B4)

The outlined framework allows us to find 𝑳 and 𝑲 for covariance matrices of various forms
relevant in covariance analysis.

First, consider the covariance matrix 𝚽 (𝑚×𝑚). Given that no other restrictions, apart from

symmetry, are placed on the elements of 𝚽, we have

𝑳Φ = (vec(𝑬

11) vec(𝑬21) … vec(𝑬𝑝1) vec(𝑬22) vec(𝑬32) …

 vec(𝑬𝑚2) … … vec(𝑬𝑚𝑚))
(B5)

where 𝑳Φ is a matrix with dimension (𝑚2 × 2−1𝑚(𝑚 +1)).

30

Second, consider the covariance matrix 𝚯 (𝑝 × 𝑝). In the simplest (and possibly most common)

case, we have that 𝛿𝑖 and 𝛿𝑗, for 𝑖 ≠ 𝑗, are uncorrelated. It obviously follows that 𝚯 is a diagonal

matrix with distinct elements only on the diagonal. In such a case, we have

 𝑳Θ = (vec(𝑬
11) vec(𝑬22) … vec(𝑬𝑝𝑝)) (B6)

with dimension (𝑝2 × 𝑝).

C: Equality constraints

Incorporating equality constraints into 𝚺 requires the previously presented framework to be
extended somewhat.

As before, consider a generic element 𝚺(𝑖, 𝑗) belonging to the lower half (including the

diagonal) of 𝚺 (i.e., 𝑖 ≥ 𝑗). Suppose that there are 𝑞 ≥ 1 additional elements restricted to be the

same value as 𝚺(𝑖, 𝑗). Formally, we express this as

 𝚺(𝑖, 𝑗) = 𝚺(𝑘1, 𝑙1) = ⋯ = 𝚺(𝑘𝑞 , 𝑙𝑞) (C1)

where (𝑘1, 𝑙1),… , (𝑘𝑞 , 𝑙𝑞), for 𝑘1 ≥ 𝑙1,… , 𝑘𝑞 ≥ 𝑙𝑞, is a series of index sets describing the

position of the constrained elements. The elements of 𝑬𝑖𝑗 are now found by

𝑬𝑖𝑗(𝑢, 𝑣) = {

 1 if (𝑢, 𝑣) ∈ {(𝑖, 𝑗), (𝑘1, 𝑙1),… , (𝑘𝑞 , 𝑙𝑞)}

 1 if (𝑢, 𝑣) ∈ {(𝑗, 𝑖), (𝑙1,𝑘1),… , (𝑙𝑞 ,𝑘𝑞)}

 0 Otherwise

for 𝑢, 𝑣 = 1,… , 𝑝

(C2)

As in the previous cases, applying the expression for 𝑬𝑖𝑗, requires knowledge about the exact

structure of 𝚺. As an example, let 𝚺 be a Toeplitz matrix (see e.g., Ye and Lim (2016)) of the
form

 𝚺𝑇𝑜𝑒𝑝 = (

𝜎1 𝜎2 … 𝜎𝑝
𝜎2 𝜎1 ⋱ ⋮
⋮ ⋱ ⋱ 𝜎2
𝜎𝑝 … 𝜎2 𝜎1

) (C3)

The number of distinct elements in 𝚺𝑇𝑜𝑒𝑝 is 𝑝. Covariance matrices with a Toeplitz structure

are relevant in repeated measurement analysis where individuals’ are observed at multip le
occasions. Such analysis include multilevel analysis and longitudinal analysis. Obtaining

𝑲Σ𝑇𝑜𝑒𝑝 (𝑝2 × 𝑝) involves

 𝑳Σ𝑇𝑜𝑒𝑝 = (vec(𝑬
11) vec(𝑬21) … vec(𝑬𝑝1)) (C4)

Using 𝑳Σ𝑇𝑜𝑒𝑝 , we now get

31

 𝑲Σ𝑇𝑜𝑒𝑝
= (𝑳Σ𝑇𝑜𝑒𝑝

𝑇 𝑳Σ𝑇𝑜𝑒𝑝)
−1

𝑳Σ𝑇𝑜𝑒𝑝
𝑇 (C5)

32

D: R code for example 1

A FASTER PROCEDURE FOR ESTIMATING CFA MODELS APPLYING MINIMUM #

DISTANCE ESTIMATORS #

The code below demonstrates how to implement the SNLLS estimation procedure. #

The model used in the demonstration is the well-known 9-indicator 3-factor #

model based on the Holzinger and Swineford (1939) data. #

(created by David Kreiberg 12-07-2020) #

FUNCTIONS

Step 1 SNLLS fit function

fit.SNLLS1 <- function(lambda, p, m, s, V, K.SIGMA, L.PHI, G2) {

 LAMBDA <- matrix(c(1.0, 0, 0,

 lambda[1], 0, 0,

 lambda[2], 0, 0,

 0, 1.0, 0,

 0, lambda[3], 0,

 0, lambda[4], 0,

 0, 0, 1.0,

 0, 0, lambda[5],

 0, 0, lambda[6]),

 p, m, byrow = TRUE)

 G1 <- t(K.SIGMA)%*%kronecker(LAMBDA, LAMBDA)%*%L.PHI; G <- cbind(G1, G2)

 F <- t(s)%*%V%*%s - t(s)%*%V%*%G%*%solve((t(G)%*%V%*%G), (t(G)%*%V%*%s))

}

Step 2 SNLLS fit function

fit.SNLLS2 <- function(lambda, p, m, s, V, K.SIGMA, L.PHI, G2) {

 LAMBDA <- matrix(c(1.0, 0, 0,

 lambda[1], 0, 0,

 lambda[2], 0, 0,

 0, 1.0, 0,

 0, lambda[3], 0,

 0, lambda[4], 0,

 0, 0, 1.0,

 0, 0, lambda[5],

33

 0, 0, lambda[6]),

 p, m, byrow = TRUE)

 G1 <- t(K.SIGMA)%*%kronecker(LAMBDA, LAMBDA)%*%L.PHI; G <- cbind(G1, G2)

 var.theta2 <- solve((t(G)%*%V%*%G), (t(G)%*%V%*%s))

}

Selection matrix L for covariance matrices with

0.5*p*(p+1) distinct elements

L1 <- function(p) {

 L <- matrix(0, p^2, 0)

 for(i in 1:p) {

 for(j in 1:p) {

 if (j >= i) {

 E = matrix(0, p, p)

 E[j, i] <- 1; E[i, j] <- 1

 L <- cbind(L, matrix(E, p^2, 1))

 }

 }

 }

 L

}

Selection matrix L for covariance matrices with

distinct elements determined by a set of index pairs

L2 <- function(p, index.sets) {

 nr <- dim(index.sets)[1];

 L <- matrix(0, p^2, 0)

 for(i in 1:nr) {

 k <- index.sets[i, 1]; l <- index.sets[i, 2];

 E = matrix(0, p, p)

 E[k, l] <- 1; E[l, k] <- 1

 L <- cbind(L, matrix(E, p^2, 1))

 }

 L

}

LOAD THE DATA

library(lavaan)

X <- HolzingerSwineford1939

34

MODEL CHRACTERISTICS

Specify number of observed indicators and latent constructs

p <- 9; m <- 3

COMPUTATIONS

L.SIGMA <- L1(p); L.PHI <- L1(m)

K.SIGMA <- L.SIGMA%*%solve(t(L.SIGMA)%*%L.SIGMA)

index.sets <- matrix(c(1:9, 8,

 1:9, 7), 10, 2)

L.THETA <- L2(p, index.sets); G2 <- t(K.SIGMA)%*%L.THETA

Obtain covariance matrix and covariance vector

S <- cov(X[,(7:15)]); s <- t(K.SIGMA)%*%matrix(S, p^2, 1)

Compute GLS weight matrix

V <- 0.5*t(L.SIGMA)%*%(kronecker(solve(S), solve(S)))%*%L.SIGMA

ESTIMATION

Specify starting values (estimator = fabin 3)

lambda0 <- c(0.778, 1.107, 1.133, 0.924, 1.225, 0.854)

Perform optimization

Step 1 estimation

Est.step1 <- nlminb(lambda0, fit.SNLLS1, gradient = NULL, hessian = NULL,

 p, m, s, V, K.SIGMA, L.PHI, G2)

var.theta1 <- Est.step1$par

Step 2 estimation

var.theta2 <- fit.SNLLS2(var.theta1, p, m, s, V, K.SIGMA, L.PHI, G2)

PRINT RESULTS

Prepare results

Est.LAMBDA.visual <- matrix(c(1.0, var.theta1[1:2]), 3, 1,

 dimnames = list(c("X1", "X2", "X3"),

 c("Visual")))

Est.LAMBDA.textual <- matrix(c(1.0, var.theta1[3:4]), 3, 1,

 dimnames = list(c("X4", "X5", "X6"),

 c("Textual")))

35

Est.LAMBDA.speed <- matrix(c(1.0, var.theta1[5:6]), 3, 1,

 dimnames = list(c("X7", "X8", "X9"),

 c("Speed")))

Est.PHI <- matrix(var.theta2[1:6], 6, 1,

 dimnames = list(c("Visual , Visual :",

 "Visual , Textual :",

 "Visual , Speed :",

 "Textual, Textual :",

 "Textual, Speed :",

 "Speed , Speed :"),

 c("PHI est.")))

Est.THETA <- matrix(var.theta2[7:16], 10, 1,

 dimnames = list(c("X1, X1 :",

 "X2, X2 :",

 "X3, X3 :",

 "X4, X4 :",

 "X5, X5 :",

 "X6, X6 :",

 "X7, X7 :",

 "X8, X8 :",

 "X9, X9 :",

 "X8, X7 :"),

 c("THETA est.")))

Display computations and parameter estimates

Min. fit function value:

print(Est.step1$objective)

Parameter estimates:

print(Est.LAMBDA.visual)

print(Est.LAMBDA.textual)

print(Est.LAMBDA.speed)

print(Est.PHI)

print(Est.THETA)

36

 SNLLS NLLS

Mean estimation time (in sec.) 0.0136 0.0429

Median estimation time (in sec.) 0.0135 0.0427
St. dev. estimation time (in sec.) 5.6746e-04 6.3719e-04
Minimum fit function value 0.1778 0.1778

Number of iterations (It) 21 51
Number of func. evaluations (Fe) 286 2385

𝑃𝑅 2.67 2.67

Table 1a: Timing results: Holzinger and Swineford, Starting values = fabin 3 estimator

 SNLLS NLLS

Mean estimation time (in sec.) 0.0153 0.0447
Median estimation time (in sec.) 0.0152 0.0446

St. dev. estimation time (in sec.) 2.4632e-04 6.6542e-04
Minimum fit function value 0.1778 0.1778

Number of iterations (It) 22 53
Number of func. evaluations (Fe) 325 2475

𝑃𝑅 2.67 2.67

Table 1b: Timing results: Holzinger and Swineford, Starting values = simple

 SNLLS NLLS

Mean estimation time (in sec.) 0.1063 0.1923

Median estimation time (in sec.) 0.1062 0.1914
St. dev. estimation time (in sec.) 0.0089 0.0034

Minimum fit function value 0.0228 0.0228
Number of iterations (It) 50 163
Number of func. evaluations (Fe) 1300 11055

𝑃𝑅 1.75 1.75

Table 2a: Timing results: Miller et., al., Starting values = fabin 3 estimator

 SNLLS NLLS

Mean estimation time (in sec.) 0.2021 0.4291

Median estimation time (in sec.) 0.2029 0.4274
St. dev. estimation time (in sec.) 0.0138 0.0055
Minimum fit function value 0.0228 0.0228

Number of iterations (It) 71 359
Number of func. evaluations (Fe) 2275 24723

𝑃𝑅 1.75 1.75

Table 2b: Timing results: Miller et., al., Starting values = simple with Ridge constant = 0.1

37

 SNLLS NLLS

Mean estimation time (in sec.) 0.0099 0.0885
Median estimation time (in sec.) 0.0098 0.0882

St. dev. estimation time (in sec.) 3.5261e-04 0.0018
Minimum fit function value 0.1661 0.1661
Number of iterations (It) 13 114

Number of func. evaluations (Fe) 195 5405

𝑃𝑅 2.83 2.83

Table 3a: Timing results: Bollen. Starting values = fabin 3 estimator

 SNLLS NLLS

Mean estimation time (in sec.) 0.0104 0.0746
Median estimation time (in sec.) 0.0104 0.0745
St. dev. estimation time (in sec.) 1.9914e-04 8.6866e-04

Minimum fit function value 0.1661 0.1661
Number of iterations (It) 15 94

Number of func. evaluations (Fe) 208 4512

𝑃𝑅 2.83 2.83

Table 3b: Timing results: Bollen. Starting values = simple

𝑞 2 3 4 5 6 7 8 9 10 11 12

indi. 8 12 16 20 24 28 32 36 40 44 48

𝑡𝜗 26 36 46 56 66 76 86 96 106 116 126

𝑃𝑅 5.50 3.50 2.83 2.50 2.30 2.17 2.07 2.00 1.94 1.90 1.86

Table 4: Values for 𝑞, 𝑡𝜗 and PR (# indi. = number of indicators)

38

Figure 1: Holzinger and Swineford (1939)

Figure 2: Miller et. al. (2018)

𝑋1

𝑋2

𝑋3

𝑋4

𝑋5

𝑋6

𝑋7

𝑋

𝑋

𝛿1

𝛿2

𝛿3

𝛿4

𝛿5

𝛿6

𝛿7

𝛿

𝛿

 11

 22

 33

Visual

Textual

Speed

 7

1.00

𝜆21

𝜆31

𝜆52

1.00

𝜆62

1.00

𝜆 3

𝜆 3

 31

 21

 32

𝑋1

𝑋2

𝑋3

𝑋4

𝑋5

𝑋6

𝑋7

𝑋

𝑋

𝛿1

𝛿2

𝛿3

𝛿4

𝛿5

𝛿6

𝛿7

𝛿

𝛿

 44

 55

 66

Meth. 1

1.00

𝜆24

𝜆34

1.00

𝜆55

𝜆65

𝜆 6

𝜆 6

 54

 65

 64Meth. 2

Meth. 1

Trait 1

Trait 2

Trait 3

 11

 33

 21

 22

 31

 32

1.00

1.00

𝜆41

𝜆71

𝜆52

𝜆 2

𝜆63

1.00

𝜆 3

1.00

39

Figure 3: Bollen (1989)

𝛿1

𝛿2

𝛿6

𝛿3

𝛿4

𝛿5

𝛿7

𝛿

𝑋1

𝑋

𝑋2

𝑋3

𝑋6

𝑋5

𝑋7

𝑋4

 51

 62

 73

 42

 6

 4

𝜆21

𝜆31

𝜆41

𝜆62

𝜆 2

𝜆72

1.00

 11

 21

 22

Dem60

Dem65

1.00

40

Figure 4: The population Model for the Repeated Measure study

.

.

.

.

.

.

𝑋1

𝑋2

𝑋𝑞

⋮

𝑋𝑞 1

𝑋𝑞 2

𝑋2𝑞

⋮

𝑋2𝑞 1

𝑋2𝑞 2

𝑋3𝑞

⋮

𝑋3𝑞 1

𝑋3𝑞 2

𝑋4𝑞

⋮

 1

 2

 3

 4

𝛿1

𝛿2

𝛿𝑞

𝛿𝑞 1

𝛿𝑞 2

𝛿2𝑞

𝛿2𝑞 1

𝛿2𝑞 2

𝛿3𝑞

𝛿3𝑞 1

𝛿3𝑞 2

𝛿4𝑞

𝑇𝑖𝑚 = 2

𝑇𝑖𝑚 = 1

1.00

1.00

1.00

0.70

0.70

1.00

0.70

1.00
0.70

0.70

0.70

0.70

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

0.40

0.10

0.40

0.50

0.50

0.50

0.50

0.50

0.50

0.70

1.00

1.00

1.00

1.00

0.60

0.60

0.10

41

Figure 5a and 5b: Summarizing the simulation results for the two procedures

