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Abstract

Limited by the lack of data on gun ownership in the United States, ecological
research linking firearms ownership rates to homicide often relies on proxy measures
of ownership. Although the variable of interest is the gun ownership rate, not the
proxy, the existing research does not formally account for the fact that the proxy
is an error-ridden measure of the ownership rate. In this paper, we reexamine the
ecological association between state-level gun ownership rates and homicide explicitly
accounting for the measurement error in the proxy measure of ownership. To do this,
we apply the results in Chalak and Kim (2020) to provide informative bounds on the
mean association between rates of homicide and firearms ownership. In this setting,
the estimated lower bound on the magnitude of the association corresponds to the
conventional linear regression model estimate whereas the upper bound depends on
prior information about the measurement error process. Our preferred model yields an
upper bound on the gun homicide elasticity that is nearly three times larger than the
fixed effects regression estimates that do not account for measurement error. Moreover,
we consider three point-identified models that rely on earlier validation studies and on
instrumental variables respectively, and find that the gun homicide elasticity nearly
equals this upper bound. Thus, our results suggest that the association between gun
homicide and ownership rates is substantially larger than found in the earlier literature.
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1 Introduction

In the United States, nearly 40,000 people died from gun related injuries in 2017, with about

14,500 homicides and another 24,000 suicides. Despite these alarming numbers, there is a

lack of data suitable to draw credible inferences on even the most basic questions about

guns and violence (National Research Council (NRC), 2005). To overcome the lack of com-

prehensive data on gun ownership in the United States, ecological research linking firearms

ownership rates to homicide (and other violent events) often relies on proxy measures of

ownership (Azrael et al., 2004; NRC, 2005).1 Duggan (2001), for example, proxies for the

gun ownership rate using the subscription rate to Guns and Ammo magazine, and Cook

and Ludwig (2006) use the fraction of suicides committed with a firearm (FSS).2 Unlike the

limited survey information on gun ownership, these proxies are measured each year at state

and county geographic levels. Using state-level panel data on homicide rates from the FBI’s

Uniform Crime Reports and linear fixed effects panel data models, Duggan (2001) estimates

an elasticity of the homicide rate with respect to the proxy measure of 0.2 and Cook and

Ludwig (2006) report an estimated elasticity of just over 0.4.

In this paper, we reexamine the ecological association between state-level gun ownership

rates and homicide explicitly accounting for the measurement error in the proxy measure of

gun ownership. Although the variable of interest is the gun ownership rate, not the proxy,

the existing research does not formally account for the fact that the proxy is an error-ridden

measure of the ownership rate.

Limited validation research assesses the correlation between different proxy measures

and self-reported ownership measures from surveys where firearms ownership information

is collected at higher geographic units and/or less frequent intervals. In particular, Azrael,

1Surveys with information on ownership do not consistently cover the geographic areas of interest (e.g.,
states or counties). For example, the General Social Survey (GSS), which collects individual and household
information on firearms ownership over time, is representative of the nine census regions and the nation
as whole. Other surveys – the Behavioral Risk Factor Surveillance System (BRFSS) and the Harvard
Injury Control Research Center Survey (HICRC) – collect information on gun ownership prevalence rates
representative of individual states in certain years. The BRFSS included firearm ownership questions in the
1992-1995 surveys conducted in 21 states. The HICRC can be used to draw inferences on ownership by
states in 1996 and 1999.

2Miller, Azrael, and Hemenway (2002), Siegel, Ross, and King (2013), and Cook and Ludwig (2019) also
use the FSS to proxy for gun ownership rates. Other proxies used in this literature include the fraction
of homicides committed with a gun and the average of the percentages of homicides and suicides involving
guns, referred to as the “Cook Index” (Azreal et al., 2004).
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Cook, and Miller (2004) and Cook and Ludwig (2006), find that the fraction of suicides

committed with a firearm (FSS) has the highest correlation with observed ownership rates

among all of the applied proxy measures. They find that the correlation coefficient between

FSS and observed measures of gun ownership within a state ranges between 0.81 when using

the BRFSS to 0.90 when using the HICRC (see footnote 1). Other proposed proxy measures

had much lower correlation coefficient estimates (Azreal et al., 2004; Cook and Ludwig,

2006). For example, the correlation coefficient between the Cook Index proxy (see footnote

2) and observed measures of gun ownership within a state ranges between 0.52 and 0.88.

Based on this evidence, researchers have concluded that FSS is a superior proxy for state

level ecological analyses of gun ownership and homicide.3

While the FSS proxy may be highly correlated with gun ownership, it is still a noisy

measure of the true ownership rate. As such, the estimated mean regression of homicide

rates on firearms ownership rates is biased. We study the extent of this bias using a battery

of set- and point-identified models.

Assuming a classical measurement error model, we apply the results in Chalak and Kim

(2020) to provide informative bounds on the mean association between homicide and firearms

ownership. Given uncertainty about the true data generating process linking the observed

proxy to the unobserved gun ownership rate, we assess the sensitivity of inferences to the

underlying assumptions on the measurement error. We also show how the related literature

evaluating the association between suicide and firearms ownership can narrow the bounds.

Further, we report estimates from three point identified models, one that assumes the cor-

relation between the proxy and the ownership rate is known based on prior information

and others that use instrumental variables. Finally, we use multiple proxies to derive less

attenuated lower bound estimates.

Section 2 summarizes the data and replicates the basic results from Cook and Ludwig

(2006). This analysis uses a basic linear panel data model to estimate the association between

the state homicide rate and FSS. The parameter of interest, however, is the association

3Cerqueira et al. (2018) develop a more refined proxy which relies on the socioeconomic characteristics
(e.g., gender) of the suicide victims. They find that this new proxy has a slightly higher correlation than
FSS with the actual state level gun ownership data from BRFSS. Similarly, Schell et al. (2020) produce a
model based proxy of state gun ownership using several sources of survey data including BRFSS and proxies
including FSS. Cook (2020) finds the cross-section correlation between the Schell et al. (2020) proxy and
FSS to be 0.91. Neither of these new proxy variables have been applied in this literature.
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between homicide and gun ownership rates.

After presenting the basic framework and assumptions used to draw inferences with a

proxy variable in Section 3, Sections 4 and 5 present the results. We begin in Section 4 by

focusing on the particular models and results that seem most credible. In this analysis, the

estimated lower bound on the magnitude of the association corresponds to the conventional

linear regression model estimates whereas the upper bound depends on prior information

about the measurement error process. Our preferred model analyzes multiple outcomes

jointly and assumes that the FSS proxy is at least as accurate as the validation literature

reports; that is, a correlation coefficient between FSS and true ownership rates of at least

0.81. This yields an upper bound on the gun homicide elasticity that is nearly three times

larger than fixed effects regression estimates that do not account for measurement error.

Section 5 then illustrates the sensitivity of inferences to different assumptions about the

data generating process. In particular, we first expand the partial identification analysis by

tracing out the estimates across variation in the lower bound on the correlation coefficient

between FSS and true ownership rates. Then, we consider three point identified models,

one where the correlation coefficients is known (e.g., 0.81) and two that use lagged or other

proxies as instrumental variables. We also combine multiple proxies with weaker assumptions

to estimate a less attenuated lower bound on the association between the ownership and

homicide rates. The resulting point and lower bound estimates sometimes nearly equal the

upper bound estimates reported in Section 4, suggesting that the association between gun

homicide and ownership rates is substantially larger than found in the earlier literature.

2 Data and Replication

Our analysis uses state-level data on annual homicide rates (per 100,000 residents) from 1980

to 2014 (25 years) across 50 states and the District of Columbia.4 We examine rates of gun

and non-gun related homicide, and the gun suicide rate. The focus on annual crime rates

within states has been common in the literature. See, for example, Duggan (2001), Cook

4Our basic regression model replicates Cook and Ludwig (2006; 2019), who examine state and county
level homicide data from 1980 to 1999. Although Cook and Ludwig (2006) focus mostly on homicide rates
in the 200 counties with the largest populations in 1990, Cook and Ludwig (2019) argue that the state level
analysis in their 2006 paper has the benefit of reducing measurement error in suicide rates and FSS. We
extend the panel to 2014, the latest year of the published data from the Uniform Crime Reports. The basic
results are not sensitive to adding the extra years of data.

4



and Ludwig (2006), and Siegel, Ross and King (2013).

Table 1 displays the means and standard deviations for the variables used in this analysis.

Data on the number of homicides, suicides, and the state population come from the Vital

Statistics Program mortality files. Likewise, the proxy measure of the fraction of suicides

committed with a firearm is calculated using data from the mortality file data. Following

Cook and Ludwig (2006), we control for other crime rates and state level socioeconomic

and demographic characteristics. Socioeconomic and demographic controls for the fraction

of blacks, households headed by a female, urban residents, and residents living in the same

house 5 years ago come from the decennial Census and/or the American Community Survey,

and rates of robbery and burglary come from the FBI’s Uniform Crime Reports.5

Table 1: Means and Standard Deviations, Full Sample and by FSS Quartile

Full Sample Bottom FSS Quartile Top FSS Quartile
Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.

Homicide Rate 7.3 3.7 6.6 4.4 9.6 3.4
Gun Homicide Rate 4.8 2.7 4.2 3.2 6.6 2.6
Non-Gun Homicide Rate 2.5 1.2 2.4 1.6 3.0 1.0
FSS 53.9 12.8 36.6 6.6 70.0 4.9
Robbery rate 179.6 113.7 231.1 156.4 146.2 63.4
Burglary rate 960.7 421.9 767.4 372.2 1167.9 390.0
Share black 12.4 8.1 12.1 7.1 17.4 10.4
Share urban 77.9 12.7 87.9 6.7 65.6 11.6
Share female head 30.8 3.8 32.5 4.2 29.8 4.0
Share non-mover 55.5 6.2 60.0 4.6 53.4 5.3

Note: The sample means are weighted by the state population. Crime rates are per 100,000 people. FSS

and the other shares are per 100 people. In the regression analysis, all the variables are logged.

Table 1 displays the overall mean and standard deviation for the full sample as well as

for state-years where the FSS is in the bottom and top quartiles of the distribution. Overall,

there is an unconditional association between the homicide rate and FSS. In particular, the

homicide rate is 6.6 per 100,000 when the FSS is in the bottom quartile and 9.6 when in

the top quartile. While similar patterns are seen for the gun homicide rate, the non-gun

5To control for reverse causation, Cook and Ludwig (2006) condition on the robbery and burglary rates,
which they argue can motivate the acquisition of a firearm for self-defense. The idea is that these other crime
rates control for the latent propensity for crime that induces gun ownership.
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homicide rate hardly varies across the FSS quartiles.

Using these data, we replicate the basic results found in the literature by estimating a

standard linear fixed effect model. In particular, we regress the homicide rate in state i and

year t on the observed covariates listed in Table 1, as well as state and year fixed effects. As

in Cook and Ludwig (2006), all of the variables are logged and FSS is lagged one year.6 The

primary interest is in learning the elasticity of the mean homicide rate with respect to FSS.

Table 2: Estimates of the log(lagged FSS) Coefficient and Standard Errors Under Different
Models and Weights

Homicides Gun homicides Non-gun homicides

Fixed Effects

Unweighted 0.249 0.359 0.102
(0.077) (0.110) (0.091)

Weighted 0.414 0.562 0.102
(0.183) (0.237) (0.144)

Limited Controls, Unweighted 0.275 0.411 0.092
(0.078) (0.125) (0.093)

Limited Controls, Weighted 0.444 0.597 0.111
(0.175) (0.246) (0.140)

No Fixed Effects

Unweighted 0.487 0.835 0.097
(0.188) (0.216) (0.170)

Weighted 0.505 0.865 -0.017
(0.134) (0.140) (0.134)

Note: Standard errors appear in parentheses below the point estimates. Both the homicide rate and all of

the covariates (including the lag of FSS) are log-transformed. The weighted regressions are weighted by the

state population. The limited control models include the controls for race, robbery, burglary, and fixed

effects for state and year. The models without fixed effects include the full set of control variables.

Table 2 displays the estimate and standard error7 for the FSS parameter under a variety

6The literature uses lagged FSS, as opposed to contemporaneous FSS, to avoid contamination. This is
intended to alleviate the concern that the correlation between FSS and gun-homicide rates may reflect a
change in gun ownership in response to a change in gun-crime.

We note that the basic regression results are not sensitive to whether we control for contemporaneous or
lagged covariates. This holds for the regressions with and without fixed effects. For example, the baseline
estimate for gun homicides is 0.835 without fixed effects and 0.359 with fixed effects (see Table 2). When
lagging the covariates by one year, these estimates are 0.850 and 0.331, respectively.

7Standard errors are clustered at the state level, and are heteroskedasticity robust. Although this is the
norm in the literature, there is some debate about whether to cluster the standard errors at the state level,
especially in fixed effects models (see NRC (2005) and Abadie et al. (2017)). In this application, clustering
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of different models that have been estimated in the literature, including unweighted and

weighted regressions, regressions with and without fixed effects, and regressions with a more

parsimonious set of covariates that only control for robbery, burglary and the fraction of the

population who are black (see Seigal, Ross and King, 2013).8

Although the point estimates vary across the different models, the basic qualitative

conclusions are robust. The FSS is positively associated with overall homicides and gun

homicides. For non-gun homicides, the estimates are all statistically insignificant. The gun-

homicide point estimates are notably larger in models without fixed effects. The estimates

are not particularly sensitive to the set of covariates (see rows 3 and 4).

Finally, notice that the basic qualitative findings are not sensitive to weighting by the

state population (also see Siegel et al., 2013). For example, in the fixed effect model, esti-

mated elasticity with weights is 0.414 for homicide, 0.562 for gun homicide, and 0.102 for

non-gun homicide, with this latter estimate being statistically insignificant at the 5% signif-

icance level. These findings are similar to those reported in Cook and Ludwig (2006). The

unweighted estimates are somewhat smaller but have the same qualitative implications: the

estimated elasticity is 0.249 for homicide and 0.359 for gun homicide. The estimate for non-

gun homicide, at 0.102, is identical to the weighted estimated and statistically insignificant.

In the models without fixed effects, the weighted and unweighted estimates are very similar.

In the next sections, we examine the implications of measurement error in the proxy

variable, FSS, on inference. To do this, we evaluate regressions with all of the covariates

listed in Table 1, and report results with and without fixed effects. Whether to weight by

state population depends on the underlying assumptions about the data generating process

(see Solon et al., 2015). In particular, weighting by the state population leads to an efficient

estimator if there is homoskedasticity at the level of the individual, but not otherwise. Since

this homoskedasticity assumption does not seem likely to hold in our application, we focus

on the unweighted regressions with heteroskedasticity robust standard errors.9

leads to a modest increase in the estimated standard errors relative to those found without clustering, but
does not in general impact conclusions about statistical significance.

8Estimates and standard errors for parameters associated with the covariates are available from the
authors.

9Cook and Ludwig (2006) “prefer the weighted estimates because they provide a heteroskedasticity cor-
rection” and may therefore be more precise. As shown in Table 2, in our context, the weighted standard
errors are not substantially smaller than the unweighted ones, and are in fact often larger.
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3 Framework and Assumptions

While the results in Table 2 provide information on the association between homicide and

FSS, our interest is in inferring the association between homicide rates and firearms own-

ership rates. To do this, one needs to formally account for the fact that FSS is a proxy

measure for the unobserved ownership rate. To account for the measurement error created

by the proxy variable of gun ownership, we adapt the framework developed in Chalak and

Kim (2020).

Our interest is in identifying the association between gun ownership rates and gun and

non-gun homicide rates. Let Uit be the log of the lagged unobserved gun ownership rate.

The jth outcome equation is given by

Yjit = X ′itβj + Uitδj + ηjit, (1)

where Yjit for j = 1, 2 corresponds respectively to the log of the non-gun homicide and gun

homicide rate per 100,000 people in state i and year t, Xit denotes observed controls (see

Table 1), and ηjit is an unobserved disturbance. (βj, δj) are unobserved coefficients, and our

primary interest is in learning the δj coefficients. As in Cook and Ludwig (2006), all of the

observed random variables are logged and the gun ownership rate is lagged one year.

As noted above, we consider models without fixed effects as well as with state and year

fixed effects. In the latter case, we include year indicators in Xit and we remove the state

fixed effects by applying a within transformation. In this case, we interpret the analysis

relative to the within-transformed variables (see Chalak and Kim (2020, Online Appendix

C) for further details).

3.1 Primary Assumptions

The problem is that while we observe the log of lagged FSS, Wit, the log of lagged gun

ownership rate, Uit, is unobserved. To formalize the proxy variable problem, we decompose

Wit into a “signal” component Uit and a “noise” or measurement error εit. After stacking

the Yjit outcomes in Yit, we assume that the data is generated as follows.

Assumption A1 Data Generation: For t = 1, ..., T , let the latent variable Uit
1×1

, measurement

error εit
1×1

, disturbance ηit
J×1

, and covariates Xit
k×1

be random variables with finite variances and
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let the proxy Wit
1×1

and outcomes Yit
J×1

be given by

Y ′it = X ′itβ + Uitδ + η′it (2)

Wit = Uit + εit. (3)

The researcher observes realizations of (X ′it,Wit, Y
′
it)
′, for i = 1, ..., n and t = 1, ..., T , whereas

realizations of (Uit, η
′
it, εit) are unobserved.

We maintain that n is large relative to T and treat any missing observations as missing

at random. The equation for the proxy Wit involves logged variables, and therefore relates

the percentage (as opposed to level) changes in the variables. Thus, in levels, we have that

FSSit = b × Git × errorit where Git denotes the rate of gun ownership. After logging, our

model absorbs the error and the slope coefficient b into εit = log(b × errorit). That is,

under this specification, a percent increase in the rate of gun ownership is associated with an

approximately one percent increase in FSS. This is less restrictive than the no proxy error

model where Wit = Uit.
10 In Section 5.3.3, we consider a model with two proxies for Uit,

and we allow the coefficient on Uit in one of the proxy equations to be unrestricted. We find

that we cannot reject the hypothesis in A1 that this slope coefficient is equal to 1.

We let the latent firearm ownership prevalence Uit be freely correlated with Xit. Never-

theless, we maintain two standard assumptions about the other unobservables ηit and εit.

First, the disturbance ηit is uncorrelated with (Uit, Xit).

Assumption A2 Uncorrelated Disturbance: Cov[ηit, (X
′
it, Uit)

′] = 0 for t = 1, ..., T.

A2 refers to the classical linear regression assumptions, under which the regression distur-

bance is (by construction) uncorrelated with the right-hand side variables. Under this as-

sumption, the parameter δ is the best linear least squares coefficient for predicting the crime

rates based on gun ownership after controlling for Xit.
11

Second, the measurement error εit is classical.

10One might relax the assumption of a unit elasticity by introducing, for example, an unknown coefficient
on Uit: Wit = γUit + εit . In levels, this corresponds to FSSit = b × Gγit × errorit. In general, however,
the scaling parameter γ is not separately identified from δ. This identification problem is not particular to
the methods used in this paper but rather a generic feature in many latent variable models. In particular,
this identification problem applies to the previous literature estimating the regressions under the no-error
assumption εit = 0. Finally, in the case where we have two proxies for Uit, the parameter γ can be identified
for one of the two proxies. We allow for this possibility in Section 5.3.3.

11The literature often interprets this as a structural or causal assumption where δ is interpreted to be
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Assumption A3 Uncorrelated measurement error: Cov[εit, (X
′
it, Uit, η

′
it)
′] = 0 for t = 1, ..., T.

Thus, the classical model assumes the measurement error, εit, is white noise, uncorrelated

with the log of the lagged ownership rate, Uit, and the observed covariates, Xit. This provides

a parsimonious and reasonable weakening of the no measurement error assumption applied

in this literature. The classical error model is implicit in the validation studies examining

the correlation between different proxy measures and self-reported ownership measures (e.g.,

Azrael, Cook, and Miller, 2004). In addition, although the classical measurement error model

does not restrict FSS to lie between 0 and 1, this is not a chief concern for this application

where the minimum and maximum values of FSS are 0.143 and 0.882.

For T = 1, A1-A3 are the classical error-in-variables assumptions, where it is well known

that β and δ are not point identified. When analyzing the Yj equation separately, Klepper

and Leamer (1984), Bollinger (2003), and Chalak and Kim (2021) characterize the sharp

identification bounds for βj and δj. In particular, δj is bounded under A1-A3 using the for-

ward and reverse regressions (see e.g. Klepper and Leamer, 1984; Bollinger, 2003). Chalak

and Kim (2020, Corollary 3.3) show that jointly analyzing the J equations weakly narrows

the sharp identification regions. The basic intuition is that there is one mismeasured vari-

able and the noise-to-signal ratio in equation (3) applies to all J equations. This common

measurement error process imposes implicit cross-equation restrictions that weakly narrow

the identification regions. When estimating the association between firearms ownership and

non-gun or gun homicide (J = 2), we report the joint equation bounds in Chalak and Kim

(2020).

Given the identification gain from analyzing multiple equations, we also estimate models

with a third equation (J = 3) where the outcome is the gun suicide rate across states.

While our focus is on the homicide rate, there is a related literature which evaluates the

the average treatment effect. In this setting, papers from the literature take several steps to render A2

plausible (see Section 2). First, the specification in A1 conditions on covariates to control for demographic
and socioeconomic characteristics as well as the burglary and robbery crime rates. Second, the proxy is
lagged by one or more periods. Finally, the literature uses a type of placebo test by evaluating non-gun
homicides. See, for example, the discussion in Rosenbaum (2020, section 5.2.4) on the use of “unaffected
outcomes” when “we think a treatment will affect one outcome and not affect another, and we wish to exploit
the anticipated absence of effect to provide information about unmeasured biases.” The finding that gun
ownership rates are associated with gun-homicides but not with non-gun homicides, makes it less likely that
the specification failed to account for unobserved confounders that jointly affect homicide outcomes and gun
ownership. While these steps address several concerns regarding the validity assumption A2 in a structural
model, our analysis interprets the estimates of δ as an association rather than an average treatment effect.
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association between suicide rates and gun ownership rates using proxy measures of ownership

(see Duggan, 2003 and NRC, 2005). The Chalak and Kim (2020) bounds imply that bringing

together these two related literatures may serve to reduce the uncertainty about the extent

of the measurement error in the proxy.

Last, as discussed in Rosenbaum (2020, p. 138), considering multiple outcomes can

also bolster the plausibility of estimates if, e.g., one finds that “where an effect is plausible,

treatment and outcome are associated; where an effect is not particularly plausible, treatment

and outcome are not associated.” This makes it less likely that the model failed to account

for key unobserved confounders.

3.2 Auxiliary Assumptions

To tighten the identification regions obtained under A1-A3, we consider the auxiliary as-

sumptions A4-A5. Chalak and Kim (2020) characterize the identification region under any

configuration of these auxiliary assumptions.

First, we bound the reliability ratio of the observed proxy, Wit, for the unobserved own-

ership rate, Uit. For a given t, let R2
Wt

denote the “reliability ratio,” that is the population

coefficient of determination (R-squared) from a linear regression of Wit on Uit. Specifically,

if there is no measurement error then Wit is a perfect proxy for Uit and R2
Wt

= 1. More

generally, with classical measurement error, we have that R2
Wt

≤ 1. The existing literature

has implicitly assumed the no measurement error assumption even though the correlation

between FSS and firearms ownership is less than one. As noted above, Azrael, Cook, and

Miller (2004) use auxiliary data on ownership to estimate a correlation between Wit and Uit

of at least 0.81. This implies a reliability ratio of R2
Wt

of at least 0.6561 (i.e. 0.812).

Our first auxiliary assumption weakens the “no measurement error” assumption R2
Wt

= 1

by imposing a lower bound κ on the reliability ratio.12

Assumption A4 Bounded Reliability Ratio: κ ≤ R2
Wt

for t = 1, ..., T.

The no measurement error assumption sets the lower bound κ = 1. To weaken this

assumption, we conduct a sensitivity analysis that varies κ away from 1. Based on the vali-

dation literature discussed above, our preferred value is κ = 0.6561 and we report estimates

12More precisely, we impose the weaker assumption κ
∑T
t=1 V ar(Wit) ≤

∑T
t=1 V ar(Uit) (or its equivalent

after projecting Wit and Uit on the covariates).
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using this value in Section 4. In Section 5, we trace out the estimated bounds under different

values of the reliability ratio, κ, and also report estimates under the assumption that the

ratio is known rather than bounded. Chalak and Kim (2020, equation 5) show that if the

reliability ratio is known then δ is point identified.

Second, we allow for cross-equation information. For a given t, let rtj,h denote the corre-

lation among the cross-equation disturbances ηjit and ηhit. Our second auxiliary assumption

restricts the correlation between the shocks in the non-gun homicide, gun homicide, and

(when included) gun suicide equations to be non-negative.13

Assumption A5 Positive Disturbance Correlation Restriction: 0 ≤ rtj,h for j, h = 1, ..., J ,

j < h, and t = 1, ..., T .

For example, when J = 2 and after accounting for the gun ownership rate and the

covariates, A5 encodes that the shocks to the gun and non-gun homicide rates are (weakly)

positively correlated, reflecting an overall change in violent outcomes. We emphasize that

our framework allows imposing A4 and/or A5 but does not require them.

4 Empirical Results

In addition to reporting the plug-in estimates, we apply the estimation procedure in Chalak

and Kim (2020) to report 50% (this conveys information similar to median unbiased esti-

mates) and 95% confidence intervals (thereafter CI) for the parameters of interest.14 These

intervals account for state level clustering and arbitrary heteroskedasticity.

Table 3 displays the estimated bounds for δj in the basic specification with the full set

of logged covariates (see Table 1).15 In addition to imposing assumptions A1-A3, we also

restrict the reliability ratio to be greater than 0.6561 (A4). We present estimates with and

without fixed effects, and with and without the restriction that the disturbances are positively

correlated (A5). Finally, in columns A, we display results using two outcome equations –

13Here too, it suffices to impose the weaker restriction 0 ≤
∑T
t=1 Cov(ηjit, ηhit) for j, h = 1, ..., J , j < h.

14Chalak and Kim (2020) show how A1-A5 lead to intersection bounds on the reliability ratio. As discussed
in Manski and Pepper (2000), plug-in estimators of intersection bounds will be biased inward (also see Kreider
et al, (2012)). To address this bias, Chalak and Kim (2020) apply the results in Chernozhukov et al. (2013,
theorem 4 and example 1).

15Estimated bounds for the covariates coefficients are available from the authors.
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Table 3: Bounds on the Association between Ownership and Violent Deaths Under the
Assumption that the Reliability Ratio is at least 0.6561

No Fixed Effects

A. Without Gun Suicide Equation B. With Gun Suicide Equation
Cross Equation Correlation Cross Equation Correlation

No Assumption Non-negative No Assumption Non-negative
Non-gun Homicide Rate
Plug-in Estimate [0.097, 0.651] [0.097, 0.651] [0.097, 0.171] [0.097, 0.115]
50% CR [-0.179, 1.816] [-0.225, 1.862] [-0.044, 0.450] [-0.059, 0.487]
95% CR (-2.247, 3.884) (-2.820, 4.457) (-0.556, 0.961) (-0.737, 1.165)
Gun Homicide Rate
Plug-in Estimate [0.835, 5.573] [0.835, 5.573] [0.835, 1.467] [0.835, 0.988]
50% CR [0.684, 8.274] [0.677, 8.332] [0.684, 2.048] [0.677, 2.178]
95% CR (0.372, 10.898) (0.285, 11.625) (0.372, 2.698) (0.285, 3.039)
Gun Suicide Rate
Plug-in Estimate [1.332, 2.341] [1.332, 1.576]
50% CR [1.271, 2.895] [1.269, 3.063]
95% CR (1.145, 3.157) (1.110, 3.411)

State and Year Fixed Effects

Cross Equation Correlation Cross Equation Correlation
No Assumption Non-negative No Assumption Non-negative

Non-gun Homicide Rate
Plug-in Estimate [0.102, 0.287] [0.102, 0.287] [0.102, 0.287] [0.102, 0.287]
50% CR [0.040, 0.463] [0.037, 0.471] [0.040, 0.463] [0.037, 0.471]
95% CR (-0.252, 0.826) (-0.352, 0.927) (-0.252, 0.826) (-0.352, 0.927)
Gun Homicide Rate
Plug-in Estimate [0.359, 1.011] [0.359, 1.011] [0.359, 1.011] [0.359, 1.011]
50% CR [0.283, 1.223] [0.280, 1.232] [0.283, 1.223] [0.280, 1.232]
95% CR (0.127, 1.662) (0.084, 1.784) (0.127, 1.662) (0.084, 1.784)
Gun Suicide Rate
Plug-in Estimate [0.168, 0.474] [0.168, 0.474]
50% CR [0.122, 0.604] [0.120, 0.610]
95% CR (0.027, 0.872) (0.001, 0.946)

Note: The 50% and 95% confidence regions (CR) are computed using the intersection bounds procedure in

Chalak and Kim (2020). We set κ = 0.6561 in A4 and report the results with and without A5.
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one for non-gun homicides and one for gun homicides – and in columns B, we add the gun

suicide equation.

As in the linear models evaluated in Section 2, the estimated plug-in bounds on non-gun

homicide are close to zero on one side of the bound, and the 95% confidence intervals contain

zero. Consider, for example, the models without fixed effects under A1-A4. The elasticity

of non-gun homicide rates with respect to gun ownership rates is estimated to be as low

as 0.097 and as high as 0.651, with a 95% CI ranging from -2.247 to 3.884. Adding in the

suicide equation tightens the upper bound to 0.171 and the 95% CI to (-0.556, 0.961). Thus,

the sign of this association for non-gun homicides is indeterminate.

For gun homicide rates, the estimated association is strictly positive, substantial, and

statistically significant. Without fixed effects, the plug-in estimates in the basic model

imply an association of at least 0.835 and at most 5.573. Adding in the gun suicide equation

reduces the upper bound to 1.467.16 Thus, under this model, a one percent increase in the

gun ownership rate is associated with a roughly 0.835 to 1.467 percent increase in the gun

homicide rate. Finally, with the assumption that the disturbances are positively correlated

(A5), the upper bound falls further to 0.988. Thus, in this model, the estimated elasticity

lies within the narrow bound of 0.835 to 0.988, but there is substantial sampling uncertainty

reflected in the 95% CI of (0.285, 3.039).

In the fixed effect model, the association between the gun homicide and ownership rates

is estimated to lie in [0.359, 1.011]. This estimated bound is not sensitive to adding in the

suicide equation or imposing the restriction that the disturbances are positively correlated

(A5).
17 Thus, these estimated bounds imply that the elasticity of gun homicide with respect

to ownership may be nearly three times larger than when estimated using models that do

not account for proxy errors.

Overall, the results for gun homicide rates imply a substantial positive association. With

16The estimates for gun suicide are similar to those reported by Duggan (2003).
17Notice that the estimated 50% and 95% confidence interval with the positive sign restriction are wider

than without the restriction. In the population, the joint bounds with the sign restrictions are at least as tight
as the bounds without the sign restrictions. This is reflected in the plug-in estimates. The bounds with the
sign restriction depend on the sign of certain nuisance parameters which are known in the population. In the
sample, they are estimated. The inference procedure in Chalak and Kim (2020) proceeds by (a) estimating a
confidence interval for the nuisance parameters, (b) taking the union of the (intersection bounds) confidence
regions over all admissible nuisance parameters values, and (c) splitting the significance level across these
steps appropriately. Because of this conservative procedure, the confidence regions may be wider than the
ones without imposing sign restrictions (the statistical uncertainty can offset the identification gain).
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the fixed effect model, a one percent increase in ownership rates is associated with a 0.359

to 1.011 percent increase in gun homicides, whereas in the models without fixed effects the

estimated bounds imply an elasticity of slightly less than 1.18

Notice that the estimated lower bounds in Table 3 are equal to the regression estimates

in Table 2. This is the well-known attenuation bias in the classical measurement error

model. This paper’s framework allows us to obtain an informative upper bound, thereby

clarifying the otherwise unknown extent of the attenuation bias. In most of the models, the

estimated upper bounds are substantially larger, suggesting that the association between

gun-homicide and ownership rates may be much larger than previously reported in models

that do not account for proxy errors. Moreover, the point estimates from the identified

models considered in Section 5 are (nearly) equal to the estimated upper bounds displayed

in Table 3.

5 Sensitivity Analysis

In this section, we examine the sensitivity of the estimates to alternative assumptions on the

measurement error. We first study the sensitivity of the identification regions to variation in

κ, the lower bound on the reliability ratio. Then, we evaluate the point estimates from one

model where the reliability is known (Section 5.2) and two others model where a lagged or

different proxy variable serves as an instrumental variable (Section 5.3). Finally, we combine

multiple proxies to estimate a less attenuated lower bound (Section 5.3).

5.1 Variation in the Reliability Ratio Lower Bound, κ

Under A1-A4, we can study the sensitivity of the identification regions for δj, j = 1, 2, 3, to

variation from κ. Figure 1 plots the plug-in estimates, the 50%, and 95% confidence regions

(thereafter CR) for the partially identified δj as κ deviates from 1 for the model without

fixed effects. Figure 2 plots the estimates and confidence intervals for the models with fixed

effects. The graphs set the lower bound on the reliability ratio on the x axis starting at

18When using the noisier “Cook Index” as a proxy (the estimated reliability ratio from the validation
studies is 0.522 = 0.270 versus 0.651 for FSS) the estimated bounds are qualitatively similar but much
wider. For example, in the fixed effects model, a one percent increase in the ownership rate is associated
with a 0.783 to 9.696 percent increase in gun homicides. The results for non-gun homicide are all statistically
insignificant at the five percent level.
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Figure 1: Sensitivity analysis for the bounds without fixed effects as κ varies. The darkest color corresponds

to the plug-in bounds, the lighter color to the 50% CR, and the lightest color to the 95% CR.

1 (no measurement error) and decreasing away from 1. The columns correspond to the

coefficient on non-gun homicide, gun homicide, and gun suicide. The rows correspond to the

joint equation bounds without suicide, and the joint bounds with suicide. The darkest color

corresponds to the plug-in bounds, the lighter color to the 50% CR, and the lightest color

to the 95% CR. The darker regions are nested within the lighter regions.

Focusing first on the two-equation models, the basic conclusions for non-gun homicide

rates are robust to variation in κ. In particular, the width of the δ1 bounds is less sensitive

to κ (relative to δ2) and the associations are statistically insignificant in all of the estimated

models. For gun homicide rates, however, the results are more nuanced. In all models, the

estimates are positive and statistically significant. Yet, the upper bounds are highly sensitive

to κ, implying substantial uncertainty about the true association when using proxy measures

of ownership. For example, when κ = 0.85 the plug-in bounds on the gun homicide elasticity

are [0.835, 1.356] without fixed effects and [0.359, 0.499] with fixed effects whereas setting

κ = 0.6561 yields the bounds [0.835, 5.573] and [0.359, 1.011] respectively.

Perhaps the most striking finding is that adding the gun suicide equation has substantial

identifying power in models without fixed effects. With κ = 0.6561, for example, the plug-in
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Figure 2: Sensitivity analysis for the bounds with fixed effects as κ varies. The darkest color corresponds

to the plug-in bounds, the lighter color to the 50% CR, and the lightest color to the 95% CR.

bounds on the gun homicide elasticity is [0.835, 1.467]. Even when allowing for large degrees

of measurement error, the estimated bounds are relatively narrow. In contrast, without the

suicide equation, the analogous bounds are [0.835, 5.573]. Thus, in the model without fixed

effects, there is substantial value added by bringing together these two related strands of the

literature to address the measurement error associated with the proxy variable.

5.2 Known Reliability Ratio Model

In this section, we consider drawing inferences on the elasticity, δ, if the reliability ratio is

known rather than bounded. In particular, we assume that the reliability ratio equals the

smallest feasible value that is consistent with Assumptions A1-A4. The models estimated

under A1-A4 in Section 4 apply two restrictions on the reliability ratio, one directly from

A4 and another indirectly implied by A1-A3. Under A4, the reliability ratio is restricted to

be no less than 0.6561, the lowest ratio estimated in earlier validation studies (Azrael et al.,

2004). In the fixed effects models, A1-A3 implicitly restrict the reliability ratio to exceed

0.48, a nonbinding restriction given A4. However, in the three equation model without fixed

effects, A1-A3 restrict the reliability ratio to be at least 0.8317. Thus, we examine the results
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under the assumption that the reliability ratio equals 0.6561 for the fixed effect model and

0.8317 for the three equation model without fixed effects.

Under this assumption, Chalak and Kim (2020) show that the elasticity, δ, is point

identified to equal the upper bound of the identification region. The estimated upper bounds

are reported in Table 3. Thus, in the fixed effects models, where A4 is binding, the reliability

ratio is assumed to equal 0.6561 and the point estimate on the association between ownership

rates and the gun homicide rate equals 1.011. This point estimate is nearly three times larger

than the estimate of 0.359 derived under the assumption of no proxy errors (see Table 2).

For the model without fixed effects, the estimated association between ownership and gun

homicides equals 1.467. Further, adding the sign restriction A5 and setting the reliability

ratio to the smallest value consistent with A1-A5 implies the point estimate 0.988, nearly 20

percent larger than the OLS estimator of 0.835.

These results suggest that the true association between ownership and firearms homicide

rates is substantially larger than previously estimated. The estimates suggest a near unit

elasticity; a one percent increase in the gun ownership rate is associated with a one percent

increase in the gun homicide rate. In contrast, the elasticity estimates when assuming no

proxy errors are 0.359 in the model with fixed effects and 0.835 in the model without fixed

effect.

5.3 Instrumental Variable Models

Alternative restrictions on the measurement error process and proxy variables can be used to

narrow the bounds on the association between the log homicide rate and the log ownership

rate. In this section, we estimate two point identified models that rely on instrumental

variable assumptions: one with lagged values of the FSS proxy and another that uses both the

FSS and the fraction of homicides committed with a firearm (FHH) proxies. Finally, under

weaker assumptions, we use both the FSS and FHH proxies to estimate a less attenuated

lower bound than derived from the FSS proxy alone.

5.3.1 Point Estimated Using Lagged Value of the FSS Proxy

Without fixed effects, combining the jth component of Equation (2) with Equation (3) gives

Yjit = X ′itβj +Witδj − εitδj + ηjit.
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Then, the lagged value of the proxy, Wit−1, can serve as a proper instrument if Uit is serially

correlated (so that Cov[(X ′it,Wit−1)
′, (X ′it,Wit)

′] is non-singular) and εit is not serially cor-

related (so that Cov[(X ′it,Wit−1)
′, (εit, ηjit)

′] = 0). A similar argument applies to the model

with fixed effects after first differencing (see e.g. Griliches and Hausman (1986)).

To be clear, this model point identifies δj but the assumption that εit is not serially cor-

related may be too strong. Still, this assumption is weaker than assuming zero measurement

error, and it is useful to examine the results from this point identified model that accounts

for proxy errors.

Using a two-stage least squares estimator, the results without fixed effects corroborate

our preferred partial identification model estimates. In particular, the point estimate for the

gun homicide rate equation without fixed effects is 0.986, with a 95% CI of (0.539, 1.432).

Thus, the point estimate found when accounting for measurement error is almost 20% larger

than the estimate of 0.835 found using the OLS estimator. This is similar to the upper

bound estimates of 0.988 when incorporating the suicide equation and the non-negative

cross-equation correlation assumption (see Table 3). In the model with fixed effects, after

first differencing, the two-stage least squares estimates are imprecise with wide confidence

regions.

5.3.2 Point Estimates Using Two Proxies

Another model that point identifies the gun ownership coefficients uses both the FSS and

FHH proxies. Let A1-A3 hold for both proxies W1it (log lagged FSS) and W2it (log lagged

FHH) where W1it = Uit + ε1it and W2it = Uit + ε2it, and assume that Cov(ε1it, ε2it) = 0.

Substituting W1it for Uit, it follows that

Yit = X ′itβ + Uitδ + ηit = X ′itβ +W1itδ − ε1itδ + ηit

and the second proxy, W2it, can serve as an instrument to point identify the equation coef-

ficients. Symmetrically, one can substitute W2it for Uit and use W1it as an instrument. A

similar argument applies to the within transformed variables in the fixed effect model.

We estimate this model using two stage least squares, with and without fixed effects.

Similar to all the other models, the estimate of δ for the non-gun homicide coefficient is

statistically insignificant at the five percent level. For the gun-homicide coefficient, estimates
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without fixed effects are positive, significant, and substantially larger than the OLS estimate

(0.835) which ignores the measurement error: 2.81 with 95% CI (1.86, 3.76) when FHH acts

as an instrument and 2.46 with 95% CI (1.38, 3.54) when FSS acts as an instrument. The

estimates with fixed effects are positive and large, but imprecise and statistically insignificant

at the five percent level.

5.3.3 Lower Bound Estimates Using Two Proxies

While Cov(ε1it, ε2it) = 0 may not be a very credible assumption, it is weaker than the no

measurement error assumption that ε1it = 0 or ε2it = 0. Although the coefficients are no

longer point identified without this zero covariance assumption, δ can be bounded using the

two proxy variables. In particular, Lubotsky and Wittenberg (2006) develop a method to

use multiple proxies (e.g., FSS and FHH) to derive a less attenuated lower bound than found

using a single proxy (e.g., FSS). The estimated lower bound using this approach is 1.24 with

95% CI (1.09, 1.40) in the model without fixed effects and 0.61 with 95% CI (0.38, 0.84) in

the model with fixed effects.19 Thus, in the model without fixed effects, this lower bound

estimate is similar to the upper bound estimates found in Section 4 when incorporating the

suicide equation (see Table 3). In the model with fixed effects, this lower bound estimate

is nearly 70% larger than the analogous estimate of 0.359 found when using the FSS proxy

alone.

Finally, with multiple proxies, the procedure in Lubotsky and Wittenberg (2006) allows

one of the slope coefficients in the proxy equations to be different from 1. Suppose W1it =

γ1Uit + ε1it, so that a percent increase in the rate of gun ownership is associated with an

approximately γ1 percentage increase in FSS. In this case, the point estimate for γ1 is 0.51

with standard error 0.29, and we cannot reject the hypothesis that γ1 = 1 at the 5% level.

Allowing for an unknown coefficient γ1 on Uit in the FHH equation also leads to larger

estimated lower bounds than when using the single FSS proxy. In the model without fixed

effects, the resulting lower bound estimate is 0.94 with 95% CI (0.76, 1.11) and for the fixed

effect model, the lower bound estimate is 0.46 with 95% CI (0.29, 0.63). We obtain even

larger estimates of the lower bound if, instead, the slope coefficient in the FHH equation is

unrestricted W2it = γ2Uit + ε2it. The estimate for γ2 is 1.95 with standard error 1.11 and

19Following Lubotsky and Wittenberg (2006), we bootstrap the standard errors of the lower bounds in
Section 5.3.3.

20



we cannot reject the hypothesis that γ2 = 1 at the 5% level. The resulting lower bound

estimates are 1.82 with 95% CI (1.44, 2.20) in the model without fixed effects and 0.89 with

95% CI (0.54, 1.25) in the model with fixed effects.

6 Conclusion

Given the high rates of gun violence and death in the United States, there has been keen

interest in understanding the association between gun ownership rates and homicide. Are

more guns associated with more violent crimes? Yet, there is a lack of basic data on gun

ownership rates across states over time. Faced with this paucity of information, researchers

have turned to using the fraction of suicides committed with a firearm (FSS) as a credible

and reliable proxy measure of gun ownership that is consistently observed in each state and

year. However, the existing research does not account for the fact that the proxy is an

error-ridden measure of the ownership rate.

In this paper, we consider set- and point-identified models that formally account for the

measurement error in the proxy for gun ownership. In particular, we apply Chalak and

Kim (2020) to provide informative bounds on the mean association between homicide and

firearms ownership. Assuming a classical measurement error model, the estimated lower

bound on the magnitude of the association corresponds to the conventional linear regression

model estimate which implies a notable positive association between gun ownership rates and

gun homicide. The upper bound depends on prior information about the measurement error

process. Based on the validation literature for gun ownership proxies, our preferred model

restricts the FSS reliability ratio to be at least 0.6561. For most of the models we consider,

this yields an upper bound on the gun homicide elasticity that is substantially larger than

the regression estimates that do not account for measurement error. For example, in the

models with state and year fixed effects, we find that the elasticity of homicide rates with

respect to gun ownership rates is at least 0.359, the regression estimate, but may be as

large as 1.011. Moreover, in Section 5, we consider three point-identified models that rely

on earlier validation studies and instrumental variables respectively. We also consider less

attenuated lower bound estimates using multiple proxies. We find point estimates and lower

bound estimates that are substantially larger than the OLS estimates and, in some cases,
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(nearly) equal the upper bound estimates reported in Section 4. Together, the result from

these various models suggest that the association between gun homicide and ownership rates

is substantially larger than found in the earlier literature.
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